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Lazy learning methods have been used to deal with problems in which the learning examples are not
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1. Introduction

Lazy learning methods [1,2,15]

how to generalize beyond the train
encountered. When the query instan
evenly distributed in the input space. They are based on the selection of a subset of training patterns

when a new query is received. Usually, that selection is based on the k closest neighbors and it is a static

selection, because the number of patterns selected does not depend on the input space region in which

the new query is placed. In this paper, a lazy strategy is applied to train radial basis neural networks.

That strategy incorporates a dynamic selection of patterns, and that selection is based on two different

kernel functions, the Gaussian and the inverse function. This lazy learning method is compared with the

classical lazy machine learning methods and with eagerly trained radial basis neural networks.
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are conceptually straightfor-
real-valued or discrete-valued

When lazy learning techniques are used, the target function is
represented by a combination of many local approximations
constructed in the neighborhood of the new query instances. On
the other hand, eager learning methods construct global approx-
ward approaches to approximating

target functions. These learning algorithms defer the decision of imations and the generalization is carried out beyond the training
ing data until a new query is
ce is received, a set of similar

data before observing the new instance. That global approxima-
tion over the training data representing the domain could lead to
po
co
sp
the
les

me
the
rad
ap
ne
kn
tar
me
cen
sam
cou

of
sel
the
cla
the
ap
wi
ins
related patterns is retrieved from the available training patterns
set and is used to approximate the new instance. Similar patterns
are chosen using a distance measured with nearby points having
high relevance.

The lazy methods, also called local learning methods, generally
work by selecting the k least distant input patterns from the query
points, often in terms of the Euclidean distance. Afterwards, a
local approximation using the selected samples is carried out with
the purpose of generalizing the new instance. That local
approximation can be constructed using different strategies. The
most basic form is the k-nearest neighbor (NN) method [4]. In this
case, the approximation of the new sample is just the most
common output value among the k selected examples. A
refinement of this method, called weighted k-NN [4], can be also
used, which consists of weighting the contribution of each of the k

neighbors according to the distance to the new query, giving
greater weight to closer neighbors. Other strategy to determine
the approximation of the new sample is the locally weighted
linear regression [2] that constructs an explicit and linear
approximation of the target function over a region around the
new query instance. The regression coefficients are based on the k

nearest input patterns to the new query.
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or generalization properties, mainly if the target function is
mplex or when data are not evenly distributed in the input
ace. In these cases, lazy methods could be appropriate because

complex target function could be described by a collection of
s complex local approximations.
Artificial neural networks can be considered as eager learning
thods because they construct a global approximation that covers

entire input space and all future query instances. Although
ial basis neural networks (RBNN) [7,10] use multiple local

proximations, they are also eager learning methods because the
twork must commit to the hypothesis before the query point is
own. The local approximations they create are not specially
geted to the query point to the same degree as in lazy learning
thods: RBNN are built eagerly from local approximations
tered around the training samples or around clusters of training
ples, but not around the unknown future query point. That

ld contribute to poor generalization properties of RBNN.
Bottou and Vapnik [3] introduce a lazy approach in the context
artificial neural networks. The approach is based on the

ection, for each query pattern, of the k closest examples from
training set. With these examples, a linear neural network

ssifier is trained in order to predict the test patterns. However,
idea of selecting the k nearest patterns might not be the most

propriate, mainly because the network will always be trained
th the same number of training examples for each new
tance.
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The main idea of the lazy strategy presented in this work is to
recognize from the whole training data set, the most similar

predicted, a subset of training patterns, named Xq, is selected from
the whole training data X.

value or weight according to

�

patterns to each new query to be predicted. Those most similar
patterns are determined by using two different weighting kernel
functions: the Gaussian and the inverse function. The number of
retrieved patters will depend on the new query point location in
the input space and on the kernel function, but not on the k

parameter as in the classical lazy techniques. Some studies with
the inverse and the Gaussian selection functions can be found
in [11 13].

