
GENERALIZED WEIGHTED SOBOLEV SPACES
AND APPLICATIONS TO SOBOLEV ORTHOGONAL POLYNOMIALS II
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1. Introduction and main results.

Weighted Sobolev spaces are an interesting topic in many fields of Mathematics. In the classical books
[Ku], [KS], we can find the point of view of Partial Differential Equations. See also [T] and [HKM]. (The
main topic of [HKM] is non-linear Partial Differential Equations and its applications to quasiconformal and
quasiregular maps.) We are interested in the relationship between this topic and Approximation Theory in
general, and Sobolev Orthogonal Polynomials in particular.

The specific problems we want to solve are the following:

1) Given a Sobolev scalar product with general measures in R, find hypotheses on the measures, as
general as possible, so that we can define a Sobolev space whose elements are functions.

2) If a Sobolev scalar product with general measures in R is well defined for polynomials, what is the
completion, P k,2, of the space of polynomials with respect to the norm associated to that scalar product?
This problem has been studied in some very particular cases (see e.g. [ELW1], [EL], [ELW2]), but at this
moment no general theory has been built.

3) What are the most general conditions under which the multiplication operator, Mf(x) = x f(x),
is bounded in the space P k,2? We know by a theorem in [LPP] that the zeroes of the Sobolev orthogonal
polynomials are contained in the disk {z : |z| ≤ ‖M‖}. The location of these zeroes allows to prove results
on the asymptotic behaviour of Sobolev orthogonal polynomials (see [LP]). In this paper we answer the
question stated also in [LP] about general conditions for M to be bounded (see Section 5). A more detailed
study of this operator can be found in [R2].

This last question is very close to the definition of Sobolev spaces associated to these norms, the study
of their completeness and the density of C∞ functions. The problem of the definition of Sobolev spaces has
been solved in [RARP] with the concept of p-admissible measures (see definitions 8 and 9 below); in that
paper we also prove their completeness under very general conditions, not only for p = 2, but for 1 ≤ p ≤ ∞.

One of the main problems in the theory of weighted Sobolev spaces is the study of the density of smooth
functions. In particular, when all the measures are finite, have compact support and C∞c (R) is dense in
a Sobolev space that is complete, then the closure of the polynomials is the whole Sobolev space. This
is deduced from Bernstein’s proof of Weierstrass’ theorem, where the polynomials he builds approximate
uniformly up to the k-th derivative any function in Ck([a, b]) (see e.g. [D, p.113]).

For the case L2(R, µ), a classical result by M. Riesz gives conditions to obtain the density of polynomials
when µ is not of compact support (see [R], [F, Chapter II.4]). In [R3] we can find results on density of
polynomials in weighted Sobolev spaces in R.

Here we prove density theorems for C∞(R), with 1 ≤ p < ∞. See also [R3] for other results with
1 ≤ p < ∞, and [R1] for the case p = ∞. When the measures have compact support, this implies density
theorems for C∞c (R) (multiplying by a suitable C∞c (R) function).

These generalized Sobolev spaces can be extended to the context of curves instead of R (see [APRR]).

We should remark that there exists another generalization of Sobolev spaces in the context of metric
spaces (see [H], [M]). In these papers the treatment of this topic is from a different point of view.
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Now, let us state our main results here. We refer to the definitions in the next section. Let us present
first the theorem about completeness, which is proved in [RARP].

Theorem A. ([RARP, Theorem 5.1]) Let us consider 1 ≤ p ≤ ∞, an open set Ω ⊆ R and a p-admissible
vectorial measure µ = (µ0, . . . , µk) in Ω with (Ω, µ) ∈ C. Then the Sobolev space W k,p(Ω, µ) is complete.
Remark. The condition (Ω, µ) ∈ C is not very restrictive (see Definition 16 and its remarks in Section 3).

We cannot obtain such a general result for the density of C∞(R); we need some additional hypotheses
on the measures. The measures we are dealing with have been divided in five types and we have results
which allow “gluing” these measures (see theorems 4.2, 4.3 and 4.4 below).

These are our main results on density.

Theorem 4.1. Let us consider 1 ≤ p < ∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in [a, b].
If µ is a measure of type 1, 2, 3, 4 or 5, then C∞c (R) is dense in the Sobolev space W k,p([a, b], µ).

Theorems A and 4.1 have the following important consequence.
Corollary 4.1. Let us consider 1 ≤ p <∞ and µ = (µ0, . . . , µk) a p-admissible vectorial measure in [a, b].
If µ is a measure of type 1, 2, 3, 4 or 5, then W k,p([a, b], µ) is the closure of the polynomials in the norm of
W k,p([a, b], µ).

Observe that we cannot expect C∞c (R) to be dense in W k,∞([a, b], µ) since C([a, b]) is not dense in
L∞([a, b]). In [R1] one of the authors studies what is the closure of smooth functions in W k,∞.

In the following theorems we present density results for measures which can be obtained by “gluing”
simpler ones (for example, gluing measures of types 1 to 5).

Theorem 4.2. Let us consider 1 ≤ p < ∞ and −∞ ≤ a < b < c < d ≤ ∞. Let µ = (µ0, . . . , µk) be a
p-admissible vectorial measure in [a, d], and assume that there exists an interval I ⊆ [b, c] with (I, µ) ∈ C0

and µj(I) < ∞ for 0 ≤ j ≤ k. Then C∞(R) is dense in W k,p([a, d], µ) if and only if C∞(R) is dense in
W k,p([a, c], µ) and W k,p([b, d], µ).

Remark. If a, d ∈ R, we can write in Theorem 4.2 C∞c (R) instead of C∞(R).

Theorem 4.3. Let us consider 1 ≤ p <∞ and {an}, {bn} strictly increasing sequences of real numbers (n
belonging to a finite set, to Z, Z+ or Z−) with an+1 < bn for every n. Let us consider (α, β) := ∪n(an, bn)
with −∞ ≤ α < β ≤ ∞ and a p-admissible vectorial measure, µ, in [α, β]. Assume that for each n there
exists an interval In ⊆ [an+1, bn] with (In, µ) ∈ C0 and µj(In) <∞ for 0 ≤ j ≤ k. Then C∞(R) is dense in
W k,p([α, β], µ) if and only if C∞(R) is dense in every W k,p([an, bn], µ).

Corollary 4.2. Let us consider 1 ≤ p <∞ and {an}, {bn} strictly increasing sequences of real numbers (n
belonging to a finite set, to Z, Z+ or Z−) with an+1 < bn for every n. Let us consider (α, β) := ∪n(an, bn)
with −∞ ≤ α < β ≤ ∞ and a p-admissible vectorial measure, µ, in [α, β]. If, for each n, µ|[an,bn] is of type
1, 2, 3, 4 or 5, then C∞(R) is dense in W k,p([α, β], µ).

The main result about the multiplication operator is the following.

Theorem 5.1. For 1 ≤ p < ∞, if µ is a p-admissible vectorial measure in [a, b] of type 1, 2, 3 or 4, and
the multiplication operator is well defined in W k,p([a, b], µ), then it is bounded. The result is also true for
measures of type 5 verifying the additional condition wk ≤ cwk−1 in [a0 − δ, a0 + δ] ∩ [a, b].

In the paper, the results are numbered according to the section where they are proved. Now we present
the notation we use.

Notation. In the paper k ≥ 1 denotes a fixed natural number; obviously W 0,p(Ω, µ) = Lp(Ω, µ). All
the measures we consider are Borel and positive. Also, all the weights are non-negative Borel measurable
functions. If the measure does not appear explicitly, we mean that we are using Lebesgue measure. We allow
measures µj which are not necessarily σ-finite but always assume that dµj = d(µj)s +wj dx, where (µj)s is
singular with respect to Lebesgue measure and wj is a Lebesgue measurable function (which can be infinite
in a set of positive Lebesgue measure). We denote by supp ν the support of the measure ν. If A is a Borel
set, |A|, χ

A
, A, int(A) and #A denote, respectively, the Lebesgue measure, the characteristic function, the
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closure, the interior and the cardinality of A. By f (j) we mean the j-th distributional derivative of f . When
we work in the space W k,p(Ω, µ) we denote by W k−r,p(Ω, µ) the space W k−r,p(Ω, (µr, . . . , µk)). We say that
an n-dimensional vector satisfies a one-dimensional property if each coordinate satisfies this property. Pn

denotes the set of polynomials with degree less than or equal to n, and a, b arbitrary real numbers with
a < b; they are finite unless the contrary is specified. Finally, the constants in the formulae can vary from
line to line and even in the same line.

The outline of the paper is as follows. Section 2 presents most of the definitions we need to state our
results. We collect and prove some useful technical results in Section 3. In Section 4 we prove the results on
completeness. Finally, we prove the results for Sobolev orthogonal polynomials in Section 5.

Acknowledgements. We would like to thank F. Marcellán for suggesting us this problem and H. Pijeira
for many useful references.

2. Definitions.

There are two standard ways to define classical Sobolev spaces W k,p(Ω) (with 1 ≤ p < ∞) in an open
subset Ω of an Euclidean space:

(1) the completion of smooth functions C∞(Ω) with the norm

‖f‖k,p :=
∑
|α|≤k

‖Dαf‖p ,

where ‖g‖p denotes the Lp(Ω) norm of g with respect to Lebesgue measure, and
(2) the functions f belonging to Lp(Ω) such that their weak derivatives up to order k belong also to

Lp(Ω).
It is well-known that these two definitions are equivalent for 1 ≤ p <∞ (see e.g. [A, p.52], [Ma, p.12]).

However (1) and (2) coincide with the completion of C∞(Rn) only for smooth domains (see e.g. [A, p.54],
[Ma, p.14]).

It is possible to define some particular weighted Sobolev spaces, where the weights considered are powers
of d(x) = dist(x,K) with K ⊆ ∂Ω, and even h(d(x)) with h a monotone function, following the text [Ku]. If
we want to define more general weighted Sobolev spaces we can use the approach in [KO]. Before we state
the definition in [KO], let us observe that the distributional derivative of a Sobolev function is also a function
belonging to L1

loc(Ω). In order to get the inclusion

Lp(Ω, u) ⊆ L1
loc(Ω) , for 1 < p <∞ ,

a sufficient condition, by Hölder inequality, is that the weight u satisfies u−1/(p−1) ∈ L1
loc(Ω) (see [KO,

Theorem 1.5] or Lemma A below). With this fact in mind we can understand the definition in [KO]:
Given a weight u in Ω let us denote by Mp(u), for 1 < p <∞, the closed set

Mp(u) :=
{
x ∈ Ω :

∫
Ω∩U(x)

u−1/(p−1)(y) dy = ∞ for every neighbourhood U(x) of x
}
.

Given w = (wα)|α|≤k a vectorial weight in Ω we can define the exceptional set B := ∪|α|≤kMp(wα) and
the Sobolev space W k,p(Ω, w) with weight w, as the set of all functions f ∈ Lp(Ω \ B,w0) such that their
weak derivatives Dαf are elements of Lp(Ω \B,wα) for all α with |α| ≤ k.

