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1 Introduction

Education policy is at the forefront of the social and political debate. The belief that

education is a catalyst for a better and more equitable society gives it a central role in the

political agenda in both developed and developing countries. As a consequence, a variety

of policies and reforms are continuously being proposed with the objective of improving the

outcomes of the education system. Surprisingly, the implementation and evaluation of these

policies often overlooks the changes in behavior they can induce in the actors involved in

the education process. For example, the debate about the role of education resources on

student learning does not usually take into account behavioral responses from parents and

school administrators. Similarly, proposals of educational vouchers generally disregard how

different ways to sort students into schools would affect the determination of school policies,

or their influence on parental involvement in education and, crucially, the political support

for such schemes. In this paper, we study a model of education where student learning effort

and outcomes, parental and school behavior, and public resources devoted to education are

endogenously determined in an integrated and tractable framework.

In our model, the determination of educational outcomes is a process involving four

participants: children, parents, headmasters and the policymaker. Each child chooses a

certain level of effort devoted to learning. More able children obtain a higher learning

outcome from a unit of effort. Altruistic parents and schools affect the effort decision through

incentive schemes. However, inducing effort is costly for parents as well as for schools.

Both for parents and teachers, there is the opportunity cost of time involved in setting up

and executing the incentive scheme, which may also include monitoring or helping children

with their learning tasks (such as homework). How costly it is for schools depends on

their resources (class sizes, for example), which are determined by the policymaker. This

integrated framework provides an accurate description of the workings of the educational

process: parents, students and the education system interact in the determination of school

resources, education quality, school and parent education methods and, through all these,

on students results. An advantage of our framework is its tractability, which allows us to

analyze many important dimensions of the education process.

We start with a case where children are homogeneous in terms of innate ability and

parental opportunity cost of time. We find that the power of parental and school incentives

and resources devoted to education increase with student innate ability. The results are less

clear cut when we analyze the impact of an increase in the opportunity cost of time associated

with parental involvement in their children learning process. This introduces, in a natural
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way, the connection between labor market conditions and parental direct involvement in

their children education. This link goes beyond the hourly wage. For example, it can also

capture changes in opportunities and incentive for female participation in the labor market.

In either case, the power of parental incentives (i.e., the reward for every effective unit of

student effort) is decreasing in the opportunity cost of time.

The interaction between the school system and parental inputs is the reason why political

considerations are important. As the parental opportunity cost of time increases, they would

like to rely more heavily on school rewards, which triggers actions by those responsible for the

education system. The policymaker anticipates participant choices and internalizes parental

desires by increasing the resources devoted to education. Interestingly, the increase in school

resources may not be accompanied by an overall increase in educational attainment. A result

far too familiar for those in the educational policy arena.1 Our model can predict “disap-

pointingly” weak effects of school resources on student results even in situations where school

resources do in fact affect learning cæteris paribus . The weak effect can be rationalized be-

cause cæteris paribus does not hold when resources increase. Parental involvement decreases

because of a change in their opportunity costs. School resources increase to compensate for

this reduction. These resources have in fact an effect, but this is not apparent because of

concomitant changes in parental involvement in the education process. This process could

also explain why the increase in expenditures per student observed in many countries dur-

ing the last decades has not been followed by better test scores or improvements in other

measures of student performance.2

We then allow for children to differ in terms of ability and parental opportunity costs

of time, which leads to a number of insights. First, as the school determines the power of

incentives for the average individual in the classroom, school rewards are positively affected

by the mean ability of a student in a school. In equilibrium, this affects the intensity of

1The empirical findings of the class-size literature are ambiguous. For example, Angrist and Lavy (1999);
Krueger (1999); Urquiola (2006) report positive results of class-size on student attainment while others
(Hanushek (2003); Hoxby (2000); Leuven, Oosterbeek, and RØonning (2008); Anghel and Cabrales (2010))
find no gains.

2See Hanushek (1998) for the case of the US. This result also provides a possible reason for a low cross-
country correlation between education expenditures and school attainment levels results in standardized
tests. See for example, Hanushek (2006). And this “anomaly” has been recognized for a long time. For
example, in words of The Economist, “Glance at any league table of educational performance and you will
find several Asian countries bunched near the top. The achievements of the region are a puzzle to people
who think that educational success is all a matter of expenditures. Even in Japan most of the schools are
ill-equipped by comparison withe their western equivalents [...] The children are driven on by intense family
pressure. Parents badger their children to succeed, but they also make big financial and personal sacrifices
to help them do so. Mothers help their children with their homework [...] Fathers promise fancy toys and
activities in return to examination success...” Quote from The Economist, November 21st 1992.
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rewards that parents decide. Thus, peer effects arise endogenously, as the choice of effort and

student rewards depend in equilibrium on the average ability of the student in the classroom.

This effect is reinforced by the determination of school resources. The policy maker decides

the level of resources optimally given the characteristics of the school attended by the median

voter’s child. Thus, the decision on school resources will be based on the average ability of

this school and on the median child’s ability. As a consequence, student effort depends

on the mean abilities of peers at her/his school, plus the ability of the median child and

his peers. Our model generates in this way a microfoundation for peer effects, rather than

assuming them to come from some exogenous “contagion” process, as it is more common in

the literature.

In this context, an increase of the opportunity cost of the median parent raises similar

issues to those identified for the homogeneous case. However, the link between median

child characteristics and individual effort generates a channel through which changes in

the distribution of income (or talent) can affect the educational choices of households and

schools. For example, an increase in the income of the median child’s household will generate

an increase of resources in the system. This will induce a positive effect on households in

lower parts of the income distribution even if their incomes do not change. And the other

way around, if the income of the median does not change (or it changes very little) in an

environment where mean income is increasing markedly, there will be few changes in school

outcomes (or even a regression) at a time when income appears to be fast increasing.

In a setting with heterogeneous children, we study the motivation for school sorting and

its effects on educational achievement. We find that whether total student achievement is

maximized by segregating students in public schools according to their ability depends cru-

cially on how resources are allocated in segregated and not segregated settings. Our analysis

identifies two channels driving this result: schools incentives and resources. Sorting according

to ability implies that some schools’ headmasters end up with higher average student ability

and others with lower average student ability, as compared with an environment where chil-

dren are randomly allocated to schools. Through the convexity of incentives, this translates

in an increase in the power of incentives at schools with better students that more than

compensates the decrease in incentives at schools with worse students. In our environment,

however, resources to the school system may increase (decrease) if with sorting the average

ability of the school attended by the median voter child increases (decreases).

Consider a situation where parents differ in culture (or other values such as religion)

or the emphasis the schools put in different subjects (e.g., arts or sports). If school values

4



are chosen by the policy maker according to the demands of the median parent. We show

that segregation according to these traits enhances student effort for children whose parents

have values far from the median. The reason is as follows: parental incentives to motivate

their children are greater when their values coincide with those generated at the school.

Interestingly, those close to median are harmed by segregation in values because they benefit

from the availability of higher resources in an equilibrium without segregation by values.

There are situations where ability sorting can give more ambiguous results. If sorting re-

duces the variance of talent within a classroom, teaching can be targeted better to individual

needs and cæteris paribus improve learning. Duflo, Dupas, and Kremer (2008) argue that

this is a possible explanation for their observation of a positive influence of ability sorting in

all type of students. But one cannot reduce the variance of talent for all classrooms, as hap-

pens with ability sorting, without shifting the means in them. Thus, assuming that variance

reduction in the classroom decreases the cost of teaching effort, we find that ability sorting

increases the mean performance in the system, as well as that of the better able students.

For students in lower parts of the distribution, the result is more ambiguous. This finding

is important because it reconciles positive results of ability sorting into schools for children

in all parts of the ability distribution (e.g., Ding and Lehrer (2007) and Duflo, Dupas, and

Kremer (2008)), the fact that some studies (e.g.,Ding and Lehrer (2007)) find a stronger

effect in the upper parts of the distribution, and the ambiguous effects of ability sorting in

earlier papers (e.g., Betts and Shkolnik (2000)).

