Electronic Transactions on Numerical Analysis. ETNA

Volume 35, pp. 88-103, 2009. Kent State University
Copyright 0 2009, Kent State University. http://etna.math.kent edu
ISSN 1068-9613.

ON MODIFIED ASYMPTOTIC SERIES INVOLVING CONFLUENT
HY PERGEOMETRIC FUNCTIONS *

ALFREDO DEANOT AND NICO M. TEMME?

Abstract. A modification of the Poincaré-type asymptotic expansion for functions defined by Laplace trans-
forms is analyzed. This modification is based on an alternative power series expansion of the integrand, and the
convergence properties are seen to be superior to those of the original asymptotic series. The resulting modified
asymptotic expansion involves a series of confluent hypergeometric funéfigns:, z), which can be computed
by means of continued fractions in a backward recursion scheme. Numerical examples are included, such as the
incomplete gamma functioR(a, z) and the modified Bessel functidii, (z) for large values ot. It is observed
that the same procedure can be applied to uniform asymptotic expansions when extra parameters become large as
well.
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1. Introduction. Many special functions admit integral representations in terms of Laplace
or Fourier transforms

o0
(1.2) F(z) = / e *Lf(t)dt,
0
whereRz > 0 and f(¢) may depend on one or several extra parameters. In some cases,
this formulation is obtained after some suitable transformations of a contour integral in the
complex plane, for example through the classical saddle point method. For instance, the
modified Bessel functioi, () of orderv can be written as

(12) Ku(z) — % AOO e_2zt[t(1 + t)]u—%dt7
2

and this expression is valid fét(v) > —1 and R(z) > 0.

For the purposes of numerical evaluation, an asymptotic expansion for:larijebe an
interesting option, particularly whenis complex. For details on this method, and on several
other approaches; seé][ In the present case Watson’s lemma can be used %séd]) by
expanding the functiorf (¢) in (1.1) or the function(1 + t)”‘% in (1.2 in powers oft, and by
integrating term by term. This gives a Poincaré-type asymptotic expansion, which is usually
divergent for fixed values of. In order to circumvent the problem of the divergence of the
asymptotic series, several possibilities have been presented in the literature.

One of them is the use of Hadamard expansions; 8eand subsequent papers in the
saies. Taking into account the location of the singularitieg @f, the interval0, co) in (1.1)
is decomposed into a union of finite intervals, and then Watson'’s lemma is applied in each of
them to yield a convergent expansion.

A different possibility, discussed irf] and [4], is a modification of the power series
expansion off(t) in (1.1), followed by integration term by term. This gives an expansio
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analogous to the Poincaré-type expansion, but including confluent hypergeometric functions
instead of inverse powers af as asymptotic sequence. The main advantages of this ap-
proach with respect to other methods are two: the new expansion is generally convergent,
while preserving the asymptotic property for largeand secondly, in quite general cases, the
coefficients of the modified series can be given in closed form.

The purpose of this paper is to analyze some features of this modification, namely the
convergence properties of the modified asymptotic series and some techniques that can be
used to compute the confluent hypergeometric functions involved in the approximation. Re-
markably, it turns out that it is possible to avoid the actual computation of these confluent
hypergeometric functions by rewriting the asymptotic series conveniently and using contin-
ued fractions in a backward recursion scheme. As a general example, modified expansions for
confluent hypergeometric functions are considered in Se&ji@md as particular cases ex-
pansions for the incomplete gamma functib(u, z) and the modified Bessel functidt, (z)
are studied. In Sectiofhwe investigate a similar modification applied to uniform asywitip
expansions, and we present the functfoy(vz) for large values of’ as an example.