With this definition, the weighted Sobolev space W k,p(Ω, w) is a Banach space (see [KO, Section 3]).
In general, this is not true without removing the set B (see some examples in [KO]). However, note that

if some wα is identically zero, then Mp(wα) = Ω and Ω \B = ∅.
But now, we want to define a more general class of Sobolev spaces appearing in the context of orthogonal

polynomials. Since we are interested in orthogonal polynomials on the real line we only need to consider
the case Ω ⊆ R. In this field it is usual to work with Sobolev spaces for which the measures wj(x) dx are
changed by general measures dµj(x) and some of them may have µj(δΩ) > 0; so we consider in our definition
Sobolev spaces in Ω, where Ω is an open set. Therefore, in general, these spaces do not match the definition
in [KO].

Let us start with some preliminary definitions.
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Definition 1. We say that two functions u, v are comparable on the set A if there are positive constants
c1, c2 such that c1v(x) ≤ u(x) ≤ c2v(x) for almost every x ∈ A. Since measures and norms are functions
on measurable sets and vectors, respectively, we can talk about comparable measures and comparable norms.
We say that two vectorial weights or vectorial measures are comparable if each component is comparable.

In what follows, the symbol a � b means that a and b are comparable for a and b functions, measures
or norms.

Obviously, the spaces Lp(A,µ) and Lp(A, ν) are the same and have comparable norms if µ and ν are
comparable on A. Therefore, in order to obtain results on completeness or density we can change a measure
µ to any comparable measure ν.

Next, we shall define a class of weights which plays an important role in our results.

Definition 2. We say that a weight w belongs to Bp([a, b]) if and only if

w−1 ∈ L1/(p−1)([a, b]) , for 1 ≤ p <∞ ,

w−1 ∈ L1([a, b]) , for p = ∞ .

Also, if J is any interval we say that w ∈ Bp(J) if w ∈ Bp(I) for every compact interval I ⊆ J . We say
that a weight belongs to Bp(J), where J is a union of disjoint intervals ∪i∈AJi, if it belongs to Bp(Ji), for
i ∈ A.

Observe that if v ≥ w in J and w ∈ Bp(J), then v ∈ Bp(J).
This class contains the classical Muckenhoupt Ap weights appearing in Harmonic Analysis (see [GR]).

The classes Bp(Ω), with Ω ⊆ Rn, and Ap(Rn) (1 < p <∞) have been used in other definitions of weighted
Sobolev spaces in [KO] and [K] respectively.

Definition 3. We denote by AC([a, b]) the set of functions absolutely continuous in [a, b], i.e. the functions
f ∈ C([a, b]) such that f(x)− f(a) =

∫ x

a
f ′(t) dt for all x ∈ [a, b]. If J is any interval, ACloc(J)denotes the

set of functions absolutely continuous in every compact subinterval of J .

Definition 4. Let us consider 1 ≤ p ≤ ∞ and a vectorial measure µ = (µ0, . . . , µk). For 0 ≤ j ≤ k we
define the open set

Ωj := {x ∈ R : ∃ an open neighbourhood V of x with wj ∈ Bp(V )} .

Observe that we always have wj ∈ Bp(Ωj) for any 0 ≤ j ≤ k. In fact, Ωj is the greatest open set U with
wj ∈ Bp(U). Obviously, Ωj depends on p and µ, although p and µ do not appear explicitly in the symbol
Ωj . Lemma A below gives that if f (j) ∈ Lp(Ωj , wj) with 0 ≤ j ≤ k, then f (j) ∈ L1

loc(Ωj), and therefore
f (j−1) ∈ ACloc(Ωj) if 1 ≤ j ≤ k.

Hypothesis. From now on we assume that wj is identically 0 on the complement of Ωj .

We need this hypothesis in order to obtain complete Sobolev spaces (see [KO] and [RARP]).

Remark. This hypothesis is satisfied, for example, if we can modify wj in a set of zero Lebesgue measure
in such a way that there exists a sequence αn ↘ 0 with w−1

j {(αn,∞]} open for every n. If wj is lower
semicontinuous, then this condition is satisfied.

Let us consider 1 ≤ p ≤ ∞, w = (w0, . . . , wk) a vectorial weight in an open set Ω ⊆ R and y ∈ Ω. To
obtain a greater regularity of the functions in a Sobolev space we construct a modification of the weight w
in a neighbourhood of y, using Muckenhoupt weighted version of Hardy inequality (see [Ma, p.44] or Section
3 below). This modified weight is equivalent in some sense to the original one (see Theorem B).

Definition 5. A vectorial weight w = (w0, . . . , wk) is a right completion of w with respect to y, if wk := wk

and there is an ε > 0 such that wj := wj in the complement of [y, y + ε] and

wj(x) := wj(x) + w̃j(x) , for x ∈ [y, y + ε] and 0 ≤ j < k ,
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where w̃j is any weight satisfying:
i) w̃j ∈ L1([y, y + ε]) if 1 ≤ p <∞,
ii) w̃j ∈ L∞([y, y + ε]) if p = ∞,
iii) Λp(w̃j , wj+1) <∞, with

Λp(u, v) := sup
y<r<y+ε

(∫ r

y

u

)
‖v−1‖L1/(p−1)([r,y+ε]) , for 1 ≤ p <∞ ,

Λ∞(u, v) := ess sup
y<r<y+ε

u(r)
∫ y+ε

r

v−1 .

Example. It can be shown that the following construction is always a completion: we choose w̃j := 0 if
wj+1 /∈ Bp((y, y + ε]); if wj+1 ∈ Bp([y, y + ε]) we set w̃j(x) := 1 in [y, y + ε]; and if wj+1 ∈ Bp((y, y + ε]) \
Bp([y, y + ε]) we take w̃j(x) := 1 for x ∈ [y + ε/2, y + ε], and

w̃j(x) :=
d

dx

{(∫ y+ε

x

w
−1/(p−1)
j+1

)−p+1}
=

(p− 1)wj+1(x)−1/(p−1)( ∫ y+ε

x
w
−1/(p−1)
j+1

)p , if 1 < p <∞ ,

w̃j(x) := ‖w−1
j+1‖

−1
L∞([x,y+ε]) +

d

dx

(
‖w−1

j+1‖
−1
L∞([x,y+ε])

)
, if p = 1 ,

w̃j(x) := min
{

1,
( ∫ y+ε

x

w−1
j+1

)−1}
, if p = ∞ ,

for x ∈ (y, y + ε/2).
Remarks.

1. We can define a left completion of w with respect to y in a similar way.
2. If for every 0 < η ≤ η0 ≤ ε we have wj+1 /∈ Bp((y, y + η]), then there exists some δ > 0 such that

every w̃j must be 0 almost everywhere in (y, y+ δ) (where ε is the constant corresponding to w). Moreover,
the constant δ depends on η0 and wj+1, but not on w̃j .

3. If wj+1 ∈ Bp([y, y + ε]), then Λp(w̃j , wj+1) <∞ for any weight w̃j ∈ L1([y, y + ε]) if 1 ≤ p <∞ and
for any bounded weight w̃j if p = ∞. In particular, Λp(1, wj+1) <∞.

4. If w, v are two weights such that wj ≥ c vj for j = 0, . . . , k and v is a right completion of v, then
there is a right completion w of w, with wj ≥ c vj for j = 0, . . . , k (it is enough to take w̃j = ṽj). Also, if
w, v are comparable weights, v is a right completion of v if and only if it is comparable to a right completion
w of w.

5. The hypotheses i) and ii) are not restrictive at all; if we are interested in the regularity of Sobolev
functions we must choose weights without “big” singularities.

6. We always have wk = wk and wj ≥ wj for 0 ≤ j < k.
7. If w is a right completion of w with constant ε > 0, the weight w∗ = (w∗0, . . . , w

∗
k) defined by

w∗j (x) =
{
wj(x) , x ∈ [y, y + δ] ,
wj(x) , x /∈ [y, y + δ] ,

for some 0 < δ < ε, is a right completion of w with constant δ.

Definition 6. For 1 ≤ p ≤ ∞ and w a vectorial weight in an open set Ω ⊆ R, we say that a point y ∈ Ω
is right j-regular (respectively, left j-regular), if there exist ε > 0, a right completion w (respectively, left
completion) and j < i ≤ k such that wi ∈ Bp([y, y + ε]) (respectively, Bp([y − ε, y])). Also, we say that a
point y ∈ Ω is j-regular, if it is right and left j-regular.
Remarks.

1. A point y ∈ Ω is right j-regular (respectively, left j-regular), if at least one of the following properties
is verified:

(a) There exist ε > 0 and j < i ≤ k such that wi ∈ Bp([y, y+ ε]) (respectively, Bp([y− ε, y])). Here we
have chosen w̃j = 0 and w = w.
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(b) There exist ε > 0, j < i ≤ k, α > 0, δ < δp, with δp := (i− j)p−1 if 1 ≤ p <∞ and δ∞ := i− j−1,
such that

wi(x) ≥ α |x− y|δ , for almost every x ∈ [y, y + ε]

(respectively, [y − ε, y]). See Lemma 3.4 in [RARP].

2. If y is right j-regular (respectively, left), then it is also right i-regular (respectively, left) for each
0 ≤ i ≤ j.

3. We can take i = j + 1 in this definition since by the third remark after Definition 5 we can choose
wl = wl + 1 ∈ Bp([y, y + ε]) for j < l < i, if j + 1 < i.

4. If we define

k0 := max{0 ≤ j ≤ k : ∃ η > 0 with wj ∈ Bp((y, y + η])} ,

the completion w in Definition 6 can be chosen as wj = wj for k0 ≤ j ≤ k and wk0 = wk0 ∈ Bp((y, y + ε]).
This is an immediate consequence of remarks 2 and 7 to Definition 5.

When we use this definition we think of a point {b} as the union of two half-points: {b+} and {b−}.
With this convention, each one of the following sets

(a, b) ∪ (b, c) ∪ {b+} = (a, b) ∪ [b+, c) 6= (a, c) ,
(a, b) ∪ (b, c) ∪ {b−} = (a, b−] ∪ (b, c) 6= (a, c) ,

has two connected components, and the set (a, b) ∪ (b, c) ∪ {b−} ∪ {b+} = (a, b) ∪ (b, c) ∪ {b} = (a, c) is
connected.

We only use this convention in order to study the sets of continuity of functions: we want that if
f ∈ C(A) and f ∈ C(B), where A and B are union of intervals, then f ∈ C(A ∪ B). With the usual
definition of continuity in an interval, if f ∈ C([a, b))∩C([b, c]) then we do not have f ∈ C([a, c]). Of course,
we have f ∈ C([a, c]) if and only if f ∈ C([a, b−])∩C([b+, c]), where, by definition, C([b+, c]) = C([b, c]) and
C([a, b−]) = C([a, b]). This idea can be formalized with a suitable topological space.

