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Abstract 

We propose a specification test of a parametrically specified model against a 

weakly specified alternative. The latter is estimated using k 

nonparametric nearest neighbors (k-NN) in the context of an artificial 

regression. We derive the asymptotic distribution under the null hypothesis 

and under a series of local alternatives. Monte carIo simulations suggest 

that the test is quite powerful although it has a tendency to over-reJect 

under the null hypothesis. 
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1.:.. Introduction 

In this note we propose a specification test of a parametrically 

specified model, as dictated by economic theory, against a weakly specified 

alternative. Our test is based on an artificial nesting procedure for testing 

separa te regressions, see Davidson and Mackinnon (1981) and Fisher and 

McAleer (1981). The performance of the alternative "under the truth" of the 

null forms the basis for a test of the latter. However, our procedure 

differs from theirs in that we are only interested in the performance of the 

null. In other words we do not want to make a statement about the validity of 

the alternative model, since the latter is not derived from sorne specific 

economic model. We also avoid the effect that a possibly misspecified 

parameterization of the alternative hypothe!;lis would have on testing the 

validity of the null hypothesis. We use k nonparametric nearest neighbors 

(k-NN) to estimate the alternative model that enters the artificial 

regression. 

In the next section we discuss the nature of the proposed test and we 

derive its distribution under the null hypothesis and under a series of local 

alternatives. We then proceed to investigate its small sampl. properties by 

means of a small monte carIo. Finally, we conclude. 

~.The Specification Test 

Suppose we observe a random sample {(y ,X ,Z ), l:si:sn} from the 
1 1 1 

RxRPxRr valued random variable {Y,X,Z}, having finite variance and 

conditional distribution F that is nondegenerate for all X,Z at which 
YIX, Z 

it is defined. Let [(.) denote the mathematical expectation. The researcher 

faces the following competing hypotheses: 

(1.1) 
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In other words Ho is completely parameterized. The alternative ~ypothesis 

H is only weakly specified. Hence, the functional form of E(YIZ) does not 
A 

take a specific parametric formo We can look at the composite hypothesis He 

as the weighted average of H and H : o A 

H: [(YIX,Z) = XT~ (1-9) + 9[(YIZ) e o 
(1. 2) 

Since [(YIZ) is unspecified, we can estimate it by using a 

nonparametric estimator. In this paper we propose to use (k-NN) 

nonparametric weights. The use of these weights have been introduced in the 

semiparametric literature by Robinson (1987). In particular, the estimator 

of E , where E = [(y IZ), is given by 
1 1 1 1 

E = \' Y w (k) 
1 'r j lj 

(1. 3) 

where w (k) are the weights based on the r Z-regressors. For a positive 
1 j 

k 

integer k let C
1

(k) be constants satisfying Cl(k)~O ; C
1

(k)=O, i>k; L C
1 

(k)=l 
1=1 

.-, '(".,. 
where 1(.) is the lndicator function 

rn:::fjj' ; as\.(· j J. 

p +r -1 
1 j 1 j 

L CT(k) (1.4) 
T=p 

1 j 

and p is 1 plus the number of Z' s 
lJ 

closer to Z than Z and r is 1 plus the number of Z's equally near from Z 
1 J 1 j 1 
') :~!1errro'" 

as Z . To calculate distance we use the euclidean metric after we standardize 
j 

by the sample standard deviation. Then we estimate (9,bT)T, where b = 

~ (1-9), by: 
o 

[ tn 1 
n 

= 

and El is given by (1.3). 

A:' ~ [~:l. where A = L 
n 1 [

E E x
T 1 111 

X E 'X xT 

1 1 1 1 

1/2" 
We will derive the asymptotic distribution of n 9

n 
under Ho' Hence 

we will be able to test the validity of Ho by simply testing the 

significance of 9. Rejection of this simple hypothesis would imply that H o 
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is incorrectly specified. Note that in our context, we are not interested 

in reversing the order of H and H to test one against the other as it is o A 

traditionally the case with nonnested tests. In our framework H is not 
A 

parametrically specified and hence it is not of specific interest to the 

researcher. In the event that one reJects the hypothesis that 9 is zero, 

then the researcher might want to parameterize H differently to account 
o 

for the possible effect of the Z-variables on Y. 

