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1 Introduction 

1.1 General considerations 

This article analyses the relationship between the prediction errors of a predictor that assumes the presence 

of a unit root and the efficient detection of such a root. The motivation for this analysis is the intuitive 

concept that the main difference between a stationary (or trend-stationary) process and a process with a 

unit root is to be observed in their long-term behaviour (see, e.g., Hamilton, 1994, ch. 15). In spite of this 

well documented result, there is not yet a theory that relates the optimal detection of a unit root with the 

long-term behaviour of a process. This article fills this gap, and proves that nearly optimal unit root tests 

can be build using the information of prediction errors. Therefore, prediction errors do contain valuable 

information for the efficient detection of a unit root. 

Since the work of Dickey and Fuller (1979), there has been an abundance of literature devoted to the detec­

tion of autoregressive unit roots. A possible criterion for classifying the existing literature is the approach 

to the detection of the unit root. The original and most commonly-employed approach is that of Dickey and 

Fuller (1979), which is based on the asymptotic properties of the ordinary least squares (OLS) estimator. 

Important variations of Dickey-Fuller tests (hereafter, DF tests) are their extensions to other estimation 

methods, such as maximum likelihood (e.g., Pantula et al., 1994; Yap and Reinsel, 1995; Shin and Fuller, 

1998; Shin and Lee, 2000), the \veighted symmetric estimator (hereafter, TW test) (Park and Fuller, 1995; 

Fuller, 1996, p. 568) and the generalized least-squares (GLS) estimator under a fixed local alternative 

(hereafter, TCLS test), developed by Elliott et al. (1996) (see also Hwang and Schmidt, 1996, and Xiao and 

Phillips, 1998). 

A very important approach is the construction of tests observing certain optimal criteria (under normality). 

Works following this so-called optimal approach are Sargan and Bhargava (1983) and Bhargava (1986). 

These authors extend the basis of optimal serial correlation tests to construct approximate uniformly most 

powerful invariant (UMPI) tests and approximate locally best invariant (LBI) tests. Important extensions 

of the Sargan and Bhargava tests, and also closely related to DF tests, are the M tests of Stock (1990) (see 
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also Perron and Ng, 1996). Recently, Ng and Perron (2000) have improved the performance of these M tests 

using GLS detrending under a fixed local alternative (hereafter lvIGLS tests). Important contributions to 

this optimal approach are the (infeasible) point optimal invariant (POI) tests and LBI tests developed by 

Dufour and King (1991). A sequence of these infeasible POI tests (that use the true value of the root as the 

alternative) provide the upper attainable power (Gaussian power envelope) at each alternative. This power 

envelope can be used as a benchmark to evaluate the performance of any feasible test. Dufour and King 

(1991) found that POI tests perform well in practice if a fixed alternative is properly chosen. According to 

this idea, Elliott et al. (1996) and Elliott (1999) proposed a feasible POI test (hereafter PT test) using a 

fixed local-to-unity alternative. 

In this article, a new approach, based on prediction errors, is introduced. The usefulness of this new approach 

is twofold. First, it proves to be very useful to give an intuitive interpretation of the use of the information 

by efficient tests. Second, it allows the construction of new unit-root tests, based on prediction errors. The 

new tests are shown to be asymptotically nearly optimal in the vicinity of one. Therefore, this approach 

is also related to the mentioned optimal approach. Hence, the intuitive notion that the nonstationarity is 

related with the long-term behaviour of the process has optimal properties for unit root detection. The new 

tests also have good finite sample properties. In the AR(l) case, the empirical power is similar to the POI 

test. The proposed tests can be extended to the general ARMA case by fitting an ARMA model. Therefore, 

they need not rely on autoregressive approximations. A Monte Carlo experiment for an ARMA(l,l) model 

shows that the proposed tests still have high power with very small size distortion. 

The paper proceeds as follows: After setting up the notation and the model in the next subsection, Section 

2 introduces test statistics based on the mean squared prediction error (MSPE) of a random walk predictor. 

These tests are the basis for the remaining tests of the paper. Section 3 derives tests that are nearly optimal in 

the vicinity of unity and shows that they have a prediction-error interpretation. The resulting near-optimal 

tests happen to be functions of the statistics proposed in Section 2. Section 4 uses the prediction-error 

interpretation to modify the near-optimal tests in order to achieve high power in regions far from the unit 

circle. Section 5 compares the proposed tests with some other existing in the literature through a Monte 

Carlo experiment in the AR(l) case. Section 6 extends the tests to the ARMA case and compares them 
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with other tests in a simulation exercise with an ARMA(l,l) model. Section 7 concludes. Mathematical 

proofs are given in the Appendix. 