2. Modified asymptotic series.Consider the Laplace integral

F(z) = / e # h(t)dt,
0

wherea > 0, Rz > 0, andh(t) is analytic in a domain containing the positive real axis. The
usual method to obtain an asymptotic expansion of this integral for large valuds based

on invoking Watson’s lemméb[ 11]. Expandingh(t) = 3,2, hxt® and integrating term by
term gives the asymptotic expansion

—, Dla+k
F(z)Nthi(;j__k ), z — 00.
k=0

However, unlesg.(t) is entire in the complex plane, this expansion will be divergent, as

a consequence of integrating the gamma function integrals (@ver), regardless of the
(finite) singularities ofh(t). In this section we propose an alternative expansiorfoy,

which is based on a different power series and in general exhibits better behaviour. The
modified asymptotic series will not contain inverse powers, dut confluent hypergeometric
U-functions.

2.1. Construction. First we consider the basic aspects of the construction of the modi-
fied asymptotic series.

PrROPOSITION2.1. Let h(t) be analytic in a certain domai® C C, which contains the
origin. If we consider the two following expansions,

2.1) h(t) i 4, k) ib < ! )k
. - a;t, - [ a— )
part / Pt 1+t

which converge insid®, then it is true thaby = ag, and for k=1,2,. ..,
S e
(2.2) by = Qs -
' 2 (k= 3)!

Here we have used the standard Pochhammer symbol,

Lla+m)

(2.3) (a)o=1, (a)m= T

m > 1.
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Proof. The equalityay = by is clear by comparing powers afof order 0 in both
expansions. By using the change of variable t/(1 + t) it follows that fork > 1

bk:i/c s/ =5) 4

21 sk+1
whereC, is a small circle around the origin inside. Returning to the variable we have

k—1
b — i h(t)(1+1t) n
2mi Je, tht1
where(C, is a contour around the origin, which again can be taken as a small circle. Now
(2.2 follows by expanding:(t) in powers oft and using residue calculus. O
REMARK 2.2. This modification can be seen as a particular case of a more general
transformation of series, as exposedih We can write

00 k
(24) ht) = 1—1/\t Db (1 itAz&) ’

k=0

where the coefficients, can be written in a similar form as. in (2.2. Scraton takes the
value of A in an optimal way, taking into account the singularities of the functig). In
the examples of Sectid) 2.(t) = (1+t)7, wherey depends on the parameterandc of the
Kummer functionlU (a, ¢, z). For certain values of the optimal value of\ is —1, whereas
for other values it is-1. However, the chosen value Afseems to give minor improvements
on the convergence of the series, in particular when we use the expansipm ({htégral
transforms. Because taking= —1 gives explicit representations of the coefficiebitswve
use this value throughout the paper.

2.2. Asymptotic properties. In this section we will analyze the integrals that result
when integrating term by term the modified power series that we have constructed. For integer
K > 0 consider the partial sum

then
K 00
Fr(z)=> bk/ e POt )Rt
k=0 V0
These integrals can be written as confluent hypergeometric functions, by virtue of the

integral representatiori] Eq. 13.2.5]

1 oo
(2.5) Ula,c,z) = —/ e F T (1 4 t)e o
( ) I(a) Jo ( )

valid for Ra > 0, Rz > 0. Identifying parameters, we obtain

K
(2.6) Fr(z) =Y _bil(a+k)U(a+k,a+1,2),
k=0
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for Rz > 0. We note that using the identity,[Eq. 13.1.29]
2.7) Ua,c,2)=2"Ula+1—-¢,2—c2),

we can write 2.6) in the form
K
(2.8) Fr(z) =27 T (a+ k)UK 1-a,z2).
k=0

We can show that for large this series presents nice asymptotic properties. This follows
from the next proposition.

PrRoOPOSITION2.3. For fixeda > 0, the functiong (z) :=U(k,1—a,2),k=0,1,...,
form an asymptotic sequence wher- oo in |arg z| < 37/2.