1/2'" In order to derive the asymptotic distribution of n 9 under H, we 
n o 

need the following regularity conditions 

K.1 

K.2 

A.1 

A.2 

A.3 

A.4 

11m max C (k)< oo. 
n~ i i 

-V/2 -1 nk ~ O, kn ~ O as n ~ 00 for v > 2. 

T [(XX) is positive definite (p.d.). 

var(YIX,Y) = ~2> O a.s. 

[{var[[(YIZ) IX)} > O a.s. 

[IIXll v< ~, [IY - XTt3oI2V/CV-2)< 00, with v defined in K.2 

Conditions K1 and K2 are sufficient for the consistency of k-NN 

weights, see Stone (1977). Robinson (1987) found that it w~s technically 
í ~~ C!3L 

convenient to relate the rate of convergence of k to the moment conditions 

imposed on the regressors and residuals. Conditions Al and A3 ensure that 

1/2 '" " T the asymptotic variance of n (9 b) under H is positive definite. Note 
n n o 

that A3 rules out situations where [(YIZ) only depends on X or Y is 

independent of X. The moment conditions in A4 are needed for the asymptotic 

analysis. It seems difficult to relax them without imposing a stronger rate 

of convergence in K2. These type of moment conditions were also needed in 

Newey (1989). 

The following theorem is proved in the appendix: 
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Theorem 1:.. If K.1-K.2, A.1-A.4 hold then 1f under H: IE(YIX,Z) = XT{3 a.s. we o o 

have that 

(1) 1/2" d [ 2 ] n en ~N O, (1' !1E{var[IE(YIZ) IX]} . 

The implication of the theorem is that the t-statistic on the 

significance of e under Ho in (1.2) has asymptotically a standard normal 

distribution. The aboye statistic is similar in spirit to the Davidson and 

MacKinnon (1981) J-test, where b and e are estimated jointly. 

Below we will derive the asymptotic distribution of n1/ 2 e under a 
n 

series of local alternatives. Hence, if the null hypothesis is false, the 

test statistic will have power to reject it. The proof 1s g1ven in the 

appendix. 

Theorem ~ If K1,K2, A1-A4 hold and IE(YI IXI,ZI)=X~{3o(1-n-1/2e)+n-1/2elE(Yl IZI) 

a.s. then 

1/2" d [ 2 J¡ ] ,~n en -7 N e, (1' / lE { var[ lE ( Y I Z) IX] } 

We can easily accommodate the case where Ho: IE(YIX,Z) = f({3o'X), 

where f(.) is assumed to be a known parametric function and the case that Y 

is assumed to be multivar1ate. Conditional heteroskedast1city under Ho does 

not affect the normality result, but the asymptotic variance of the 

estimator of e and b will be different. In this case, one can obtain a 

consistent est1mator of the asymptot1c variance, see Eicker (1963) and 

White (1980 ). 

Under heteroskedasticity of unknown form, an asymptotically efficient 
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estimator of e under H may be obtained by a semiparametric weighted least o 

squares procedure. One can estimate var{YIX,Z} from the squared 

residuals computed under the null hypothesis, see Carroll (1982), Robinson 

(1987) or Newey (1987). Apure nonparametric estimator of var{YIX,Z} may 

alternatively be obtained from nonparametric estimators of [{y2IX,Z} and 

[{YIX,Z}, see Delgado (1989). The method we propose is adaptive in the 

sense that the asymptotic variance of n1/2a is the same as the one that 
n 

could have been obtained had the alternative hypothesis H been known or 
A 

fully parameterized. 