1.2 Notation and the model 

Let {yt} be a discrete stochastic process. We assume that this process contains a deterministic component 

dt and a pure stochastic component Xt; namely, Yt = dt +Xt. It is assumed that the deterministic component 

can be a mean, dt = f.1, and a deterministic trend, dt = f.1 + 8t. The pure stochastic part has the following 

structure: Xt = PXt-1 + Ut, satisfying the following conditions: 

Assumption A: Xt is initialized at t = 0 by xo, a random variable with finite variance. 

Assumption B: Ut is a stationary and invertible ARMA (p,q) satisfying cjJ(B)ut = e(B)at, where at is 

a sequence of iid random variables with E( at) = 0 and E( an = (T2, cjJ(B) = 1 - cjJIB - ... - cjJpBP and 

e(B) = 1 - elB - ... - eqBq are polynomials in the backward-shift operator B, with no common factors and 

with either cjJp #- 0 or eq #- O. 

Assumption C: T- I/2 2:~~~1 Ut ~ wW(r), T- I/2 2:~~T{ at ~ (TW(r), where w2 = E(un+2 2:~2 E(UIUk) = 

(T2 {e(1)/9(1)}2 is the long-run variance of Ut, and W(r) is a standard Brownian motion defined on C[O, 1]. 

The symbol ~ denotes weak convergence in distribution. For 0 :::; r :::; 1, [Tr] denotes the greatest integer 

less than or equal to Tr. 

Notice that Assumption A includes the case Xo =constant, with probability one, as a special case. Notice 

also that the limits of partial sums of Ut and at depend on the same standard Brownian motion W(r). The 

data-generating process is, therefore, 

Yt = f.1 + 8t + Xt, Xt = PXt-l + Ut, Ut = 7jJ(B)at, (1) 

where 7jJ(B) = cjJ(B)-le(B). This process can also be expressed as Yt = f.1(1- p)+ 8p + 8(1 - p)t+ PYt-l + 

7jJ(B)at. 
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2 Tests based on the ratio of observed and expected MSPE 

This section shows basic test statistics of the prediction-error approach. They arise by comparing the 

empirical MSPE of a predictor with the expected one, under the null hypothesis of a unit root. The 

proposed tests are based on the following property: if the process is stationary, as the horizon increases the 

empirical MSPE is bounded, although the predictor assumes there is a unit root. On the other hand, if 

there is a unit root, the empirical and the expected MSPEs are unbounded. We define ejli as the empirical 

prediction error of forecasting Yj from t = i (j > i) under the null hypothesis of random walk (Ut = at). 

Therefore, ejli = Yj - Yi. We first base the test statistics on the cumulative sum of squared prediction errors 

from the origin of the series. Then 

T T 

I>Zll = L(Yt - Yl)2. (2) 
t=2 t=2 

The expected value of this statistic, under the null hypothesis of a unit root, is: 

(3) 

Since (); is not known, the consistent (under the nUll) estimator 0-; = T- 1 L-i=2(Yt - Yt_l)2 can be used. 

Finally, the test statistic is obtained by dividing the cumulative sum (2) and its estimated expected value 

under the null (3). The constant can be dropped since it does not affect the test. Also, for the sake of 

simplicity, T(T - 1) is approximated to T2. The proposed statistic of this prediction-error approach is as 

follows: 

(4) 

where e stands for cumulative and the subscript shows the origin of the predictions. This test statistic 

is invariant under the group of transformations Yt ---t aYt + b, with a, b constants and, therefore, it is not 

affected by the mean value of the series. Therefore, it is also applicable to the case of a non-zero mean. 

It can be verified that, under the null hypothesis of a unit root, er = Op(l). Under the alternative, the 

numerator is, however, of lower order of magnitude than in the previous case since T- 2 L-i=2 Y; = Op(T-l). 

Therefore, under the stationary alternative, er ~ O. Therefore, a consistent unit-root test against a sta-

tionary alternative has the rejection region er < er. 
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We now extend this test to the case of a null hypothesis of a random walk with a drift, Yt = 8 + Yt-l + Ut, 

where Ut = at. The prediction errors are etll = Yt - Yl - (t - 1)8. An efficient estimator of 8, under the 

null, can be obtained from the regression b.Yt = 8 + Ut. Therefore, 8 = (T - 1)-1 (YT - Yl) . A consistent 

estimator of ()~, under the null, is a-~ = T- 1 L:.;=2(Yt - Yt-l - 8)2. This leads to the following test statistic: 

""T ( , ,)2 L..Jt=2 Yt - Yl (5) 
T ""T (' , )2 ' L..Jt=2 Yt - Yt-l 

where Yt is the estimated detrended series. Similarly to Cr, the rejection region is Cr < cl. The statistics 

cr and Cr are already in the literature using different justification. They correspond to (TN1)-1 and 

(T N2)-I, respectively, where NI and N2 are in Bhargava (1986). Bhargava (1986) shows that, if the An-

derson approximation is used for the inverse of the covariance of the process, and the first observation is 

extracted from its conditional distribution, these statistics lead to approximate LBI tests, under normality. 