Proof. This result follows from the definition of asymptotic sequence given by Olver
[5, p. 25], together with known estimations of the Kumm&function whenz is large, for
instance 1, Eq.13.5.2], which givesy 11 (2)/ér(z) ~ 1/z asz — . d

2.3. Convergence.Up to this point, the construction of the modified asymptotic series
has been formal. In this section we investigate the convergence properties of the approxi-
mation. As is well known, the radius of convergence of the first serieg.i), (say R, is
determined by the singularities of the functib() (in the complex plane), in the sense that
if the singularity ofh(t) that is closest to the origin i, thenR = |¢,|. If we use the change
of variable

t

(29) S = 1——}-t7

then the singularity will be moved fromy to so = #o/(1 + to). Let us denote = |sg|. We
have the following result.
PROPOSITION2.4. Lett, be the singularity ofi(¢) which is closest to the origin. With
the change of variable2(9), the following statements hold.
e If p > 1, then the second series i.() converges fot > 0.
e If p < 1, then the second series iB.() converges fofh < t < ¢, wheret > |to].
Proof. The domain of convergence of the series is givefsby: p. Thatis,|t| < p|1+t¢].
If p > 1, this domain is the exterior of the circle

which includes the real axis> 0.
If p =1, then|t| < |1+ ¢| holds fort > —3.
If 0 < p < 1, then the domain of convergence is the interioffThis includes the part
of the real axi®) < t < ¢, where
2
p P p
ty = = .
T p2 + 1—p2 1-p

Now, since0 < p < 1, it follows that|1 + ¢o| > |to|, and then

P _ lto]
L—p  |L+to| = [to

2ol O
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The following corollary will be useful when dealing with Laplace transforms.
COROLLARY 2.5.1f p > 1, then the sequence

K 00 " k
)= 3o [t ()
k=0 0

is convergent fofarg z| < 3, and its limit is

F(z)= lim Fg(z)= / e *Ho I n(t)dt.
— 00 0

Proof. The result follows directly from the convergence of the power series oy,
uniformly on compact intervals gf), oo), whenp > 1. O

In most of the cases that we will consider, the first part of tlogpsition can be applied,
and the modified series will be convergent.

REMARK 2.6. Itis important to observe that the convergence of the expansddds (
ard (2.8) can also be established when we have information on the deetfd,. From [8,
p. 81], we have the following estimation for the terms in the sum)(2.8

(2.10) D(a+k)U(k,1—a,z) ~2(k2)% e2 K_o(2Vkz), k— oo,

inside the sectorm < arg z < 7. For the modified Bessel function, we have the asymptotic
relation (seel, Eq. 9.7.2])

(2.12) K, (z) ~ ’/% e 7, z— 00,

inside the sectopgw <arg z < %w. Therefore, whenr is bounded away from the origin,

(2.12) T(a+ k)UK, 1—a,z2) ~ Valkz) T e32VF | |- .

Combining the information oy, with the largek behavior of the Kummer functions gives

the convergence properties of the expansions. We also note that this analysis can be used to
obtain an analytic continuation df(z) for values ofarg z different from the ones imposed

by the Laplace integral representatidnlj, that is| arg z| < L.

24. Numerical aspects.As can be seen in formula®.g) and @.8), the modified asymp-
totic series involves confluent hypergeometric functions as the asymptotic sequence. In this
section we will analyze possible strategies for the numerical computation of these functions.
It is known that the functiongy,(z) := U(a + k, ¢, z) satisfy a three-term recurrence
relation of the form

(2.13) Fe1(2) + Bifr(2) + ar fr-1(2) =0,

where«y, and gy, are rational functions in the parametersand ¢ and the variable:. In
principle this enables us to generate the sequenggef needed for the modified asymptotic
series with two initial valuesf,(z) and f1(z). However, as noted ir9] (see also 2, 4]),
the functionf;(z) is the minimal solution of the recursion for increasihgand hence the
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computation in the forward direction (increasiky is numerically ill-conditioned. Instead,
the backward direction, or equivalently the associated continued fraction, should be used.
The recursion for increasingreads (I, Eq. 13.4.15])

c—2a—2k—=z (2) + 1
atk)atk+1—o (a+k)(at+k+1—c)

Yr+1(2) + 0 yr—1(2) =0,

fork =1,2,..., with initial valuesy, andy; (z). A second solution is given by

1
=+ F k
gk(z) F(a—i—k—i—l—c)l l(a+ 1072)7
in terms of the confluent hypergeometric function of the first kind or Kummer function. This
is a dominant solution for increasirtg

From the recursionA.13 we can construct the associated continued fraction

fr —Qf —Op41 —Qk42
2.14 =
( ) fe—1 Brt+ Bryrt Breet

where fork > 0, we have

ar=1, apyj=(a+k+j—1(a+k+j—0c), 7j=123,...,
Brtj=c—2a—2k—2j—2  j=0,1,2,....