The goal of this paper is, on one hand, the study of the
influence of the patterns selected or the kernel function used for
making the selection in the success of the network, when it is
trained using a lazy strategy. On the other hand, the aim is also to
compare the behavior of the lazy strategy presented in this work
with the most classical lazy machine learning methods.

The weighting kernel functions assign high weights to training
patterns close in terms of Euclidean distance to the new query
instance received. They reach the maximum value when the
distance to the query is null, decreasing the value smoothly as this
distance increases. The amount of training patterns selected by
the first kernel function, the Gaussian, depends on its width.
When the width is small, the function is tight and high and few
patterns are selected. If the width increases, the function becomes
wider and lower, selecting more training patterns. In order to
avoid the dependence on the width parameter, a second
weighting kernel function, the inverse function, is evaluated. In
this case, the function does not depend on any parameter but
since it is convenient to have some control on the amount of
training data selected, an external parameter determining the
extension of the neighborhood around the novel sample is used.

The proposed lazy learning strategy to train RBNN and the
different kernel functions of selecting instances are validated in
different domains and compared with other lazy methods, as
k NN, weighted k NN and locally weighted linear regression. The
proposed method is also compared with RBNN trained in an eager
way, that is, the whole training data set is used to train the
network, constructing a global approximation of the target
function.

2. Lazy learning for RBNN using different weighting functions

The general idea consists of selecting those patterns close to

the new instance, in terms of the Euclidean distance. In order to

give more importance to the closest examples, some weighting
measure must be taken into account. There are two alternative
ways of doing it: weighting the data directly, which can be viewed
as replicating relevant data and discarding irrelevant or distant
examples, and weighting the error criterion used by the RBNN in
such a way that the neural model must fit more tightly the closest
patterns [2]. Being both ways equally valid, we have chosen the
first one due to its simplicity and the fact that it uses standard
RBNN. Thus, selected patterns are included one or more times in
the resulting training subset and the network is trained with the
most useful information, discarding those patterns that not only
do not provide any knowledge to the network, but might confuse
the learning process. Next, the selection of the training patterns
and details about the training of the RBNN in a lazy way are
explained.

2.1. Selection of the training patterns

Let us consider q, an arbitrary query instance, described by an
n dimensional vector and let X ¼ fxk;ykgk 1;...;N be the whole
available training data set. When a new instance q must be
In order to select Xq, which contains the most similar patterns
to the query instance q, Euclidean distances (dk) from all the
training samples xk to q must be evaluated. To make the method
independent on the distances magnitude, relative values must be
used. Thus, a relative distance, drk is calculated for each training
pattern. Let dmax be the maximum distance to the query instance,
this is: dmax ¼ maxðd1;d2; . . . ; dNÞ. Then, the relative distance is
given by

drk ¼
dk

dmax
; k ¼ 1 . . .N (1)

The selection of patterns is carried out by establishing a weight
for each training pattern, depending on its distance to the query
instance. That weight is calculated using a kernel function which
reaches its maximum value when the distance to the query point
is null and decreases smoothly as this distance increases. In this
work we have considered and compared two different kernel
functions that fulfill the above conditions: the Gaussian and the
inverse function.

� Weighted selection of patterns using the Gaussian function: The
Gaussian function assigns to each training pattern xk a real
KðxkÞ ¼
1

s 2p
p e d2

rk=2s2

; k ¼ 1 . . .N (2)

where s is a parameter which indicates the width of the
Gaussian function, and drk is the relative Euclidean distance
from the query to the training input pattern xk.
The weight values KðxkÞ, calculated in (2), are used to indicate
how many times the training pattern ðxk; ykÞ, will be included
into the training subset associated to the new instance q.
Hence, those real values must be transformed into natural
numbers. The most intuitive way consists in taking the integer
part of KðxkÞ. Thus, each training pattern will have an
associated natural number, nk ¼ intðKðxkÞÞ, which indicates
how many times the pattern ðxk; ykÞ is included in the subset
Xq. If nk ¼ 0 then the k th pattern is not selected, and not
included in the set Xq.
Weighted selection of patterns using the inverse function:
One problem that arises with the Gaussian function is its
high dependence on the parameter s. For this reason, another
weighting function, the inverse function, given by Eq. (3), is
used in order to compare their performance:
KðxkÞ ¼
1

drk
; k ¼ 1 . . .N (3)