These statistics are also derived in Tanaka (1996), with the same initial conditions, by taking the second 

derivative of the likelihood function, under normality (extended score tests). 

Another way of evaluating the prediction errors is to also consider the series in reverse order (backward 

process). The use of the reversed time series can be justified by the time-reversibility of Gaussian stationary 

processes (see, e.g., vVeiss, 1975; Box and Jenkins, 1976, p. 197). This property states that the processes 

in direct and reverse order have the same covariance structure. Therefore, under stationarity, better use of 

the information could be obtained if both processes are analyzed. The statistic that averages the prediction 

errors from both extremes of the series and at each horizon is: 

(6) 

in which the subscript IT denotes the origin of the predictions. Several authors have also used the property 

of time-reversibility to improve the performance of DF tests (Sen and Dickey, 1987; Pantula et al., 1994; 

Leybourne, 1995; Park and Fuller, 1995; among others). For the case of a null hypothesis of a random walk 

with a drift, it can be shown that 

The following theorem shows the limiting distribution of the statistics Crand CrT when the process is 

Yt = Yt-l + Ut, Ut = 1jJ(B)at, and that of Cr when the process is Yt = 8 + Yt-l + Ut, Ut = 1jJ(B)at. For 
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convenience, the following processes are defined: WB(r) = {W(l - r) - W(l)} , and WT(r) = W(r)-rW(l). 

Theorem 1 Under Assumptions A, B, and C, when p = 1, 

(i) Cr ~ ",-2 f~ {W(r)}2 dr, 

(ii) Cl(= CrT) ~ ",-2 f~ {WT(r)}2 dr, 

(iii) crT ~ ",-2~ {fo! {W(r)}2 dr + Io! {WB(r)}2 dr}, 

Remark 1 The consistency of the tests follows from noting that the limiting distributions are Op(l) and are 

positive with probability one, so that the critical values of the tests are positive. Since under the alternative 

Cr ~ 0, Cr ~ 0, and CrT ~ 0 as T -----) 00, the consistency holds. 

3 Nearly-optimal tests and prediction errors 

3.1 Asymptotic results 

This section proposes asymptotic tests that are nearly optimal under normality of the disturbances. The 

resulting statistics are found to be the same as the statistics proposed in the previous section or functions of 

them. In all of these cases, the resulting nearly-optimal tests also allow an interpretation based on prediction 

errors and, therefore, are useful to explain how efficient unit-root tests use the information. Very important 

conclusions can be obtained from this section. First, it confirms the intuition that the behaviour of a process, 

in the long term, provides important information for the efficient detection of the unit root. Secondly, it 

is shown here that efficient tests utilize the time-reversibility property of Gaussian stationary processes to 

improve their asymptotic performances. The interest here is in asymptotic and invariant tests (invariant to 

the values of the parameters describing the deterministic terms) with high power in the vicinity of p = 1. 

To obtain these properties, a second-order Taylor expansion of the asymptotic POl test statistics, around 

the null hypothesis, is performed. Hence, the proposed tests are, asymptotically, nearly-optimal invariant, 

close to the null hypothesis. This section develops tests for the AR(l) case. Section 6 extends the proposed 

tests to the ARMA case. 

,Ve assume, first, the model (1) with 8 o and 'IjJ(B) 1 (then, Ut = at). We also assume that Ut is 
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normally distributed. In this paper, two different assumptions are made about Xo: -
Assumption Al (nonstationary case): We assume that Xo = 0 so Xl = al. Therefore, Yl is extracted from • 
its conditional distribution. 

Assumption A2 (stationary case): We assume that Xo = 0 when P = 1 and Xo is random with zero mean 

and variance (j2/ (1 - p2) when Ipl < 1. Therefore, Yl is extracted from its unconditional distribution. 