Let us introduce some more notation. We denote by Ω(j) the set of j-regular points or half-points, i.e.,
y ∈ Ω(j) if and only if y is j-regular, we say that y+ ∈ Ω(j) if and only if y is right j-regular, and we say
that y− ∈ Ω(j) if and only if y is left j-regular. Obviously, Ω(k) = ∅ and Ωj+1 ∪ · · · ∪ Ωk ⊆ Ω(j). Observe
that Ω(j) depends on p (see Definition 6).

Remark. If 0 ≤ j < k and I is an interval, I ⊆ Ω(j), then the set I \ (Ωj+1 ∪ · · · ∪ Ωk) is discrete. If
y+ ∈ I \ (Ωj+1 ∪ · · · ∪ Ωk), there exist ε > 0, a right completion w and j < i ≤ k with wi ∈ Bp([y, y + ε]).
Then there exist δ > 0 and i ≤ l ≤ k with wl ∈ Bp((y, y + δ]) and consequently (y, y + δ) ⊆ Ωj+1 ∪ · · · ∪ Ωk

(see the second remark to Definition 5). Obviously the same is true for y−.

Definition 7. We say that a function h belongs to the class ACloc(Ω(j)) if h ∈ ACloc(I) for every connected
component I of Ω(j).

Definition 8. We say that the vectorial measure µ = (µ0, . . . , µk) is p-admissible if (µj)s(R \ Ω(j)) = 0,
for 1 ≤ j ≤ k, and (µk)s ≡ 0. We say that a p-admissible vectorial measure, µ, is strongly p-admissible if
supp(µj)s ⊆ Ω(j), for 1 ≤ j ≤ k − 1.

We use the letter p in p-admissible in order to emphasize the dependence on p (recall that Ω(j) depends
on p).

Remarks.
1. Observe that there is not any restriction on supp(µ0)s.
2. Every absolutely continuous measure is p-admissible, and even strongly p-admissible.
3. We want to remark that this definition of p-admissibility does not coincide with the one in [HKM].
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Definition 9. (Sobolev space in the closure of an open set.) Let us consider an open set Ω ⊆ R and a
p-admissible vectorial measure µ = (µ0, . . . , µk) in Ω. We define the Sobolev space W k,p(Ω, µ) as the space
of equivalence classes of

V k,p(Ω, µ) :=
{
f : Ω → C / f (j) ∈ ACloc(Ω(j)) for j = 0, 1, . . . , k − 1 and

‖f (j)‖Lp(Ω,µj)
<∞ for j = 0, 1, . . . , k

}
,

with respect to the seminorms

‖f‖W k,p(Ω,µ) :=
( k∑

j=0

‖f (j)‖p

Lp(Ω,µj)

)1/p

, for 1 ≤ p <∞ ,

‖f‖W k,∞(Ω,µ) := max
0≤j≤k

‖f (j)‖L∞(Ω,µj)
.

Remarks.
1. This definition is natural since when the (µj)s-measure of the set where |f (j)| is not continuous is

positive, the integral
∫
|f (j)|pd(µj)s does not make sense.

2. If we consider Sobolev spaces with real valued functions, every result in this paper also holds.

An example of Sobolev space as we have just defined is the following: W 2,2([0, 6], µ), where

‖f‖2W 2,2([0,6],µ) =
∫ 6

4

|f |2 + |f(6)|2 +
∫ 1

0

|f ′|2
√
x+

∫ 5

3

|f ′|2
√
x− 3 + |f ′(1)|2 +

∫ 3

1

|f ′′|2(3− x) .

In this example, w0 ∈ B2([4, 6]), w1 ∈ B2([0, 1] ∪ [3, 5]), w2 ∈ B2([1, 3)), and consequently Ω0 = (4, 6),
Ω1 = (0, 1)∪ (3, 5) and Ω2 = (1, 3); therefore, Ω(1) = [1, 3) and Ω(0) = [0, 5]. Observe that 3 is right 0-regular
since w1 ∈ B2([3, 5]), and that 3 is left 0-regular since we can take w̃1 = 1 in [1, 3]. If we add δa to µ1, we
obtain a p-admissible measure (and the Sobolev space is well defined) if and only if a ∈ [1, 3). We can add
δa to µ0 for any a ∈ R, and we can not add δa to µ2 for any a ∈ R. Obviously, in this definition f ′(1) stands
for f ′(1+), since f ′ ∈ ACloc([1, 3)).

In the results on density we consider the following five types of measures.

Definition 10. Consider 1 ≤ p <∞. We say that a vectorial measure µ = (µ0, . . . , µk) in [a, b] is of type 1
if it is p-admissible, finite and wk ∈ Bp([a, b]).

Observe that the finiteness of µj is not an important restriction if every polynomial must be integrable
(and the function xj in particular). Observe also that a function f ∈W k,p([a, b], µ) is very regular if µ is of
type 1 (Lemma A below says that f (k−1) ∈ AC([a, b])), since we are working with dimension one.

Definition 11. Consider 1 ≤ p <∞. We say that a vectorial measure µ = (µ0, . . . , µk) in [a, b] is of type 2
if it is strongly p-admissible, finite and there exist real numbers a ≤ a1 < a2 < a3 < a4 ≤ b such that

(1) wk ∈ Bp([a1, a4]),
(2) if a < a1, then wj is comparable to a non-decreasing weight in [a, a2], for 0 ≤ j ≤ k,
(3) if a4 < b, then wj is comparable to a non-increasing weight in [a3, b], for 0 ≤ j ≤ k.

Observe that the measures of type 1 are also of type 2.

Definition 12. Consider 1 ≤ p < ∞. We say that a vectorial measure µ = (µ0, . . . , µk) in [a, b] is of type
3 if it is strongly p-admissible, finite and there exist real numbers a ≤ a1 < a2 < a3 < a4 ≤ b and integers
k1, k2 ≥ 0 such that

(1) wk ∈ Bp([a1, a4]),
(2) if a < a1, then wj is comparable to a non-decreasing weight in [a, a2], for k1 ≤ j ≤ k,
(3) if a4 < b, then wj is comparable to a non-increasing weight in [a3, b], for k2 ≤ j ≤ k,
(4) a is right (k1 − 1)-regular if k1 > 0 and b is left (k2 − 1)-regular if k2 > 0.
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Observe that the measures of type 2 are also of type 3.

Definition 13. Consider 1 ≤ p <∞. We say that a vectorial measure µ = (µ0, . . . , µk) in [a, b] is of type 4
if it is p-admissible, finite and there exist a0 ∈ [a, b] and positive constants c, δ such that

(1) wk(x) ≤ c |x− a0|pwk−1(x) for almost every x in [a0 − δ, a0 + δ] ∩ [a, b],
(2) wk ∈ Bp([a, b] \ {a0}),
(3) if k > 1, a0 is (k − 2)-regular.

Remark. If a0 = a (respectively, a0 = b), condition (3) means that a is right (k − 2)-regular (respectively,
b is left (k − 2)-regular).

The last type of measures that we consider is a variant of measures of type 4.

Definition 14. Consider 1 ≤ p <∞. We say that a vectorial measure µ = (µ0, . . . , µk) in [a, b] is of type 5
if it is p-admissible, finite and there exist a0 ∈ [a, b] and positive constants c, δ such that

(1) if p > 1, wk(x) ≤ c |x − a0|p−1 for almost every x in [a0 − δ, a0 + δ] ∩ [a, b]; if p = 1, wk can be
modified in a set of zero Lebesgue measure in such a way that limx→a0 wk(x) = 0,

(2) wk ∈ Bp([a, b] \ {a0}),
(3) if k > 1, a0 is (k − 2)-regular.

Observe that by condition (1) we know that the weight wk does not belong to Bp([a0−δ, a0 +δ]∩ [a, b]).

3. Technical results.

One of the classical results we are using in this paper is the known Muckenhoupt inequality, that we
state as follows.

Muckenhoupt inequality. Let us consider 1 ≤ p < ∞ and µ0, µ1 measures in (a, b] with w1 := dµ1/dx.
Then there exists a positive constant c such that

∥∥∥∫ b

x

g(t) dt
∥∥∥

Lp((a,b],µ0)
≤ c ‖g‖Lp((a,b], µ1)

for any measurable function g in (a, b], if and only if

Λp(µ0, µ1) := sup
a<r<b

µ0((a, r])
∥∥w−1

1

∥∥
L1/(p−1)([r,b])

<∞ .

In our proofs we use some technical results which appear in [RARP]. For completeness we include the
statements here. Some of them use Muckenhoupt inequality.

Lemma A. ([RARP, Lemma 3.1]) Let us consider 1 ≤ p ≤ ∞ and w ∈ Bp((a, b)). For any compact interval
I ⊆ (a, b), there is a positive constant c1, which only depends on p, w and I, such that

‖g‖L1(I) ≤ c1‖g‖Lp(I,w) ≤ c1‖g‖Lp([a,b],w) , for any g ∈ Lp([a, b], w).

If furthermore w ∈ Bp([a, b]), there is a positive constant c2, which only depends on p and w such that

‖g‖L1([a,b]) ≤ c2‖g‖Lp([a,b],w) , for any g ∈ Lp([a, b], w).

Consequently, if w ∈ Bp([a, b]) and f ′ ∈ Lp([a, b], w), then f ∈ AC([a, b]).

The following result generalizes Muckenhoupt inequality.
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Lemma B. ([RARP, Lemma 3.2]) Let us consider 1 ≤ p ≤ ∞, t > 0 and µ0, µ1 measures in (a, b] with
a+ t ≤ b, w0 := dµ0/dx and w1 := dµ1/dx, verifying: (i) w1 ∈ Bp([a+ t, b]) if a+ t < b; (ii) µ0((a, b]) <∞ if
a+t < b and 1 ≤ p <∞, (iii) w0 ∈ L∞([a+t, b]) if a+t < b and p = ∞. Let us assume that Λ′p(µ0, µ1) <∞,
where

Λ′p(µ0, µ1) := sup
a<r<a+t

µ0((a, r]) ‖w−1
1 ‖L1/(p−1)([r,b]) , for 1 ≤ p <∞,

Λ′∞(µ0, µ1) :=


ess sup
a<r<a+t

w0(r)
∫ b

r

w−1
1 , if (µ0)s((a, b]) = 0 ,

max
{

ess sup
a<r<a+t

w0(r)
∫ b

r

w−1
1 ,

∫ b

α

w−1
1

}
, if (µ0)s((a, b]) > 0 ,

where α := min(supp(µ0)s). Then Λp(µ0, µ1) < ∞ and this implies that there exists a positive constant c
such that ∥∥∥∫ b

x

g(s) ds
∥∥∥

Lp((a,b], µ0)
≤ c ‖g‖Lp((a,b], µ1)

for any measurable function g in (a, b], where Λp(µ0, µ1) is defined changing a + t by b in the definition of
Λ′p(µ0, µ1).