Since the continued fraction will give the value of arafig .1, it is convenient to compute
the series of the form(8),

K
Fg = defm

k=0

in the following way (provided thaf;, # 0):

_ difi (), dafs o Jx
Fr =dofo <1+d0 To <1+d1 f <+ <1+d}<—1 fK—l))))l

The advantage of this formulation is that it may prevent overflow or underflgyaid f; 1
are very large or very small but the ratio is of moderate size, and it exploits the structure that
the coefficientsl;, have in most of the cases.
An algorithm for the evaluation of this series could be:
e Choose an integdk’, which may be estimated from the terms of the series; for more
details see the discussion i#1[
e Compute the continued fraction for the ratiq := fx/fx—1, using, e.g., the mod-
ified Lentz-Thompson method [Ch. 6].
e The ratiosry, can be easily updated once we haye since

—ay,

e B S T
B + Trt1 J

Tk
We observe that the coefficients, are easily obtained once we knoky, since
di, = bpI'(a + k) for & > 0. Moreover,dy = boI'(«) and f, = 1, so it is important
to observe that in this setting there is no need for the actual computation of the confluent
hypergeometric functions.
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We also note that the convergence of the continued fraciah¥) to the ratio ofU-
functions is ensured by Pincherle’s theoreth put for large values the parameteand small
values ofk the convergence can be numerically poor. This phenomenon has been analyzed
in [3] and [4] for several recursions for Gauss and Kummer functions, andllibe present
here when the parameteris large; see equation2.8) and 3.4). In these cases one possible
sdution is to consider uniform asymptotic expansions. This type of expansion is (necessarily)
more complicated than the one presented before, but nevertheless it lends itself to a similar
transformation. For an example we refer to Sectioh

3. Examples.

3.1. The confluent hypergeometric functionU (a, c, z). As a first example, we can
derive the modified asymptotic expansion for the confluent hypergeorbtieftiaction itself.
Starting from the Laplace integré? (), if we expand

h(t) = (146" = i <C e 1)#,

=0~ 7
then a standard application of Watson’s lemma gives the known asymptotic expansion

a—i—l—c)

(3.1) Ula,c,z) ~ z az I (—2)7,

Jj=0

which is valid for|arg z| < 37/2; see [, Eq. 13.5.2]. The modification of this asymptotic
expansion, along the lines explained before, gives an expression of theX@nwith « = a:

(3.2 (a,c,z) Z )kbU(a + kya+ 1, 2).
k=0

In this case the coefficientg can indeed be written in compact form, namely,

(3.3) by = (_1)’€(a+; - C) = (C_(Zi,_l)’“

where we have used the Pochhammer symbols giveh.8). (Therefore, using4.7) we can
write (3.2) in the form

(3.4) Ul(a,c,z) “i c—a—l)

k=0

Uk,1—a,z),

which may be seen as a modification of the expansiol).(

The convergence of this expansion follows from Corollargfor | arg z| < 7/2, since
h(t) = (1+t)°~2~! has a singularity aty = —1 . This domain can be extended to al- 0,
inside the sectdrarg z| < , using Remark2.6.

We note that the convergence can be also established by meah4 ®f {ogether with
the fact thatb, ~ k=22 whenk — oo, which follows directly from 8.3). Naturally, for
complex z, one would expect the convergence to get slower whinclose to the negative
imaginary axis, since in this case the decay of the exponential ¢efm*= is much less
pronounced.

