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Active-Redundancy Allocation in Systems

Rosario Romera1, Universidad Carlos III de Madrid
Jos�e Vald�es 2 Universidad de La Habana
R�omulo Zequeira3 Universidad Carlos III de Madrid

Abstract

An e�ective way of improving the reliability of a system is the allocation of active

redundancy. Let X1, X2 be independent lifetimes of the components C1 and C2,

respectively, which form a series system. Let denote U1 = min(max(X1; X); X2)

and U2 = min(X1;max(X2; X)), where X is the lifetime of a redundancy (say S)

independent of X1 and X2. That is U1(U2) denote the lifetime of a system obtained

by allocating S to C1(C2) as an active redundancy. Singh and Misra (1994) considered

the criterion where C1 is preferred to C2 for redundancy allocation if P (U1 > U2) �

P (U2 > U1). In this paper we use the same criterion of Singh and Misra (1994)

and we investigate the allocation of one active redundancy when it di�ers depending

on the component with which it is to be allocated. We �nd suÆcient conditions

for the optimization which depend on the components and redundancies probability

distributions. We also compare the allocation of two active redundancies (say S1 and

S2) in two di�erent ways, that is, S1 with C1 and S2 with C2 and viceversa. For this

case the hazard rate order plays an important role. We obtain results for the allocation

of more than two active redundancies to a k-out-of-n systems.

Keywords: active redundancy, stochastic order, hazard rate order

1 Introduction

An e�ective way of improving the reliability of a system is the allocation of
active redundancies. This problem has been studied by di�erent authors using
di�erent criteria (see [1], [2] and [3]). Singh and Misra [4] considered the follow-
ing criterion. Let X1, X2 be independent lifetimes of components C1 and C2

which form a series system. Let U1 and U2 denote the lifetime of two systems
such that U1 = ^ (_ (X1; X) ; X2) and U2 = ^ (X1;_ (X2; X)), where X is the
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lifetime of a redundancy V , independent of X1 and X2 and the symbols _ and
^ denote the max and min, respectively. If we are going to compare the total
lifetimes of these systems, then it is better to allocate V as an active redundancy
with C1 instead of with C2 if the following inequality holds,

P (U1 > U2) � P (U2 > U1) : (1)

In some cases it is more realistic to consider the active redundancy di�ers
depending on the component with which it could be allocated. Rade [5] obtains
results in this regard for some series-parallel systems when the components are
exponentially distributed.

Let Y1 and Y2 be independent lifetimes of spares V1 and V2. Let now U1 =
^ (_ (X1; Y1) ; X2) and U2 = ^ (X1;_ (X2; Y2)). Recall a random variable X is
said to be stochastically greater than a random variable Y , written X �st Y ,
if P (X > t) � P (Y > t) for all real value t. As is pointed out by Singh and
Misra, the condition U1 �st U2 may not always imply (1) since U1 and U2

are dependent random variables. So it would be of interest to �nd out suÆcient
conditions for the lifetimes of components and redundancies such that (1) holds.
For the case Y1 = Y2 in [4] it is shown that if X2 �st X1 then (1) holds and this
result is extended to k-out-of-n systems.

The structure of this paper is as follows. In section 2 we establish some
results that will be used in the proofs of the next two sections. In section 3
we �nd suÆcient conditions on the distribution functions of the lifetimes of
components and redundancies for (1) to hold when it is allocated one active
redundancy that di�ers depending on the component with which it could be
allocated, extending in this way the results given in [4]. In section 4 we compare
the allocation of two redundancies in two di�erent ways, i.e, V1 with C1 and V2
with C2 and viceversa. We also give results on the allocation of more than two
active redundancies. In sections 3 and 4 we consider in the analysis k-out-of-n
systems.