Before we state some other results from [RARP] we need the following definitions.

Definition 15. Let us define the subspace K(Ω, µ) as

K(Ω, µ) :=
{
g : Ω(0) −→ C/ g ∈ V k,p

(
Ω(0), µ|Ω(0)

)
, ‖g‖

W k,p
(
Ω(0), µ|

Ω(0)

) = 0
}
.

Definition 16. Let us consider 1 ≤ p ≤ ∞, Ω an open subset of R and a p-admissible vectorial measure µ
in Ω. We say that (Ω, µ) belongs to the class C0 if there exist compact sets Mn, which are a finite union of
compact intervals, such that

i) Mn intersects at most a finite number of connected components of Ω1 ∪ · · · ∪ Ωk,
ii) K(Mn, µ) = {0},
iii) Mn ⊆Mn+1,
iv) ∪nMn = Ω(0).

We say that (Ω, µ) belongs to the class C if there exists a measure µ′0 = µ0 +
∑

m∈D cmδxm with cm > 0,
{xm} ⊂ Ω(0), D ⊆ N and (Ω, µ′) ∈ C0, where µ′ = (µ′0, µ1, . . . , µk) is minimal in the following sense:
there exists {Mn} corresponding to (Ω, µ′) ∈ C0 such that if µ′′0 = µ′0 − cm0δxm0

with m0 ∈ D and µ′′ =
(µ′′0 , µ1, . . . , µk), then K(Mn, µ

′′) 6= {0} if xm0 ∈Mn.

Remarks.
1. The condition on (Ω, µ) is very general. In fact, the Remark after the proof of Theorem B ([RARP,

Theorem 4.3]) that we only state below, gives that if Ω(0) \ (Ω1 ∪ · · · ∪Ωk) has only a finite number of points
in each connected component of Ω(0), then (Ω, µ) ∈ C. If, furthermore, K(Ω, µ) = {0}, we have (Ω, µ) ∈ C0.

2. Since the restriction of a function of K(Ω, µ) to Mn is in K(Mn, µ) for every n, then (Ω, µ) ∈ C0

implies K(Ω, µ) = {0}.
3. If (Ω, µ) ∈ C0, then (Ω, µ) ∈ C, with µ′ = µ.
4. As a consequence of Remark 1, if µ is a measure of type 1, 2, 3, 4 or 5 in [a, b] then ([a, b], µ) ∈ C; if,

furthermore, K([a, b], µ) = {0}, then ([a, b], µ) ∈ C0.
5. By the proof of Theorem B ([RARP, Theorem 4.3]) we know that if for every connected component

Λ of Ω1 ∪ · · · ∪ Ωk we have K(Λ, µ) = {0}, then (Ω, µ) ∈ C0. Condition #suppµ0|Λ∩Ω(0) ≥ k implies
K(Λ, µ) = {0}.

Theorem B. ([RARP, Theorem 4.3]) Let us consider 1 ≤ p ≤ ∞, an open set Ω ⊆ R and a p-admissible
vectorial measure, µ, in Ω. Let Kj be a finite union of compact intervals contained in Ω(j), for 0 ≤ j < k
and w a right (or left ) completion of w. Then:
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(a) If (Ω, µ) ∈ C0 there exist positive constants c1 = c1(K0, . . . ,Kk−1) and c2 = c2(w,K0, . . . ,Kk−1)
such that

c1

k−1∑
j=0

‖g(j)‖L∞(Kj) ≤ ‖g‖W k,p(Ω, µ), c2 ‖g‖W k,p(Ω,w) ≤ ‖g‖W k,p(Ω, µ), ∀g ∈ V k,p(Ω, µ).

(b) If
(
Ω, µ

)
∈ C there exist positive constants c3 = c3(K0, . . . ,Kk−1) and c4 = c4(w,K0, . . . ,Kk−1)

such that for every g ∈ V k,p(Ω, µ), there exists g0 ∈ V k,p(Ω, µ), independent of K0, . . . ,Kk−1, c3, c4 and w,
with

‖g0 − g‖W k,p(Ω, µ) = 0 ,

c3

k−1∑
j=0

‖g(j)
0 ‖L∞(Kj) ≤ ‖g0‖W k,p(Ω, µ) = ‖g‖W k,p(Ω, µ), c4 ‖g0‖W k,p(Ω,w) ≤ ‖g‖W k,p(Ω, µ).

Furthermore, if g0, f0 are these representatives of g, f respectively, we have for the same constants c3, c4

c3

k−1∑
j=0

‖g(j)
0 − f

(j)
0 ‖L∞(Kj) ≤ ‖g − f‖W k,p(Ω, µ), c4 ‖g0 − f0‖W k,p(Ω,w) ≤ ‖g − f‖W k,p(Ω, µ).

We also have the following corollaries of Theorem B.

Corollary A. ([RARP, Corollary 4.3]) Let us consider 1 ≤ p ≤ ∞, an open set Ω ⊆ R and a p-admissible
vectorial measure µ in Ω. Let Kj be a finite union of compact intervals contained in Ω(j), for 0 ≤ j < k.
Then:

(a) If (Ω, µ) ∈ C0 there exists a positive constant c1 = c1(K0, . . . ,Kk−1) such that

c1

k−1∑
j=0

‖g(j+1)‖L1(Kj) ≤ ‖g‖W k,p(Ω, µ), ∀g ∈ V k,p(Ω, µ).

(b) If
(
Ω, µ

)
∈ C there exists a positive constant c2 = c2(K0, . . . ,Kk−1) such that for every g ∈

V k,p(Ω, µ), there exists g0 ∈ V k,p(Ω, µ) (the same function as in Theorem B), with

‖g0 − g‖W k,p(Ω, µ) = 0 , c2

k−1∑
j=0

‖g(j+1)
0 ‖L1(Kj) ≤ ‖g0‖W k,p(Ω, µ) = ‖g‖W k,p(Ω, µ).

Furthermore, if g0, f0 are these representatives of g, f respectively, we have for the same constant c2

c2

k−1∑
j=0

‖g(j+1)
0 − f

(j+1)
0 ‖L1(Kj) ≤ ‖g − f‖W k,p(Ω, µ).

Corollary B. ([RARP, Corollary 4.4]) Let us suppose that 1 ≤ p ≤ ∞ and that µ = (µ0, . . . , µk) is a
p-admissible vectorial measure in [a, b] with wk ∈ Bp([a, b]). Then:

(a) There exists a positive constant c1 such that

c1

k−1∑
j=0

‖g(j)‖L∞([a,b]) ≤ ‖g‖W k,p([a,b], µ), ∀ g ∈ V k,p([a, b], µ),

if and only if K([a, b], µ) = {0}.
(b) There exists a positive constant c2 such that for every g ∈ V k,p([a, b], µ), there exists g0 with

‖g0 − g‖W k,p([a,b], µ) = 0 , c2

k−1∑
j=0

‖g(j)
0 ‖L∞([a,b]) ≤ ‖g0‖W k,p([a,b], µ) = ‖g‖W k,p([a,b], µ).

10



But we need some new technical results, which are the following.
Lemma 3.1. Let us consider 1 ≤ p ≤ ∞ and w1 ∈ Bp((a, b]). If w1 is comparable to a non-decreasing
function in (a, b), then Λp(w1, w1) <∞.
Remark. For each 1 ≤ p ≤ ∞ there exists a weight w1 ∈ L∞([a, b]) with Λp(w1, w1) = ∞.

Proof. Without loss of generality we can assume that w1 is a non-decreasing function in (a, b). In the case
1 ≤ p <∞ we have that( ∫ r

a

w1

)∥∥w−1
1

∥∥
L1/(p−1)([r,b])

≤ (r − a)w1(r)(b− r)p−1w1(r)−1 ≤ (b− a)p .

The proof is similar in the case p = ∞.

We usually multiply Sobolev functions in the results that we prove here. The following result allows us
to control the norm of the product.

Theorem 3.1. Let us consider 1 ≤ p <∞, an open set Ω ⊆ R and µ = (µ0, . . . , µk) a p-admissible vectorial
measure in Ω, with (Ω, µ) ∈ C0. Assume that K is a finite union of compact intervals J1, . . . , Jn and that for
every Jm there is an integer 0 ≤ km ≤ k verifying Jm ⊆ Ω(km−1), if km > 0, and µj(Jm) = 0 for km < j ≤ k,
if km < k. If µj(K) <∞ for 0 < j ≤ k, then there exists a positive constant c0 such that

c0 ‖fg‖W k,p(Ω, µ) ≤ ‖f‖W k,p(Ω, µ)

(
sup
x∈Ω

|g(x)|+ ‖g‖W k,p(Ω, µ)

)
for every f, g ∈ V k,p(Ω, µ) with g constant in each connected component of Ω \K.
Remarks.

1. The case p = ∞ is also true if we change the hypothesis µ finite by w1, . . . , wk ∈ L∞(K). (We only
use this hypothesis in order to obtain the inequality (3.3) below.)

2. The theorem is not true without the hypothesis µj(Jm) = 0 for km < j ≤ k, if km < k, as shows
the following example: Let us consider w0 = w1 = 1 and w2 = ∞ in [a, b]. Then x ∈ V 2,p([a, b], w) but
x · x = x2 /∈ V 2,p([a, b], w).

Proof. Let us fix 1 ≤ m ≤ n. If km > 0, then f and g belong to Ckm−1(Jm). Applying Theorem B(a) (with
K1 = · · · = Kkm−1 = Jm) we obtain

(3.1) cm

km−1∑
j=0

‖h(j)‖L∞(Jm) ≤ ‖h‖W k,p(Ω, µ) ,

for every h ∈ V k,p(Ω, µ). Let us consider now f, g as in the hypotheses of the theorem; we have

(3.2) ‖f (j)g‖Lp(Ω, µj)
≤ ‖f (j)‖Lp(Ω, µj)

sup
x∈Ω

|g(x)| ≤ ‖f‖W k,p(Ω, µ) sup
x∈Ω

|g(x)| ,

for 0 ≤ j ≤ k. Using (3.1) we also have for 0 ≤ i < j ≤ km, except for j = km and i = 0,

(3.3)
‖f (i)g(j−i)‖Lp(Jm, µj) ≤ c ‖f (i)g(j−i)‖L∞(Jm)

≤ c ‖f (i)‖L∞(Jm)‖g(j−i)‖L∞(Jm) ≤ c ‖f‖W k,p(Ω, µ)‖g‖W k,p(Ω, µ) ,

since µj(Jm) <∞. If j = km and i = 0 we have, using (3.1) again,

(3.4) ‖fg(km)‖Lp(Jm, µkm ) ≤ ‖f‖L∞(Jm)‖g(km)‖Lp(Jm, µkm ) ≤ c ‖f‖W k,p(Ω, µ)‖g‖W k,p(Ω, µ) .