As particular cases of the confluent hypergeometric fundtiga ¢, z) we have several
special functions of importance. In the next subsections we discuss some examples.
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3.2. The incomplete gamma functionl'(a, z). We consider the incomplete gamma
function

I'(a,z) = / et ldt = z“e_z/ e (14 t) at,
z 0

where we assume thgdrg z| < 7. The relation with the confluef-function is
I(a,z) =z2%"*U(l,a+1,z) =e *U(1 —a,1 —a, z);

see, for instance 1P, p. 186]. Hence, the standard asymptotic expansion for lafgows
directly from 3.1),

I'(a,z) ~ T Z(l - (I)j(—Z)_ja
j=0

when|argz| < 37/2. Alternatively, one can expand the functiafit) = (1 + ¢)*~ 1 in
powers oft and apply Watson’s lemma. The divergence of this expansion for fixed values of
z is shown in Figure3. L

The modified asymptotic series can be obtained fr8td)(

o0

(3.5 I(a,z) ~ 2% * Z(a - 1)Ul +k,2,2),
k=0

and the convergence of this expansion|farg z| < 7 follows from Remark2.6.

It is important to note that the parametetioes not appear in tHé-functions, but never-
theless large values afwill slow down the convergence of the seri@s). This can be seen
by considering the estimation&.(.0 and @.11), which yield

VEzT e v
- DU+ E,2 ~YE T ke z
(0= DU+ k22) w2 i 2

k — oo.

In Figure3.1we illustrate the computation of the incomplete gamma fumatiging the mod-
ified asymptotic series and the method of evaluation explained in Settott is clear that
for large values of; the approximation is not satisfactory.

3.3. The modified Bessel functio,, (z). The modified Bessel functioR, (z), also
called MacDonald function, can be written as

(3.6) K,(z) = V7(22)"e *U (1/ + %,21/4— 1722) :

see, for instance 1P, Eq. 9.45]. The corresponding asymptotic approximatiorofed di-
rectly from (3.4), with parametera = v + % ¢ =2v+ 1, namely,

oo 1 1
o E - e
K, (z)= 2, € E o U(k,i—u,Qz),
k=0

which is convergent for > —% and |arg z| < w, again as a consequence of Rem2utk
This expansion can also be obtained from the integral representation

JR(2)e
v+ %)

K,(z) = /Ooo e F[H(1 4 1)) 2 dt,
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FiG. 3.1. Relative error (inlog;, scale) in the computation of the incomplete Gamma function, using the
standard (solid curve) and modified series (dashed curve) Witterms andz = 10.23. Left,a = 1.5, center
a = 10.5 and righta = 40.5.

FiG. 3.2. Relative error (inlog;, scale) in the computation of the Bessel functigp(z), using the series
involving Kummei/-functions. Leftz = 10 + 11.14, centerz = 50.1 4 42.5¢ and rightz = 100.1 + 120.5:.
Herev = 10.1 (solid curve) and, = 20.1 (dashed curve).

which is valid forR(v) > —1 amd R(z) > 0.

In Figure3.2we illustrate the computation of the modified series for thecfiom K, (2)
in MATLAB for three different values of, again using the method of evaluation explained
in Section2.4. We plot the error with respect to the direct evaluation of thesgéfunction
using the MATLAB internal subroutine. Similarly to what happened with the incomplete
gamma function, we note that large valueg @five worse results.

3.4. Other examples.These techniques can be applied to several other examples within
the family of confluent hypergeometric functions. For example, by using the following iden-
tities [1, Eq. 9.6.4]

2 v T
Hﬁl)(z) =—e¢e 2K, (ze‘7> , _%ﬂ. <argz <,
™
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2 v i
HISQ)(Z):—EG T K, (267), -7 < argz < im,

it is possible to derive the modified asymptotic expansions for largerresponding to the
Hankel functions (and hence to the standard Bessel funcfionrg andY,, (z))