~ Monte CarIo Simulations 

In this section we will investigate the small sample 

performance of the proposed test statistic by examining its size and power 

properties in the context of sorne monte carIo experiments. We take H to be 
o 

linear as H : Y = (3 +X (3 +X (3 + u. We consider two alternative hypotheses o 01122 o 
2 H and H for two sets of experiments, where H : Y = '1 + ('1 Z +'1 Z ) + U lA 2A lA o 1 1 2 2 1 

and H2A :Y = 00+exp{01Z1+02Z2} + u1. The parameters (30,(31,(32,'10,'11,'12,°0,°1,°2 

are set to unity. The X's are generated as NID(O,l) variates and the error 

2 terms are generated independently of the regressors as N(O,~). By choosing 

different values of ~ we control the fit of the data generating process. For 

instance, under H which is linear a ~ of 0.33 corresponds to a o 

squared correlation coefficient between y and the X's of 0.9483, whereas a ~ 

of 7 corresponds to one of 0.0392. We generate the Z' s as Z =AX +v, where 
1 1 1 

V is distributed as NID(O,l), i=1,2. By varying A we control the correlation 
1 

coefficient between the Z' s and the X' s. When A is 1, the correlation 
1 1 

coefficient between Z and X is 0.71, whereas when A is 0.1, the latter is 
1 1 

1/2 0.1. We have used two k-NN estimates of [(YIZ), one with k=n and the 
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· 2/3 
other with k=n . We have chosen sample sizes of n=25,100, 1000, which 

correspond to very small and to moderate sizes for real world cross sections. 

AII the programs were written in FORTRAN double prec1s1on and they were run 

on the VAX of Ind1ana Un1versity. The normal var1ates were generated by the 

G05DDF rout1ne of NAG-13. The analys1s of sample s1ze n=1000 proved to be 

quite expensive computationally. We only performed 250 replications in that 

case, whereas for n=25 and n=100 we performed 10000 and 2500 replications 

respect1vely. In both the size and the power exper1ments we cons1der also as 

a benchmark the t-statist1c on the s1gn1ficance of 9 from the regression 

y = XTb + 9[(YIZ) + u, where [(YIZ) takes the exact value from H and 
lA 

H
2A

respectively. The aboye t-stat1stic will outperform our stat1st1c because 

it uses exact information that is unavailable to the researcher. 

Table 1 presents the resul ts of the s1ze experiments. There is a 

tendency for our statistic to over-reJect, although the proportion decreases 

as the sample size increases for A=l, for the different cho1ces of ~. The 

test performs quite poorly in the case of A=O.l, but this is to be expected 

since the X's and the Z's are nearly orthogonal. In that case the 

denominator of the t-stat1stic approaches zero. The same problem exists in 

the case, when [(YIZ) is completely parameterized as with the 

J-test of Davidson and MacKinnon (1981). The k-NN estimator w1th k=n 1 /2 

performs better than the one w1th k=n2
/

3
• Tables 2 and 3 present the power 

results under H and H respect1vely. Except for the case of very small 
lA 2A 

samples with a large ~ or a small A, the power results seem quite 

encourag1ng. AIso as the sample size increases the resul ts improve 

noticeably. In short the monte carIo results are mixed. The test displays a 

tendency to over-reject under the null, but it also seems to have 
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considerable power. 

~ Conclusions 

In this note we have proposed a test statistic that tests a parametric 
L 

formulation of a null hypothesis against a weakly specified alternative.The 

procedure we follow resembles in spirit the artificial nesting technique of 

Davidson and MacKinnon (1981). By means of a monte carIo we 

investigated the small sample properties of this test and we found them to be 

satisfactory with respect to power, but less so with respect to size. 

The test statistic is derived in the context of iid data and the extension to 

dependent data is left for future research. 
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Appendix: Proof of the Theorems 

Proof of Theorem 1 

Below we will present the lemmas that are used in the proof of the 

theorem. We define throughout as E = L IE(Y IZ)w , where w =w (k). We need 
1 j j j 1 j lj lj 

the following preliminary lemmas. Since the proofs to these lemmas 

constitute only minor modifications to the proofs of lemmas 1,7,8 and 9 in 

Robinson (1987), they are omitted. 