We obtain as a consequence of (3.3) and (3.4)

(3.5) ‖f (i)g(j−i)‖Lp(Jm, µj) ≤ c ‖f‖W k,p(Ω, µ)‖g‖W k,p(Ω, µ)
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for 0 ≤ i < j ≤ km. Applying Leibniz rule, (3.2) and (3.5) we obtain

(3.6)
‖(fg)(j)‖Lp(Jm, µj) ≤ ‖f (j)g‖Lp(Jm, µj) + c

j−1∑
i=0

‖f (i)g(j−i)‖Lp(Jm, µj)

≤ c ‖f‖W k,p(Ω, µ)

(
sup
x∈Ω

|g(x)|+ ‖g‖W k,p(Ω, µ)

)
for 0 ≤ j ≤ km and km > 0 (the case j = 0 is (3.2)). If km = 0, we obtain

‖fg‖Lp(Jm, µ0) ≤ ‖f‖Lp(Jm, µ0) sup
x∈Ω

|g(x)| ≤ ‖f‖W k,p(Ω, µ) sup
x∈Ω

|g(x)| ,

and we have proved that (3.6) is also true in this case. As a consequence of (3.6) we have

‖fg‖W k,p(Jm, µ) ≤ c ‖f‖W k,p(Ω, µ)

(
sup
x∈Ω

|g(x)|+ ‖g‖W k,p(Ω, µ)

)
,

since µj(Jm) = 0 for km < j ≤ k, if km < k. Besides

‖(fg)(j)‖Lp(Ω\K, µj)
= ‖f (j)g‖Lp(Ω\K, µj)

≤ ‖f‖W k,p(Ω, µ) sup
x∈Ω

|g(x)| ,

for 0 ≤ j ≤ k, since g is constant in each connected component of Ω \K.
The theorem follows now from the two last inequalities, since there is only a finite number of Jm.

Corollary 3.1. Let us consider 1 ≤ p <∞, µ = (µ0, . . . , µk) a p-admissible vectorial measure in [a, b] with
wk ∈ Bp([a, b]), µ1, . . . , µk finite and K([a, b], µ) = {0}. Then there exists a positive constant c0 such that

c0 ‖fg‖W k,p([a,b], µ) ≤ ‖f‖W k,p([a,b], µ)‖g‖W k,p([a,b], µ) for every f, g ∈ V k,p([a, b], µ) .

Proof. It is enough to apply Theorem 3.1 and Corollary B(a), with m = 1, K = J1 = [a, b] and k1 = k.

Lemma 3.2. Let us consider 1 ≤ p < ∞, a1 < a0 < a2, β1, β2 ∈ C, and δ, ε > 0. Then, there exists a
function f ∈W 1,∞((a1, a2)) such that

1) f ∈ C∞([a1, a2] \ {a3, a0, a4}) with a3 < a0 < a4 and a3, a4 as close to a0 as we wish.
2) f((a1 + a0)/2) = β1, f((a0 + a2)/2) = β2, f(a0) = 0.
3) f verifies

‖f‖L∞([a0,a2]) ≤ 2 |β2| , ‖f‖L∞([a1,a0]) ≤ 2 |β1| .

4) ‖f ′‖Lp([a1,a2],u) < ε, where u(x) := |x− a0|p−1 if p > 1, and u is any integrable function in [a1, a2]
with limx→a0 u(x) = 0 if p = 1.

Proof. Without loss of generality we can assume that a0 = 0. For 0 < α ≤ 1, a4 ∈ (0, a2/4) and
a3 = −a4 ∈ (a1/4, 0), let us consider the function

g(x) :=



β2

(
2x
a2

)α

, if x ∈ [a4, a2] ,

β2

(
2a4
a2

)α
x
a4
, if x ∈ [0, a4] ,

−β1

(
−2a4

a1

)α
x
a4
, if x ∈ [−a4, 0] ,

β1

(
2x
a1

)α

, if x ∈ [a1,−a4] .

It is obvious that g ∈W 1,∞((a1, a2)) and satisfies 1), 2) and 3). We want to show that ‖g′‖Lp([a1,a2],|x|p−1) < ε
if p > 1. We have that

‖g′‖p
Lp([a1,a2],|x|p−1) ≤

∫ a2

0

|β2|p(2/a2)αpαpxp(α−1)xp−1dx+
∫ 0

a1

|β1|p|2/a1|αpαp|x|p(α−1)|x|p−1dx
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+
∫ a4

0

|β2|p(2 a4/a2)αpa−p
4 xp−1dx+

∫ 0

−a4

|β1|p|2 a4/a1|αpa−p
4 |x|p−1dx

= (|β2|p + |β1|p)2αpαp−1/p+ |β2|p(2 a4/a2)αp/p+ |β1|p|2 a4/a1|αp/p .

Let us fix α > 0 small enough so that (|β2|p + |β1|p)2αpαp−1/p < ε/2. Let us also fix now a4 > 0 small
enough so that |β2|p(2 a4/a2)αp/p + |β1|p|2 a4/a1|αp/p < ε/2. This finishes the proof of Lemma 3.2 with
f = g for this choice of α and a4 if p > 1.

If p = 1, we can take the function

h(x) :=


β2 , if x ∈ [a4, a2] ,
β2

x
a4
, if x ∈ [0, a4] ,

−β1
x
a4
, if x ∈ [−a4, 0] ,

β1 , if x ∈ [a1,−a4] .

It is obvious that h ∈W 1,∞((a1, a2)) and satisfies 1), 2) and 3). Also we have

‖h′‖L1([a1,a2],u) = |β2|
1
a4

∫ a4

0

u(x) dx+ |β1|
1
a4

∫ 0

−a4

u(x) dx ,

and this expression tends to (|β2|+ |β1|) limx→0 u(x) = 0 as a4 tends to zero.
This finishes the proof of Lemma 3.2 with f = h for an appropriate choice of a4 if p = 1.

4. Proof of theorems on density.

Observe that if ν is a finite measure in a Borel set D ⊆ Rn then Cc(D) is dense in Lp(D, ν) for
1 ≤ p <∞. Consequently C∞c (Rn) is dense in Lp(D, ν) for 1 ≤ p <∞.

Proof of Theorem 4.1. It is enough to prove the density of C∞(R), since multiplying any function
of this class by a function in C∞c (R) with value 1 in [a, b] we obtain a function in C∞c (R). We have in fact
the density of C∞c ([a− ε, b+ ε]) for any fixed ε > 0.

If a function f belongs to V k,p([a, b], µ), since (a, b)(0) 6= ∅, there exists a compact interval I ⊆ (a, b)(0)

such that f is a continuous function on I and it belongs to V k,p([a, b], µ̃) with µ̃ = (µ̃0, µ1, . . . , µk) and
dµ̃0 = dµ0 + χ

I
dx. It is obvious that it is more complicated to approximate f in W k,p([a, b], µ̃) than

in W k,p([a, b], µ). Therefore, without loss of generality we can assume that K([a, b], µ) = {0} and even
([a, b], µ) ∈ C0 in order to study the density of the set C∞(R), since (a, b)(0) \ ((a, b)1 ∪ · · · ∪ (a, b)k) has at
most three points (see Remark 1 to Definition 16).

We divide this proof into five parts; each one of them is devoted to a different type of measure.

Measures of type 1. Let f ∈ V k,p([a, b], µ). Let g ∈ C∞c ((a, b)) ⊆ C∞(R) be a function which approxi-
mates f (k) in the Lp([a, b], wk) norm. Consider the function

h(x) :=
k−1∑
j=0

f (j)(a)
(x− a)j

j!
+

∫ x

a

g(t)
(x− t)k−1

(k − 1)!
dt .

Obviously we have that f (j)(x)− h(j)(x) =
∫ x

a

(f (k)(t)− g(t))
(x− t)k−j−1

(k − j − 1)!
dt , for j = 0, . . . , k − 1.

This gives the inequalities

|f (j)(x)− h(j)(x)| ≤
∫ x

a

∣∣f (k)(t)− g(t)
∣∣ |x− t|k−j−1

(k − j − 1)!
dt ≤ c1 ‖f (k) − g‖L1([a,b]) ≤ c2 ‖f (k) − g‖Lp([a,b],wk) ,

for j = 0, . . . , k − 1, since wk ∈ Bp([a, b]). Consequently, the finiteness of µj implies

‖f (j) − h(j)‖Lp([a,b],µj) ≤ c3 ‖f (k) − g‖Lp([a,b],wk) , for j = 0, . . . , k − 1,

and then
‖f − h‖W k,p([a,b],µ) ≤ c4 ‖f (k) − g‖Lp([a,b],wk) , with h ∈ C∞(R) .

Measures of type 2. Without loss of generality we can assume that wj is a non-decreasing weight in [a, a2]
(if a < a1) and a non-increasing weight in [a3, b] (if a4 < b) for 0 ≤ j ≤ k.
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Let f ∈ V k,p ([a, b], µ). Let us consider {ψ1, ψ2, ψ3} ⊆ C∞c (R) a partition of unity satisfying: ψ1 +ψ2 +
ψ3 = 1 in [a, b], ψ1|[a,a1] ≡ 1, ψ2|[a4,b] ≡ 1, ψ3|[a2,a3] ≡ 1, ψ1|[a2−δ,∞) ≡ 0, ψ2|(−∞,a3+δ] ≡ 0, ψ3|(a1+δ,a4−δ)c ≡
0, for some δ > 0. Consider also the functions fi = fψi for i = 1, 2, 3. If a = a1 and a4 < b (or a4 = b and
a < a1), we consider a partition of unity with only two functions. If a = a1 and a4 = b, µ is a measure of
type 1 in [a, b]. Then we only consider the case a < a1 and a4 < b, since the other cases are easier.

Observe that by Theorem 3.1 we know that each fi belongs to V k,p([a, b], µ), since wk ∈ Bp([a1, a4])
and suppψ′i ⊆ [a1, a4].

It is enough to show that each fi can be approximated in W k,p([a, b], µ) by functions belonging to
C∞(R), since f = f1 + f2 + f3 in [a, b].

(1) Approximation of f1.
Let us see first that we can approximate f1 in W k,p([a, b], w) by functions in C∞(R). In order to do this

approximation (with the weight w, the absolutely continuous part of µ) we follow the ideas of [Ku, Theorem
7.2], though there the weights are only of the form wj(x) = dist (x, ∂Ω)α with the same α > 0 for every j.

For fixed 0 ≤ j ≤ k, consider the functions g(x) := f
(j)
1 (x) and gλ(x) := g(x + λ) for 0 < λ < δ.

It is clear that gλ also belongs to Lp([a, b], wj), since wj |[a,a2] is non-decreasing for j = 0, . . . , k and supp
g ⊆ [a, a2 − δ].

Next, we show that gλ tends to g in Lp([a, b], wj) as λ→ 0+. We need to estimate the integral

J(λ) :=
∫ b

a

|g(x)− g(x+ λ)|pwj(x) dx .