Under Assumption AI, the process Xt is nonstationary under the alternative. This assumption is denoted 

as the nonstationary case, although some authors also refer to this as the conditional case. The covariance 

matrix of the T x 1 vector x = (Xl, ... ,XT)' is (j2flN(p), where 

(7) 

with IT a T x T identity matrix and LT a T x T matrix with ones on the diagonal immediately below 

the main diagonal and zeros elsewhere. This nonstationary model is the same as that of Dufour and King 

(1991), with dl = 1. According to these authors, the POI test of p = 1 against p = Po rejects the null 

hypothesis for small values of 

(8) 

where XN and Xl are GLS residual vectors using fliVl(po) and fliVl (l), respectively. Under Assumption 

A2, Xt is covariance stationary under the alternative. This assumption is denoted as the stationary case 

(also known in the unit root literature as the unconditional case). The covariance matrix of the vector x is 

(j2flN(1), under the null, and (j2fls(p), under the alternative, where 

(9) 

with e = (1,0, ... ,0)'. From the Neyman-Pearson lemma, an asymptotic representation of the POI test 

against some alternative, Ipol < 1, rejects the null for small values of 

(10) 
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where xs are the GLS residual vectors using 0Sl(PO) (see, e.g., Kadiyala, 1970; or Elliott, 1999). The 

nonstationary case is a reasonable assumption when the time series has its origin at Xo. Potential applica-

tions of this assumption can be found, for instance, in engineering, where the beginning of processes and 

experiments are known and controlled. On the other hand, the stationary case reflects the situation of a 

time series with the origin in a very far past point. This assumption can be of interest, for instance, with 

some macroeconomic data. The following theorems show the Taylor-series expansion of (8) and (10) around 

P = 1. 

Theorem 2 Let Yt = f-l + Xt, where Xt = PXt-l + at, with Xo following Assumption Al. Then, 

where 

Theorem 3 Let Yt = f-l + Xt, where Xt = PXt-l + at, with Xo following Assumption A2. Then, 

where 

55(1) = o5s(p) I = 1 - ~ T(YT - Yl)2 , 
op p=l 2 'Lt=2(Yt - Yt_l)2 

58(1) = o25s;p) I 'LZ=2(Yt - y;)2 + 'LZ=-/(Yt - YT)2 

op p=l 2 'Lt=2(Yt - Yt-d 2 

(YT - yd2 + 'LZ=-;l(Yt - Yl)(YT - yt} 

'LZ=2(Yt - Yt_d 2 

(11) 

(12) 

These Taylor expansions suggest different kinds of asymptotic tests. At first approximation, the test statistics 

can be constructed by using only the first derivatives, 5~(1) and 55(1), as expressed in (11) and (12). 

These derivatives are, apart from a constant, identical for both stationary and nonstationary cases. By the 

Generalized Neyman-Pearson Lemma (see, e.g., Ferguson, 1967), these first derivatives lead to asymptotically 

LBI tests. Therefore, these LBI tests reject the null for small values of 

(13) 
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where E stands for extreme points of the series and the subscript N or S denotes the nonstationary case 

or the stationary case, respectively. This statistic was previously obtained by Nabeya and Tanaka (1990) 

and Tanaka (1996), but only under Assumption Al (corresponding to E'/v). Statistic (13) also has an 

interpretation in terms of prediction errors. It is the ratio of the empirical prediction squared error of the 

last observation, calculated from the origin of the series, assuming a unit root, to the consistent estimator 

of its expectation. vVhen jL = 0 (or jL is known, and the series is previously demeaned with that value), 

following the same arguments as in the proof of theorems 2 and 3, the corresponding first derivatives lead 

to the test statistics: 

2 2 
EO _ YT +Yl 

S - "T ( )2' 
~t=2 Yt - Yt-l 

(14) 

2 
EO _ YT 
N-"T ( )2' 

~t=2 Yt - Yt-l 
(15) 

for the stationary and nonstationary cases, respectively. These asymptotic LBI tests are only invariant 

under transformations of the type Yt --+ aYt. This last statistic, EJy, was also previously obtained by Nabeya 

and Tanaka (1990), Stock (1994), and Tanaka (1996). Tests based on these E statistics only have optimal 

power when the alternative is very close to the null (say, p = 0.999 ... ). The power is, however, very low for 

alternatives of practical interest. Given the low usefulness of the first derivatives, one could discard this part 

of the Taylor expansion and consider test statistics based only on the second derivatives. To obtain random 

variables with non-degenerate limiting distributions, it is necessary to divide the second derivatives by T. 