Lemma l:Let f(.) be a Borel function such that IElf(Z)I P <~, 

for some p~l. Then 

For any p::sv, 

Lemma ª 
We have that 

= 

where E = Y
1 

- IE(Y IX , Z ). Under H : 8=0, 
1 1 1 1 o 
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Let 

v = [ [ [[(YIZ)]2 

O X[(YIZ) 

[(YIZ)X
T 1 = 

XXT 

We need to prove that 

(a. 1) n
1

/
2

[ ~n 1 
b - b 

n 

d { 2 -1 } ~ N O,,,, V
o 

which implies that 

n
1

/
29

n 
~ N [o , ".2/[{var[[(YIZ) IX]}] 

Note that under Ho [{var[[(YIZ)IX]} = [[[(YIZ)2] _ ~T[(XXT)~ . 
o o 

We prove (a.1) from 

(a.2) n- 1/l: [:1 ] C1 ~ N( O, ".2v ) 
o 1 1 

(a.3) -1 - V = o (1) n A 
n o p 

n-1/l: ,. 
(a.4) (E - E )c = o (1) 1 i i P i 

By A1-A4, [~~]Ci are iid with zero mean and finite variance 

and (a.2) follows from the Lindenberg-Levy Central Limit Theorem. 

We conclude (a.3) from, 

(a.S) 

(a.6) 

(a.?) 

n-1r [EX- [(EX)] = 0(1) L i i i i P 
i 

= o (1) 
p 
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(a.S) n-lE [A2 ~2] E - E = o (1) 
1 1 P 

1 

(a.9) n-lí [~2 E~ ]= o (1) E -
1 P 1 

(a. 10) n-lE [(El - E )X ]= o (1) 
1 1 P i 

(a. 11) n-lE [(E 
1 1 

E)X ] = o (1) 
1 1 P 

(a.S) to (a.7) follow from the law of large numbers (LLN). In order to prove 

(a.S) note that its left side is bounded by 

max lE - E I n-1
) lE - E I = o (1). 

i 1 1 r 1 1 P 

using lemmas 2 and 3 aboye. Also (a.9) follows from lernma 1. The left side 

of (a. 10) is bounded by 

[n -'f (E,- E, )'r/'[n-'~ Ilx,ll' ]'/' = Op (k -./.) 

using Markov's inequality and lemma 2. The left side of (a.ll) is 

bounded by 

using lemma 1. Finally we conclude (a.4) from 

(a.12) 

(a.13) 

o (1) 
p 

o (1) 
p 

(a.12) follows from Chebyschev's inequality, noting that 
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where 

}

(V-2)/V 

= O(k-1
) 

C = lE [n -lí r (E - E ) (E -E ) e e ] 
2 1.Js 1 1 j j 1 j 

Each of these two expectat10ns 1s by Holder's 1nequallty bounded by 

using lernma 2. Also (a.13) follows from Chebyschev's lnequallty, 

s1nce by lemma 1, 

lE [1 n -1/4 (El-El )e
1 

12] 

2 - 2 = CT IEIE - E I = 0(1). 
1 1 

.... 2 2 
It is straightforward to show that CT - CT = o (1) under H. Hence part (li) 

p o 

of the theorem follows from 

(a.14) 

(a.15) 
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(a.16) 

(a.14) follows from (a.S) and (a.9) above, whereas (a.15) follows from the 

1/2 LLN noting that ~ is n -consistent under H. Using this fact and (a. 10) 
O 

and (a.11) we obtain (a.16) .• 

Proof of Theorem ~ 

Let b = ~ (1_n-1
/

2e). From the proof of Theorem 1, 
o o 

Given the proof of Theorem 1, for the proof of theorem 2 it suffices to 

prove that 

(b. 1) n-ir E [E - E] = o (1) L 1 1 1 P 
1 

n-ir X [E - E] - o (1) L 1 1 1 P 
1 

(b.2) 