Recall the following de�nitions we will use. Let X and Y be nonnegative
random variables and F (t) and G (t) denote the respective survival functions of
X and Y . X is said to be greater than Y in the hazard rate ordering, written
X �hr Y , if F (t) =G (t) is non-decreasing for all t � 0 where this quotient is
de�ned. If the density functions of X and Y , say f(t) and g(t), exist then the
ordering X �hr Y can be equivalently expressed as

f (t)

F (t)
�

g (t)

G (t)
:

Following [3] we will say that X is greater than Y in the probability order,
written X �pr Y , if P (X > Y ) � P (Y > X) holds. For a general reference in
stochastic ordering see [6].
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2 Preliminary results

Let denote by z a value of a real random variable Z. Given a real number t let
de�ne zt as zt = 1 if z � t; and zt = 0 if z < t:

Consider now the values x and y of two random variables X and Y; respec-
tively. Observe that the inequality x > y is valid if and only if there exists a
real number t such that xt > yt: This equivalence allows us to reduce the treat-
ment of inequalities between real valued random variables to the treatment of
Boolean inequalities. In the following in place of the variables zt we will simply
write z.

For a set of random variables fZ1; Z2; :::; Zng ; let (Z1; Z2; :::; Zn)[k] denote
the kth largest order statistics, so that (Z1; Z2; :::; Zn)[1] � ::: � (Z1; Z2; :::; Zn)[n].
Let consider the random variables X1; X2:::; Xn, Y1; Y2; n = 2; 3::: and denote

U
(k)
1 = (_ (X1; Y1) ; X2; X3; :::; Xn)[k]

U
(k)
2 = (X1;_ (X2; Y2) ; X3; :::; Xn)[k] ;

(2)

k = 3; :::; n

Proposition 2.1 The following equivalencies hold:
a) U1 > U2 if and only if X1 < ^(X2; Y1).

b) For n > 2, U
(n)
1 > U

(n)
2 if and only if X1 < ^(Y1; X2; X3; :::; Xn).

c) For n > 2 and 1 < k < n, U
(k)
1 > U

(k)
2 if and only if one of the following�

n� 2
k � 2

�
+

�
n� 2
k � 1

�
excluding inequalities is satis�ed:

_
�
X1; Xj1 ; :::; Xjn�k

�
< ^

�
X2; Y1; Xi1 ; :::; Xik�2

�
;

_
�
X1; X2; Y2; Xr1 ; :::; Xrn�k�1

�
< ^

�
Y1; Xv1 ; :::; Xvk�1

�
;

where

fi1; :::; ik�2g � f3; :::; ng ;

fj1; :::; jn�kg � f3; :::; ng ;

fr1; :::; rn�k�1g � f3; :::; ng ;

fv1; :::; vk�1g � f3; :::; ng

and

fi1; :::; ik�2g
\
fj1; :::; jn�kg = � and fv1; :::; vk�1g

\
fr1; :::; rn�k�1g = �:

Proof. We will only prove b) and c), since a) follows in a similar fashion.
Inequality

U
(k)
1 > U

(k)
2 (3)

holds if and only if the following system of Boolean inequalities is satis�ed

_ (x1; y1) + x2 + x3 + :::+ xn � k; (4)
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x1 + _ (x2; y2) + x3 + :::+ xn � k � 1: (5)

Suppose x1 = 1. Then _ (x1; y1) = 1 and it is easy to see that in this case
(4) and (5) do not hold simultaneously, consequently, x1 = 0. Subtracting now
(5) from (4) we obtain y1 + x2 � 1 + _ (x2; y2) and this implies y1 = 1, since
x2 � _ (x2; y2) and, therefore

_ (x2; y2) = x2: (6)

Substituting this last equality and the values x1 = 0 and y1 = 1 in (4), (5) we
obtain

x2 + x3 + :::+ xn = k � 1: (7)

Then the system (4), (5) is satis�ed only if x1 = 0, y1 = 1 and the system (6),
(7) is satis�ed. It is straightforward to verify that, conversely, if these conditions
hold, the system (4), (5) is satis�ed.