This correction makes the second term both in S~(I) and Ss(l) converge in probability to zero, under the 

null hypothesis of a unit root. In the nonstationary case, it is verified that 

In the stationary case, it holds that 

l:i;;'}(Yt - yd(YT - Yt) 

. T l:i=2(Yt - Yt_d 2 
(16) 

where -)'t = l:f::; ujuj+t/T. Note that (16) still holds if Ut is a general stationary ARMA model. With 

these results, the second derivatives satisfy: 

2~S~(I) = er + Op(T-1
), 

2~Ss(l) = erT + Op(T-1), 
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where er and erT are derived in the previous section using the prediction-error interpretation. Therefore, 

the second derivatives lead to the asymptotic tests er and erT' respectively. -
An important conclusion can be extracted from these tests based on the first or second derivatives: in the 

stationary case, unit-root tests seem to use the time-reversibility property of Gaussian stationary processes 

to obtain a more efficient use of the information. This can be seen, e.g., in the asymptotic equivalence 

between a test based on 88(1) and on erT' where prediction errors are evaluated from both ends of the 

series. However, in the nonstationary case, a test based on 8N(1) is asymptotically equivalent to er, where 

only one extreme of the series is considered. Statistics (13) and (14) also admit this time-reversibility inter-

pretation: when ~l = 0, expression (15) is a measure of how far the last observation has deviated from the 

mark, using zero as a reference. Under Assumption A2, however, if the time-reversal series is also considered, 

the corresponding asymptotically LBI test should be based on both extremes, as does (14), since the first 

observation will be the last one for the reverse process. Similarly, when ~ is unknown, the time-reversibility 

interpretation can also explain the fact that the corresponding asymptotically LBI tests use the same test 

statistic (13), both in the stationary and nonstationary cases. This optimal property ofthe time-reversibility 

is also important to understand why modifications of DF tests, based on the use of the series in reverse 

order as well, improve their performance (e.g., Sen and Dickey, 1987; Leybourne, 1995; Park and Fuller, 

1995; Shin and So, 1997). 

If ~l = 0, following the same arguments as in the proof of theorems 2 and 3, the asymptotic tests based on 

the second derivatives use the statistics 

""T-I 2 
eO _ eO _ Dt=2 Yt 

I - IT - T 2' 
T Lt=2(Yt - Yt-I) 

for the nonstationary and stationary cases, respectively. 

A third type of asymptotic test, using this nearly-optimal approach, can be based on both first and second 

derivatives of the Taylor expansion. Hence, they also have a prediction-error interpretation. These tests are 

asymptotically nearly-optimal invariant in the vicinity of one, and are denoted as N tests. For convenience, 

the value of P that determines the neighbourhood around unity is parameterized as Pc = 1 - elT, with 
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c > O. This formulation is more appropriate than the use of a fixed value of p, since the power for a -given alternative depends on T. In the nonstationary case, the second-order Taylor expansion leads to 

8N (pc) ;:::;:; 1 - c/T + (c/T) (EJl + ccn . Therefore, the corresponding N test rejects the null hypothesis for • 
small values of 

N~ =E~+cCr. (19) 

Similarly, for the stationary case, 8s(pc) ;:::;:; 1 - c/T + {c/(2T)} (EJl + cCiT) , and the corresponding N test 

will be 

N~ = E~ + cCiT. (20) 

The extension to the J-L = 0 case leads to: 

(21) 

N~ = E~ + CCPT. (22) 

The following theorem extends the previous results to the case with deterministic linear trend. Since the 

theorem holds for both stationary and nonstationary cases, differences in notation are omitted. This theorem 

extends the results of Nabeya and Tanaka (1990) and Tanaka (1996) to the stationary case. 

Theorem 4 Let Yt = It + 8t + Xt, where Xt = PXt-1 + at, with Xo either fixed or following a random variable 

with zero mean and variance 0'"2/(1- p2). Then, 

8(p) = x~~~~~~)x = 1 + (p _ 1)8'(1) + (p ~ 1)2 8"(1) + O{(p _ 1)3}, 
Xl N Xl 

where 

Since the first derivative is a constant, an LBI test would be of no practical interest. By the Generalized 

N"eyman-Pearson lemma, the second derivative can be used to construct asymptotically LBIU tests for both 

the stationary and nonstationary cases. It can be verified, by dividing the second derivative by T, that the 

asymptotically LBIU tests reject the null for small values of the statistics Cl' derived in section 2 using 
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the prediction-error interpretation. The fact that the test statistic is the same in both the stationary and 

nonstationary cases, is also compatible with the time-reversibility interpretation of the stationary case since, -
as seen in Section 2, C1T = Cl. Therefore, the N tests are: 

(23) 

The limiting distributions of the statistics N'Jr and N~, for the general case of Ut = 'ljJ(B)at, are shown in 

the following theorem. The limiting distribution of N?v and N~ tests is the same as for the N'Jr test. The 

proof is a straightforward application of the proof of theorem 1 and is omitted. 