[2 im mis (V= 5V + D) :
HW(2) = — T Z 2 5 2 U(k,%—u,—%z),

k=0

which is valid for— 7 < argz < m, and

o0

2 N 7/ T +l
HO () =] = ¢ ; Z W+ 3)e U(k,%—l/,%z),
w4

for—r < argz < %w.
Other examples are furnished by the Weber parabolic cylinder functions] s€a.[L9].
Using [10, Eq. 7.21]

_ o—-3/4—a/2 —z%/4 3 1.3 1.2
Ula,z) =2 /4=a/2o /ZU(Z+§Q,§,§Z),

we get the modified expansion

U(a, z)*zil/2 Ge™% /4Zka( % %a,%zQ),
k=0

where
( +30)k(=7 — 30)k
k! '

Once more, large values afwill slow down the convergence of this modified asymptotic
series.

b, =

4. Modified uniform asymptotic expansions. As can be seen from the previous ex-
amples, one problem of the modified asymptotic expansions is that, though being convergent
in many cases, they are not uniform with respect to other parameters, sudorathe in-
complete Gamma function andfor the modified Bessel function. Large values of these
parameters with respect towill slow down the numerical convergence. A way to overcome
this difficulty is to use an asymptotic expansion for large values of the parameters that remains
uniformly valid with respect ta;, and then apply a modification similar to the one that we
used before. As an illustrative example, we investigate again the modified Bessel function.

4.1. Amodified uniform asymptotic expansion forkK, (vz). Anasymptotic expansion
for large values of» which is uniform with respect te can be found in1, Eq. 9.7.8], and
reads

(4.1) K,(vz) ~ \/i(l—i—zz 7 < +Z >7

which holds whens — oo, uniformly with respect ta: such that arg 2| < %w. Here,

(4.2) t= #7 \/1+22+10g

V1422 \/1—!—22
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The first coefficients (¢) are [1, Eq. 9.3.9],

3t -5t
o247

0= 81t% — 462t" 4 3851°
w2\t) = 1152 ’

UO(t) = 1, ul(t)

ard other coefficients can be obtained by applying the formula,
t
(4.3)  wpgr(t) = 362(1 — t*)up(t) + & / (1 — 55%)ug(s)ds, k=0,1,2,...
0

This expansion can be obtained in the following way. Consider the integral representation [
Eq. 9.6.24],

1 o0
K,(vz) = 5/ e W dy,  ¢(v) = zcoshv — v.

— 0o

When z is real, the function¢(v) has a real saddle point located at the point
vp = arcsinh(1/z). We apply the following transformation,

(4.4) P(v) — p(vo) = 36" (vo)w?, sign(w) = sign(v — o),

where¢” (vg) = V1 + 22 = 1/t and witht as before. This gives

o0 7" d
(4.5) K,(vz) =1 e_’”’/ e~ 3ve" (wo)w? 20 dw,

o dw

wheren is given in @.2). If we expandiv/dw = Y-, cxw* and integrate term by term, we
obtain @.1) with

(4.6) w(t) = (=1)F(2t)F (%) Cops k=0,1,....
k
An alternative expansion can be obtained as follows. Write
Kofvs) =g e [ b e ) du,

wheref(w) is the even part ofu/dw (considered as a function of). That s,
flw) = Z apw?*,
k=0

wherea;, = ¢, and thecyy, can be computed from the functiong(t) using @.6). To obtain
analternative expansion we write

9] U)2 k
k=0
The relation betweea,, andb,, is given by @.2), and this gives

0 0o L —Lue” (uo)w?,, 2k
_ 1 _—v ez w
K, (vz) = 5e7 " E bk/ (L dw.
k=0 -




ETNA

Kent State University
http://etna.math.kent edu

ON MODIFIED ASYMPTOTIC SERIES 99

These integrals can be expressed in terms of the Kurbi¥fenction. Indeed, using(5
we have

oo —Lue” (ug)w?,, 2k
/ €’ kw :I(k+%)U(h+§%éuVl+%).