We finally incorporate private schools in our setting. We show first that a mixed education

system with public and private schools satisfies the condition for generating endogenous

sorting by either parental opportunity cost of time or student talent. This allows us to

analyze the effect of policies increasing school choice for parents, like a voucher scheme. We

show that, even if the median voter is favored (and hence the voucher policy approved),

the reaction of schools to the changes in classroom composition, will increase inequality

in student scholar achievement. This is so because the worsening of peer effects in the

schools where the less able students stay is magnified by the responses of other actors. The

school principals will decrease the power of incentives at those schools, and policymakers will

decrease the resources devoted to them. Hence, our framework allows us to understand in a

simple way the effects of students’ quality, and the reaction of other actors to this quality,

on the incentives for school sorting.3 Furthermore, we can then show how sorting feeds back

3Previous papers focus on one of these elements. While Urquiola and Verhoogen (2009) and Epple,
Romano, and Sieg (2006) focus on educational quality, Epple and Romano (1998, 2008) and Epple, Figlio,
and Romano (2004) concentrate on purely peer effects. In Epple, Figlio, and Romano (2004), both ingredients
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on school quality and classroom peer-effects.

Given that school resources are endogenously determined in our model, we also make

a contribution to the literature on the determinants of class size. In Lazear (2001) class

size is decided by the schools according to student behavior. For example, when students

have a shorter attention span (i.e., they can be distracted more easily) students should be

sorted in smaller classroom as they require closer attention. In Urquiola and Verhoogen

(2009), schools differ in productivity and offer different quality levels (school size). As

parents differ in earnings, sorting between schools with different class sizes arises naturally.

Our model offers a complementary mechanism behind the determination of class size, which

relies upon the interaction of parental and school motivation, which is partly determined by

the government through the (strategic) choice of school resources.

We organize the paper as follow: In section 2, we set up the model. We characterize the

equilibrium in section 3, where we discuss the interdependence between parental and school

motivation systems, school resources and student performance. Section 4 contains a number

of implications of our model for different school policies: tracking, faith schools, the effect of

a voucher scheme (for which we first study endogenous school sorting into private schools),

as well as policies inducing parents to participate in the school organization of activities.

2 The model

The model has four types of participants: children, parents, headmasters and the policy-

maker4. Each child chooses a certain level of effort to be devoted to learning. Her ability

affects how much human capital she extracts from every unit of effort. Parents and schools

affect the effort decision through incentive schemes. Inducing effort is costly for parents as

well as for schools. Both for parents and teachers, the main cost is the opportunity cost of

the time involved in setting up and executing the incentive scheme. The cost for schools

depends as well on the level of resources (for example, class size), which are determined by

a benevolent policymaker.

Student performance and Children’s short-term utility School performance for

child i, Hi, is a linear function of her effort, ei. In particular, we assume,

Hi = υiei, (1)

are present in a model of higher education although no analytical solution is offered.
4For simplicity, we refer to students as she and to teachers as he.
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where υi is a measure of the ease at which she can learn by putting effort, a sort of total

factor productivity in the child’s production function. Furthermore, we assume that there is

a cost of exerting effort that takes a quadratic form.

Children do not internalize directly the effect of their effort in human capital. Instead,

they react to a short-term utility determined by the time that the school and the family

dedicate to induce her effort. This assumption is certainly reasonable for primary school

education, where children are learning about the consequences of postponing immediate

gratification in exchange for greater future rewards. Denote by c1i a summary of effective

family i’s time spent for every unit of child’s effort and c2j the effective teacher’s time at

school j dedicated for every unit of child’s effort. Let

cij = c1i + c2j

These considerations imply that her short-term utility is given by:

USi = cijei −
1

2
e2
i . (2)

This specification captures the idea that parents and school incentives are substitutes.

Little is changed qualitatively once the teaching systems of families and schools are assumed

to be complements. We discuss this point further once we obtain our first results.

Our assumption about the child’s utility is that parent and school incentives enter pos-

itively in the utility so they can be interpreted as positive reinforcement. Of course, effort

may also be obtained through negative reinforcement (punishment). In this case, we could

have written the utility in the alternative way:

USi = −cij (1− ei)−
1

2
e2
i = cijei − cij −

1

2
e2
i .

As will be clear below, this utility induces the same optimal action from her as the one

we examine. Thus, provided the costs of the two incentive systems can be written in the

same way, there will be no difference in any equilibrium value5.

.The teaching ability of both parents and teachers also affect the efficiency of their efforts

motivating the child. Denote, respectively, υPi and υTj the teaching ability of parent i and

teacher at school j and

5In our setting, this is the case because we assume that parents care about H but not about her short
term utility.
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Parents’ utility We assume that every parent has one child and that their utility is

influenced by the sum of her performance and their own welfare, denoted by Wi.
6 Hence,

UPi = Hi +Wi.

Parental welfare depends on the time spent at work or pursuing leisure activities. This

is the total time T available minus the real time spent with the child, c1iei/2υPi . That is, for

a given amount of real time, the effective time devoted to a child (which remember is c1iei)

is decreasing in parental teaching ability, which we denote by υPi . Thus, letting ψi be the

opportunity cost of parent i yields,

Wi =

(
T − c1iei

2υPi

)
ψi,

and, therefore,

UPi = υiei +

(
T − c1iei

2υPi

)
ψi. (3)

Since ψi is an opportunity cost of time for parents, it can be interpreted as income or

wages, although it can also be value of leisure or something else.7 Hence, in the remainder

we often refer to this parameter as parental income.

School system utilities In our model, every school determines its own school ethos

(teaching effort). We consider first the case of public (state) schools. In this case, we assume

that headmasters chooses teaching effort (summarized in the parameter c2j) in order to

maximize the sum of the average student performance and the welfare of the average teacher

in the school. The average welfare of a teacher is determined by the difference between the

total time available to him and the average real time he devotes to his students, which we

assume is a linear function of the effective time devoted to the students. As with parents. we

assume that effective and real time are related through the average school teaching abilities

which are in this case denoted by υTj Thus, letting γ be the opportunity cost of teachers’

6The utility function below does not internalize the child’s cost of effort, so it is not purely “sympathetic”.
On the one hand this is reasonable, since this cost of effort is not observable. But we have also done the
computations with strictly sympathetic parents’ utility and there are no significant changes.

7In our context, marginal utility of money earned by parents is linear. Hence the value of time for parents
with high wages is larger. Things may be different with concave utility for money. In that case, low wage
earners may have a higher opportunity cost of time. We are agnostic about which parents have the higher
opportunity cost of time in reality.
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time,8

UHMj =
1

Nj

∑
i∈j

υiei +

(
T − nj

Nj

∑
i∈j

c2jei
2υTj

)
γ, (4)

where Nj is the total number of students in school j and nj is the number of students per

classroom.

The policymaker internalizes the utility of the (median-voter) parent (denoted by P̄i),

but adds the cost of the school resources (1/n). The decision about resources is taken and

announced before parents and headteachers simultaneously decided their actions (c1i and

c2j). For this reason the cost of resources do not appear in UPi or UHMj, since it is taken

as given when making decisions about effort with the child. This cost of school resources

is paid by parents through general taxation, about which parents do care, and hence the

policymaker takes it into account. The cost depends on the number of classes to be manned.

That is, the ratio of total number of students in the system, N , to the number of students

per class, n. We assume that all public schools have the same class size so that nj = n for

all j. Manning costs are assumed to be quadratic in the number of classrooms. This can be

justified by taking into consideration that the state has monopsony power in the market for

teachers and faces a marginal cost function that increases in the number of teachers hired.