This function does not depend on any parameter, but it is
important to have some control on the number of training
patterns selected. For this reason, an n dimensional sphere,
centered at the test pattern, is established in order to select
only those patterns placed into the sphere. Its radius named
r is a threshold distance, since all the training patterns whose
distance to the novel sample is bigger than r will be discarded.
To make it domain independent, the sphere radius will be
relative with respect to the maximum distance to the test
pattern. Thus, the relative threshold distance or relative radius,
rr, will be used to select the training patterns situated into the
sphere centered at the test pattern, being rr a parameter that
must be established before the application of the learning
algorithm.
As it happens with the Gaussian function, the function values
KðxkÞ calculated in (3) are used to weight the selected patterns
that will be used to train the RBNN. The main difference is that,
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now, all the patterns placed into the sphere and only those will
be selected. Thus, both the relative distance d calculated

p
d

2.2. Training RBNN in a lazy way
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Fig. 2. Inverse function and relative radius.
rk

previously and the weight value KðxkÞ are used to decide
whether the training pattern ðxk; ykÞ is selected and, in that
case, how many times it will be included in the training subset
Xq. Hence, they are used to generate a natural number, nk,
following the next rule:

if drkorr then

nk ¼ intðKðxkÞÞ

else

nk ¼ 0

(4)

At this point, each training pattern in X has an associated
natural number nk (see Eq. (4)), which indicates how many
times the pattern ðxk; ykÞwill be used to train the RBNN for the
new instance q. If the pattern is selected, nk40 otherwise
nk ¼ 0.

Examples of these kernel functions Gaussian and inverse are

resented in Figs. 1 and 2. The x axis represents the relative
istance from each training example to the query, and the y axis

For each query instance q, a RBNN is trained using Xq: the
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represents the value of the kernel function.
When the Gaussian kernel function is used (see Fig. 1), the

values of the function for patterns close to q are high and decrease
quickly when patterns are moved away. Moreover, as the width
parameter decreases, tighter and higher is the Gaussian function.
Hence, if the width parameter is small, only patterns which are
situated very close to the new sample q are selected, being
repeated a lot of times. However, when the width parameter is big,
more training patterns are selected but they are replicated less
times. It is observed that the value of s affects the number of
training patterns selected as well as the number of times they will
be replicated.

If the selection is made with the inverse kernel function
(see Fig. 2), the number of selected patterns only depends on the
relative radius (rr). Patterns close to the query instance q, will be
selected and repeated a lot of times. As the distance to the query q
increases, the number of times that training patterns are
replicated decreases, as long as this distance is lower than rr

(in Fig. 2, rr has a value of 0.5). If the distance is greater than rr

they will not be selected. Fig. 2 shows that the closest patterns
will always be selected and replicated the same number of times,
regardless of the radius value. This behavior does not happen with
the Gaussian function as it can be seen in Fig. 1.
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Fig. 1. Gaussian function with different widths.
uron centers are calculated in an unsupervised way using
means algorithm in order to cluster the input training patterns
cluded in the subset Xq. The neuron widths are evaluated as the
ometric mean of the distances from each neuron center to its
o nearest centers, and the RBNN weights are estimated in a
pervised way in order to minimize the mean square error
easured in the training subset Xq.