oo (1+w?)
Therefore, the expansion can be written as follows:
(4.8) Ky (vz) =" Zbk r (k + %) U (k +3.2, /1 + 22) .
k=0

The coefficientd;, can be expressed in termsigf(t), using @.6), (2.2) and [1, Eq. 9.3.9].
The first few are:

bozaozl,

blzalzﬂ

385 44 | 43 4,2 13
1"+ 5t

by = a1 +ag = 355 128"

_ _ 17017 46 , 13783 44 2 85
bs = ay + 202 + a3 = 555551 + Tagaapt T 230400t 10247

b4:a1+3a2+3a3+a4

__ 1062347 8_|_ 979693 t6—|— 83633 t4 159049 ;2 _ 2237

23887872 9953280 1720320 4300800 327687

where we recall that = 1/+/1 + z2. Although the expressions become rather cumbersome,
we note that, with the aid of symbolic computation with mathematical software, such as
Maple or Mathematica, it is not difficult to generate and store a sequeneg(f using
(4.3), which can then be used to compute the coefficigpts

In Figure4.1 we give an example of this expansion, taking the first few terntsean-
ploying the method of evaluation explained in Sectioa We consider the same values of
the variable as before (though now we scale to evaluate)end plot the relative error with
respect to the MATLAB internal routine for the Besgelfunction, for increasing values of

We observe that, as expected, large values of the paramietgrove the results. In fact,
we have from2.10),

U(— ,2,5) %2(/@—%@%51{

uniformly with respect t@ in | arg £| < 7, where
E= %V\/ 1+ 22.

For the modified Bessel functioﬁl (2vk€), we have the exact relation

(2V/k€) = 3/m(he)"Fe VI,

2VkE), k= oo,

l
2

1 ™ 1
1 3 ~ = o 5E2VEE
U(2+k,2,§) r(k)‘/kgez VEE g o,

uniformly with respectt@ in | arg&| < 7.

and hence
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FIG. 4.1.Relative error (inlog;, scale) in the computation of the Bessel functfop(v =), using 3 terms (solid
curve), 4 terms (dashed curve) ahiderms (dashed-dotted curve) of the series involving Kunii&nctions. Left,
vz = 1414, centervz = 10.1 4 20.5¢ and rightrvz = 100.1 + 120.5:.

4.1.1. Convergence propertiesThe domain of convergence of the standard and modi-
fied asymptotic expansions can be analyzed by considering the singularities of the respective
integrands in the complex plane, as shown in Se@idfor simplicity, in this section we will
restrict ourselves to real, positive values:of

We note that the change of variablés4) introduces singularities of the functiefw /dw
in the complexw-plane that we can use to analyze the convergence of the series that results
from Watson’s lemma applied to the integrédl%). Indeed, the (complex) solutions of (3.4
are

1
(4.9) vp(2) = (—1)*arcsinh— + ki, k=0,+1,+2,...,

z
the casek = 0 corresponding to the saddle point which is real wheis real. The next
relevant saddle points are,;, which will give the closest singularities @fv/dw to the
origin in thew variable. A direct manipulation using ) yields

4 + 2mi
V1422’

where agaim is given in @.2). Hence, the radius of convergence of the series obtained by
application of Watson'’s lemma tol(5) is |w1|. In Figure4.2 we show the location of these
two saddle points in the complex-plane, forz = 0.1,0.2, ..., 20. Itis clear from ¢.2) and
(4.10 that whenz — 01, thenw?; — +oo F 2mi, and wherr — +oo, thenw? ;| — —4.

We expand in the form

(4.10) wi, =

[e%s) ’lU2 k [e’e)
(4.11) ﬂm_Z@GTW>_Z@w,
k=0 k=0
where
(4.12) s= Y

VIt w?
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FIG. 4.2. Saddle pointsw; (negative imaginary part) andw_; (positive imaginary part), for
z=20.1,0.2,...,20 (from right to left in the figure).

The singularities of the new variablecan be computed from the ones«inobtained
from (4.9), and they will determine the domain of convergence of the fietiasymptotic
series. More precisely, we can prove the following result.