This is so, for example, because to attract one more teacher the monopsonist has to pay an

extra cost, since the marginal potential teacher needs a higher reward to be attracted to the

profession.9 Thus, we represent the policymaker’s preferences as,

UPM = UP̄i −
ω′

2

1

N

(
N

n

)2

, (5)

where ω′ is a constant parameter summarizing the cost of the chosen class size and ω′

2
1
N

(
N
n

)2

is the per capita cost of that class size. Our formulation assumes that schools are financed

out of lump sum taxation and the government keeps a balanced budget. For ease of notation,

in the remainder we denote ω = ω′N, so that

UPM = UP̄i −
ω

2

1

n2
, (6)

8We assume that the opportunity cost of the teacher γ is unrelated to her talent υTj . This is done to
simplify notation. Little is changed if γ depends on υTj

9Alternatively, the formulation can be reinterpreted by letting X = (N/n)2 be the number of teachers
and
√
X = N/n their quality. In this case, the average of quality of teachers decreases with their number,

since teachers start being recruited from the top of the quality scale.
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The structure of the game Summarizing, the policymaker announces first the policy

variable (n). After this announcement, parents and headmasters simultaneously decide their

optimal levels of rewards per unit of effort c1i and c2j, respectively. After observing parents’

and schools’ announcements, the children decide their optimal level of effort, ei.

3 Equilibrium

We solve the game by backward induction.

3.1 Students’, parents’, and school choices

From equation (2), it follows that the optimal student action is

ei = c1i + c2j. (7)

Substituting this expression into the parents’ utility, equation (3), we obtain

UPi = (c1i + c2j) υi +

(
T − 1

2υPi
c1i (c1i + c2j)

)
ψi.

The first-order condition for the parents’s problem is then

υi −
(
c1i +

c2j

2

) ψi
υPi

= 0.

Given that this condition is sufficient, the optimal choice of the parent is

c1i = max

{
υPiυi
ψi
− c2j

2
, 0

}
, (8)

which is always non-negative given that producing the rewards requires investing parental

time.

It is clear from the expression for c1i that the power of parental incentives are increasing

in abilities of the child (υi) and the parent (υPi), and decreasing in the parental opportunity

cost of time (ψi). Also, equation (8) shows the negative relationship between c1i and c2j.

Remark 1 The assumption of substitute rewards is not essential for this result. A similar

result is obtained with other specifications where parental and school efforts are complements.

For example, when Hi = υiei
α, with α < 1 and cij = c1ic2j (see Appendix 5). The driving
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force in our result is that greater school incentives will reduce the marginal benefit of parental

effort.

When the stakes in the school for good performance are high, the gains from additional

effort induced by parental rewards are smaller. We shall discuss below how both incentive

schemes may compensate each other in responding to changes in ψi, υPi and υi.

By substituting the optimal choice of children’s effort into the utility function of the

headmaster (4) we obtain:

UHMj =
1

Nj

∑
i∈j

(c1i + c2j) υi +

(
T − nj

Nj

∑
i∈j

c2j (c1i + c2j)

2υTj

)
γ.

It follows that an interior solution for the headmaster’s optimization problem implies

c2j =
υTjυj

γnj
− c1j

2
, (9)

where υj is the mean student ability and c1j is the mean parental reward for the students

attending school j.

We can interpret υTjυj as the school’s quality. As in Epple and Romano (1998), this

quality depends positively on the average of peer’s talent. On the other hand, higher school

quality in our model is also associated with greater classroom motivation. This association,

which will tend to amplify school differences in student performance, will be important in the

emergence of peer effects and will provide the motivation for a segregated school system, as

we shall discuss in the following section. Also, notice that a bigger class size has a negative

effect on school rewards. Finally, a high level of motivation by the parents is associated with

lower school incentives.

3.2 Equilibrium values for c1, c2 and n

3.2.1 Homogeneous children

In order to solve for the first stage of the game, let us first assume that children, parents

and teachers are all identical, so that υi = υ, υPi = υP and ψi = ψ for all i ∈ {1, .., N} and

υTj = υT for all j. In this case we have that c1i = c1 for all i and and c2j = c2 for all j.

Therefore, from (8) and (9), an interior solution for c1 and c2 implies

c1 =
υPυ

ψ
− c2

2
(10)
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and

c2 =
υTυ

γn
− c1

2
. (11)

In the first stage, the policymaker considers the optimal levels of rewards to be offered by

parents and schools. After substituting (11) in (10) and plugging the resulting expression,

together with (7), into (6) we obtain

c1 =
2υ

3

(
2υP
ψ
− υT
γn

)
c2 =

2υ

3

(
2υT
γn
− υP

ψ

)

UPM =
2υ2

3

(
υP
ψ

+
υT
γn

)
+

(
T − 2υ2

9υP

(
2υ2

P

ψ2
+
υPυT
ψγn

− υ2
T

(γn)2

))
ψ − ω

2

1

n2
.

The interior solution that results from maximizing the above expression with respect to

n is (assuming ω > (ψ/υP ) (2υυT/3γ)2)

n =
ω −

(
2υυT

3γ

)2
ψ
υP

υT
γ

(
2υ
3

)2 . (12)

Therefore, class size is increasing in the cost of manning classes, ω, parental talent υP and

the opportunity cost of time of teachers, γ, and decreasing on student ability, υ, teacher

talent υT and parental opportunity cost of time, ψ.

Notice that a high income (hence high ψ) parent receives higher resources everything

else constant. But if such parent happens to also be talented in providing human capital,

this would tend to lead to less resources. Indeed, n is a function of ψ/υP so with perfect

correlation there is no net effect on resources.

Finally, we substitute the optimal level of n in equation (11) and then into equations (7)

and (10) to obtain the equilibrium values of c1, c2 and e. These are:
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c1 =
2υPυ

3ψ

2ω − 3
(

2υυT
3γ

)2
ψ
υP

ω −
(

2υυT
3γ

)2
ψ
υP

 ,

c2 =
2υPυ

3ψ

3
(

2υυT
3γ

)2
ψ
υP
− ω

ω −
(

2υυT
3γ

)2
ψ
υP

 ,

and

e =

2υP υ
3ψ

ω

ω −
(

2υυT
3γ

)2
ψ
υP

. (13)

From inspecting the above expressions it becomes clear that a necessary condition for a

positive c1 is

ω >
3

2

(
2υυT
3γ

)2
ψ

υP
. (14)

This condition is sufficient for n and e to be positive as well. A necessary condition for a

positive c2 is

ω < 3

(
2υυT
3γ

)2
ψ

υP
. (15)

The comparative static results of our model with respect to υ are simple. An increase in

student ability (υ, which one can think of as innate or the result of early parental stimulation)

reduces class size and leads to stronger school and parental incentives. These factors in turn

induce higher student effort.

The effect on effort of an increase in ψ is less obvious. First, while c1 decreases when n

falls (through the effect on c2), both e and c2 are positively associated with falls in n. A

higher ψ imposes a higher opportunity cost for parents to engage in motivational activities.

Hence, c1 is decreasing in ψ. The school system reacts to this by reducing n and therefore

c2 is increasing in ψ. The driving force for this result is that the policymaker devotes more

resources to classroom education, which lowers the cost of inducing effort by the school.

Conversely, lower class size and the consequent stronger school ethos, reduces the gain from

staying at home inducing children’s effort.

In our model, the effect of reducing parents involvement is not always fully compensated

by the school system so the net effect of an increase of ψ on student performance may be
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negative. To see this:

∂e

∂ψ
= −2υPυω

3

ω − 2
(

2υυT
3γ

)2

ψ[
ωψ −

(
2υυT

3γ

)2
ψ2

υP

]2

which implies that effort is decreasing in ψ when

ω > 2

(
2υυT
3γ

)2
ψ

υP
.

Notice that from (14) and (15)

3

(
2υυT
3γ

)2
ψ

υP
> ω >

3

2

(
2υυT
3γ

)2
ψ

υP

so that effort and performance can be both increasing or decreasing within our parametric

range.

The same ambiguity in the reverse direction affect the impact of parental teaching talent

υP . This is true since in all expressions we have ψ/υP .