In order to apply the learning method to train RBNN, two
atures must be taken into account: On one hand, the results
ould depend on the random initialization of the K means
gorithm which is used to determine the locations of the RBNN
nters and must be applied for each query. In the proposed
ethod, having the objective of achieving the best performance, a
terministic initialization of the K means algorithm, instead of
e usual random one, is proposed. The idea is to obtain a
ediction of the network with a deterministic initialization of the
nters whose accuracy is similar to the one obtained when
veral random initializations are done. The initial location of the
nters will coincide with the location of the closest selected
aining examples. It is necessary to avoid the situations where
e number of neurons is bigger than the number of selected
tterns, situations that would lead to overfitting.
On the other hand, when the test pattern is located in a region

the input space where the examples are scarce, it could happen
at no training examples are selected. When this situation
curs, an alternative way to select the training patterns must be
ken. In our work, if the subset Xq associated to a query q is

pty, then we apply the method of selection to the closest
aining pattern, as if it was the test pattern. Thus, the selected set
ill have, at least, one element.

Experimental framework

The lazy strategy described in Section 2, with either the
aussian or the inverse kernel function, has been applied to RBNN
different architectures and the generalization capability of the

tworks has been measured in terms of the mean absolute error
er the test data set. Four domains have been used with that
rpose. The results obtained with that lazy strategy have been
mpared, on the one hand, with the results provided by the
tworks when a global approximation over the whole training
ta set is constructed, that is, when the network is trained as
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usual. On the other hand, the results have also been compared
with classic lazy methods, as k NN, weighted k NN and weighted

Different approaches have been developed for the purpose of
predicting the behavior of sea level at Venice Lagoon [14,18]. In
local regression.
In this section, the features of the different domains and the

conditions of the experiments carried out are described. Finally,
the results obtained with the different lazy learning methods are
presented and compared.

3.1. Domains description

Different domains have been used to compare the different
lazy strategies: The approximation of a piecewise defined func
tion, the approximation of the Hermite polynomial, the prediction
of the Mackey Glass time series and the prediction of the water
level at Venice Lagoon time series. Next, the characteristics of all
of them are presented.

� Theoretical problem: a piecewise defined function approximation.
The function is given by the equation
8

f ðxÞ ¼

2:186x 12:864 if 10pxo 2

4:246x if 2pxo0

10e 0:05x 0:5 sinðð0:03xþ 0:7ÞxÞ if 0pxp10

><
>:

(5)

The original training set is composed of 120 input output
points randomly generated by an uniform distribution in the
interval ½ 10;10�. The test set is composed of 80 input output
points generated in the same way as the points in the training
set. Both sets have been normalized in the interval ½0;1�.
� Theoretical problem: the Hermite polynomial. The Hermite

polynomial is given by

f ðxÞ ¼ 1:1ð1 xþ 2x2Þe ð1=2Þx2

(6)
This domain has been widely used in RBNN literature [5,8,17].
A random sampling with an uniform distribution over the
interval ½ 4;4� is used in order to obtain 40 input output
points for the training data. The test set is composed of 200
input output points that are generated in the same way as the
points in the training set. Both sets have been normalized in
the interval ½0;1�.
� The Mackey Glass time series prediction. This time series is

widely regarded as a benchmark for comparing the general
ization ability of RBNN [9,17,7,16]. It is a chaotic time series
created by the Mackey Glass delay difference equation [6]:
Piecewise-defined function 1–25

Hermite polynomial 1–15

Mackey-Glass time series 1–50

Level at Venice Lagoon 1–75
dxðtÞ

dt
¼ bxðtÞ þ a

xðt tÞ

1þ xðt tÞ10
(7)

The series has been generated using the next values for the
parameters: a ¼ 0:2; b ¼ 0:1, and t ¼ 17. The task for the
RBNN is to predict the value of the time series at point x½t þ 1�
from the earlier points ðx½t�; x½t 6�; x½t 12�; x½t 18�Þ. Fixing
xð0Þ ¼ 0, 5000 values of the time series are generated using Eq.
(7). The initial 3500 samples are discarded in order to avoid
the initialization transients. One thousand data points,
corresponding to the sample time between 3500 and 4499,
have been chosen for the training set. The test set is composed
of the points corresponding to the time interval ½4500;5000�.
All data points are normalized in the interval ½0;1�.
� Real life problem: prediction of water level at Venice Lagoon.