PROPOSITION4.1.1f z > 1, then|sy| > 1.

Proof. ¢ From ¢.12 we obtain

2
w1
1+ w?

52? —\

If we writew (z) = re'?, then the conditioms; |> > 1 is seen to be equivalent #w?(z) <
—3. From (4.10 it follows that

4n 4 z
——— =4 lo :
V1422 Vit 2 Pleyite?

As a function ofz, Rw?(z) is decreasing for > 0, andRw?(z) < —1, which proves the
result. The same reasoning can be applied to O

As a consequence of Propositigh1) and Corollary2.5 we have that the serieg.(L])
is convergent for all realv if z > 1. Itis clear that in these results the value= 1 is
chosen for clarity and can be refined to be the solutiondat3 equal to—%. Numerical
computation gives approximatety = 0.753. Forz < z* we do not have convergence of the
modified expansion, and the seridsgj should be understood in an asymptotic sense. Other
singular points in thev—plane of the mapping ird(4) occur whenp(v) = ¢(vp) a points
different from the point = vy inside the strip-7 < Sv < 7. Itis not difficult to verify that
this cannot happen when> 0. Figure4.3illustrates the location of the points.; in the
complex plane for different values of

We recall that we can replace the expansiondin)(by a more efficient modified expan-
sion of the form @.4), where we take into account the singularitiesfdfv). However, as
follows from [7] and from the singular points of(w), the value ofA for an optimal choice
gives an expansion in whichdepends omw. When we take such an optimak transforma-
tion of the uniform expansiori(1) into an expansion in terms of the Kumniésfunctions is
not possible anymore.

(4.13) Rwi(z) =
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FIG. 4.3. Saddle pointss; (negative imaginary part) ands_; (positive imaginary part), for
z=0.1,0.2,...,20 (from left to right in the figure).

4.2. A modified uniform asymptotic expansion for theU-function. As a final exam-
ple, we give a few details for a uniform asymptotic expansion of the Kunifmction that
generalizes the expansion far, (vz) given in @.1). We write 2.5) in the form

1 > 1+1t)?
U(V+%,2V+1+b721/2):7/ e_”‘z’(t)ualt7
) Jo t1+1)

where
o(t) = 22t — Int(1 +¢).

It is clear that forb = 0 this U-function can be written in terms of the modified Bessel
function K, (vz); see formulag.6). Whenz > 0 there is a positive saddle poitit given by

=z V1422

t
0 2z

We have

4221 + 22
to)=1—24+n(22)+n, ¢"(t)) = —Y "=
¢(to) z+1In(2z) +n,  ¢"(to) it

wheren is given in @.2). We apply the transformation
o(t) — d(to) = 20" (to)w?,  sign(w) = sign(t — to),
and obtain

€_V+VZ_U77 o 1,4 w?
U(V+%,2V+1+b,2uz)zm/_ e 2 ¢ (to) f(w)dw,

where
(1+t)b dt
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Expanding nowf (w) = >"r-, fxw", we obtain the asymptotic expansion

(4.14) U(v+ 5,20 +1+b,2v2) ~ A(v, 2) (1 + i W) ’
k=1
where
fm o (L +tg) e vtvETn _ Jo 25(5)k
Al z) = \Er@ Fherarar B = e

We have, for instance,

Up(b, 2) = 55 (=1 = 3b>2 + 6b* + (—3 — 3b°z + 3bz2)t + (3bz — 6b)t* + 5t%),

where agairt = 1/v/1 + 22 asin (4.2). In the casé = 0, we obtain the expansion ir (1)
when we use the estimation

V2me VY > Ve

—— ~ 1+ —, v — 00,
Fv+3) = vk

together with the asymptotic identity
= > Ur(0, 2 = wp(t
<1+Z%> <1+ZLV,€ >> S S EiC)
k=1 k=1 k=1

As in Sectiord.1, we can modify the expansion in (4)14iving the generalisation ofi(8).
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