For k = n the system (6), (7) has for all value of y2 the unique solution
x2 = x3 = ::: = xn = 1 and then (3) is equivalent to

X1 < ^(Y1; X2; X3; :::; Xn):

Consider now the case k < n. Observe that if x2 = 0 the equation (7) has�
n� 2
k � 1

�
solutions and, on the other hand, from (6) we obtain y2 = 0. In the

case x2 = 1 the equation (7) has

�
n� 2
k � 2

�
solutions and the value of y2 may

be arbitrary.
Then it can be easily seen that the equivalent inequalities for (3) stated in

the proposition are obtained. This completes the proof.
Let now denote

V1 = ^ (_ (X1; Y2) ;_(X2; Y1)) ;

V2 = ^ (_(X1; Y1);_ (X2; Y2)) ;

V
(k)
1 = (_ (X1; Y2) ;_(X2; Y1); X3; :::; Xn)[k] ;

V
(k)
2 = (_(X1; Y1);_ (X2; Y2) ; X3; :::; Xn)[k] ;

(8)

k = 3; :::; n.

Proposition 2.2 The following equivalences hold:
a) V1 > V2 if and only if one of the following two excluding inequalities is
satis�ed

_(X1; Y1) < ^(X2; Y2); _(X2; Y2) < ^(X1; Y1):

b) For n > 2, V
(n)
1 > V

(n)
2 if and only if one of the following two excluding

inequalities is satis�ed

_(X1; Y1) < ^(X2; Y2; X3; :::; Xn);

_(X2; Y2) < ^(X1; Y1; X3; :::; Xn):
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c) For n > 2 and 1 < k < n, V
(k)
1 > V

(k)
2 if and only if one of the following

2

�
n� 2
k � 2

�
excluding inequalities is satis�ed

_
�
X1; Y1; Xj1 ; :::; Xjn�k

�
< ^

�
X2; Y2; Xi1 ; :::; Xik�2

�
;

_
�
X2; Y2; Xj1 ; :::; Xjn�k

�
< ^

�
X1; Y1; Xi1 ; :::; Xik�2

�
;

where

fi1; :::; ik�2g � f3; :::; ng ;

fj1; :::; jn�kg � f3; :::; ng

and

fi1; :::; ik�2g
\
fj1; :::; jn�kg = �:

Proof. We consider the cases b) and c), since a) follows in a similar manner.
Inequality

V
(k)
1 > V

(k)
2 (9)

holds if and only if the following system of inequalities holds

_(x1; y2) + _(x2; y1) + x3 + :::+ xn � k: (10)

_(x1; y1) + _(x2; y2) + x3 + :::+ xn � k � 1 (11)

If _(x1; y1) = _(x2; y2) = 1 from (11) we have x3 + ::: + xn � k � 3, but
then (10) is not satis�ed. Let _(x1; y1) = _(x2; y2) = 0. In this case from
(10) and (11) we obtain the contradictory inequalities x3 + ::: + xn � k and
x3 + :::+ xn � k � 1.

Suppose now that _(x1; y1) = 1 and _(x2; y2) = 0, or _(x1; y1) = 0 and
_(x2; y2) = 1. In these cases, from (11) we have x3+:::+xn � k�2. Subtracting
this inequality from (10) we obtain _(x1; y2) +_(x2; y1) = 2 and also from (10)
we have x3 + ::: + xn � k � 2 . Then the system (10), (11) is satis�ed only if
x3+ x4+ :::+ xn = k� 2 and, _(x2; y2) = 0 and ^(x1; y1) = 1, or _(x1; y1) = 0
and ^(x2; y2) = 1. Conversely, if these conditions hold, the system (10), (11) is
satis�ed. This proves the proposition.

3 Allocation of an active redundancy

When assumed to exist we will denote the probability densities and hazard
rates of X1 and X2 by f1 (x), f2 (x), �1 (x) and �2 (x), respectively. We
will denote the distribution functions of Y1; Y2, X1; X2; :::; Xn by G1(x); G2(x),
F1(x); F2(x); :::; Fn(x), respectively. For any distribution function G we will
denote �G (x) = 1�G (x).
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Lemma 3.1 Let X1, X2, Y1, Y2 and Z be nonnegative independent random
variables. Suppose

i) X1 and X2 have probability densities and

�1(x) �G1(x) � �2(x) �G2(x); x � 0 (12)

or
ii) X1 �st X2; and �F2(x) �G1(x) � �F1(x) �G2(x); x � 0: (13)

Then
a) P (X1 < ^ (Y1; X2)) � P (X2 < ^ (X1; Y2))

and
b) P (X1 < ^ (Y1; X2; Z)) � P (X2 < ^ (X1; Y2; Z)) :

Proof. We only prove part b), since a) follows in a similar fashion. Let
H (x) denote the distribution function of Z.