Unusually high tides result from a combination of chaotic
climatic elements in conjunction with the more normal,
periodic, tidal systems associated with a particular area. The
prediction of such events have always been subjects of high
interest. The water level of Venice Lagoon is a clear example of
Variation of k.
4

these events. That phenomenon is known as ‘‘high water’’.
this work, a training data set of 3000 points, corresponding to
the level of water measured each hour has been extracted from
available data in such a way that both stable situations and
high water situations appear represented in the set. The test
set has also been extracted from the available data and it is
formed by 50 samples including the high water phenomenon.
A nonlinear model using the six previous sampling times
seems appropriate because the goal is to predict only the next
sampling time.

3.2. Experimental conditions

As it has been previously mentioned, different lazy learning
strategies have been used to deal with different problems. Now,
the conditions of the experiments are described. k NN, weighted
k NN and weighted local regression methods [2] have been run for
different values of k parameter (number of patterns selected),
depending on the domains; the k variation ranges depend on the
number of patterns of each training data set. In Table 1 the applied
values of k are showed.

When RBNN are trained using a lazy strategy based on either
the Gaussian or the inverse function to select the most appro
priate training patterns, some conditions must be also defined.
Regarding to the Gaussian kernel function, experiments varying
the value of the width parameter from 0.05 to 0.3 has been carried
out for all the domains. That parameter determines the shape of
the Gaussian and therefore, the number of patterns selected to
train the RBNN for each sample test. Those maximum and
minimum values have been chosen in such a way that the shape
of the Gaussian allows the selection of same training patterns,
although in some specific cases no training patterns might be
selected. With respect to the inverse selective learning method,
and for similar reasons, different values of the relative radius have
been set. It varies from 0.04 to 0.24 for all the domains. In
addition, experiments varying the number of hidden neurons have
also been carried out, in order to study the influence of that
parameter in the performance of the method. In the rare cases
where no training patterns are selected, due to the specific
characteristics of the data space and the value of the selection
parameter, the lazy RBNN are able to predict the test pattern, as
we have explained in Section 2.2.

Finally, for comparative purposes, different architectures of
RBNN have also been trained as usual, that is, the network is
trained using the whole training data set. After the training, they
are used to calculate their answer to the test instances, being
evaluated as eager approximators. In the next section, results with
the best topology are shown.

3.3. Experimental results

3.3.1. Lazy training of RBNN

Figs. 3 6 show, for the four application domains, the behavior
of the lazy strategy when the Gaussian and inverse Kernel

Table 1
Classic lazy methods

Domain k



functions are used to select the training patterns. In those cases,
the mean error over the test data is evaluated for every value of

In these figures it is possible to observe that the performance
of the lazy learning method proposed to train RBNN does not
de
nu
the width for the Gaussian case, and for every value of the of
relative radius for the inverse one.
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0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3

 M
ea

n 
er

ro
r

Width

7 n
11 n
15 n
19 n
23 n
27 n

M
ea

n 
er

ro
r

Fig. 3. Mean errors with Gaussian and inverse sele

M
ea

n 
er

ro
r

Width

Gaussian function selection. Hermite Polynomial

7 n
11 n
15 n
19 n
23 n
27 n

M
ea

n 
er

ro
r

0

0.05

0.1

0.15

0.2

0.3

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Fig. 4. Mean errors with Gaussian and inverse

0

0.02

0.04

0.06

0.08

0.1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

M
ea

n 
er

ro
r

Width

Gaussian function selection. Mackey-Glass time series

7 n
11 n
15 n
19 n
23 n
27 n

M
ea

n 
er

ro
r

Fig. 5. Mean errors with Gaussian and inverse sel
pend significantly on the parameters that determine the
mber of patterns selected, when the selection is based on the

Inverse function selection. Piecewise-defined function
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25

Relative radius

7 n
11 n
15 n
19 n
23 n
27 n

ction for the piecewise-defined function.

