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This article presents a methodology to build measures of 
influence in regression models with time series data. We 
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observation on the parameter estimates and on the forecasts. 
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sample. The f irst statistic can be decomposed to measure the 
change in the univariate ARIMA parameters, the transfer function 
parameters and the interaction between both. For independent data 
they reduce to the D statistics considered by Cook in the 
standard regression modelo These statistics can be easily 
computed using standard time series software. Their performance 
is analyzed in an example in which they seem to be useful to 

e	 identify important events, such as additive outliers and trend 
shifts, in time series data. 
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1. INTRODUCTION 

The distinction between additive and innovational outliers in 
e time series was introduced by Fox (1972). Since then, the study of 

outliers has been an active area of research in time series. 

Abraham and Box (1979), Martin (1980), Chang, Tiao and Chen (1988), 

Tsay (1986, 1988) and Abraham and Chuang (1989) are some of the 

relevant references. The study of influential observations in time 

series, however, has received little attention in the statistical 

literature. Peña (1987, 1990) showed that the study of influential 

observations can be carried out for univariate time series using a 

missing value approach. We can use any suitable measure of distan­
e ce, such as the likelihood distance or the change in the predictive 

or posterior distribution, to measure the model-change when it is 

assumed that one observation, or a subset of observations, is 

missing. 

( In this paper, the missing value approach is applied to build 

measures of influence for dynamic (transfer function) regression 

models. When the residuals are not autocorrelated, and therefore we 

are in the particular case of the standard regression model, the 

statistic suggested reduces to Cook's D. This paper is organized as 
e follows: section 2 analyzes the problem of building a measure of 

change in the ARMA parameters; section 3 presents a global measure 

for the change of the whole modelo It is shown that this measure 

can be decomposed to study the effect on the transfer function 

e parameters and the ARIMA parameters. Section 4 applies these 

statistics to a dynamic system. 

2.	 INFLUENCE ANALYSIS IN UNIVARIATE ARlMA MODELS 

e 2.1	 A measure of influence in univariate ARIMA models 

Suppose the ARIMA model 

(2.1) 
e 

e 

~-----_._._._._--------------_._-----
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polynomial operators in the backshift operator B with roots outside 

the unit circle, and v = 1 - B is the difference operator. It is 

also assumed here that the stationary series vdzt has zero mean,e 
and at is a white noise sequence of iid N (O, G a 2) variables. 

Let k = p+q be the number of parameters. Let us call ~ and e 
the maximum likelihood estimators of the parameters with the 

complete data set and ~(i) and e(i) those wh~n observation zi is 

missing (these computations will be discussed in the next section, 

5). Then, the parameter estimates ft and ft(i) of the autoregressive 

representation 

(2.2)( 

can be computed from 

vd (/>(B) = e(B) 1l'(B), (2.3) 

e 
and the change in the model structure can be measured by a Mahala­

nobis type distance 

( (1l' 
(2.4) 

where I:1l' G a 2 is the variance covariance matrix of the maximum 

likelihood estimator ft. As shown in Pefla (1990), by building the 

measure of change (2.4) using the 1l' parameters, we avoid the 

problems linked to near cancellation between AR and MA structures. 

For large samples, approximately 

e -1 
I:1l' = (Zt-1Zt-1)
 

where Zt-1 is the matrix
 

e 
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Now, let Zt = Zt-1ft be the vector of forecasts and Zt(i) = Zt-1 

ft(i) be the vector of forecasts using ft(i) instead of ft. Then 
e 

--1(Z ­ z(i»,(Z 
(1T - 1T (i) )' (2.5)t t t :E1T 

Therefore, (2.4) can be written as 

(Z - z(i»,(Z z(i) ) 
t t t t (2.6) 

( 

Equation (2.6) shows that, as in the regression model, the 

Mahalanobis distance that measures the change in the parameters can 

be expressed as the Euclidean distance of the change in some 

forecast vectors. However, in the regression model it(i) is com­
e puted by repIacing the i th observation by i ts mean, whereas here 

Zt(i) is computed by replacing the ith observation with its 

conditional expectation given the rest of the data. Peña (1990) has 

shown that the statistic (2.6) can be written as a function of the 

Iikelihood-ratio test to check for additive outliers .. 

