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Abstract
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1. Introduction

It is well established that many economic series contain dominant, smooth components,
even after removal of simple deterministic trends. A stochastic process with no
deterministic components is defined to be integrated of order d, denoted I(d), if it has
a stationary and invertible ARMA representation after applying the differencing operator
a - B)d. The components of the vector X, are said to be cointegrated of order (d, b),
if all of components of X, are I(d) and there exists a vector o (# 0) such that o’X, is
I(d - b), b > 0. Usually the case with d = b = 1 is considered.

This paper is concerned with the robustness of testing for cointegration when series
are not exactly I(1) but fractionally integrated with d # 1. When d is not an integer,
the series is said to be fractionally integrated and discussed by Granger and Joyeux
(1980) and Hosking (1981). The model has been used in applied econometric work where
flexible characterization of low frequency dynamics is important, and has yielded new
empirical regularities and insights into understanding behavior of many economic time
series. There is considerable evidence on long memory properties in macroeconomic and
financial time series data such as GDP, interest rate spreads, inflation rates, forward
premiums, (power transformations of) stock returns, and exchange rates. See Baillie
(1995) for a survey.

We investigate two methods to test for cointegration when the series are
fractionally integrated. One method is the one suggested by Engle and Granger (1987, EG
hereafter), which looks for a linear combination of level series that minimizes the
variance of the linear combination using OLS. Second method is Johansen’s (1988, 1991)
procedure, which maximizes the canonical correlation between the first differenced series
and the level series. The main assumption of the both tests is that series are exactly
I(1). When variables are I(d) with d = 1 but if they are wrongly assumed as I(1), it is

found that the Johansen tests tend to find cointegration too often.
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Consider a 2 x 1_}I(1). vector.X, = (y, x)’.. Since the. variance.of .an.I(1) series.
goes to infinity as t goes to infmity while variance of an I(0) series is finite, if an
I(1) vector X, is cointegrated, there exists a vector a (# 0) such that the variance of
o’X, is finite. EG suggest to test for a unit root in the residual z, from the OLS
cointegration regression y, = 30 + A, + z. The EG test is based on the Dickey-Fuller
(1979, DF) statistic augmented with k lagged differences, the t-value. for §, from the OLS
regression -

Az = pz, + Az, + ... + pAz, + error. (1)

An I(1) series and an I(0) series are not correlated asymptotically. The Johansen
method exploits the fact that o‘X, may be correlated with AX|,, and look for o that
maximizes the canonical correlation between AX, and X,. If the maximum canonical
correlation between AX, and X, is not zero, a’X, is I(0) and X, is cointegrated. A

cointegrated 2 x 1 vector X, can be generated from a vector error correction model (VECM)
AX, = u+IT X, + NAX,, + ...+ [AX, + & 2)

where € = (e, €)' is a 2 x 1 Gaussian vector white noise. If X, is cointegrated, it
can be shown that IT = yo where o and Yy are 2 x r matrices with r being the rank of Il
Testing for cointegralion is equivalent to testing for the hypothesis on the rank of IL.
I'’s can be eliminated by regressing AX, and X,, on AX,,, .. , AX,;, and 1. This can
give residuals Ry and Ry, respectively. Let §; = T SRR, (i, j = 0, 1). The
two squared canonical correlations (1 = ﬁl z ﬁo_ z Q) between R, and R, can be estimated
from the eigenvalues of M = Si1 S10 Sao Soi-  The Johansen method is designed to test if
the maximum squared canonical correlation A; can be positive, which is zero if X, is not

cointegrated.




The likelihood ratio statistics for testing for the null hypothesis Hy: r = 0O are

0, =-Tl-3)a -4 (3a)
and

0, = - T in(1 - . (3b)

Q, is to test the null hypothesis against the alternative hypothesis H;: r > 0, and Q, is

to test the null hypothesis against H,;: r = 1. Note that 0, = Tﬁ.l and O, = T(x1 + x,_)

2. Fractionally integrated processes

Suppose X, = (), x)’ are generated from

(1 - B)Y,

€1t (4a)

(1 - BY’x, = ey, . | (45)

An I(d) process y, generated from (4a) has the following properties. (@) y is
covariance stationary if d < 0.5. (b) y, has an invertible moving average representation
if d > - 05. (¢) » is mean-reverting when d < 1. (d) If 4 > 0, y, has long-memory,
the autocovariances of y, are not absolutely summable, and the power spectrum of y, is
unbounded for frequencies approaching zero. (e) y, has an infinite variance when d >
0.5. (f) The DF-t statistic diverges to —» if d < 1 and diverges to +oo ifd>1aT—
o (Sowell, 1990, Theorem 4). Thus if d > 1, the DF tests has no power asymptotically to
test for a unit root against a stationary root.