A key contribution of our model is that it provides a tractable structural framework

where one can see how the impact of higher school resources may be mitigated by parents

reactions and vice versa. For example, our model has identified two sources of variation for

class size, ω and ψ, that may lead to different policy estimates of the impact of class size

on student performance. As we pointed out above, an increase in the opportunity cost of

parents and a fall in the cost of manning classes both lead to lower class sizes. However,

a fall in the cost of manning classes leads to a unambiguous increase in effort (as can be

seen from (13)) and an improvement in student performance. The fact that an increase in

class size may lead to different effects depending on the source of variability that generates

these changes provides an interesting lens through which we can interpret the findings in

the empirical literature. When the source of variability for class size comes from exogenous

changes in the costs of manning classes, like in most randomized experiments, we should

expect positive impacts on student performance. However, in cross-country or cross-state

panel studies, where differences in class-size may result from increases in opportunity costs

for the median parents, we may find more difficult to observe improvement in educational

performance.
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3.2.2 Heterogeneous children

We relax now the assumption of identical children and assume, as before, that they differ in

their abilities (υi) and parent’s income (ψi). To gain in clarity, we define the following piece

of notation:

Ωj ≡
1

Nj

∑
i∈j

υPiυi
ψi

.

c1i = max

{
υPiυi
ψi
− c2j

2
, 0

}
c2j =

υTjυj

γnj
− c1j

2

In words, Ωj is the average at the school level of the ratio of student talent to parental

opportunity cost. Thus, each school j is associated with a particular Ωj.
10

To obtain the utility of the policymaker, we substitute (9) in (8) and plug the resulting

expression into (7). This yields

e∗i =
υPiυi
ψi

+
1

3

(
2

γn
υTjυj − Ωj

)
, (16)

where υj is the average talent in school j. Thus, equation (6) becomes:

UPM =

(
υPiMυiM
ψiM

+
1

3

(
2

γn
υTjMυjM − ΩjM

))
υiM +

+

(
T − 1

2υPi

((
υPiMυiM
ψiM

)2

− 1

9

(
2

γn
υTjMυjM − ΩjM

)2
))

ψiM −
ω

2n2
,

where M stands for the median voter and therefore υjM and ΩjM express the characteristics

in the school the median voter attends.

Importantly, notice that the preferences of an arbitrary parent i with respect to a class

size level n (once he takes into account the taxes that the prime minister will have to levy

to pay for the costs of such class size) is:

10Notice that in the plausible cases where υi, υPi
and ψi are correlated the ranking of schools would be

indifferent to whether the ranking is based on υ, υP , ψ or Ω (clearly, in different directions for each one)
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UPi =

(
υPiυi
ψi

+
1

3

(
2

γn
υTjMυj − Ωj

))
υi +

+

(
T − 1

2υPi

((
υPiυi
ψi

)2

− 1

9

(
2

γn
υTjυj − Ωj

)2
))

ψi −
ω

2n2
,

so that

sign

(
∂UPi
∂n

)
= sign

(
−υi

3

(
2υTjυj

γn2

)
−

2υTjυj

9υPiγn
2

(
2

γn
υTjυj − Ωj

)
ψi +

ω

n3

)
= sign

((
−

2υiυTjυj

3γ
+ Ωj

2υTjυjψi

9γ

)
n−

4υ2
Tj
υ2
jψi

9υPiγ
2

+ ω

)

and therefore the sign of the derivative of UPi with respect to n can change sign only once.

Hence the preferences are unimodal, so that we can use the median voter theorem to find

the optimal n.

Under these conditions, the first-order condition for the policymaker’s maximization prob-

lem if there is an interior solution is:

∂UPM
∂n

= −2

3

υiMυTjMυjM
γn2

− 2

9

ψiMυTjMυjM
γυPin

2

(
2

γn
υTjMυjM − ΩjM

)
+
ω

n3
= 0.

At this point, we make the following assumption which significantly reduces notational

complexity:

Assumption 1
υPiM υiM
ψiM

= ΩjM .

This means that the median child talent to parental opportunity cost ratio is equal to

the average talent to parental opportunity ratio in her school. Thus,

−2

3

υiMυTjMυjM
γn2

+
2

9

υTjMυjMυiM
γn2

= 0.

n =
ω −

(
2υTjM υjM

3γ

)2 ψiM
υPiM

4
9

υiM υTjM υjM
γ

(17)

n =
ω −

(
2υjM

3γ

)2

ψiM

1
γ

4υjM υiM
9
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if ω− 4
9γ2
jmM

(υjM )2 ψiM
υPi

> 0. School resources increase in the opportunity cost of the median

parent and the ability of the median child as well as the quality of the school she attends.

From the derivation of (17) it is clear that parents of children with υi above υiM would

like the level of school resources to be higher (e.g., smaller class sizes). So it would make

sense for them to supply the school with extra resources, in the form of their own time

and material resources. As we explore in the next section, this has strong implications for

segregation. But even within public schools, they can choose, if allowed, to do so. This could

explain why parents choose to organize activities in schools, which as Anghel and Cabrales

(2010) document for the case of Spain have a sizable effect on student achievement.

For expositional ease, it is convenient to define:

θj ≡
Ωj

ΩjM

which under assumption (1) implies that

Ωj = θjΩjM = θj
υPiM υiM
ψiM

.

Using equation (17), the equilibrium values for c1i, c2j and ei follow:

c1i =
υPiυi
ψi
− 2

3

(
υTjυj

γn
− Ωj

2

)
(18)

c2j =
4

3

(
υTjυj

γn
− Ωj

2

)
(19)

ei =
υPiυi
ψi

+
1

3

υPiM υiM
ψiM


(

2υTjυj

υTjM υjM
+ θj

)(
2υTjM υjM

3γ

)2 ψiM
υPiM

− θjω(
ω −

(
2υTjM υjM

3γ

)2 ψiM
υPiM

)
 (20)

Remark 2 The interaction between parents, schools and education policy generates peer-

effects.

The expression for (20) reveals that, in equilibrium, the performance of student i de-

pends on the ability of her peers at different levels. Therefore, the model provides a micro-

foundation for the emergence of peer effects in the classroom without technological assump-

tions. First, we obtain peer-group effects in the sense that the student’s own performance

increases in υj. The driving force is the reward scheme at the school level, which depends on
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the mean ability of her peers. To our knowledge, this is new in the literature. Second, per-

formance is affected by the cohort’s median ability and the peer-group ability of the median

student. This sort of peer-cohort effect result from the determination of the school resources

that affects classroom motivation in public schools. We view these results as a cautionary

note regarding empirical analyzes which aim at measuring the effect of different education

policies as if they were exogenous to the political process11.

As in the case of homogeneous parents and children, an economy wide increase in parental

opportunity costs induces a reduction of effort by the parent (the effect of ψi in (20) is

negative) that is partially compensated by the increased effort of the school system (the

effect of ψiM in c2j is positive). But because of the link between median child and individual

effort, changes in the distribution of income (or talent) can affect the outcomes. For example,

an increase in ψiM will generate (for fixed θj) an increase of resources (a decrease in n) which

will have a positive effect on lower income household even if their incomes do not change.

Thus, a rising tide lift all votes in this case.12 And the other way around, if ψiM is unchanged

(or almost, again for fixed θj) in an environment where mean income is increasing markedly,

there will be few changes in school outcomes (or even a regression, because of the negative

reaction in c1i of very high income households) at a time when GDP is increasing.

Remark 3 Notice that in all equilibrium values parental characteristics always enter as the

ratio ψi/υPi and teacher characteristics as the ratio γ/υTj . Hence, from now on we normalize

and let ψ̂i = ψi/υPi and γ̂ = γ/υTj

4 Implications

Our model emphasizes the interdependencies established between (parents and school) in-

centive systems, class resources and children’ effort. As a consequence, student performance

depends on group and cohort peer effects. The implications of this finding run deeply into

the different variables of the system. We first analyze the effects of segregation within the

public school system. Later, in section 4.2, we introduce private schools and investigate

sorting in school market and the effect of policies inducing segregation, like school vouchers.