Relative radius

Inverse function selection. Hermite Polynomial

7 n
11 n
15 n
19 n
23 n
27 n

0

0.05

0.1

0.15

0.2

0.3

0.25

0 0.05 0.1 0.15 0.2 0.25

selection for the Hermite polynomial.

0

0.02

0.04

0.06

0.08

0.1

0 0.05 0.1 0.15 0.2 0.25

Relative radius

Inverse function selection. Mackey-Glass time series

7 n
11 n
15 n
19 n
23 n
27 n

ection for the Mackey-Glass time series.

5



inverse kernel function. With the inverse function and for all
application domains, the general tendency is that there exists a
wide interval of relative radius values, rr, in which the errors are
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Piecewise-defined function.
very similar for all architectures. Only when rr parameter is fixed
to small values, the generalization of the method is poor in some
domains. This is due to the small number of selected patterns,
insufficient to construct an approximation. However, as the
relative radius increases, the mean error decreases and then does
not change significatively. It is also observed that the number of
neurons is not a critical parameter in the method.

When the lazy strategy is based on the Gaussian selection, the
performance of the method presents some differences with
respect to the inverse selection. Firstly, although there is also an
interval of width values in which the errors are similar, if the
width is also fixed to high values, the error increases. For those
values, the Gaussian is more flattened and could also happen that
an insufficient number of patterns are selected. Secondly, in this
case, the architecture of the RBNN is a more critical factor in the
behavior of the method.

3.3.2. Traditional lazy techniques

Figs. 7 10 show the behavior of the classical lazy strategies,
k NN, weighted k NN and weighted local regression, in the

studied domains. The mean absolute error over the test data sets
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for each value of k is represented.
Figs. 7 9 show that for the piecewise defined function,

the Hermite polynomial and the Mackey Glass time series, the
performance of classical lazy strategies is in general influenced by
the value of k, increasing the error as the k value increases. This is
more for the one dimensional domains (piecewise defined func
tion and the Hermite polynomial). However, when weighted k NN
is used, the influence of the parameter k is lower and it obtains the
best performance over the rest of traditional lazy methods.

For the prediction of the water level at Venice Lagoon
problem, the behavior of the traditional lazy methods is different
(see Fig. 10). On one hand, there is a stabilization of the error after
a certain value of k when the regression method is used. On the
other hand, k NN algorithms have a worse behavior: the error
increases as k increases, and even the best results are not very
good. This is due to the local influence of data in the Venice
Lagoon domain. In consequence, it seems that the performance
of the traditional lazy approaches depends on the domain of
application. Weighted k NN would be appropriate for some



domains, whereas local linear regression may provide better
results in other situations, in which input patterns have local
dependencies.

centers are calculated in an unsupervised way using K means
algorithm, the neuron widths are evaluated as the geometric
mean of the distances from each neuron center to its two nearest
centers, and the RBNN weights are estimated in a supervised way
in
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Venice Lagoon level prediction.

Table 2
Best mean error for the lazy strategy to train RBNN compared with eager training