2.2 Computing univariate influence 

The computation of (2.6) requires the estimation of the parame­
( ters when one observation is missing. Jones (1980), Harvey and 

Pierce (1984), and Kohn and Ansley (1986) have shown how to solve 

this problem by setting up the model in state space form and 

applying the KaIman filter. An alternative method is the following. 

The conditional likelihood function of the parameters when observa­C· 
tion zi is missing can be written (see Ljung 1982) as 

2 (n-1) 2 1 f 1 (8 ) ( )L(8,a 1Z(i'U)=- 2 In a - --2- In i- 2a2 S ,u'Z(i)Zi/n' 2.7 

e 
where 8 is the vector of ~ and e parameters, Z(i) is the observed 

e 
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data set without zi, u is the vector of starting values, fi a2 is 

the variance of the sample distribution of the estimator of the 

missing value given the rest of the data, ~i/n is the expected 

value of zi given Z(i) and S(B, u, Z(i)' ~i/n) is the residual sum 

of squares given the vector of parameters and starting values, B, 
u, in a data set in which observation zi has been substituted by 

~i/n·( 
This estimation can be carried out easily using intervention 

analysis (Box and Tiao 1975) as follows. Let 

(2.8) 

be an intervention model where It(i) is an impulse variable that 

takes the value 1 at t = i. Then, it can be shown (Peña 1987) that 

the likelihood function for the parameters can be written as 

e 
1

L(B,a2 ¡Z,u) = - ~ In a2 - S(B,u,Z(i) ,zi/n). (2.9) 

Therefore, if the sample size is large, and the term In fi can 

be disregarded, the estimation of the parameters using (2.7) or 

(2.9) will be practically identical. 

In summary, 1t(i) can be easily computed with any computer 

package that includes intervention analysis. The computation of the 

vector of forecasts in (2.6) depends on the starting values, but if 
( 

the sample is large its effect will be negligible. 

In the measure (2.6) the vector Zt(i) does have zi as one of 

its components, because Zt(i) = Zt-11t(i) and Zt-1 includes it. If 

we were interested in the influence of zi on the forecast generated 

e from the model, we could monitor the change with a vector of 

forecasts that does not depend on the ith observation at all. In 

the vector of forecasts generated by the intervention model (2.8), 

observation zi is always replaced by ~i/n' and therefore, we will 

suggest as a measure of the change in forecast the statistic: 

e 

e 
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(2. 10) 

where ZtINT 

(2.8) • 

is the vector of forecasts from the intervention model 

3. INFLUENCE IN TRAN5FER FUNCTION MODEL5 

3.1 5tatistics of influence. 

e 

5uppose now that we have an explanatory variable Xt for the 

time series Yt. The variable Xt can be either deterministic or 

stochastic, but we consider the standard case in which the infe­

rence is done conditional on the given values of Xt. Then, one can 

write the model as 

( 

Y = ~ x + ~ at ó(B) t ep(B) t' 

where m(B) = mO + m1B + 
óaBa ) have roots outside 

lag regression equation 

+ mmBm and 
the unit circle, 

Yt = E n'Yt . + E a,xt .J -J ~-~ 

ó(B) = 
or also 

+ a t , 

(1 
as 

(3.1) 

- ó1B -
the standard 

(3.2) 

where a(B) = v(B)n(B). Now, model (3.2) can be written as 

e y= Z n +'T X v + U, (3.3) 

where Y is the n x 1 vector of observations of the output 

series, Z is an n x h matrix of past values of the output, n 

is a vector h x 1 of coefficients, T is a triangular matrix 

with coefficientse 
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1 O O o 
-'Tr 1

1e 
-'Tr - 'Tr 12 1 

T = (3.4) 

-'Tr 
P 

o -'Tr 
P 

x is the n x s matrix of current and past values of the explana­

tory variable and s is the dimension of the v vector. Let ft 

and ~ be the maximum likelihood estimators in model (3.3). The 

forecast vector is 

y = Z 'Tr + T X v (3.5) 

where T is the estimated T matrix using ft. Suppose now that obser­

vation Yi is missing, and let ft(i), ~(i) be the maximum likeli­

hood estimators of the parameters. (We will discuss their computa­

tion in the next section.) Then, the vector of forecasts using the 

new parameters is 

(3.6) 