� = P (X1 < ^ (Y1; X2; Z))� P (X2 < ^ (X1; Y2; Z))
=

R
1

0
�F2 (x) �G1 (x) �H (x) dF1 (x)�

R
1

0
�F1 (x) �G2 (x) �H (x) dF2 (x) :

But from ii) follows

� �

Z
1

0

�F1 (x) �G2 (x) �H (x) dF1 (x)�

Z
1

0

�F1 (x) �G2 (x) �H (x) dF2 (x) � 0

since �F1 (x) �G2 (x) �H (x) is a non-increasing function and F1 (x) � F2 (x) [6].
This prove b).
Observe now that if X1 and X2 have probability densities

� =
R
1

0
�F1 (x) �F2 (x) �G1 (x)�1 (x) �H (x) dx

�
R
1

0
�F1 (x) �F2 (x) �G2 (x) �2 (x) �H (x) dx:

Then b) follows from i).

Proposition 3.1 Let X1, X2,...,Xn, Y1 and Y2 be independent lifetimes. Sup-
pose

i) X1 and X2 have probabilities densities and

�1(x) �G1(x) � �2(x) �G2(x); x � 0; (14)

or
ii) X1 �st X2 and �F2(x) �G1(x) � �F1(x) �G2(x); x � 0: (15)

Then
U1 �pr U2 and U

(n)
1 �pr U

(n)
2 : (16)
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Proof. Accordingly to Proposition 2.1, part b), U
(n)
1 �pr U

(n)
2 holds if and

only if

P (X1 < ^ (Y1; X2; X3; :::; Xn)) � P (X2 < ^ (X1; Y2; X3; :::; Xn)) :

Then the result straightforwardly follows from part b) of Lemma 3.1 taking
Z = ^ (X3; :::; Xn). It is obvious that the case U1 �pr U2 follows in a similar
way.

Conditions i) and ii) of Proposition 3:1 give us criteria for the optimal al-
location in the sense of probability ordering of a redundancy which di�ers de-
pending on the component with which it is allocated. Suppose, for example,
that Y1 �st Y2 and X1 �hr X2 or X1 �st X2, then it is optimal in proba-
bility order to allocate the stronger redundancy to the weaker component. If
G1 = G2, condition i) reduces to hazard rate order between lifetimes X1 and
X2 and condition ii) reduces to stochastic order between lifetimes X1 and X2.
This case is covered in [4], where is also given a counterexample that in our case
allows to show that condition ii) it is not necessary for probability ordering (16)
to hold.

Note that �Fi(x) �Gj(x), i; j = 1; 2; is the survival function of a series system
formed by components with lifetimes Xi and Yj . Then condition ii) can be
stated in the following way. If the series system formed by component C2

with the redundancy V1 is stochastically greater than the series system formed
by component C1 with redundancy V2, and X1 �st X2, then it is better to
allocate redundancy V1 with component C1 than to allocate redundancy V2
with component C2.

Remark 3.1 If X1; X2; Y1 and Y2 are independent exponential random vari-
ables with means 1=�1; 1=�2; 1=�1 and 1=�2, respectively, then it is seen that

P (^f_ (X1; Y1) ; X2g > ^fX1;_ (X2; Y2)g) =
�1

�1 + �2 + �1
;

P (^f_ (X1; Y1) ; X2g = ^fX1;_ (X2; Y2)g)

=
�1�1 + �2�2 + �1�2

(�1 + �2 + �1) (�1 + �2 + �2)
:

(17)

Lemma 3.2 will be useful in extending the result of Proposition 3.1 to k-out-
of-n systems. Result b) in Lemma 3.2 is stated in Lemma 2.1 of [4].