(b. 1) follows from 

(b.3) n-l~ El [El - El] = o (1) 
p 

(b.4) n-l~ El [El - El] = o (1) 
p 

We prove (b.3) noting that its left side is bounded by 

.... ir .... 
maxlE -E In-LE =0(1) 

1 1 1 1 1 P 

by lemma 1,2,3 and the LLN. (b.4) is bounded by 

[ 
....] 1/2 [ .... ] 1/2 n-l~ E~ n-l~ [E

l
-E

l
]2 = 0p (1) 

by leroma 1, (a.?), (a.S) and (a. 11). The proof of (b.2) is identical to the 

proof of (b.1) .• 
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• TabIe 1 
Size ResuIts: Proportion of ReJections when H is true 

o 
n =25; Number of RepIications = 10000; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

(j' = 0.33 0.3886 0.2610 0.4861 0.3715 0.5533 0.4406 
0.5376 0.4262 0.6458 0.5476 0.7009 0.6200 
0.1596 0.0631 0.1599 0.0644 0.1805 0.0729 
0.2034 0.0924 0.2112 0.1046 0.2241 0.1083 

(j' = 2 0.4330 0.3130 0.4626 0.3479 0.4849 0.3661 
0.6369 0.5413 0.6518 0.5568 0.6710 0.5828 
0.1621 0.0660 0.1661 0.0687 0.1858 0.0781 
0.2046 0.0945 0.2142 0.1089 0.2277 0.1157 

(j' = 7 0.4083 0.2683 0.3778 0.2506 0.3705 0.2410 
0.6330 0.5222 0.5736 0.4600 0.5519 0.4441 
O. 1805 0.0797 0.2085 0.1053 0.2379 O. 1274 
0.2298 0.1168 0.2689 0.1609 0.2937 0.1783 

n =100; Number of RepIications = 2500; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

(j' = 0.33 0.2688 0.1460 0.4652 0.3316 0.6156 0.5056 
0.3968 0.2548 0.5740 0.4572 0.7332 0.6500 
0.0852 0.0244 0.0936 0.0236 0.1020 0.0280 
0.1404 0.0504 0.1496 0.0484 0.1484 0.0552 

(j' = 2 0.3132 0.1956 0.4088 0.2936 0.4960 0.3716 
0.4660 0.3496 0.5688 0.4680 0.6632 0.5668 
0.0856 0.0248 0.0956 0.0240 0.1036 0.0288 
0.1416 0.0504 0.1540 0.0504 0.1524 0.0564 

(j' = 7 0.2668 0.1556 0.2860 0.1744 0.2832 0.1708 
0.4464 0.3328 0.4240 0.3100 0.4304 0.3224 
0.0852 0.0240 0.0996 0.0272 0.1140 0.0348 
0.1448 0.0560 0.1708 0.0620 0.1640 0.0700 

*The first row corresponds to the number of rejections, under Ho' when [(YIZ) 

is estimated by k-NN, where k = n1
/

2
. The second uses k = n2

/
3

. The third row 

corresponds to the benchmark t-statistic, when the added regressor is given 

by l+exp{Z +Z} and the fourth when the added regressor is given by 
1 2 

l+(Z +Z )2, i.e when [(YIZ) is perfectIy known. 
1 2 



TabIe 1 (continued) 

n =1000; Number of RepIications = 250; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

(1' = 0.33 0.2000 0.0720 0.4800 0.3320 0.7200 0.6560 
0.2520 0.1080 0.5240 0.3520 0.8320 0.7960 
0.0520 0.0120 0.0720 0.0280 0.0560 0.0360 
0.1480 0.0600 0.1360 0.0520 0.1560 0.0640 

(1' = 2 0.2440 0.1120 0.4640 0.3320 0.6800 0.5800 
0.2920 O. 1640 0.5160 0.4040 0.7800 0.7160 
0.0520 0.0120 0.0720 0.0280 0.0600 0.0360 
0.1480 0.0560 0.1400 0.0520 0.1600 0.0600 