Theorem 5 Let Yt be the process (1) with P = 1 and 8 = O. Then, under Assumptions A, B, and C 

(i) N'Jr ~ K,-2 { W 2(1) + c I~ {lV(r)}2 dr} , 

(ii) N~ ~ K,-2 [W2(1) + c~ {I01 {W(r)}2 dr + I01 {Wg(r)} 2 dr}] . 

Remark 2 The consistency of the tests can be established using the same arguments as in remark 1 

3.2 Relation with existing tests 

The N tests are closely related to the PT tests in Elliott et al. (1996) and Elliott (1999). These PT tests are 

asymptotically POl tests at the specific alternative P = Pc, whereas N tests come from an approximation 

of asymptotically POl tests around unity. Therefore, both N and PT tests are alternative ways to use the 

optimal theory to construct tests with high power when p is close to the null, although only the N tests 

have an explicit prediction-error interpretation. ·When there are no deterministic components, these tests 

(denoted as P~ and NO tests) verify, if p = 1, 

where the subscript N or S i& added to the PT tests to distinguish the initial-condition assumption. The 

extension of P~ and tests NO to the case with deterministic components can be interpreted as replacing Yt, in 

the numerator of the statistics, with its detrended counterpart. The tests differ, however, in the detrending 

method. \Vhereas in PT tests, detrending is made by GLS under the alternative Pc, in N tests it is made 

under the null. This detrending method gives N tests a clear interpretation in terms of prediction errors. 
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The NJv test is also related with the MZa test, proposed by Stock (1990) (see also Perron and Ng, 1996,2000), 

since it can be written that 

(24) 

Therefore, the test also has information about the first and second derivatives of the Taylor expansion of the 

asymptotically POI in the non-deterministic case. It can be seen from (24) that the MZa is designed assuming 

Assumption AI. Under Assumption A2, these tests could have been written as MZa = (E~ - 1) (2Cpr\ 

instead of (24). Analogously, the MSB test of Stock (1990), based on Bhargava's (1986) Ri statistics (see 

also Sargan and Bhargava, 1983; and Perron and Ng, 1996), can be expressed as 

MSB = fCf. (25) 

Similarly to PT tests, Ng and Perron (2000) extend the MZa and MSB tests to the case with deterministic 

components by detrending by GLS under the alternative Pc. The resulting tests are denoted by MZ~LS and 

MSBGLS, respectively. 

Notice that, when dt = /J, it has been proved here that an efficient use of the information leads to different 

test statistics, depending on the initial conditions. Therefore, the classic unit-root tests that assume a spe-

cific assumption on the initial values need not have comparable performances under different assumptions. 

However, when dt = /J + ot, this comment does not apply. 

4 Modified tests with predictors based on a local alternative 

The previous section shows how the prediction-error approach leads to (asymptotically nearly) efficient tests 

in the vicinity of unity. This .section also uses the prediction-error interpretation to modify the proposed 

statistics, to achieve greater power at alternatives far from the unit circle. The modified statistics use pre-

dictors constructed under a fixed local alternative instead of under the null of a unit root. It should be noted 

that the information regarding the alternative Pc has already been used in the definition of the N tests in 

the last section. This information is summarized in the parameter c of the statistics (19) to (22). In this 

section, the information of this local alternative is extended to the predictors also. All previous tests have 
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greater empirical power with this approach. The best performance is obtained by the modifications of the 

N tests (denoted as N GLS tests). Our attention, therefore, is restricted to these tests. 

We suppose that the process follows the model (1) with 'l/J(B) = 1. Under the null hypothesis of a unit 

root, the h-steps ahead prediction of Yt+h from Yt is Yt+hlt = 8h + Yt. Test statistics proposed in previous 

sections use this predictor. It is now considered that the predictor assumes that the process is nearly 

nonstationary with P = Pc. Therefore, the new predictor is Y~+hlt = {LC(l - p~) + bCt(l - p~) + bCh + P~Yt, 

where {LC and Sc are obtained by GLS estimation using the covariance matrix nN(pc) or ns(pc). In the 

nonstationary case, these estimators can also be obtained by regressing [Yl,(l - PcB)Y2, ... , (1 - PcB)YTl on 

[zI,(l - PcB)Z2' ... , (1 - PcB)ZT], where Zt = 1 if dt = /-L and Zt = (1, t) if dt = /-L + M. In the stationary case, 

the same procedure can be used, but Yl is replaced with (1- p~)1/2Yl' and ZI is replaced with (1- p~)1/2z1. 