Lemma 3.2 Let X1; X2; Y1; Y2; Z1 and Z2 be nonnegative independent random
variables and Z3; Z4 nonnegative random variables independent of Y1 and Y2.
Suppose that X1 �st X2 and Y1 �st Y2. Then

a) P (_ (X1; Z1) < ^ (X2; Y1; Z2)) � P (_ (X2; Z1) < ^ (X1; Y2; Z2)) :
b) P (_ (Y2; Z3) < ^ (Y1; Z4)) � P (_ (Y1; Z3) < ^ (Y2; Z4)) :

(18)
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Proof. Let H1(x) and H2(x) denote the distribution functions of Z1 and
Z2, respectively.

� = P (_ (X1; Z1) < ^ (X2; Y1; Z2))� P (_ (X2; Z1) < ^ (X1; Y2; Z2))
=
R
1

0

R
1

0
�F2 (_ (x; y)) �G1 (_ (x; y)) �H2 (_ (x; y)) dF1 (x) dH1 (y)

�
R
1

0

R
1

0
�F1 (_ (x; y)) �G2 (_ (x; y)) �H2 (_ (x; y)) dF2 (x) dH1 (y) :

Since �G1(x) � �G2(x) and �F2(x) � �F1(x) then

� �
R
1

0

R
1

0
�F2 (_ (x; y)) �G1 (_ (x; y)) �H2 (_ (x; y)) dF1 (x) dH1 (y)

�
R
1

0

R
1

0
�F2 (_ (x; y)) �G1 (_ (x; y)) �H2 (_ (x; y)) dF2 (x) dH1 (y) :

Using the same argument as in the proof of Lemma 3.1 it can be obtained that
� � 0 and then a) follows.

Proposition 3.2 Let X1; :::; Xn; Y1 and Y2 be independent lifetimes. Suppose
that X1 �st X2 and Y1 �st Y2. Then for 1 < k < n, n > 2;

U
(k)
1 �pr U

(k)
2 : (19)

Proof. It is suÆcient to use part c) of Proposition 2.1 with the same notation
and conditions stated there and to take

Z1 = _
�
Xj1 ; :::; Xjn�k

�
; Z2 = ^

�
Xi1 ; :::; Xik�2

�
;

Z3 = _
�
X1; X2; Xr1 ; :::; Xrn�k�1

�
; Z4 = ^

�
Xv1 ; :::; Xvk�1

�
in Lemma 3.2.

4 Allocation of more than one redundancy

We consider now the allocation of two active redundancies. In what follows we
will denote the probability densities of Y1 and Y2 by g1 (x) and g2 (x), respec-
tively.

Lemma 4.1 Let X1; Y1; X2; Y2; Z1 and Z2 be independent random variables.
Suppose X1; Y1; X2 and Y2 have probability densities. Let X1 �hr X2 and
Y1 �hr Y2. Then

a) P (^ (X2; Y2) > _ (X1; Y1) OR ^ (X1; Y1) > _ (X2; Y2))
� P (^ (X2; Y1) > _ (X1; Y2) OR ^ (X1; Y2) > _ (X2; Y1))

and

b) P (^ (X2; Y2; Z2) > _ (X1; Y1; Z1) OR ^ (X1; Y1; Z2) > _ (X2; Y2; Z1))
� P (^ (X2; Y1; Z2) > _ (X1; Y2; Z1) OR ^ (X1; Y2; Z2) > _ (X2; Y1; Z1)) :

Proof. We will only prove b) since a) follows in a similar way. It is suÆcient
to prove that

� = P (^ (X2; Y2; Z2) > _ (X1; Y1; Z1)) + P (^ (X1; Y1; Z2) > _ (X2; Y2; Z1))
�P (^ (X2; Y1; Z2) > _ (X1; Y2; Z1)) � P (^ (X1; Y2; Z2) > _ (X2; Y1; Z1)) � 0;
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But

� =
R
1

0

R
1

0

R
1

0
�F2 (_ (x; y; z)) �G2 (_ (x; y; z)) �H2 (_(x; y; z)) dG1 (x) dF1 (y) dH1 (z)