(1' = 7 0.2280 0.1200 0.3040 0.2040 0.3720 0.2240 
0.3000 0.2080 0.4120 0.3080 0.5520 0.4240 
0.0520 0.0120 0.0760 0.0280 0.0760 0.0280 
0.1480 0.0560 0.1360 0.0520 0.1560 0.0600 



C1' = 0.33 

C1' = 2 

C1' = 7 

C1' = 0.33 

C1' = 2 

C1' = 7 

* ~2 

Power Results: Proportion of Rejections when H is true 
lA 

n =25; Number of Replications = 10000; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% . 1% 5% 1% 

0.9830 0.9645 0.9818 0.9614 0.9809 0.9572 
0.9418 0.9022 0.9422 0.9039 0.9420 0.9013 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.8885 0.8140 0.7251 0.5948 0.6541 0.5137 
0.8212 0.7490 0.6887 0.5823 0.6359 0.5166 
0.9998 0.9993 0.9952 0.9862 0.9910 0.9716 

0.3701 0.2311 0.3143 0.1882 0.3090 O. 1826 
0.4772 0.3522 0.4628 0.3381 0.4436 0.3266 
0.8933 0.7747 0.7047 0.5297 0.6514 0.4724 

n =100; Number of Replications = 2500; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.9428 0.8884 0.5556 0.4120 0.4536 0.2892 
0.9536 0.9112 0.6000 0.4680 0.4972 0.3528 
1.0000 1.0000 0.9908 0.9648 0.9716 0.9068 

*The first row corresponds to the number of rejections, under H1A' when [(YI2) 

is estimated by k-NN, where k = n1
/

2
. The second uses k = n2

/
3

• The third row 

corresponds to the benchmark t-statistic, when the added regressor is given 

by 1+(2 +2 )2, l.e when [(YI2) is perfectly known. 
1 2 



TabIe ~ (continued) 

n =1000; Number of Replications = 250; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

= 0.33 1.0000 1..0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

= 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

= 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 



(J" = 0.33 

(J" = 2 

(J" = 7 

(J" = 0.33 

(J' = 2 

(J" = 7 

• TabIe ~ 

Power ResuIts: Proport1on of ReJect10ns when H 1s true 
2A 

n =25; Number of RepI1cat1ons = 10000; 

- - - . A - 1 A - O 43 A - O 1 

5% 1% 5% 1% 5% 1% 

0.8896 0.8241 0.9857 0.9655 0.9940 0.9844 
0.8439 0.7653 0.9841 0.9603 0.9959 0.9864 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.8194 0.7194 0.8483 0.7501 0.8430 0.7304 
0.7734 0.6664 0.8615 0.7671 0.8621 0.7584 
0.9990 0.9966 0.9938 0.9850 0.9911 0.9776 

0.5189 0.3912 0.4106 0.2649 0.3757 0.2395 
0.5537 0.4310 0.4925 0.3589 0.4735 0.3359 
0.9402 0.8861 0.8288 0.7140 0.7904 0.6553 

n =100; Number of RepI1cat1ons = 2500; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

0.9960 0.9992 1.0000 1.0000 1.0000 0.9996 
0.9980 0.9980 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.9996 0.9992 1.0000 1.0000 1.0000 0.9996 
0.9980 0.9976 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.9900 0.9808 0.8920 0.8276 0.8176 0.7116 
0.9932 0.9840 0.9128 0.8684 0.8508 0.7772 
1.0000 1.0000 0.9972 0.9952 0.9964 0.9844 

*The first row corresponds to the humber of reJections, under H , when [(YIZ) 
2A 

. In Y3 
lS estimated by k-NN, where k = n . The second uses k = n . The th1rd row 

corresponds to the benchmark t-stat1st1c, when the added regressor 1s given 

by l+exp{Z +Z}. i.e [(YIZ) is perfectIy known. 
1 2 



rabIe ~ (continued) 

n =1000; Number of RepIications = 250; 

A - 1 - A - O 43 - A - O 1 -

5% 1% 5% 1% 5% 1% 

= 0.33 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

= 2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

= 7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 