Mean error Gaussian lazy Inverse lazy Traditional

(parameters) method method method

Piecewise-defined 0.00753 0.00208 0.04156

function width 0:1, 7 neurons rr 0:06, 11 neurons 100 neurons

Hermite 0.01040 0.002994 0.01904

polynomial width 0:2, 7 neurons rr 0:1, 11 neurons 40 neurons

Mackey-Glass 0.02207 0.01565 0.10273

time series width 0:2, 27 neurons rr 0:8, 19 neurons 110 neurons

Level at Venice 0.04107 0.02059 0.09605

Lagoon width 0:15, 23 neurons rr 0:16, 19 neurons 50 neurons

Table 3

Best mean error for k-NN, weighted k-NN, linear and nonlinear local regression

methods

Mean error k-Nearest Weighted k-nearest Local linear

(k value) neighbor neighbor regression

Piecewise-defined 0.01114 0.00794 0.02514

function k 2 k 4 k 3

Hermite 0.01274 0.00697 0.02156

polynomial k 2 k 2 k 2

Mackey-Glass 0.02419 0.02404 0.02579

time series k 2 k 6 k 2

Level at Venice 0.05671 0.05611 0.04385

Lagoon k 2 k 3 k 45
3.3.3. Comparative analysis

Comparing the results obtained by the classical lazy techni
ques (see Figs. 7 10) with those obtained by the lazy strategy

presented in this work (see Figs. 3 6), it is possible to observe, G

th
th
th

3.

ch
above, some of them widely used in RBNN literature.

m
re
from the point of view of the general tendency of the methods,
that the proposed method, with the inverse kernel function,
seems to be less domain dependent and less sensitive to the
parameters. For the inverse selection, the parameter that controls
the number of selected patterns is not a critical factor in the
behavior of the method, being more crucial the value of k for the
classical strategies and the width value for the Gaussian selection.

Different RBNN architectures, from 10 to 130 neurons, have
been trained for all the domains in an eager way, using the whole
training data set. The best mean errors over the test set for all the
domains obtained by the different methods (lazy RBNN, eager
RBNN, traditional lazy methods) are shown in Tables 2 and 3. The
training process of these RBNN is the following: the neuron
order to minimize the mean square error measured in the
aining set.

In Table 2 it is possible to observe that the generalization
pability of RBNN increases when they are trained using a lazy
rategy, instead of the eager or traditional training that is usually
ed in the context of neural networks. The results improve

gnificantly when the selection is based on the input information
ntained in the test pattern and when this selection is carried out
ith the inverse function.

Tables 2 and 3 show that the lazy training of RBNN using the
verse selection function improves significantly the performance
the traditional lazy methods. This does not happen when the

aussian selection function is used: the errors are slightly better
an the obtained by the traditional lazy methods, but not in all
e cases. Therefore, the selection function becomes a key issue in
e performance of the method.

4. Other domains

RBNN do not work well with all domains, due to their specific
aracteristics. This is why we have chosen the domains described
However, in order to show the behavior of the proposed
ethod with other domains, we have applied it to two more
gression domains: the Boston housing database obtained from
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the UCI Machine Learning Repository,1 and the Bank8FM data set,
obtained from the Torgo group.2 They are well known domains
although they have not been used with RBNN as much as the
previous ones.

Moreover, Fig. 11 show that the performance of the lazy
RBNN method with the inverse function does not depend
significantly on the relative radius and the number of neurons
when these values are bigger enough, as it happened with the

Table 4
Best mean error for the new domains

Mean error Lazy RBNN Traditional k-NN Weighted

(parameters) (Inverse function) RBNN k-NN

Boston housing database 0.049947 0.068576 0.065429 0.060714

rr 0:24, 11 neurons 80 neurons k 2 k 4

Bank8FM 0.06266 0.077857 0.106694 0.103443

rr 0:2, 27 neurons 90 neurons k 4 k 4
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Fig. 11. Mean errors with inverse selection for the Boston housing and Bank8FM databases.
Some of their characteristics are the following:

� Boston housing database: The set has 506 instances character
ized by 13 attributes. Twelve of them are continuous and one is
a binary value. Three fifty examples have been randomly

chosen for the training set and 156 for the testing set. Both sets The machine learning methods based on examples try, usually,

to learn some implicit function or its approximation, by the set of
have been normalized in the interval ½0;1�.
� Bank8FM: Four thousand five hundred training instances and

3692 testing instances, with eight continuous attributes. Both
sets have been normalized in the interval ½0;1�.
The learning techniques that have been applied to the new
domains are: RBNN trained in a lazy way using the inverse
function, RBNN trained in an eager way, k NN and weighted k NN.