In this section, the policymaker often takes more than one decision, such as the level of

resources for the school, as well as its teaching orientation. Voters’ preferences about both

11A related point appears in Besley and Case (2000).
12Corcoran and Evans (2010) find that 12 to 22 percent of the increase in local school spending in the U.S.

over the period 1970-2000 is attributable to rising inequality.
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variables are heterogeneous. We will assume that for all decisions, the policymakers chooses

the optimal value for the median voter. This is warranted if decisions are taken sequentially

and the policymaker lacks commitment power when decisions are taken over time. To be

more precise. the school orientation/ideology is something akin to a constitutional decision.

It is not easy to change rapidly. School resources, on the other hand, may be changed with

the budgetary cycle. Hence, we can think of school orientation as been decided in the first

place. And since the policymaker lacks commitment, this decision is taken as given by the

policymaker choosing resources.

4.1 School segregation in public education

Suppose it is costless to group students according to some characteristics. Would students

be willing to be grouped by ability? Would they be willing to be grouped by their parents’

values?

4.1.1 Horizontal segregation

Suppose now that parents differ in their preferences about the type of knowledge (and/or

cultural/religious values) they would like their children to receive in the school. Clearly,

schools build “values” beyond labor market ability, and parents do not always agree on the

best set of values. This includes differences in the predominant cultural trait or faith in the

school, or the emphasis the school assigns to a particular subset of knowledge or skills, such

as arts, sciences or sports, for which abilities may be imperfectly correlated. In this case,

the relevant policy question is whether to allow for the creation of public schools differing in

their “horizontal” characteristics.

To investigate the effects of horizontal segregation, we assume that parents’ differences

in values are embedded in a parameter τi. To summarize parents’ concerns, we assume that

UPi = FiHi +

(
T − 1

2
c1iei

)
ψ̂i (21)

where

Fi = 1− (Φ− τi)2 ,

Φ is a policy parameter chosen by the school system and τi is the parameter value that parent

i thinks is best for the education of his children. The way F enters into the utility of parents

implies that they will have more incentives to induce schooling effort in their children if the

school offers values that match better with their preferences.
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Substituting optimal effort into the parents’ utility, we obtain

UPi = Fi (c1i + c2j) υi +

(
T − 1

2
c1i (c1i + c2j) υi

)
ψ̂i.

Therefore, if there is an interior solution, the optimal choice for the parent is

c1i =
Fiυi

ψ̂i
− c2j

2
. (22)

To describe more easily the school, by analogy to the previous section, we define:

Ω̂j =
1

Nj

∑
i∈j

Fiυi

ψ̂i
.

As the headmaster utility is unchanged with respect to (4), c2j is determined by

c2j =
4υj

3γ̂nj
− 2

3
Ω̂j. (23)

Given c1i and c2j, the objective for the policymaker is to maximize

UPM =

(
FiMυiM

ψ̂iM
+

1

3

(
2

γ̂n
υjM − Ω̂M

))
υiM +

+
1

2

T −
(FiMυiM

ψ̂iM

)2

− 1

9

(
2

γ̂n
υjM − Ω̂M

)2
 ψ̂iM −

ω

2

1

n2
,

with respect to Φ and n. If there is no cost associated to the choice of parameter Φ, then

the optimal choice for the school authority is to make Φ = τM (i.e., the value of Φ preferred

by the median voter). Therefore, FiM = 1 and n is defined by:

n =
ω −

(
2υjM

3γ̂

)2

ψ̂iM
2υiM υjM

3γ̂
− 2

9γ̂
Ω̂MυjM ψ̂iM

.

If, in addition to assumption 1, we further assume that the distribution of υi /ψ̂i is

orthogonal to the distribution of τi, we obtain that Ω̂M = F jM

υiM
ψ̂iM

, so that:

n =
ω −

(
2υjM

3γ̂

)2

ψ̂iM

2(3−F jM )υiM υjM
9γ̂

. (24)
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Notice that the optimal response from the policy maker to school heterogeneity (i.e., an F jM

further away from 1) is to reduce class size.

Using the above expressions and (22) in (7), we obtain an expression for the level of

student effort that takes into account parents’ cultural views:

ei =
Fiυi

ψ̂i
+

1

3

 2(3−F jM )υj4υjM υiM
9γ̂2

ω −
(

2υjM
3γ̂

)2

ψ̂iM

− Ω̂j

 . (25)

From the first term of (25), we can see that for a child that is educated in an environment

with values very different from those of her family effort tends to fall. However, in a given

school the teachers and school authorities tend to compensate for a lower average effort with

a higher one of their own. This, in turn, means that while for many students their effort

increases when they are segregated, it can actually decrease for some of them. The easiest

way to see this is for the median voter’s child. She is having her parents preferred τi and

in addition some extra effort from her teachers. Thus, when there is heterogeneity in τi

individuals far away from τM would clearly benefit from moving out of the school system

which has a Φ different from their own tastes, if there was another one offering a more

conformable Φ′.

To state these result somewhat more formally, assume there is a finite number of types

Ψ = {τ1, τ2, ..., τψ̂} such that for all i ∈ {1, ..., N}, ∃Φj ∈ Ψ such that Φj = τi. Assume also

that the distribution of υi /ψ̂i is orthogonal to the distribution of τi. Then,

Proposition 1 Suppose students are completely sorted at school according to their type τi

1. For an equal level of school resources n = nNS = nS, student performance increases

with respect to a situation where they are all schooled together for those students for

whom
υi (ΦiM − τi)

2

ψ̂i
− 1

3n

∑
i∈j

υj (ΦiM − τj)
2

ψ̂j
> 0 (26)

2. When resources are determined as in (24) total school resources decrease in a situation

where students are sorted according to their to their type τi, that is nNS < nS.

Proof 1 When all students are schooled with classmates sharing the same type, Fi = 1 for

all i ∈ {1, ..., N}. Then by (25) the difference in effort levels between the segregated and

the comprehensive school systems is given by (26). This proves part 1. Part 2 follows from

(25) by noticing that F jM = 1 when students are sorted according to their type τi but in

comprehensive schools F jM < 1.
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A crucial element behind our result is that parents increase their involvement in education

if the school provided values, or approaches, that coincide more with those they want their

children to acquire, or receive. This adds a new dimension to the process of socialization

studied by Bisin and Verdier (2001). In their theory, (direct) socialization at home is a

substitute to socialization in the school (assimilation). Thus, if children socialize in a school

with similar cultural values, parents reduce their investment in transferring their values.

In our model, however, acquiring values in the school requires effort and therefore requires

parents incentives, which are larger if schools provide values that are more in line with those

of the parents’.

Of course, it is possible that a disparity of educational models could be associated with a

higher probability of social conflict. Hence a policymaker would probably need to balance the

potential benefits of horizontal segregation which we highlight with the need for maintaining

social cohesion on which our model is silent.

4.1.2 Parental and teacher motivation

Parents and teachers have views and goals regarding what education should be about. These

views may alter their motivation to perform educational efforts. We now explore the impli-

cations of teacher and parental motivation in educational outcomes.

We assume that

UPi = Hi +

(
T − c1iei

2Gi

)
ψ̂i (27)

UHMj = Hj +

(
T − nc2jei

2Gj

)
γ̂,

where

Gi =
(
1− (Φ− τi)2) , Gj =

(
1− (Φ− τj)2)

and Φ is again a policy parameter chosen by the school system and τi, τj are the values that

parent i and school j respectively think are more adequate for education of children in their

charge. Parents and schools will be more motivated to perform effort with their children if

Φ matches better with their preferences.

An interesting tradeoff arises between the motivation of teachers and parents, as in

Besley and Ghatak (2005).