The fractional dilference operator (1 - B)® is defined by its Maclaurin series




(1= B z-r(f(;n‘iof’:"l') B = Vd B, d-= f—_"ij‘ C@, dy=1 ()
=0 =0

where I'(+) is the gamma function, and d; are squared summable if d > - 0.5. Since

(1 - B*'Ay, = e)» it can be written
Ay, = Zojo=1 a; Ay, + ey 6

where g; = - I'( - d + 1)/[T'( + )I'(- d + 1)]. We may then write a VECM of the form

_ 0| D1 > q; 0 Ayt-j €y 7
- 0 0| % ¥ zl 0 aq; Ax, ¥ €x . @
=

For simplicity, in the following proposition, we consider only the case with k = 0

Ay,
Ax,

in the VECM to compute the LR statistics. Any finite k that is not sufficiently large

enough to make the error € a vector white noise will lead to the same results.

Proposition: Suppose (y, x,)’ are 1(d) processes generated from (4), and we estimate a
VECM with k = 0.
a. lIfd = 1.5, then ﬁl —§+ Oas T > «.
(3-24)
b.If1<d< 15 thenT by = OfL).
c. If d = 1, then Th, = OL1).
(2d-1)
dIf05<d< 1 thnT = & = O\

Proof: (a) Following Gourieroux et al (1989), for d = 1.5, §;; = OP(TQ‘H), Seo =
0,T**%), and S,y = OLT**?). Therefore M o= S$i18,6808y = O,(1), and the result
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follows. (b) For 1 < d < 15, S, = O, Sy = Oy1), and Sy, = 0T,
A 4. )

Therefore M = Oy(T*™). () For d = 1, Sy = OiD), Spp = Of1), S = O(1), and

therefore ICI = OP(T-I). (d) For 05 <d< 1, §,; = OP(TZd'l), Soo = Op(l), and S,y =

O(1). Therefore ICI = OP(TI'“), and the result follows.

Ifd=1,then 7h, = O1). Ifd=+1, Th % was T — w, and the size of the LR
tests increases to one as T — o because Q, = 7’5:1 and O, = T(xl + ﬁ\,,) Note that if 1 <
d<15then0<3-2d<1,and if 0.5 < d < 1then 0 <2d -1 < 1. Thus in these two
cases, 5:1 ¥, 0 but at the rate slower than T so that 7’5:1 diverges, and therefore the size

of the LR tests goes (0 one.

3. A monte carlo

We generate X, = (y, x)’ from (4) assuming that e;, and e, are ii.d. N(O, 1),
where ¢t = 1, ... , T + q. The first ¢ = 2000 observations are discarded. We
approximated (1 - B) = £ d, B’ by assuming d, = O for j > 1000. In Tables 1 and 2,
we report simulated size of the cointegration tests for various values of d.

When d < 1, the size is large for both EG and the Johansen tests. Although Sowell
(1990) shows that the DF ¢ statistic diverges to — w if d < 1 as T — o, Diebold and
Rudebusch (1991a), and Hassler and Wolters (1994) provide evidence that the power of the
DF tests are poor against fractional alternatives in finite samples. Table 3 also shows
that it is hard to tell I(d) with d < 1 from the behavior of I(1) using the augmented DF
(ADF) tests in a small sample. Thus if the variables are fractionally integrated with d
< 1, then it is likely that we proceed assuming the series are I(1) and may get incorrect
conclusion that the system has a long-run relationship.

When d > 1, the Johansen tests tend to find too much spurious cointegration while

the EG test does not. Sowell (1990) shows that if 4 > 1 then the DF test has zero power
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asymptotically to test for a unit root against a stationary root. Thus if the variables
-are. fractionally integrated with‘ d > 1, then it is likely that we proceed assuming they
are I(1) (see Table 3), and the results may suggest cointegration incorrectly. The VECM
(7) shows that the true number of lagged differences is infinity. If not enough k is
used in computing the Johansen LR tests, all the omitted dynamics will be included in the
residual € and the model suffers dynamic misspecification. We thus report the results
computed. with k& = 3 and 9, but the problem remains even with k = 9.

What are the relevant values of d for economic variables ? For example, the
fractional differencing parameter d estimated in the literature are: d = 1.17 for annual
disposable income (Diebold and Rudebusch (1991b)), d = 1.29 for quarterly real GNP
(Sowell (1992)), and d is ranged from 1.04 to 1.36 for various nominal spot exchange
rates (Cheung (1993)). Also d is estimated about 0.6 for money growth rates (Tieslau
(1991)), and d is ranged from 0.40 to 0.57 for inflation rates in several developed
countries (Héssler and Wolters(1995)). This indicates money stock and price series may

have d greater than one.