When RBNN are trained in a lazy way, the relative radius varies

between 0.04 and 0.28 and the number of neurons of the
networks also varies between 7 and 27. Regarding to RBNN
trained in the usual way, we have used networks of different
architectures, from 5 to 100 neurons. As for k NN methods, the
parameter k varies between 1 and 50.

In Table 4 we summarize the obtained results showing the best
absolute mean errors obtained by each method. It is possible to
observe that the lazy RBNN method with the inverse selective
function outperforms the rest of techniques.

1 http://mlearn.ics.uci.edu/MLRepository.html
2 http://www.liaad.up.pt/%7Eltorgo/Regression/DataSets.html
former domains.

4. Conclusions
examples provided by the domain. There are two ways of
approaching this problem. On one hand, global approximators
try to approximate the function in a global way. This means that
they try to build up some kind of approximation that allow to
forecast all the test examples, no matter the characteristics those
examples have. However, there are many domains in which global
approximations do not make good predictions. Those domains
have non homogeneous behavior and the examples are not evenly
distributed in the input space. For this domains, lazy machine
learning methods would be needed.

Lazy machine learning methods have to deal with some extra
difficulties. We need to know how many relevant different regions
exist in the input space. The method must build up different
approximations for each of the above mentioned regions. It must
also know when a point belongs to a specific region. Both
characteristics are very difficult to include in a method in an
efficient way.

In this work a lazy learning method is described. The method
incorporates a way to determine the relevant input space regions,
and decides whether an example belongs to any specific region.
Afterwards, a RBNN is used for making predictions.
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Local methods have been used for this purpose for very long.
They show good results, specially in domains with a mostly linear

[3] L. Bottou, V. Vapnik, Local learning algorithms, Neural Comput. 4 (6) (1992)
888–900.
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behavior in the regions. When regions show a more complex
behavior, those techniques have worse results.

We try to complement the good characteristics of each
approach by using lazy learning for selecting the training set,
but using RBNN, that show good behavior for non linear
predictions. In this way, we produce a method that can get the
locality of the input space, and then using a non linear method to
approximate each region of the input space.

In this article we have presented two ways of doing the
patterns selection, by means of a kernel function: using the
Gaussian and the inverse functions. We have compared our
approach with different lazy methods, like k NN, weighted k NN
and local linear regression. We have also compared our results
with eager global approximations built up with RBNN.

One conclusion of the results is that the kernel function used
for selecting training patterns is relevant for the success of the
network. Both functions produce different results. This means that
the selection of the patterns is a relevant task, that could lead to
better results. However, not all the kernel functions are good for
selecting patterns. The selection of patterns is a crucial step in the
success of the method: it is important to decide not only what
patterns are going to be used in the training phase, but also how
those patterns are going to be used and the importance that each
pattern will have in the learning. In this work we see how
the Gaussian function not always produces good results. In the
validation domains, the results are rather poor when the selection
is made using the Gaussian function, although they are better
than the results obtained with eager methods. However, they are
always worse than when using the inverse function to select
the training patterns. This function have good results in all the
domains.

We can also conclude that the use of lazy learning for
prediction can improve the results, in some cases meaningfully.
In most of the experimental domains, the lazy methods improve
the results of the RBNN trained in a classical way.

Naturally, the domains have been chosen with this purpose,
they have non local behavior, and there are different regions with
different problem expressions. This is easy to see in the piecewise
function, where there are two clearly different regions, by the self
definition of the function.

Finally, the results also show that the combination of lazy
learning and RBNN can produce significant improvements in some
domains. Two different aspects must be taken into consideration:

� A good method for selecting training patterns is needed.
This method must be compatible with lazy approaches.
The patterns must be selected specifically for each new test
�

pattern.
A non linear method must be used for prediction. The regions
must have any kind of structure, so a general method will be
needed.
T
his combination of lazy learning for RBNN and some local way
of selecting patterns produces good results, improves substan
tially eager RBNN learning, and could reach to better results than
other lazy techniques.
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