Proposition 2 Assume that preferences of all parents in the school are well aligned so that
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Giυi
ψi

=
Gi′υi′
ψi′

for all i and i′ in the same school. Then the optimal value of school orientation

Φ∗is:

Φ∗ =

υi
ψi
τi +

υj
γn
τj

υi
ψi

+
υj
γn

,

Proof 2 By analogy with equations (18) and (19) we can show that

c1i =
Giυi
ψi
− 2

3

(
Gjυj
γn
− Ω̃j

2

)
, c2j =

4

3

(
Gjυj
γn
− Ω̃j

2

)

where

Ω̃j ≡
1

Nj

∑
i∈j

Giυi
ψi

Hence

ei =
Giυi
ψi

+
2

3

(
Gjυj
γn
− Ω̃j

2

)
Since preferences are well aligned

Ω̃j =
Giυi
ψi

so that

ei =
2

3

(
Giυi
ψi

+
Gjυj
γn

)
Then, for a fixed value of n, the optimal Φ∗ is given by

∂Gi

∂Φ

υi
ψi

+
∂Gj

∂Φ

υj
γn

= −2 (Φ− τi)
υi
ψi
− 2 (Φ− τj)

υj
γn

= 0,

which yields the desired result.

Φ∗ =

υi
ψi
τi +

υj
γn
τj

υi
ψi

+
υj
γn

.

4.1.3 Vertical segregation and efficiency

In a situation where there is no segregation, all the schools share the same distribution

of students and therefore they should be identical in terms of their quality. Assuming for

simplicity that the opportunity cost of time for parents is homogeneous (i.e., ψ̂i = ψ̂),

aggregate student performance becomes (as stated in equation (16)):

HNS =

∫ (
υi

ψ̂
+

1

3

(
2υ

γ̂nNS
− υ

ψ̂

))
υidf (υi) .
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where nNS is the optimal class size defined by (17). The above expression can be written as,

HNS =

∫
υ2
i

ψ̂
df (υi) +

υ2

3

(
2

γ̂nNS
− 1

ψ̂

)
. (28)

On the other hand, consider l the number of public school and let the students be assigned

to school according to their ability. In this case, aggregate student performance is:

HS =

∫
υ2
i

ψ̂
df (vi) +

∑
l

υ2
l

3

(
2

γ̂nS
− 1

ψ̂

)
(29)

where nS is the optimal class size. Comparing (28) with (29) establishes the following result:

Proposition 3 Suppose students are completely sorted at school according to their ability.

Then,

1. For an equal class size n = nNS = nS, the average human capital increases with respect

to a situation where all schools share the same distribution of students.

2. If class size, n, is determined as in (17), and average talent at the school of the median

voter (υjM ) increases with sorting, then the average human capital increases with respect

to a situation where all schools share the same distribution of students.

Proof 3 Part 1 follows from (28) and (29) by applying Jensen’s inequality. Part 2 then

follows by noting that in (29) HS decreases in nS, itself decreasing in υjM by (17).

Corollary 1 If class size, n, is determined as in (17) and average talent at the school of the

median voter (υjM ) decreases with sorting, then the average human capital may increase or

decrease with respect to a situation where all schools share the same distribution of students.

This result, is driven by the reactions of the educational authorities to changes in class

composition. By definition, tracking by ability increases the mean ability of classmates of

relatively talented students but has the opposite effect on peers of relatively less talented

ones. For a fixed level of school resources, this provokes headmasters to increase (reduce)

incentives in schools with greater (lower) mean student ability. This has a negative effect

on the performance of less talented students and a positive effect on the more talented ones.

The convexity of performance with respect to ability implies that the gains by high-ability

students offset the losses incurred by the low-ability ones. On the other hand, whether

tracking increases school resources will depend on whether the median child gets into a
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better school or stays in a deteriorated one. This effect is a novelty of our model, as most of

the literature takes the level of school resources as exogenous with respect to sorting.13

4.1.4 Combining horizontal and vertical segregation

Even more nuances are possible in this picture about horizontal and vertical segregation.

Suppose, for example, that teaching is made easier if students in a class have more homoge-

neous υi, which Duflo, Dupas, and Kremer (2008) conjecture is behind their observation of

positive effects of tracking for all students. To see this formally, let

Fj = 1 +
1

Nj

∑
i∈j

(υi − υj)2 ,

and assume that the cost of incentives for the headmaster j are:(
T − nj

Nj

∑
i∈j

Fjc2jei
2

)
γ̂,

then it is easy to see, following the same steps and assumption as in section (4.1.1), that:

c2j =
2

3

(
2

γ̂nFj
υj − Ωj

)
,

n =
ω −

(
2υjM

3FjM γ̂

)2

ψ̂jM
4υiM υjM

9γ̂FjM

, (30)

and therefore,

ei =

υi

ψ̂i
+

1

3

 4υiM υjM
9γ̂2FjM Fj

ω −
(

2υjM
3FjM γ̂

)2

ψ̂jM

υj − Ωj


 (31)

The analysis of (31) yields the following result:

Proposition 4 Suppose that the opportunity cost of time for parents is homogeneous (i.e.,

ψ̂i = ψ̂). Then, comparing schooling children with type υi exclusively with children of the

same type to a situation where all schools share the same distribution of students:

13See, for example, Urquiola and Verhoogen (2009), Epple and Romano (1998), Epple, Romano, and Sieg
(2006) and Epple, Figlio, and Romano (2004).
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1. For a fixed class size, n, the average human capital increases with respect to a situation

where all schools share the same distribution of students.

2. If class size, n, is determined as in (30), and average talent at the school of the median

voter, υjM , increases with sorting, then the average human capital increases with respect

to a situation where all schools share the same distribution of students.

3. For a fixed class size, n, human capital increases for students with abilities above the

median.

4. The effect on students below the median is ambiguous.

Proof 4 Notice first that separating students by ability level decreases Fj for all schools.

This, plus an application of Jensen’s inequality, shows parts 1 and 2, as in proposition 3.

Part 3 follows from the fact that Fj decreases for all schools plus the fact that, above the

median, υj increases. Part 4 follows because even though Fj decreases, below the median, υj

decreases.

This result is important because it makes it easy to understand the positive results of

ability sorting into schools for children in all parts of the ability distribution found by Ding

and Lehrer (2007) and Duflo, Dupas, and Kremer (2008), the fact that Ding and Lehrer

(2007) finds a stronger effect in the upper parts of the distribution, as well as the ambiguous

effects of ability sorting found in earlier papers (see e.g. Betts and Shkolnik (2000)).

4.2 Endogenous segregation

The differential sensitivity of different types of parents to the composition of classrooms

has segregation-inducing effects that we now analyze. The analysis will gain in clarity if

we identify first a generic condition for an assignment equilibrium with sorting. Once a

condition for this type of equilibrium is identified, we can then verify if it is satisfied for

specific attributes, like talent or income, and a mixed system with public and private schools.

Formally, consider a generic attribute ξ. Take two schools ξ̄1 and ξ̄2, where ξ̄ is an average

of that attribute in the school. Parents are allowed to send their children to a private school

paying a fee. The differential willingness to pay of two parents, with types ξi, ξi′ and ξi > ξi′

is:

ξ̄2∫
ξ̄1

∂UPi
∂ξ̄j

dξ̄j −
ξ̄2∫
ξ̄1

∂UPi′

∂ξ̄j
dξ̄j =

ξ̄2∫
ξ̄1

(
∂UPi
∂ξ̄j

−
∂UPi′

∂ξ̄j

)
dξ̄j > 0.
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This type-monotonicity in relative gains is what leads to an equilibrium with school segre-

gation by types.

More precisely, consider a finite set of schools l ∈ {1, ..., L}, each with nl slots. Assume

as well that each nl is high enough so that the compositional impact of changing one child’s

type on the ξ̄l of school l is small. Order arbitrarily the available schools.

We denote by top-down sorting the following assignment of children into schools according

to their type. School 1 gets assigned the n1−highest type children, school 2 the n2−highest

type children among the remaining ones, and so on until all children are assigned to one

(and only one) school.

The top-down sorting leads to a segregated school structure with types stratified from

higher to lower. Namely, given two schools l > l′ and two children i, i′ that are assigned to

either school by top-down sorting, then, ξi > ξi′ and ξ̄l ≥ ξ̄l′ . To ensure that this inequality

is strict for at least one pair of players in two different communities, we assume that two

successive communities cannot be fully occupied by players of the same type.