( 
Following the same principIes used in the univariate case, we 

define as the global measure of influence 

e (3.7) 

Equation (3.7) shows that to compute Pi(B) it is necessary to 

obtain only the vector of forecasts from the standard transfer 
( function formulation (3.1). Therefore, the order h does not need to 

be specified, and e will be equal to p + q + m + a, the number of 

parameters used to compute the vector of forecasts • 

._------------------------------------' 
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3.2 A Decomposition of the statistic. 

An observation can be influential because it changes the 

parameters in the noise model, in the transfer function or in both. 

As i t may be useful to identify these cases separately, we can 

decompose the statistic to show these effects. A possible decompo­

sition is to use 
C· 

(3.8) 

if we let c1 = (p+q)/C, c2 = (m+a)/C be the proportion of parame­

ters in the noise and transfer function structure, we may write 

(3.9) 

where the term 
( 

- -2 
Pi(7T) = (7T - 7T (i) ) I zI Z (7T - 7T (i) ) / °a (p+q) , (3.10) 

is a measure of the change in the univariate parameters. Letting 

A-1 = T'T, the second term can be written 

- 1 --2 
P i (vl7T) = (v - v(i» I (X'A- X) (v - v(i»/Oa (m+a) , (3.11) 

and is 

(J(i) (we 

inverse 

maximum 

transfere 

proportional to the Mahalanobis distance between {J and 

will see in the next section that 0a-2 XI A-1X is the 

of the variance covariance matrix for the generalized 

likelihood estimator (J), and represents the change in the 

function param~ters g!ven the 7T parameters. Finally, the 

third term is 

(3.12 ) 
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and represents the interaction between the change in the transfer 

function and the noise parameters. This interaction term will in 

many cases be negative, because a decrease in the transfer function 

parameters will be linked to a change in the opposite direction of 

the noise modelo We will see an example of this situation in 

section 4. 

The breakdown of statistic (3.7) into i ts components shows 
(', 

clearly that: (1) if there are no explanatory variables in the 

model, (3.7) reduces to the univariate statistic previously 

defined, and (2) if the noise is white and therefore we have a 

regression model, (3.7) reduces to the D statistic introduced by 

Cook (1977) for the regression modelo 

3.3 Computing Diagnostics 

To compute statistic (3.7) we need to estimate the parameters 

of the model when one observation is missing. To descr ibe the 

nature of this estimation, let us write the model as 

y = X v + R, (3.13) 

where R is a vector of noise that follows a multivariate normal 

distribution with mean zero and positive definite covariance matrix 

a 2A, such that A-1 = T'T. 

Then, the log likelihood corresponding to (3.13) is 
( 

2 n In a - t In IAI - 1 (Y - Xv) 'A-1 
(y - Xv) , (3.14 )

2 2a2 

and, conditional on A, ,the generalized least squares estimator of 

v is 

(3.15 ) 

with covariance matrix 

e 
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I:(v) = (X'-~X)a2. (3.16) 

As the n parameters, and therefore the A matrix, are usually 

unknown, maximum likelihood estimation requires an iterative 

algorithm in which, given an initial n value, the matrix A is 

determined and an initial estimator of v computed with (3.15). 

Then, the error process R is generated using (3.13), and the usual 

univariate time series estimation method applied to R to produce a 

new value for n. The procedure is iterated until convergence. 

Now, it is well known that when A = I, the identity matrix, and 

only one observation is missing, the estimation of the parameters 

can be obtained by including a dummy variable in the regression 

modelo We have shown in section 2.2 that, for large samples, this 

procedure works with univariate time series data. It will also 

work for model (3.13) if we consider the X values as fixed. Then, 

if we estimate the model 

(3.17) 

where I(i) has a one in the ith position and zeros elsewhere, v(i) 

will provide the estimator of the v parameters when Yi is missing. 