We denote yt = Yt - V and y[ = Yt - {Lc - SCt. Then, the empirical prediction error of forecasting yr+h from 

Jl b d Jl AJl - Jl h Jl ·f d -. 7 A7 - 7 h 7 ·f d - + 8t Yt can e expresse as Yt+h - Yt+hlt - Yt+h - Pc Yt 1 t - /-L, or Yt+h - Yt+hlt - Yt+h - Pc Yt 1 t - /-L • 

In the nonstationary case, the modified N test statistics are: 

(26) 

and 

,\,T (7 t-l 7)2 
N GLS-7 _ ut=2 Yt - Pc Yl 

N - T A 2 · 
T 2:t=2(Yt - Yt-l - 8) 

(27) 

In the stationary case, the modified N test statistics are 

and 

,\,T (7 t-l 7)2 
N GLS-7 _ ut=2 Yt - Pc Yl 

S - TA. 
T 2:t=2(Yt - Yt-l - 8)2 

(29) 

The motivation for these modified tests is clear. If the process is such that P = Pc, it can be expected that 

the numerators of the N GLS tests are smaller than those based on a misspecified random walk predictor, 

as in N tests, and, hence, it is easier to reject the null of a unit root. Besides, it is also reasonable to 

foresee a similar effect if the process is such that P ~ Pc. This modification, however, can alter the limiting 

distributions, as stated in the following theorem. 
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Theorem 6 Let Yt be the process (1) with P = 1 and let Pc = 1 - e/T. Then, under assumptions A, B, and 

c, 

where 

(i) N~LS-Il ~ 1'l:-2 {W2(1) + e Jo1 {W(r)}2 dr} , 

(ii) NCJLS-T ~ 1'l:-2 {Jo1 {Uc(r)}2 dr} , 

(iii) NfLS-1l ~ 1'l:-2~ {[ {WJ.(1)}2 + {Ws(1)}2] + e [Jo1 {Wfr(r)}2 dr + Jo1 {Ws(r)}2 dr]} , 

(iv) Nc;LS-T ~ 1'l:-2 {J~ {Kc(r)}2 dr} , 

UC(r) = W(r) - rb, b = AW(l) + 3(1 - A) e rW(r)dr, A = (1 + e)/(l + e + e2/3); 
./0 

WJ.(r) = vt(r) - e-crvt(O), vt(r) = vV(r) - f3t;, f3t; = {1/(2 + e)} { W(l) + e 11 W(r)dr} ; 

Ws(r) = Vt(l - r) - e-crvt(l); 

5 Finite sample performance. AR(l) case 

This section reports on a l\lonte Carlo experiment, for the AR(l) case, to compare the empirical power of 

the Nand N GLS tests with some others that appear in the literature. The main conclusion of this section 

is that the proposed N GLS tests, based on prediction errors, have empirical powers very close to those of 

the POl tests, used as a benchmark. As a secondary result, we conclude that the results of Section 3 can be 

used to explain the relative behaviour of the competing tests. Elliott et al. (1996) showed that, in absence 

of deterministic components, currently used tests (apart from the LBl test) have asymptotic power func-

tions very close to the asymptotic Gaussian power envelope. However, their performance in the presence of 

deterministic components can be very different, even asymptotically. Therefore, only processes with some 

deterministic component are considered. 

The proposed tests are compared with the pivotal TDF, proposed by Dickey and Fuller (1979); the PT 

tests and TGLS tests, proposed by Elliott et al. (1996) for the nonstationary case, and Elliott (1999) for 

the stationary case (denoted by QT and DF-GLSu, respectively, in Elliott, 1999); the weighted symmetric 
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estimator tests (TW), proposed by Park and Fuller (1995) (see also Pantula et al., 1994; and Fuller, 1996); 

and the MZ~LS and MSBGLS tests of Ng and Perron (1999). The MZ~LS and MSBGLS tests have only 

been developed for the nonstationary case, but they have been applied here to the stationary case using the 

corresponding covariance matrix in the GLS detrending model. The asymptotically POl tests (Ss(p) and 

SN(p)), where the true parameter p is used as the alternative, are also included as a benchmark. For the 

sake of clarity, the subscript N is added to those statistics that use GLS estimation with the covariance 

matrix o'N(Pc) , and the subscript S when the matrix o's(Pc) is used. The Monte Carlo experiment was 

conducted for sample sizes T = 50, 100; but only T = 100 is reported. Conclusions are identical in both 

sample sizes. 