Recall that g(x) = 0 for x ≥ a2 − δ. Then, we have that J(λ) ≤ 2p−1
[
J1(λ) + J2(λ)

]
, where

J1(λ) :=
∫ a2−δ

a

∣∣g(x)wj(x)1/p − g(x+ λ)wj(x+ λ)1/p
∣∣p dx,

J2(λ) :=
∫ a2−δ

a

|g(x+ λ)|p
∣∣wj(x+ λ)1/p − wj(x)1/p

∣∣p dx.
It is clear that J1(λ) → 0 as λ → 0+ since g(x)wj(x)1/p ∈ Lp([a, a2]) (see [SW, p.10]). On the other

hand, ∣∣wj(x+ λ)1/p − wj(x)1/p
∣∣p = wj(x+ λ)

∣∣∣( wj(x)
wj(x+ λ)

)1/p

− 1
∣∣∣p , for x ∈ [a, a2 − δ],

if we consider that 0/0 = 1. Then, we can write, since 0 < λ < δ,

J2(λ) =
∫ a2−δ

a

|g(x+ λ)|pwj(x+ λ)
∣∣∣( wj(x)
wj(x+ λ)

)1/p

− 1
∣∣∣p dx =

=
∫ a2

a

|g(x)|pwj(x)
∣∣∣(wj(x− λ)

wj(x)

)1/p

− 1
∣∣∣pχ

(a+λ,a2+λ−δ)
(x) dx .

If we define wj := 0 in (−∞, a), wj is a non-decreasing function in (−∞, a2] and we have 0 ≤ wj(x−λ)
wj(x) ≤ 1

for x ≤ a2. The following bound

|g(x)|pwj(x)
∣∣∣(wj(x− λ)

wj(x)

)1/p

− 1
∣∣∣pχ

(a+λ,a2+λ−δ)
(x) ≤ |g(x)|pwj(x), for x ∈ [a, a2],

and the dominated convergence Theorem give J2(λ) → 0 as λ → 0+, since limλ→0+ wj(x − λ) = wj(x) for
almost every x ∈ [a, a2] (wj is monotone there). Hence J(λ) → 0 as λ→ 0+.

Then, it is enough to approximate f1(x+ λ) in W k,p([a, b], w) for λ > 0 small enough.
Let {φt}t>0 be an usual approximation of the identity: φt(x) = φ(x/t)/t for all x ∈ R, t > 0, and for some

φ ∈ C∞c ((−1, 1)) verifying φ ≥ 0 and
∫
φ = 1. Set ut the convolution ut := φt ∗ (f1)λ with 0 < t < λ < δ/2,
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when we take f1 ≡ 0 on (−∞, a) ∪ (a2 − δ,∞). Then ut ∈ C∞c (R) and define vt := u
(j)
t = φt ∗ gλ for some

fixed 0 ≤ j ≤ k. We only need vt → gλ in Lp([a, b], wj) as t→ 0+. But

‖vt − gλ‖Lp([a,b],wj) =
( ∫ b

a

∣∣∣ ∫ t

−t

φt(y)gλ(x− y) dy −
∫ t

−t

φt(y) dy gλ(x)
∣∣∣pwj(x) dx

)1/p

≤
∫ t

−t

φt(y)
( ∫ b

a

|gλ(x− y)− gλ(x)|pwj(x) dx
)1/p

dy

≤ sup
|y|≤t

( ∫ b

a

|g(x+ λ− y)− g(x+ λ)|pwj(x) dx
)1/p

≤ sup
|y|≤t

{( ∫ b

a

|g(x)− g(x+ λ− y)|pwj(x) dx
)1/p

+
( ∫ b

a

|g(x)− g(x+ λ)|pwj(x) dx
)1/p

}
= sup

|y|≤t

{
J(λ− y)1/p + J(λ)1/p

}
≤ 2 sup

0<s<2λ
J(s)1/p,

and this last term tends to zero since J(λ) → 0 as λ→ 0+.
Therefore, given ε > 0, there is a function f1,ε ∈ C∞c (R) such that ‖f1 − f1,ε‖W k,p([a,b],w) < ε.

Let us show now that f (j)
1,ε also approximates f (j)

1 in the norm Lp([a, b], µj) for 0 ≤ j ≤ k. This is trivial
if (µj)s = 0. If (µj)s 6= 0, let us consider

αj := inf( supp (µj)s) , βj := sup( supp (µj)s) .

Then, supp(µj)s is a compact set contained in [αj , βj ]. By the definition of strongly p-admissible
measure, αj is right j-regular and βj is left j-regular. We also have that every x ∈ (αj , βj) is j-regular, by
properties of measures of type 2. Theorem B(a) gives that there exists a positive constant c such that

c ‖h(j)‖L∞([αj ,βj ]) ≤ ‖h‖W k,p([a,b],w) , ∀h ∈ V k,p([a, b], µ) ,

since ([a, b], µ) ∈ C0. So, f (j)
1,ε also approximates uniformly f

(j)
1 in [αj , βj ], and therefore in the norm of

Lp([a, b], µj), since µj is finite.

(2) Approximation of f2.
We obtain the result applying a symmetric argument to (1).

(3) Approximation of f3.
This is an immediate consequence of the first part of this theorem, since the support of f3 is contained

in [a1, a4], wk ∈ Bp([a1, a4]) and then µ∗ = (µ0, . . . , µk−1, µ
∗
k) is a measure of type 1 in [a, b] with dµ∗k =

dµk + χ
[a,a1]∪[a4,b]

dx.

Measures of type 3. Without loss of generality we can assume that wj is a non-decreasing weight in
[a, a2] for k1 ≤ j ≤ k (if a < a1) and a non-increasing weight in [a3, b] for k2 ≤ j ≤ k (if a4 < b). Consider
f ∈ V k,p([a, b], µ) and fi = fψi for i = 1, 2, 3, as in the proof of this theorem for measures of type 2. If
a = a1 and a4 < b (or a4 = b and a < a1), we consider a partition of unity with only two functions. If a = a1

and a4 = b, µ is a measure of type 1 in [a, b]. Then we only consider the case a < a1 and a4 < b since the
other cases are easier. It is enough to show that each fi can be approximated by functions in C∞(R).

(1) Approximation of f1.
If k1 = 0, we can approximate f1 as in the case of measures of type 2. Assume now k1 > 0. The proof

in the case of measures of type 2 gives that it is possible to approximate f (k1)
1 by functions in C∞(R) in the

norm of W k−k1,p([a, b], µ) , since f (k1)
1 ∈W k−k1,p([a, b], µ). Recall that we write W k−k1,p([a, b], µ) instead of
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W k−k1,p([a, b], (µk1 , . . . , µk)). Without loss of generality we can assume that wj ≥ 1 in [a2, b] for k1 ≤ j ≤ k,
since f1 = 0 in this interval. Then K([a, b], (µk1 , . . . , µk)) = {0} and even ([a, b], (µk1 , . . . , µk)) ∈ C0.

If g ∈ C∞(R) approximates f (k1)
1 in W k−k1,p([a, b], µ), consider the function

h(x) := f1(a) + f ′1(a)(x− a) + · · ·+ f
(k1−1)
1 (a)

(x− a)k1−1

(k1 − 1)!
+

∫ x

a

g(t)
(x− t)k1−1

(k1 − 1)!
dt .

Then we have f (j)
1 (x)− h(j)(x) =

∫ x

a

(f (k1)(t)− g(t))
(x− t)k1−j−1

(k1 − j − 1)!
dt , for j = 0, . . . , k1 − 1.

Now, by Corollary A(a), we have for j = 0, . . . , k1−1, since ([a, b], (µk1 , . . . , µk)) ∈ C0 and [a, b] ∈ Ω(k1−1),

‖f (j)
1 − h(j)‖L∞([a,b]) ≤ c ‖f (k1)

1 − g‖L1([a,b]) ≤ c ‖f (k1) − g‖W k−k1,p([a,b],µ) .

(2) Approximation of f2.
We use the same proof with the appropriate symmetry.

(3) Approximation of f3.
We proceed as in the proof of the case of measures of type 2.

Measures of type 4. Let us assume that a0 ∈ (a, b). If a0 = a or a0 = b our work is simpler. Without
loss of generality we can assume that a0 = 0. Let us consider a function f ∈ V k,p([a, b], µ). In order to
approximate f by functions in C∞(R), without loss of generality we can assume also that∫

{0}
|f (k−1)|pdµk−1 = 0 .

This is obvious if µk−1({0}) = 0. If µk−1({0−}) > 0 and/or µk−1({0+}) > 0, we can change f(x) by

f(x)− f (k−1)(0−)
xk−1

(k − 1)!
or f(x)− f (k−1)(0+)

xk−1

(k − 1)!
,

since xk−1 ∈ C∞(R). Recall that we always write (α+ β) δ0 instead of α δ0− + β δ0+ .
For each big enough natural number n we can choose points xn ∈ (0, 1/n] and yn ∈ [−1/n, 0) such that

(4.1)
|f (k−1)(xn)|p

∫ 1/n

0

dµk−1(x) ≤
∫ 1/n

0

|f (k−1)(x)|p dµk−1(x) ,

|f (k−1)(yn)|p
∫ 0

−1/n

dµk−1(x) ≤
∫ 0

−1/n

|f (k−1)(x)|p dµk−1(x) .

Now, we can define the following sequence approximating f (k−1):

hn(x) :=


f (k−1)(x) , x /∈ (yn, xn) ,
f (k−1)(xn)x/xn , x ∈ [0, xn] ,
f (k−1)(yn)x/yn , x ∈ [yn, 0] .

By the first inequality in (4.1) we have that∫ xn

0

|hn(x)|pdµk−1(x) = |f (k−1)(xn)|p
∫ xn

0

( x

xn

)p

dµk−1(x) ≤ ‖f (k−1)‖p
Lp([0,1/n], µk−1)

and ( ∫ b

0

|f (k−1)(x)− hn(x)|pdµk−1(x)
)1/p

=
( ∫ xn

0

|f (k−1)(x)− hn(x)|pdµk−1(x)
)1/p

≤ ‖f (k−1)‖Lp([0,xn], µk−1) + ‖f (k−1)‖Lp([0,1/n], µk−1)

≤ 2 ‖f (k−1)‖Lp([0,1/n], µk−1) .
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Similarly, ( ∫ 0

a

|f (k−1)(x)− hn(x)|pdµk−1(x)
)1/p

≤ 2 ‖f (k−1)‖Lp([−1/n,0], µk−1) ,

and then
‖f (k−1) − hn‖Lp([a,b], µk−1) ≤ 2 ‖f (k−1)‖Lp([−1/n,1/n], µk−1) .