As the A matrix is, in general, unknown, the estimation of (3.17) 

will require an iterative algorithm. To describe its structure, let 

us first analyze the case in which the parameters n, and therefore 

the matrix A, are given. Then, using the Cholesky factorization 

-1
A = T'T 

e 
and letting Y = TY, X = TX, I(i) = TI(i)' u = TR, the model is 

(3.18 ) 

where now E[UO'] = a 2I. Then, it is shown in the Appendix that 

the least squares estimators of the parameters are 

----._._-_._---------------------------------------_. 



10� 

(3.19) 

and 

(3.20) 

é' 
\, where 

(3.21) 

and 

(3.22) 

To understand the meaning of these estimators, let us consider the 
e simple dynamic regression model 

Then, the estimator B(i) for B given ~ will be obtained from the 
model 

e (3.23) 

and it can be shown that it is given by 

e (3.24) 

where 

(' 

l 
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- 2
S (iln) = I:(X - <1> ,x t Xt - 1 ) 

and 

i 

= rt t '! 
Yt <1> , t i ,. Yiln = (Yi+1 + Yi-1) = 

(1 + <1>2) 

and 

[X t '! it 
Xt = p 

X'I = (Xi +1 + X i - 1 ) t = i
1. n (1 + <1>2) 

Note that Yi/n and xi/n are the optimal estimators (in the minimum 

mean square error sense) of the missing values Yi and xi. Both 

are computed using the inverse autocorrelation function of the 

output (noise) model (see Peña 1990). Thus, (3.24) is the estimator 

of the parameter 8 using these interpolators instead of the 

observed values. Besides, 

w. = y. (3.25)
1. 1. 

( is the difference between the observed value Yi and its estimator 

using all the information contained in the sample. 

When the n parameters are unknown, the ML estimator of all the 

parameters of the model when Yi is assumed to be missing can be 

computed as follows: 
C· 

(1) Assuming initial values for the parameters 8(0) = (1t(0), 

'0'(0» compute the estimator 1t(i) 1'0'(0) for the univariate 

parameters of the noise, as shown in section 2.2. 

(2) Using 1t(i) 1'0'(0) compute the ML estimator of the transfer
( 

function parameters 'O'(i) using (3.19) and (3.20). 

(3) Iterate until convergence. 
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In every step (1) or (2), using the initial value for the 
parameters, the minimum mean square error interpolator for the 
missing value is computed using 

where ~iln can be 9iln or ~iln and in both cases p1k is the 
inverse autocorrelation function of the output process computed 
using the current estimate of the parameters. Then, new series are 

constructed using 9i In and ~i In instead of (Yit xi), and the 
maximum likelihood estimates are computed. These values provide a 
new estimator of pik' that is used to build new estimators for the 

values 9iln' ~iln' The iterations are repeated until convergence. 
Note that although the nature of the estimators has been 

analyzed using the linearized or structural form of the model 

" \� (3.2), all the computation shouldbe carried out in the parsimo­

nious representation (3.1). Hence, the orders h and s in (3.3) need 
not be specified. Thus, in practice we only need to estimate the 

model 

( 

= w~ I ( ~ ) + m( i) (B ) Xt + e (i) (B) (3.26)Yt ... ... O(i) (B) et>(i) (B) 

and the vector Y(i) needed to compute (3.7) can be obtained from 
the vector Y(i)INT of forecasts generated from model (3.26) using 

(3.27) 

where Qi' ~(i) (B) and ~(i)(B) ~ome from the estimation of (3.26). 
e The values ft(i) and ~(i) needed in the computation of statistics 

(3.10) and (3.11) can be obtained using the relations 

o(i) (B)v (i) (B) = m(i) (B) 

e 
and 

( 
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e(i) (B) 11 (i) (B) = <P(i) (B)� 

( 

( . 