4. Conclusions

This paper shows that when variables are fractionally integrated with 4 > 1, the
Johansen tests ténd to find too much spurious cointegration while a standard Dickey-
Fuller test on the residual of an Engle-Granger regression does not. If the both tests
(EG and LR) produce the same results in testing for cointegration, it is likely that d =

1. If they yield different answers, then it may indicate that d > 1.
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Table 1. Fractionally integrated processes (7 = 100)

k=0 k=3 |

EG 0 O EG 0O EG 0 @
d=0.5 986 1.000 .997 361 .651 432 083  .233 171
d=0.6 900 .991 .947 223 406 .262 060 .180 .141
d=0.7 636 832 .652 146 224 167 043 152 132
d=0.8. 341 447 340 094 142 105 042 129 129
d=0.9 143 147 132 065 .087 .076 038  .132 .122
d=1.0 047 048 .052 048 068 .072 032  .133 .130
d=1.1 016 .058 .069 037 .077 .078 034 153 .149
d=1.2 010 152 .166 028 .090 .085 036 .163 .165
d=1.3 031 337 351 021 105 .113 030 171 171
d=1.4 053 563 .592 024 110 .128 027  .188 .184
d=1.5 076 753 774 019 135 .144 032 221 206
d=1.6 .100 .860 | 873 016 .165 .185 037 236 .230
d=1.7 11 921 931 012  .185 .196 048 274 267
d=1.8 35 952 957 016 .191 .213 045 312 294
d=19 50 969 973 029 231 243 053 357 336
d=2.0 .1?6 982 981 039 271 254 054 400 .385

The frequency of rejecting the null hypothesis in 1000 replications is reported at the 5%

level.

DGP with d = 1.

The critical values for T = 100 are simulated from 90000 replications using the




Table 2. Fractionally integrated processes (T = 1000)

=0 k=3 k=9

EG Q 0, EG 0, 0, EG 0, 0,
d=0.5 1.000 1.000 1.000 1.000 * 1.000 1.000 984 1.000 1.000
d=0.6 1000 1.000 1.000 994  1.000 1.000 851 992 936
d=0.7 998  1.000 1.000 879  .984 941 572 815 .648
d=0.8 872 978 946 535 708 565 269 370 - 284
d=0.9 384 455 376 193 213 .186 134 140 .116
d=1.0 063  .056 .056 059  .055 .055 059 053 .062
d=1.1 020 118 .124 026 .057 .066 037 051 .058
d=12 047 439 464 026 160 .175 023 078 104
d=1.3 102 768 .805 029 304 332 023 141 .154
d=14 166 925 925 040 441 483 021 210 .248
d=1.5 211 974 977 030 522 .546 018 248 283
d=1.6 253 991 .990 017 543 573 o4 257 281
d=1.7 302 .994 995 010 483 517 008 245 258
d=1.8 331 999 1.000 004 380 .390 009 216 215
d=1.9 345 999 999 007 245 256 015 .196 .199
d=2.0 349 999 999 029 204 .192 034 208 .196

The frequency of rejecting the null hypothesis in 1000 replications is reported at the 5%

level.

DGP with 4 = 1.

The critical values for 7 = 1000 are simulated from 90000 replications using the




Table 3. Powelj of ADF tests when a series is I(d)

T = 100 T = 1000

ADF(0) ADF(3) ADF(p,.) ADF(0) ADF(3) ADF(p,.)

[mean(p,;.), sd(P,;0)] [mean(p,;), sd(p,;)]
d=0.5 999 553 .696 [1.875, 2.805] 1.000 1.000 .963 [7.937, 3.997]
~d=0.6 941 355  .556 [1.926,.2.874]. 1.000  .998  .867 [7.647, 3.860]
d=0.7 | 691 223 399 [1.811, 2.925] 999 887  .674 [6.602, 3.606]
d=0.8 354 129 258 [1.500, 2.807]) 825  .521 412 [4.981, 3.148]
d=0.9 141 080  .117 [1.258, 2.805] 331 177 187 [2.959, 2.705]
d=1.0 047 055  .069 [1.229, 2.842] 055 .055  .050 [1.021, 2.400]
d=1.1 032 049  .058 [1.513, 2.846] 032 .026 .030 [3.368, 2.993]
d=12 047 038  .047 [2.150, 3.013] 104 036  .042 [5.701, 3.394]
d=1.3 087 .041  .056 [2.605, 2.983] 205  .071  .050 [7.322, 3.598]
d=1.4 148 047 067 (2.832,2916] = 285 .112  .064 [8.124, 3.651]
d=15 214 053 .067 [2.842, 2.884] 330 133 .068 [8.452, 3.688]
d=1.6 257 056  .080 [2.706, 2.759] 368 138  .066 [8.045, 3.624]
d=1.7 317 052 .079 [2.563, 2.674] 383 126  .069 [7.081, 3.372]
d=1.8 342 049 077 [2.339, 2.646] 388 095  .062 [5.698, 3.068]
d=19 366 052 .062 [2.207, 2.706] 405 .065  .052 [3.813, 2.688]
d=2.0 387 .050  .061 [2.301, 2.817] 398  .055  .061 [2.017, 2.359]

5% level. 1000 replications. ADF(p) denotes the DF tests augmented with p lagged first
differences. p = 0, 3, or p,.. Pac 1S chosen using the AIC among p = 0, 1, ..., 19.
When p = p,; is used, the mean and the standard deviation of p,, in 1000 replications

are reported in brackets, [mean(p,;.), sd(p,;)]-