As n tends to infinity, this last norm converges to ‖f (k−1)‖Lp({0}, µk−1) = 0.
Furthermore, property (1) and (4.1) give for big enough n( ∫ b

0

|f (k)(x)− h′n(x)|pwk(x) dx
)1/p

=
( ∫ xn

0

|f (k)(x)− f (k−1)(xn)/xn|pwk(x) dx
)1/p

≤
( ∫ xn

0

|f (k)(x)|pwk(x) dx
)1/p

+
( ∫ xn

0

|f (k−1)(xn)|pcwk−1(x)(x/xn)p dx
)1/p

≤
( ∫ 1/n

0

|f (k)(x)|pwk(x) dx
)1/p

+ c
( ∫ 1/n

0

|f (k−1)(x)|pdµk−1(x)
)1/p

.

We can estimate ‖f (k) − h′n‖Lp([a,0],wk) in a similar way. Therefore, we have proved that it is possible to
approximate the function f (k−1) in the Sobolev norm W 1,p([a, b], µ) by functions which are in W 1,∞ of a
neighbourhood of 0.

Consider now the weight

wk,n(x) =
{
wk(x) , x /∈ (yn, xn) ,
1 + wk(x) , x ∈ (yn, xn) ,

and the vectorial measure µn = (µk−1, µk,n) with dµk,n(x) = wk,n(x)dx.
Since wk,n ∈ Bp([a, b]) by property (2) of measures of type 4, the result for measures of type 1 gives that

the function hn can be approximated by functions of C∞(R) in the norm W 1,p([a, b], µn), and consequently
in the norm W 1,p([a, b], µ), since wk(x) ≤ wk,n(x). This finishes the proof if k = 1.

If k > 1, conditions (2) and (3) prove that f (k−2) belongs to AC([a, b]). An integration argument as in
the proof of the case of measures of type 1 or 3 (using Corollary A(a)) gives that f can be approximated by
functions of C∞(R) in the norm W k,p([a, b], µ).

Measures of type 5. Let us assume that a0 ∈ (a, b). If a0 = a or a0 = b our work is simpler. Without loss
of generality we can assume that a0 = 0. Let us consider a function f ∈ V k,p([a, b], µ). As in the proof for
measures of type 4 we can assume that

∫
{0} |f

(k−1)|p dµk−1 = 0.
For each big enough natural number n we can choose points xn ∈ (0, 1/n] and yn ∈ [−1/n, 0) verifying

(4.1). If we take

a1 = 2 yn , a2 = 2xn , β1 = f (k−1)(yn) , β2 = f (k−1)(xn) ,

and ε > 0, then Lemma 3.2 allows us to choose a function fn, for each big n, verifying

(4.2) ‖fn‖L∞([0,xn]) ≤ 2 |f (k−1)(xn)| , ‖fn‖L∞([yn,0]) ≤ 2 |f (k−1)(yn)| , ‖f ′n‖Lp([yn,xn],wk) < ε ,

such that the function

hn(x) :=
{
f (k−1)(x) , x /∈ (yn, xn) ,
fn(x) , x ∈ [yn, xn] ,

belongs to W 1,p([a, b], µ) ∩W 1,∞((yn, xn)).
Using (4.2), we also have, as in the proof of the case of measures of type 4, that

‖f (k−1) − hn‖Lp([a,b], µk−1) ≤ c1 ‖f (k−1)‖Lp([−1/n,1/n], µk−1) < ε ,

if n is big, since ‖f (k−1)‖Lp({0}, µk−1) = 0. Furthermore

‖f (k) − h′n‖Lp([a,b], µk) = ‖f (k) − f ′n‖Lp([yn,xn],wk) ≤ ‖f (k)‖Lp([yn,xn],wk) + ‖f ′n‖Lp([yn,xn],wk) .
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Therefore, we have proved that it is possible to approximate the function f (k−1) in the Sobolev norm
W 1,p([a, b], µ) by functions which are in W 1,∞ in a neighbourhood of 0.

Finally, the proof finishes as in the case of measures of type 4.
This finishes the proof of Theorem 4.1.

We have examples which prove that the techniques in the proof of Theorem 4.1 for measures of type 2
do not work if we remove hypothesis (2) or (3) of this kind of measures.

Proof of Theorem 4.2. We only prove the non-trivial implication. Let us consider J = [α, β] ⊆ I and an
integer 0 ≤ k1 ≤ k, such that J ⊆ (b, c)(k1−1) if k1 > 0, and µj(J) = 0 for k1 < j ≤ k if k1 < k.

Let us consider f ∈ V k,p([a, d], µ) and ϕ1, ϕ2 ∈ C∞(R) such that ϕ1 approximates f in W k,p([a, c], µ)
and ϕ2 approximates f in W k,p([b, d], µ).

Set θ ∈ C∞(R) a fixed function with 0 ≤ θ ≤ 1, θ = 0 in (−∞, α] and θ = 1 in [β,∞). It is enough to
see that θϕ2 + (1− θ)ϕ1 approximates f in W k,p([a, d], µ), or equivalently, in W k,p(J, µ). Theorem 3.1 gives

‖f − θϕ2 − (1− θ)ϕ1‖W k,p(J, µ) ≤‖f − θϕ2 − (1− θ)ϕ1‖W k,p(I, µ)

≤‖θ(f − ϕ2)‖W k,p(I, µ) + ‖(1− θ)(f − ϕ1)‖W k,p(I, µ)

≤ c (‖f − ϕ2‖W k,p(I, µ) + ‖f − ϕ1‖W k,p(I, µ)) ,

since (I, µ) ∈ C0.

Remark. The same conclusion of Theorem 4.2 is achieved if we change the hypothesis (I, µ) ∈ C0 by
([a, c], µ) ∈ C0 and ([b, d], µ) ∈ C0.

Proof of Theorem 4.3. We only prove the non-trivial implication. Let us consider ϕn ∈ C∞(R) which
approximates f in W k,p([an, bn], µ). By the proof of Theorem 4.2 we know that there exist θn ∈ C∞(R) and
positive constants cn such that

‖f − θnϕn+1 − (1− θn)ϕn‖W k,p([an+1,bn], µ) ≤ cn (‖f − ϕn‖W k,p([an+1,bn], µ) + ‖f − ϕn+1‖W k,p([an+1,bn], µ)) .

Now, given ε > 0, it is enough to approximate f in [an, bn] with error less than 2−|n|ε min{1, c−1
n , c−1

n−1}.

Proof of Corollary 4.2. Let us fix f ∈ V k,p([α, β], µ) and choose compact intervals In ⊆ (an+1, bn)(0)

and constants cn > 0 such that ‖f‖Lp([α,β],µ∗0) < ∞, where dµ∗0 := dµ0 +
∑

n cnχIn
dx (observe that f ∈

C(In)). If µ∗ = (µ∗0, µ1, . . . , µk), it is enough to see that we can approximate f by functions of C∞(R) in
W k,p([α, β], µ∗). This is a consequence of theorems 4.1 and 4.3, since (In, µ∗) ∈ C0 and each µ∗|[an,bn] is of
type 1, 2, 3, 4 or 5 (see Remark 4 to Definition 16).

We have another “gluing” theorem. In this result it is not necessary that the intervals overlap when the
contact is at “different levels”.

Theorem 4.4. Let us consider 1 ≤ p < ∞, a < b < c, µ a p-admissible vectorial measure in [a, c] and
0 ≤ k0 ≤ k, with the following properties:

i) C∞c (R) is dense in W k,p([a, b], µ),
ii) C∞c (R) is dense in W k,p([b, c], µ),
iii) µk0([a, b]) <∞,
iv) if k0 > 0, µj([a, c]) <∞, for j = 0, . . . , k0 − 1,
v) if k0 < k, wk0+1 = · · · = wk = 0 in [a, b],
vi) if k0 > 0, wk0 ∈ Bp([a, b]),
vii) if k0 > 0, [b, c] = (b, c)(k0−1),
viii) if k0 > 0, ([b, c], (µk0 , . . . , µk)) ∈ C0.

Then C∞c (R) is dense in W k,p([a, c], µ).
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Remarks.
1. These conditions are not very restrictive. Conditions i) to iv) are natural. Condition v) includes the

case where at the contact point b the last nonzero derivative is of different order at both sides. With respect
to conditions vi) and vii), they give the necessary regularity at the contact point. Condition viii) allows us
to use Corollary A(a).

2. If −∞ ≤ a < b < c < d ≤ ∞ and µ is identically zero in (b, c), it is clear that C∞(R) is dense in
W k,p([a, d], µ) if and only if C∞(R) is dense in W k,p([a, b], µ) and W k,p([c, d], µ).

Proof. Let us consider f ∈ V k,p([a, c], µ). By property iii) we can approximate f (k0) in Lp([a, b], wk0) by a
function ψ1 ∈ C∞c (R) with supp ψ1 ⊆ [a, b− ν] for some 0 < ν < b− a. By property ii) we can approximate
f (k0) in W k−k0,p([b, c], µ) by a function ψ2 ∈ C∞c (R) with supp ψ2 ⊆ [b− ν/2,∞). Also, we can assume by
v) that ‖ψ2‖W k−k0,p([a,b],µ) = ‖ψ2‖Lp([a,b],wk0 ) is small.

The function h = ψ1 + ψ2 belongs to C∞c (R) (in particular, h ≡ 0 in [b− ν, b− ν/2]) and approximates
f (k0) in W k−k0,p([a, c], µ). This finishes the proof if k0 = 0.

Whenever k0 > 0, properties vi) and vii) give [a, c] = (a, c)(k0−1) and then f (k0−1) ∈ AC([a, c]). Let us
define for x ∈ R the function

u(x) := f(b) + · · ·+ f (k0−1)(b)
(x− b)k0−1

(k0 − 1)!
+

∫ x

b

h(t)
(x− t)k0−1

(k0 − 1)!
dt .

We have u ∈ C∞(R) and f(x)− u(x) =
∫ x

b

(f (k0)(t)− h(t))
(x− t)k0−1

(k0 − 1)!
dt . Therefore we obtain by iv)

k0−1∑
j=0

‖f (j) − u(j)‖Lp([a,c], µj) ≤ c1

k0−1∑
j=0

‖f (j) − u(j)‖L∞([a,c]) ≤ c2 ‖f (k0) − h‖L1([a,c]) .

By Lemma A and vi) we know that

‖f (k0) − h‖L1([a,b]) ≤ c3‖f (k0) − h‖Lp([a,b],wk0 ).

On the other hand, since ([b, c], (µk0 , . . . , µk)) ∈ C0, the argument in the proof of Corollary A(a) and vii)
give

‖f (k0) − h‖L1([b,c]) ≤ c4 ‖f (k0) − h‖W k−k0,p([b,c], µ).

These inequalities finish the proof.

5. Applications to Sobolev orthogonal polynomials.

We denote by P k,p([a, b], µ) the completion of polynomials with the norm ofW k,p([a, b], µ). By a theorem
in [LPP] we know that the zeroes of the Sobolev orthogonal polynomials in W k,2([a, b], µ) are contained in
the disk {z : |z| ≤ ‖M‖}, where the multiplication operator (Mf)(x) = xf(x) is considered in the space
P k,2([a, b], µ). Consequently, the set of the zeroes of the Sobolev orthogonal polynomials is bounded if the
multiplication operator is bounded.