To join a school l, parents must pay a fee pl to the owner of the school l. The last school

(or set of schools) in the list is public, free and has enough capacity for N students (the

full group). We say that an assignment of children to schools and a vector of school prices

forms an equilibrium when, given the prices, no individual prefers to change communities

and either a community is full or its associated fee is zero.

Proposition 5 There exists an assignment equilibrium with top-down sorting if whenever

Pi and Pi′ are such that ξi > ξi′ we have that

∂UPi

∂ξj
− ∂UPi′

∂ξj
> 0 (32)

Letting ξi∗(l) be the type of the lowest type parent in school l, the fee for a full school l is

defined recursively as:

pl =

ξ̄l∫
ξ̄l+1

∂UPi∗(l)
∂ξ̄j

dξ̄j + pl+1, l = 1, ..., L− 1, (33)

and pL = 0.

Proof 5 A parent of a child in school l with type ξi does not want to move the child to school
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l + 1 provided that:

UPi
(
ξ̄l
)
− pl ≥ UPi

(
ξ̄l+1

)
− pl+1

UPi
(
ξ̄l
)
− UPi

(
ξ̄l+1

)
≥ pl − pl+1.

Such parent will have a type such that ξi∗(l−1) ≥ ξi ≥ ξi∗(l). Then we have that:

UPi
(
ξ̄l
)
− UPi

(
ξ̄l+1

)
=

ξ̄l∫
ξ̄l+1

∂UPi
∂ξ̄j

dξ̄j

≥
ξ̄l∫

ξ̄l+1

∂UPi∗(l)
∂ξ̄j

dξ̄j

= pl − pl+1,

where the inequality is true by (32). Similarly a parent of a child in school l with type ξi does

not want to move the child to school l − 1 provided that:

UPi
(
ξ̄l
)
− pl ≥ UPi

(
ξ̄l−1

)
− pl−1

pl−1 − pl ≥ UPi
(
ξ̄l−1

)
− UPi

(
ξ̄l
)

Remember that ξi∗(l−1) ≥ ξi ≥ ξi∗(l). Thus:

pl−1 − pl =

ξ̄l−1∫
ξ̄l

∂UPi∗(l−1)

∂ξ̄j
dξ̄j

≥
ξ̄l−1∫
ξ̄l

∂UPi
∂ξ̄j

dξ̄j

= UPi
(
ξ̄l−1

)
− UPi

(
ξ̄l
)
,

where, again, the inequality is true by (32).

This condition provides a test for the existence of endogenous segregation in different

settings and considering different attributes like income or student talent.
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4.2.1 Segregation with private schools

We explore the emergence of sorting in a framework with private schools. To this end, we need

first to describe the governance structure of these schools. Once private schools’ behavior is

discussed, it has to be shown that this structure satisfies the condition for segregation given

by equation (32).

School behavior. Private schools announce fees and allow parents to run schools as clubs.14

More precisely, once school l is formed, the headmaster chooses education policies (in our

case, c2l and nj) to maximize the utility of the median parent. Parents cover the running costs

of the school in addition to the entry fee pl. Hence, after school is formed the headmaster

maximizes:

UPiM =

(
υiM

ψ̂iM
+
c2l

2

)
υiM+

T − 1

2

(υiM
ψ̂iM

)2

−
(c2l

2

)2

 ψ̂iM−
ω

2n2
l

− γ̂
2
nlc2l

(
ΩlM +

c2l

2

)
,

(34)

which represents the utility of the median parent in the school l. Notice that the optimal

education policy depends on the characteristics of the median student. This feature differs

from the case of a public school where both the resources determined by the policymaker

and the incentives decided by the headmaster are based on the mean student abilities.

The utility of any parent in school l is:

UPi =

(
υi

ψ̂i
+
c2l

2

)
υi +

(
T − 1

2

((
υi

ψ̂i

)2

−
(c2l

2

)2
))

ψ̂i −
ω

2n2
l

− γ̂

2
nlc2l

(
ΩlM +

c2l

2

)
,

which can be expressed in terms of UPiM as

UPi = UPiM +
1

2

(
υ2
i

ψ̂i
−
υ2
iM

ψ̂iM

)
+ (υi − υiM )

c2l

2
+

(
T +

1

2

(c2l

2

)2
)(

ψ̂i − ψ̂iM
)
. (35)

At this point, we impose the following assumption for ease of computations:

14A similar school governance is assumed, for example, by Ferreyra (2007).
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Assumption 2 The distributions of υi and ψ̂i are such that:

ΩlM =
υiM

ψ̂iM
;

Comment 1 Assumptions (2) is equivalent to assumption (1) but now at the level of each

school rather than at the level of the whole school system. It says that the median student

within each school has a ratio of talent to parental opportunity cost of time that is equal to

the average of that ratio at the school level.

Proposition 6 Let Pi and Pi′ be such that υi > υi′ and ψ̂i > ψ̂i′ , then:

1.
∂UPi
∂υl

− ∂UPi′

∂υl
> 0 (36)

2.
∂UPi

∂ψ̂l

− ∂UPi′

∂ψ̂l

> 0 (37)

Proof 6 Please see Appendix A.

Remark 4 This result establishes (32) and hence, by proposition (5), it demonstrates the

existence of an assignment equilibrium with top-down sorting.15

In our model, a private school attracting students from the public system affects the policy

variables in a predictable way. Both higher parental income or talent induce an increase in

school system resources and the power of school incentives. Students enrolling in a private

school (and hence leaving the public school) tend to come from the upper parts of the talent

and income distributions. From equation (17) one can see that these children leaving the

public schools would entail automatically an increase in n. Similarly from equation (9) one

can see that c2j (school incentives) are directly reduced through the effect of the increase in

n.16 This effect is relevant for evaluating the effect of vouchers, to which we now turn.17

15The discussion in this section and the following abstracts from horizontal differentiation. Evidently,
horizontal differences also produce an incentive for segregation. But as we saw in the previous section, there
is no conflict of interest between groups about this issue when differences are purely horizontal, and hence
(when costless) even a public system would make it possible.

16McMillan (2004) in an otherwise quite different model, also finds that public schools can decrease their
performance in the presence of vouchers.

17In our model, the authorities invest more in public education the higher its marginal productivity, and
this is why a lower median ability level in the class would decrease public funds. It is conceivable, though,
that in the short run, public funds may be fixed. In that case, the fact that some children moved to a private
school would increase per capita resources in the public one.
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4.2.2 Discussion

The presence of private schools leads to sorting. In line with the literature, we can discuss the

effect of increasing the school choice through vouchers (see e.g. Epple and Romano (1998),

Urquiola and Verhoogen (2009)). Our distinctive feature is our focus on the endogenous

determination of peer-effects, and hence school quality and policy choices, as a result of the

interaction of parents and the school system.18

Taking the interaction between parents and the school system seriously also has ramifi-

cations for estimating the effect of vouchers on sorting outcomes.19 Consider the implemen-

tation of a voucher scheme subsidizing private schools. The voucher will induce peers with

higher talent or parents with higher opportunity costs of time to leave the public school.20

As discussed above, this implies a decline in incentives and resources received by the students

who stay in the public school.21

This result would mechanically follow from assuming the existence of peer effects as in

most of the literature (e.g., Benabou (1993)). In our model, where peer-effects are endoge-

nously generated by the interaction of parents and the school system, there is an amplification

effect via the reaction of school resources and incentives to changes in the average ability

of the peers. So, the negative effect of sorting on students left behind is greater than the

estimates of model with exogenous peer-effects would suggest.22 Also, when students can

afford moving to better schools after receiving a voucher, the positive effect might also be

smaller than the pre-voucher situation would suggest. This is because the receiving school

would enroll on average less talented students, and its best students would like to move to a

better private school. The new composition of the private school would entail a new median

student and thus affect the level of resources and school incentives. Our effect hinges criti-

cally on the reactions of the actors involved in the educational process and the consequence

of neglecting the implied feedback effects would overstate both the gains by those favored by

the voucher policy and understate the losses suffered by those who stay in the public school.