The statistic (3.7) is designed to measure the change in the 
parameters of the model, and is based on the vector of forecasts 

using the vector of parameters ft(i)' ~(i) with the sample data. 
An alternative measure that takes into account the change in the 

forecast is 

AINT) , (yA AINT)
(Y - Y Y( i) (i) (3.28) 

where Y(i)INT is the vector of forecast generated by the interven­

tion model (3.26). This measure reduces to (2.10) if there were no 
explanatory variables in the modelo 

In summary, the computation of (3.7) and (3.28) can be carried 

out with a program that computes ML estimators for the parameters 

of a transfer function modelo It is only necessary to introduce a 

dummy variable (an intervention impulse variable) at every point, 
estimate the model and compute the vector of forecasts. Then, to 

obtain the statistic (3.7) we need the vector of forecasts (3.27), 

whereas to obtain the statistic (3.28) we use directly the vector 

of forecasts from the intervention modelo 

3.4 Finding Influential Points 

We can say that a point is influential at level a if the 

parameters estimated using a modified sample in which this point is 

assumed to be missing are notincluded in the 1 - a joint confi­

dence region for the parameters estimated with the complete sample. 

For a time series model, the joint 1 - a confidence interval for 
the vector of parameters 8 is given by (Priestley, 1981, p.369) 

. 
S(8) - S(8) :S F(p, n-Pi 1-a) ,P ~a2 
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where 5(B) is the residual sum of squares for the parameter vector 

B, B the ML estimator, p the number of parameters, Ga 2 the residual 

variance and F(p, n-Pi 1-Q) the 1-Q percentile of the F distribu­

tion with p and n-p degrees of freedom. 

For large samples, statistics (2.6) and (3.7) can be compared 

with a X 2 distribution with k and e degrees of freedom. Then, if, 

for example, Pi (71) equals the 0,25 value of the corresponding X 2 

distribution, assuming that the i-th point is missing would move 

the estimate of 71 to the edge of the 0,25 joint confidence region 

for ft. 

This reference distribution is only an approximation. However, 

we believe that the main usefulness of these statistics is as 

exploratory tools, and a plot of the values Pi(B) over time will 

indicate if there are influential points and will suggest possible 

hypothesis to be tested. 

4 • AN EXAMPLE 

To illustrate the previous procedures, we analyze a dynamic 

system represented by two series. The input series is the gas feed 

rate in a gas furnace, and the output is the c02 concentration. 

Box and Jenkins (1976) included 296 pairs of data points with a 

sampling interval of 9 seconds. To simplify the computations, we 

have selected a sample starting with the first observation and 

assuming that the system was sampled every 27 seconds and so taken 

one observation out of every three in the whole data seto From now 

on we will use this sample of 99 observations. 

Table 4.1 gives the univariate models for these input (Xt) 

and output series (Yt). The transfer function modelling procedure 

in Box and Jenkins (1976) leads to 

2 = 53.38 - (1. 27B + 1.76B )x + NYt t t
( .16) ( • 09) ( • 09) 

(4.1) 

2(1 - .78B + .20B )N = a aa = .68 . 
( .10) ( .12) t t 
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MODEL O'a Q(36) 

(1 - .93B + .48B2 - .24B3)Xt = at .745 17.8 

(1 - 1.28B + .82B2 - .36B3 )Yt = 9.21 + at 1. 641 24.2 

Table 4.1 

( 

Models for the feed rate and 
sampling) . Q(36) is the Ljung-Box 
residual correlation coefficients. 

C02 concentration 
statistic computed 

(27 seco 
with 36 

Table 4.2 shows the largest values of the global influence 

measure (3.7) and its breakdown according to (3.9). These statis­

tics have been computed using intervention analysis as follows. To 

compute Pica) the following model was fitted: 

and 

( 

( 
e 

Let B'(1.') = (c(i), w(i)w(i)~(i)~(i» be the parameters estimated
1 2 1 2 

with this model and Y(i)INT the vector of forecasts generated with 

it, we compute 

( . 
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which is the vector of forecasts using the parameters Bt (i) in 

the transfer function modelo Then, Pi (B) is computed using 

(3.7) • 

To compute the components of Pi (B) we have ignored the 

covariance between the estimators that were small, and hence 

Mean Interq. Range� 90 96 91 

Pi(B) .004 .014 .93 .18 .14� 

Pi(vl") .001 .013 .99 .08 .12� 

Pie'!) .003 .011 .49 .22 .24� 

Di (Y) .131 .315 5.05 1.03 1.16� 

Table 4.2 

{ 
Distribution of the influence statistics in model (4.1). The 

three important points (90, 96, 91) are shown, as well as the mean 
and Interquartile range of the distribution of each influence 
statistic for the whole data seto 