+
R
1

0

R
1

0

R
1

0
�F1 (_ (x; y; z)) �G1 (_ (x; y; z)) �H2 (_(x; y; z)) dG2 (x) dF2 (y) dH1 (z)

�
R
1

0

R
1

0

R
1

0
�F2 (_ (x; y; z)) �G1 (_ (x; y; z)) �H2 (_(x; y; z)) dG2 (x) dF1 (y) dH1 (z)

�
R
1

0

R
1

0

R
1

0
�F1 (_ (x; y; z)) �G2 (_ (x; y; z)) �H2 (_(x; y; z)) dG1 (x) dF2 (y) dH1 (z) ;

where H1(x) and H2(x) denote the distribution function of Z1 and Z2, respec-
tively.

A suÆcient condition for � � 0 is

�F2 (_ (x; y; z)) �G2 (_ (x; y; z)) g1 (x) f1 (y)
+ �F1 (_ (x; y; z)) �G1 (_ (x; y; z)) g2 (x) f2 (y)
� �F2 (_ (x; y; z)) �G1 (_ (x; y; z)) g2 (x) f1 (y)
+ �F1 (_ (x; y; z)) �G2(_ (x; y; z))g1 (x) f2 (y) ;

(20)

which can be rewritten as

g1 (x) �G2 (_ (x; y; z))
�
f1 (y) �F2 (_ (x; y; z))� f2 (y) �F1 (_ (x; y; z))

�
� g2 (x) �G1 (_ (x; y; z))

�
f1 (y) �F2 (_ (x; y; z))� f2 (y) �F1 (_ (x; y; z))

�
:

(21)

Observe now that if a � b � 0, then

f1 (b) �F2 (a)� f2 (b) �F1 (a) � 0;

since from X1 �hr X2 follows

f1 (b) � f2 (b)
�F1 (b)
�F2 (b)

� f2 (b)
�F1 (a)
�F2 (a)

:

Likewise from Y1 �hr Y2 follows

g1 (b) �G2 (a)� g2 (b) �G1 (a) � 0:

Then (21) holds and the proof is complete.

Proposition 4.1 Let X1; :::; Xn, Y1 and Y2 be independent lifetimes. Suppose
X1; Y1; X2 and Y2 have probability densities. Let X1 �hr X2 and Y1 �hr Y2.
Then

V1 �pr V2 and V
(k)
1 �pr V

(k)
2 ; (22)

for 1 < k � n.

Proof. We only consider the case 1 < k < n; n > 2, since the remaining
cases can be proved in a similar way. Then it is suÆcient to use part c) of
Proposition 2.2 with the same notation and conditions stated there and to take

Z1 = _
�
Xj1 ; :::; Xjn�k

�
; Z2 = ^

�
Xi1 ; :::; Xik�2

�

in Lemma 4.1.
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Corollary 4.1 Let X1; X2; :::; Xn; Y1; Y2; :::; Yn be independent lifetimes for which
the probability densities exist. Suppose X1 �hr X2 �hr ::: �hr Xn and Y1 �hr

Y2 �hr ::: �hr Yn. Then for 2 � k � n; n � 2,

(_ (X1; Yn) ;_ (X2; Yn�1) ; :::;_ (Xn; Y1))[k]
�pr

�
_
�
X1; Y�(1)

�
;_
�
X2; Y�(2)

�
; :::;_

�
Xn; Y�(n)

��
[k]

for any permutation � = (�(1); �(2); :::; �(n)) of f1; 2; :::; ng:
Proof. For two arbitrary permutations � and Æ of f1; 2; :::; ng let

'(Æ;�) = Pf
�
_(X1; YÆ(1));_(X2; YÆ(2)); :::; (Xn; YÆ(n))

�
[k]

>
�
_(X1; Y�(1));_(X2; Y�(2)); :::; (Xn; Y�(n))

�
[k]
g:

Denoting by �0 the permutation (n; n� 1; :::; 1) we can rewrite the result that
is required to prove as '(�0;�) � '(�;�0).