The political feasibility of a voucher scheme would depend on whether the value of the

voucher would make it possible for the median voter to move her/his child to a better

18Integrating in a analytically tractable framework peer-effects, school quality and education policies, both
in terms of education incentives and resources, is, to the best of our knowledge, novel in the literature.

19In particular, the estimation of computational/structural general equilibrium models have become a
common tool for policymakers to understand the impacts of various educational policies.

20This effect has been empirically uncovered by many studies. See for example, Howell and Peterson
(2002) for the case of the US, Hsieh and Urquiola (2006), for Chile or Ladd (2002) for New Zealand.

21Altonji, Huang, and Taber (2004) provides evidence of this effect for the case of the U.S.
22Ferreyra (2007) finds that a generalized voucher scheme even if positive in terms of welfare generates a

negative effect on poor students.
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(private) school. If not, the parents of the median voter child are made worse-off by the

voucher-induced segregation, and thus they will not give its support if it comes to a vote.

This would go a long way toward explaining the absence of such schemes in most developed

economies.

5 Concluding remarks

We study a model where educational outcomes depend on student effort and talent. Student

effort can be affected by parental and teachers’ investments, as well as by school system

resources. The model is rich, yet simple enough to deliver analytical predictions on a number

of important problems. For example, when parental opportunity costs increase, both parental

and teacher effort decrease, while school resources partially substitute for both. This can

explain the lack of robust evidence for a class size effect in longitudinal (in contrast with

experimental) data. The model also provides a microfoundation for “peer effects”. Groups

of children with higher average ability are more “profitable” to manage by teachers, who as

a consequence exert more effort in them. Then, any child will benefit from their presence

in the school. “Peer effects”, as in other models, produce an incentive for sorting. We show

that in some circumstances (e.g., when teaching technology favors low variance classrooms)

sorting can be Pareto improving. Even in this case, the welfare gain from sorting is not

evenly distributed, which can explain the ambiguous empirical evidence on sorting.

It is clear that there are circumstances when higher ability children are not necessarily

those in which parents want to invest more effort. For example, if the objective of a parent is

to have her child get into an Ivy league school and she is so talented that even without effort

the goal would be achieved, there is no point in making the investment in incentives. On

the other hand, a slightly less talented child may be on the verge of achieving the goal and

some investment in incentives could be indeed profitable. Thus, in reality the relationship

between talent and parental investment may be nonmonotonic. Introducing explicitly these

nonmonotonicities would not change the relationship between parental opportunity costs

and investments, as well as the reaction to this by the education system. Our specific results

on segregation would indeed change. But the most important message is that heterogene-

ity in talent or opportunity cost create incentives for segregation through the responses of

both politicians and educators to the school composition. And this message would remain

unaffected by a potential nonmotonic relationship between talent and parental investment.

The richness of the model allows it to be used in further research. The political aspects of
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school choice, for example, are barely scratched in this paper. Since the political authorities

have a single instrument, school resources, and preferences over this instrument are single-

peaked, we can resort to the median voter theorem in discussing the policymaker’s choice. If

there were more instruments (say, the level of funding of charter schools) more challenging

(and more interesting) political interactions involving education could be studied (as in, for

example, Boldrin and Montes (2005) or Levy (2005)). Another aspect we have not explored

is that of teacher heterogeneity. Once that is allowed, the issue of teacher sorting and teacher

peer effects become important (something that Jackson (2009), and Jackson and Bruegmann

(2009) have documented). We leave this sort of work for future research.
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Appendix A: Proof of proposition 6

The first order conditions associated with (34) are:

1
2
υiM +

c2l

4
ψ̂iM −

γ̂

2
nl
(
ΩlM + c2l

)
c2l = 0,

2ω
n3
l

− γ̂
(

ΩlM +
c2l

2

)
c2l = 0.

These conditions imply that:

nl =
2υiM + c2lψ̂iM

2γ̂
(
ΩlM + c2l

)
c2l

,

2ω

(
2γ̂
(
ΩlM + c2l

)
c2l

2υiM + c2lψ̂iM

)3

− γ̂
(

ΩlM +
c2l

2

)
c2l = 0.
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Using these conditions, assumption (2) and by equation (35), we can calculate the following

derivatives:

∂UPi
∂υiM

=
∂UPiM
∂υiM

− υiM

ψ̂iM
− c2l

2
+

(υi − υiM )
2

∂c2l
∂υiM

+
c2l

4

(
ψ̂i − ψ̂iM

) ∂c2l
∂υiM

(38)

∂UPi

∂ψ̂iM
=

∂UPiM

∂ψ̂iM
+

1
2
υ2
iM

ψ̂2
iM

− 1
2

(c2l

2

)2
+

(υi − υiM )
2

∂c2l

∂ψ̂iM
+
c2l

4

(
ψ̂i − ψ̂iM

)
(39)

∂c2l
∂υiM

= −

6ω

2γ̂

(
υiM
ψ̂iM

+c2l

)
c2l

2υiM+c2lψ̂iM

2(
−2γ̂c22l

(2υiM+c2lψ̂iM )2

)

6ω

2γ̂

(
υiM
ψ̂iM

+c2l

)
c2l

2υiM+c2lψ̂iM

2
4γ̂

(
υ2
iM
ψ̂iM

+2c2lυiM

)
+2γ̂c22lψ̂iM

(2υiM+c2lψ̂iM )2

− γ̂ ( υi
ψ̂i

+ c2l

) > 0 (40)

∂c2l

∂ψ̂iM
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6ω

2γ̂

(
υiM
ψ̂iM

+c2l

)
c2l

2υiM+c2lψ̂iM

2
−2γ̂

υiM
ψ̂2
iM

c2l(2υiM+c2lψ̂iM )−2γ̂
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)
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(
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)
c2l

2υiM+c2lψ̂iM
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− γ̂ (ρυi
ψ̂i

+ c2l

) > 0 (41)

Let Pi and Pi′ be such that υi > υi′ , and ψ̂i > ψ̂i′ then, from (38), we obtain:

∂UPi
∂υiM

− ∂UPi′

∂υiM
=

(υi − υi′)
2

∂c2lM
∂υiM

+
(
ψ̂i − ψ̂′i

) c2lM

4
∂c2lM
∂υiM

The first result then follows from (40) and (41).

Let now Pi and Pi′ be such that υi > υi′ , and ψ̂i > ψ̂i′ then, from (39), we obtain:

∂UPi

∂ψ̂iM
− ∂UPi′

∂ψ̂iM
=

(υi − υi′)
2

∂c2l

∂ψ̂iM
+
(
ψ̂i − ψ̂′i

) c2l

4
∂c2l

∂ψ̂iM

And the second result then follows from from (40) and (41).

Appendix B: Parent and teacher complements

If parents’ and teachers’ efforts are complements so that

c = c1c2
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the optimal student action is

e = c1c2. (42)

Substituting this expression into the parents’ utility we obtain

UP = (c1c2)α υ +

(
T − 1

υP
c1 (c1c2)

)
ψ.

The first-order condition for the parents’s problem is then

αcα−1
1 cα2υ − c1c2

ψ

υP
= 0.

αcα2υ − c2−α
1 c2

ψ

υP
= 0

Given that this condition is sufficient, the optimal choice of the parent is

c1 =

(
αυPυ

ψc1−α
2

) 1
2−α

, (43)

which is always non-negative given that producing the rewards requires investing parental

time.

By substituting the optimal choice of children’s effort into the utility function of the

headmaster we obtain:

UHM = (c1c2)α υ +

(
T − n

υT
c2 (c1c2)

)
γ

It follows that an interior solution for the headmaster’s optimization problem implies

c2 =

(
αυTυ

γnc1−α
1

) 1
2−α

, (44)

From (44) and (44) it is clear that the equilibrium values of c1 and c2 move in opposite

direction even though in this version of the model they technological complements.

38