Table 4.2 shows the diagnostic statistics Pi(B) and Di(Y) that 
( 
\� are plotted in figures 1 and 2. It can be seen from them that Y90 

is the most influential point both on the parameters of the model 

( 
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( 

'­

( 

( 

( 

( 

and on the forecasts. The Table also shows that in this case Pi(B) 
~ 

and Di(Y) pinpoint the same observations, and although there is a 

difference in the scale in both measures, observation 90 is roughly 

five times the value of next large ones. However, the small value 

of P90(B) compared with a X2 distribution with 5 degrees of freedom 

indicates that its effect on the parameter estimates is small, that 

is, i t moves the estimator slightly within the j oint conf idence 

region for the parameters. This is confirmed by the breakdown of 

the statistic in the table. These results mean that the global 

structure of the model is robust to the sample. To illustrate this 

fact, Table 4.3 shows the parameters estimated assuming that Y90 

was missing, and it can be seen that their change is small. 

The largest residuals from model (4.1) are displayed in Table 

(4.4) where it can be seen that all the larger values are concen­

trated at the end of the sample and after Y90. The plot of the 

residuals (Figure 3) shows some evidence of a change after Y90, 

and if we apply the outlier detection techniques developed by 

Chang, Tiao and Chen (1988) and Tsay (1986), observation 90 is 

identified as an additive outlier. (The size of the outlier is 

estimated as 2.12 with a t value of 4.13). Therefore, we conclude 

that observation 90 is an additive outlier, that it is the most 

influential point both on the parameters and on the forecast 

(figures 1 and 2), but also that its effect on the estimated 

parameters is small, as shown by tables 4.2 and 4.3. 

c w1 4>2 aw2 4>1 

whole sample 53 -1.27 -1. 76 .77 -.20 .679 

value 90 missing 53 -1.33 -1.65 .88 -.17 .608 

Table 4.3 

Parameters of the model with the whole sample and assuming that 
observation 90 is missing. The value of Y90 is 54.5 and its 
optimal estimate is 52.15. 
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t 91 98 97 90 99 

I 
at/(Ja -3.53 3.43 3.14 2.57 2.34 

( 

Residuals greater than 

Table 4.4 

2(Ja in the transfer function modelo 

(' 

The large residuals after observation 90 seem to indicate an 

important change after this point. Two hypotheses may be conside­

red: the f irst is a level shift after this point, the second a 

trend shift. These effects may be modelled by a step function or a 

linear trend function after t=90. Therefore, we will estimate the 

models 

C, VYt =.24 S(90)_ 
(.06) t 

(1.29B 
(.09) 

+ 1.78B2 ) V X 
t 

+ 
(.09) (1 

Vat 

- .65B + .22B2)' 
(.10) (.12) 

(4.2) 

and 

Yt = 
(90) 2 a t 

53.29+2.49 St -(1.31B+1.82B )Xt + -(-1---.6-0-B-+-.-2-8-B~2~)' 
(.10) (.78) (.09) (.09) 

(.11) (.12) 

(4.3) 

( 

( 

where St(90) is a stepfuncticin that takes the value one for t ~ 

90 and zero before. Model (4.2) includes a linear trend after 

t=90, and model (4.3) a step at this point. The residual standard 

error of at in (4.2) is .629, and .638 in (4.3), and the residuals 

of model (4.2) after t=90 show a better behavior than those from 

model (4.3). Note again the robustness of the parameters of the 

model comparing (4.2) with the results of Table 4.3. As the 

e, 
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statistics of influence for model (4.2) keep showing an influential 

effect at t = 90 but nothing afterwards, we will add an impulse 

at this point in model (4.2), and we finally estimate the model 

( . 03) 
2 (90) 2 (1-.96B)atVYt=(·24+2.27V )St -(1.40B+1.66B )Vx + ----------~- (4.4)t(.07) (.47) (.07) (.08) (1-.76B+.25B2)'� 

(.10) (.12)� 

that has variance .588. This model shows that an unusual event 

(represented by an impulse) occurred at t = 90 and produced a big 

effect at this point, and from then on a linear trend of .24 units 

every period was added to the series. Note again that the parame­

ters for the noise and transfer function in model (4.1), and (4.4) 

are similar. Although the model for the noise in (4.4) seems very 

different from the one in (4.1), the " weights for these models 

are very similar. 