Given a permutation � = (�(1); �(2); :::; �(n)) let consider the permutation
�i = (�(1); �(2); :::; �(i� 1); �(i+ 1); �(i); �(i+ 2); :::; �(n)), i = 1; 2; :::; n� 1.
If Y�(i+1) �hr Y�(i), from Proposition 4.1 we obtain '(�i;�) � '(�;�i) for
all i = 1; 2; :::; n � 1. But under the suppositions that are made this result
implies '(�0;�) � '(�;�0) for any permutation �. Consequently, the corollary
is proved.

Corollary 4.1 means that if we have a k-out-of-n system formed by compo-
nents c1; c2; :::; cn with respective failure rates �1(t) � �2(t) � ::: � �n(t), and
r (r � n) redundancies c01; c

0

2; :::; c
0

r with respective failure rates �1(t) � �2(t) �
::: � �r(t), then if we are going to allocate each redundancy to a component as
an active redundancy, the optimal allocation regarding the probability ordering
is to allocate c0r with c1, c

0

r�1 with c2, and so on.
In [7] is considered the decision between to expand a k-out-of-n system and

improving the already existing system by means of redundancy. In the following
proposition we consider this situation.

Proposition 4.2 Let X1; :::; Xn and Y1; Y2; :::; Yr (r � n) be lifetimes. Then
the following inequality always holds

(X1; X2; :::; Xn; Y1; Y2; :::; Yr)[k]
� (_(X1; Y1);_(X2; Y2); :::;_(Xr; Yr); Xr+1; :::; Xn)[k]:

(23)

Proof. Let suppose, on the contrary, that (23) does not hold. In this case
using the notation of section 2 it is no hard to see that the system

_(x1; y1) + _(x2; y2) + :::+ _(xr ; yr) + xr+1 + :::+ xn � k
x1 + x2 + :::+ xn + y1 + y2 + :::+ yr � k � 1

must be satis�ed. Nevertheless this system has not solution and, consequently,
(23) always holds.

It is obvious that the result obtained in Proposition 4.2 implies that sub-
stituting in (23) the symbol � by the symbols �st and �pr the inequality also
holds.
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We now examine the following problem. Suppose we have a k-out-of-n sys-
tem and there are R spares to be allocated in parallel with its components.
Suppose further that lifetimes of all the components and the spares are inde-
pendent, the lifetimes of the components are identically distributed and the
lifetimes of the redundancies are identically distributed. We are interested in
determining the optimal allocation of the spares. For a series system this prob-
lem has been considered in [8] and [9] from the point of view of stochastic
and failure rate ordering, respectively. In those works it has been found that
in order to optimize the lifetime of the system, the allocation of spares must
be balanced among the components as much as possible. We will show that
it is also the optimal allocation in the sense of the probability ordering for a
k-out-of-n system.

Let (x1; x2; :::; xn) be a nonnegative n-dimensional vector and let x[1], x[2],
..., x[n] denote the coordinates of the vector arranged in decreasing order. For a
nonnegative vector (y1; y2; :::; yn), similarly de�ne y[i]; i = 1; 2; :::; n. Recall that

x majorizes y (x >m y) if
Pj

i=1 x[i] �
Pj

i=1 y[i] holds for all j = 1; :::; n� 1 and
moreover

Pn
i=1 x[i] =

Pn
i=1 y[i] [10].

We will denote by r = (r1; r2; :::; rn) and l = (l1; l2; :::; ln) two possible
arrangements of spares to be placed in parallel with the components of the
system such that ri (respectively li ) spares are allocated with the i

th component,
where ri; li 2 f0; 1; 2; :::; Rg. Of course

Pn

i=1 ri =
Pn

i=1 li = R.
Let X1,X2,...,Xn denote the lifetimes of the components and Y1,Y2,...,YR de-

note the lifetimes of the spares. Let consider the sets of lifetimes fY
(i)
1 ; Y