In [LP] also appears the following result: If µ is a finite measure in [a, b] sequentially dominated,
then M is a bounded operator in P k,2([a, b], µ), where the vectorial measure µ is sequentially dominated if
#suppµ0 = ∞ and dµj = fj−1 dµj−1 with fj−1 bounded for 0 < j ≤ k. In that paper the authors ask for
other conditions on M to be bounded.

We have the following results.

Theorem 5.1. For 1 ≤ p < ∞, if µ is a p-admissible vectorial measure in [a, b] of type 1, 2, 3 or 4, and
the multiplication operator is well defined in W k,p([a, b], µ), then it is bounded. The result is also true for
measures of type 5 verifying the additional condition wk ≤ cwk−1 in [a0 − δ, a0 + δ] ∩ [a, b].
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Remark. In this situation, Corollary 4.1 gives P k,p([a, b], µ) = W k,p([a, b], µ).

Obviously, the multiplication operator M is well defined in W k,p(Ω, µ) if and only if it is well defined
in V k,p(Ω, µ) (i.e. xf ∈ V k,p(Ω, µ) for every f ∈ V k,p(Ω, µ)) and ‖xf‖W k,p(Ω,µ) = 0 for every f ∈ V k,p(Ω, µ)
with ‖f‖W k,p(Ω,µ) = 0. This second condition can be written as M(K(Ω, µ)) ⊆ K(Ω, µ).

Theorem 5.2. Let us consider 1 ≤ p < ∞, an open set Ω ⊆ R and a p-admissible vectorial measure µ
in Ω. Assume that the multiplication operator M is well defined in V k,p(Ω, µ). Then M is well defined in
W k,p(Ω, µ) if and only if K(Ω, µ) = {0}.

Proof. Suppose first that K(Ω, µ) = {0}. Then, if f ∈ V k,p(Ω, µ) with ‖f‖W k,p(Ω,µ) = 0 we have
‖f‖

W k,p
(
Ω(0), µ

) = 0. Consequently f |Ω(0) ≡ 0 and so ‖xf‖
W k,p

(
Ω(0), µ

) = 0. On the other hand, we

also have ‖f‖Lp(Ω,µ0)
= 0, and so f(x) = 0 for µ0-almost every x. Then xf(x) = 0 for µ0-almost every x

and ‖xf‖Lp(Ω,µ0)
= 0. We deduce from these two arguments that

‖xf‖p

W k,p(Ω, µ)
≤ ‖xf‖p

Lp(Ω, µ0)
+ ‖xf‖p

W k,p
(
Ω(0), µ

) = 0 ,

and therefore the multiplication operator is well defined in W k,p(Ω, µ).

On the converse, let us suppose that there is f ∈ V k,p(Ω, µ) such that

‖f‖
W k,p

(
Ω(0), µ|

Ω(0)

) = 0 ,

but f is not identically zero in Ω(0). We know that there exists an interval I0 ⊆ Ω(0) such that f |I0 6= 0,
and therefore there is another interval I ⊆ I0 such that I ⊆ Ωi for some 1 ≤ i ≤ k and f |I 6= 0. If g belongs
to K(Ω, µ), we have that g(i)(x) = 0 for almost every x ∈ Ωi, and therefore that g(i−1) is constant in each
connected component of Ωi. Then g|I ∈ Pi−1. Let us choose now h ∈ K(Ω, µ) such that degh|I ≥ deg g|I for
all g ∈ K(Ω, µ) (we have deg h|I ≥ 0 since the function f is not identically zero in I). Then, degxh|I >degh|I ;
therefore xh /∈ K(Ω, µ) and M is not well defined.

Proof of Theorem 5.1. We shall divide this proof into five parts; each one of them will be devoted to a
different type of measure. Remember that in our hypotheses we always have K([a, b], µ) = {0} by Theorem
5.2. Therefore ([a, b], µ) ∈ C0, since (a, b)(0) \ ((a, b)1 ∪ · · · ∪ (a, b)k) has at most two points.

Measures of type 1. By Corollary 3.1 we have directly

‖xf‖W k,p([a,b], µ) ≤ c ‖x‖W k,p([a,b], µ)‖f‖W k,p([a,b], µ) ,

for all f ∈ V k,p([a, b], µ), since K([a, b], µ) = {0}.

Measures of type 2. We can write each function f ∈ V k,p([a, b], µ) as the sum f = f1 + f2 + f3 following
the proof of Theorem 4.1 for measures of type 2. Then we have

‖xf‖W k,p([a,b], µ) ≤ ‖xf1‖W k,p([a,b], µ) + ‖xf2‖W k,p([a,b], µ) + ‖xf3‖W k,p([a,b], µ) .

Theorem 3.1 gives for i = 1, 2, 3
‖fi‖W k,p([a,b], µ) ≤ c ‖f‖W k,p([a,b], µ)

with a positive constant c independent of f (although c depends on the partition of unity chosen). Then it
is clear that we only need to prove

‖xf1‖W k,p([a,b], µ) ≤ c ‖f1‖W k,p([a,b], µ)

for a positive constant c independent of f , since the argument for xf2 is symmetric and what we have just
proved for measures of type 1 is the corresponding inequality for xf3.
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Observe that as (xf1)(j) = xf
(j)
1 + jf

(j−1)
1 and ‖xf (j)

1 ‖Lp([a,b], µj) ≤ ‖x‖L∞([a,b])‖f
(j)
1 ‖Lp([a,b], µj) , it is

enough to prove for 0 < j ≤ k that

(5.1) ‖f (j−1)
1 ‖Lp([a,b], µj) ≤ c ‖f1‖W k,p([a,b], µ) .

To prove this, we apply lemmas B (with a+ t = b) and 3.1 and obtain

(5.2) ‖f (j−1)
1 ‖Lp([a,b],wj) = ‖f (j−1)

1 ‖Lp([a,a2],wj) ≤ c ‖f (j)
1 ‖Lp([a,a2],wj) ,

since f (j−1)
1 (x) =

∫ x

a2
f

(j)
1 , supp f1 ⊆ [a, a2] and wj is comparable to a non-decreasing function in [a, a2].

The strong p-admissibility of µ and properties of measures of type 2 give the following inclusion

[Aj , Bj ] := [min(supp (µj)s),max(supp (µj)s)] ⊆ (a, b)(j)

if (µj)s is not identically zero. Then the finiteness of µ and Theorem B(a) imply that

(5.3) ‖f (j−1)
1 ‖Lp([a,b],(µj)s) ≤ c ‖f (j−1)

1 ‖L∞([Aj ,Bj ]) ≤ c ‖f1‖W k,p([a,b], µ) ,

since ([a, b], µ) ∈ C0. Obviously, this is also true if (µj)s is identically zero.
Now, inequalities (5.2) and (5.3) give (5.1).

Measures of type 3. We split each function f ∈ V k,p([a, b], µ) as in the previous case and also like in the
proof of the previous case, we only need to prove (5.1) for 0 < j ≤ k. If k1 ≤ j ≤ k, we obtain (5.1) as
in the proof of the theorem for measures of type 2. If k1 = 0 we have finished. If k1 > 0, since a is right
(k1 − 1)-regular, we have [a, a2] ⊆ (a, b)(k1−1) by (2), and then the finiteness of µ and Theorem B(a) give

k1−1∑
j=0

‖f (j)
1 ‖Lp([a,b], µj+1) =

k1−1∑
j=0

‖f (j)
1 ‖Lp([a,a2], µj+1) ≤ c1

k1−1∑
j=0

‖f (j)
1 ‖L∞([a,a2]) ≤ c2 ‖f1‖W k,p([a,b], µ) .

Measures of type 4. Let us denote by I the interval [a0 − δ, a0 + δ] ∩ [a, b] and by J the closure of
[a, b] \ [a0 − δ, a0 + δ]. As in the proof of this theorem for measures of type 2, it is enough to show for
0 < j ≤ k and f ∈ V k,p([a, b], µ)

(5.4) ‖f (j−1)‖Lp([a,b], µj) ≤ c ‖f‖W k,p([a,b], µ) .

On one hand, by property (2) of measures of type 4, we know that J ⊆ (a, b)(k−1). The finiteness of µ
and Theorem B(a) give

(5.5) ‖f (j−1)‖Lp(J, µj) ≤ c ‖f (j−1)‖L∞(J) ≤ c ‖f‖W k,p([a,b], µ) ,

for 0 < j ≤ k, since ([a, b], µ) ∈ C0.
On the other hand, applying property (1) of measures of type 4, we obtain

(5.6) ‖f (k−1)‖p
Lp(I, µk) ≤ c

∫
I

|f (k−1)(x)|p|x− a0|p dµk−1(x) ≤ c ‖f (k−1)‖p
Lp([a,b], µk−1)

.

If k > 1, properties (2) and (3) of measures of type 4 imply I ⊆ (a, b)(k−2). Then the finiteness of µ and
Theorem B(a) give for 0 < j ≤ k − 1

(5.7) ‖f (j−1)‖Lp(I, µj) ≤ c ‖f (j−1)‖L∞(I) ≤ c ‖f‖W k,p([a,b], µ) .

Then (5.5), (5.6) and (5.7) give (5.4).

Measures of type 5. The proof is similar to the case of measures of type 4, except for (5.6). Instead, it is
enough to observe

‖f (k−1)‖p
Lp(I, µk) =

∫
I

|f (k−1)(x)|pwk(x) dx ≤ c

∫
I

|f (k−1)(x)|pwk−1(x) dx ≤ c ‖f (k−1)‖p
Lp([a,b], µk−1)

.

This finishes the proof of Theorem 5.1.
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Finally, the following obvious result allows us to study the bounds of M in each connected component
of Ω(0).

Theorem 5.3. Let us consider 1 ≤ p < ∞, an open set Ω ⊆ R and a p-admissible vectorial measure µ in
Ω. Let us consider also the connected components {Ii}i of Ω(0). If M is well defined in W k,p(Ω, µ), then the
multiplication operator is bounded in W k,p(Ω, µ) if and only if suppµ0 \ Ω(0) is bounded and there exists a
positive constant c such that

‖xf‖W k,p(Ii, µ|Ii
) ≤ c ‖f‖W k,p(Ii, µ|Ii

) ,

for every i and every f belonging to W k,p(Ω, µ).

In [R2] we find further results on the multiplication operator.
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Universidad Carlos III de Madrid Facultad de Ciencias
Avenida de la Universidad, 30 Campus de Teatinos
28911 Leganés (Madrid), SPAIN 29071 Málaga, SPAIN
jomaro@math.uc3m.es, eromera@math.uc3m.es, dompes@math.uc3m.es nancho@anamat.cie.uma.es

23