Therefore, we can conclude that the relationship described for 

model (4.1) is well defined, that an intervention happened at time 

t = 90 producing an increasing trend in the output and making the 

process non-stationary, and that model (4.4) represents an adequate 

approximation to describe the effect of the intervention. 

To study the effect of an anomalous event in the middle of the 

sample, let us assume now that in the original sample at points 40 

and 41 an error of measurement is made, and instead of the value 

59.4, (the same at both points) we observed 49.4. Let us call this 

series Yt. Then the estimated model is 

Yt = 53.16 - (1.15B + 1.48B2
)X + (1 - .66B + .28B2 )-1 a , (4.5) 

(.22) (.18) ( .. 18) t . (.10) (.10) t 

and sorne relevant statistics for diagnosis are displayed in Table 

4.5. It can be seen that the most influential point, as far as 

affecting either the parameters or the forecasts, is t = 41. Howe­

ver, although the effect on both the parameters of the transfer 

function (Pi(vl") = 8.25) and the noise (Pi(") = 3.51) is strong, 

(compared with a X2 with 2 degrees of freedom) the global change is 
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not� very large, because of compensation effects between both parts. 

Note that the breakdown of the statistic Pi(B) allows us to 
(� 

say that if the objective of the experimentation is to estimate the 

transfer function parameters we should conclude that model (4.5) is 

not robust, because observation 41 is able, by itself, to modify 

the transfer function parameters significantly. 

( . 

38 39 40 41 42 43 

Pi (B) .49 .84 .71 2.39 1.1 .41 r 

Pi(vil 7T i) .32 .10 .76 8.25 .26 .20 

Pi(7T) .64 1. 34 1. 34 3.51 2.05 .57 

(' ­
Di(Y) 2.18 4.77 4.27 5.28 4.20 -1.8 

-.22 .55 -6.6 -2.54 3.33 .89atlaa 

Table 4.5 

statistics of influence for model (4.5). All the other values 
are small. 

5.� CONCLUDING REMABKS 

The� identification of influential observations complements the 
í� study of outliers. As 1s well known from the standard regression 

set up, when the model includes explanatory variables it is 

possible to have highly influential points that are not identified 

as outliers. The importance of this analysis depends on the 

objectives of the study. When the model is built to interpret the 

parameters or to test the gain of the transfer function, we may 

want to know whether or not the conclusions we draw from the data 

e 

..-._-------------------------------------_. 
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are very much affected by sorne small number of observations which 

may or not be outliers. 

When a point is identified as influential in a given model, we 

should first check if this point is also an outlier. If it is, the 

usual procedure is to incorporate it into the model using dummy 

variables (see Tsay 1986, 1988). If the point is not an outlier, we 

face essentially the same problem that has been studied in standard 

regression with high leverage points. There is not enough informa­

tion in which to verify or deny the given point based just on the 

data. The a priori knowledge of the problem under investigation 

must be used to choose the appropiate modelo A wise strategy may be 

to keep both models -the one that includes the suspicious data and 

the one that assumes this point is missing- and to check them with 

new data as a means of finding a better modelo In this latter case 

the study of influential observations may indicate the shadowy 

regions of present knowledge and suggest possible hypotheses to be 

explored. 
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The estimation of model 

APPENDIX 

(3.18 ) will be 

( . 

w. 
]. 

v (i) 
= 

I (i) I (i) 
XI I(i) 

I (i) 

XIX 

x 
-1 

I I 

XI 

Y 

Y 

and using the expression for the inverse of a partitioned matrix 

e 

e 

w. 
]. 

where 

= 
b 

-6CIX)-lXIÍ(i)b 

-bI(i) X(X IX)-l 

(X X)-l A 

( 

and after some 

are obtained. 

straightforward operations results (3.19) and (3.20) 

( 

( 

( 
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Figure 3e 
Plot of the residuals in model (4.1) 
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