(i)
2 ; :::; Y

(i)
ri g,

i = 1; 2; :::; n, which constitute a partition of the set fY1; Y2; :::; YRg correspond-

ing to the arrangement r. That is, Y
(i)
j denotes the lifetime of the jth active

redundancy allocated to the ith component, j = 1; :::; ri, i = 1; :::; n. Simi-

larly, we consider the partition fZ
(i)
1 ; Z

(i)
2 ; :::; Z

(i)
li
g, i = 1; 2; :::; n, of the set

fY1; Y2; :::; YRg corresponding to the arrangement l.
Let

w(r; l; k) = P

��
X1 _

n
_r1i=1Y

(1)
i

o
; X2 _

n
_r2i=1Y

(2)
i

o
; :::; Xn _

n
_rni=1Y

(n)
i

o�
[k]

>
�
X1 _

n
_l1i=1Z

(1)
i

o
; X2 _

n
_l2i=1Z

(2)
i

o
; :::; Xn _

n
_lni=1Z

(n)
i

o�
[k]

�
;

k = 2; :::; n

Proposition 4.3 Suppose X1; X2; :::; Xn; Y1; Y2; :::; YR are independent lifetimes
such that X1; X2; :::; Xn are identically distributed and Y1; Y2; :::; YR are identi-
cally distributed. Let r >m l. Then

w(r; l; k) � w(l; r; k):

Proof. Let consider an arrangement of spares r = (r1; r2; :::; rn) and denote
by r(i) = (r1; r2; :::; ri�1; ri + 1; ri+1 � 1; ri+2; :::; rn), i = 1; 2; :::; n � 1, where
ri+1 > 0, the arrangement obtained from r changing the spare with lifetime
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Y
(i+1)
ri+1 from the (i+ 1)th to the ith component. By the nature of majorization

it is suÆcient to show that if ri + 1 � ri+1 � 1 then w(r; r(i); k) � w(r(i); r; k).
Then the problem is reduced to analyze the allocation of the redundancy with

lifetime Y
(i+1)
ri+1 when the arrangement of spares is r, between the ith and the

(i+ 1)th components. That is, we must compare the lifetime

�
X1 _

n
_r1j=1Y

(1)
j

o
; X2 _

n
_r2j=1Y

(2)
j

o
; :::;

Xi _
n
_rij=1Y

(i)
j

o
; Xi+1 _

n
_
ri+1
j=1 Y

(i+1)
j

o
; :::; Xn _

n
_rnj=1Y

(n)
j

o�
[k]

which is obtained when the arrangement of the spares is r versus the lifetime

�
X1 _

n
_r1j=1Y

(1)
j

o
; X2 _

n
_r2j=1Y

(2)
i

o
; :::;

_(Xi;_
ri
j=1Y

(i)
j ; Y

(i+1)
ri+1 ); Xi+1 _

n
_
ri+1�1
j=1 Y

(i+1)
j

o
; :::; Xn _

n
_rnj=1Y

(n)
i

o�
[k]

which is obtained when the arrangement of the spares is r(i).
Since ri < ri+1 � 1

_
n
Xi; Y

(i)
1 ; Y

(i)
2 ; :::; Y (i)

ri

o
�st _

n
Xi+1; Y

(i+1)
1 ; Y

(i+1)
2 ; :::; Y

(i+1)
ri+1�1

o
;

then the result follows from Propositions 3.1 and 3.2.
Proposition 4.3 gives us a criteria for the allocation of active redundancies

to k-out-of-n systems, regarding probability ordering. If we have m = r1 +
r2 + ::: + rn = pn redundancies to be allocated as active redundancies to a
k-out-of-n system, that is to allocate ri redundancies to the ith component,
i = 1; :::n, then the better allocation regarding probability ordering is to take
ri = p, i = 1; :::; n. For an arbitrary number of redundancies the best choice is to
allocate the redundancies the most uniformly as possible among the components.

5 Conclusions

In this paper we have discussed on the allocation of one active redundancy
which di�ers depending on the component with it is to be allocated and we have
analyzed the allocation of more than one redundancy. In the one redundancy
case, stochastic ordering together with restrictions on the distribution functions
of the components and the redundancy, are found as suÆcient conditions for the
probability ordering to hold. In the case of more than one redundancy allocation,
the suÆcient conditions are expressed through the hazard rate order. Finally
we have obtained results on the allocation of more than two redundancies.
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