Critical values for some of the tests depend on the value of e in Pc = 1 - elT. Since we are interested in 

tests with high power in a real situation, the selection of e is based on the empirical performance in finite 

samples. Table 1 summarizes the selected value of e for each test. To construct this table, critical values 

for each test and a given value of e were obtained from 100,000 replications of the model Yt = Yt-l + at, 

with at '" N(O, 1) and Yl = al. Then, the empirical power was evaluated from 100,000 replications of the 

model Yt = PYt-1 + at, with at '" N(O, 1) and YI = al in the nonstationary case, and YI = ad ~ in the 

stationary case. The selected values of e are those that provide empirical power closer to that of the SN(p) 

and Ss(p) tests for the set of values P = 0.97, 0.95, 0.90, 0.80. The critical values and empirical power of 

POl tests are obtained, for each value of p, using a similar Monte Carlo experiment. 

It can be observed in Table 1 that, in the nonstationary case, the values of e for the PT -N, TCLS-N, MZ~5f, 

and MSB%LS tests agree with the values proposed by the respective authors, using asymptotic criteria. In 

the stationary case, the values of e, proposed in Elliott (1999) for the PT -S and TCLS-S tests, also take finite 

sample performance into cons~deration and they agree with the values obtained in the present experiment. 

There were no reported values for MZ~_~s and MSB~LS tests in the stationary case. It should be noted, 

however, that the values of e for the MSB~LS test are different from the remaining competing tests, whereas 

in the nonstationary case, they coincide with those of PT -N, TCLS-N, and MZ~!# tests. The NCJLS test is 

also included in the stationary case because of its excellent performance in that setting. This NCJLS test is 

always calculated as in (27) and the estimation is made with the matrix o'N(Pc). To facilitate comparison, 
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the N tests use the same values of c as the NGLS tests. 

[Table 1 about here] 

Finite sample critical values for DF tests are in Fuller (1996). Finite sample critical values for TGLS-N tests 

(linear trend case) and PT tests are in Elliott et al. (1996) for the nonstationary case. Finite sample critical 

values for the remaining tests have been obtained through 100,000 Monte Carlo replications. All these 

critical values, for T = 100, can be found in Table 2. Tables 3 and 4 show the empirical powers of the 

competing tests. From the tables, we observe the following: 

1. As suggested by the asymptotic results, the N test has high power (similar to the benchmark) when 

the alternative is close to the unit root (p lower than 0.9). For smaller values of p, however, this test 

tends to have lower power than the benchmark. 

2. The N tests are, in general, surpassed by the N GLS tests. These N GLS tests have empirical power 

very close to the benchmark, both for the stationary and nonstationary cases. Although NfJLS was 

constructed to have high power for the nonstationary case, it also has very high power for the stationary 

case. 

3. The N GLS , PT, and MZ~LS tests have similar behaviour, with empirical power identical or very close 

to the benchmark. 

4. The JvISB GLS test has lower power than the N GLS , PT, and MZgLs tests for the case with dt = I-l, 

but it has similar performance when dt = I-l + M. This result is in accordance with the asymptotic 

theory. As can be seen in (25), the MSB GLS test only uses the information of the second derivative of 

the Taylor expansion of the asymptotically POl test. This information might be enough to construct 

an efficient test if dt = I-l + ot (see theorem 4). When dt = J-l, however, more efficient tests might need 

the use of both first and second derivatives (see theorems 2 and 3) as N GLS , PT, and MZgLS do. 

5. The asymptotic results of Section 3 also help to explain the relative behaviour of the tests based on 

least squares, TW and TGLS. When dt = J-l, Table 3 shows that the TW test has better performance 

than the TGLS test in the stationary case, but is worse in the nonstationary case. This result can 
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be explained by the different efficiency (near the unit root) of the information in each case shown in 

Section 3. In the stationary case, it has been seen that an efficient use of the information leads to the 

use of the series, both in direct and reverse order, as TW does. On the other hand, in the nonstationary 

case, it would be more efficient to use only the series in direct order, just as TGLS does. This result 

suggests that a modification of the TGLS test, based on the use of a symmetric estimator, could improve 

its performance in the stationary case. 

6. Regarding the case dt = j.L + ot, it has been seen in Section 3 that both the stationary and the non-

stationary cases use the same nearly-optimal test. This means that, in the presence of a deterministic 

linear trend and as far as unit root detection is concerned, the series in reverse order contains the same 

information as in direct order. This can explain the fact that the performances of TW and TGLS are 

very similar in this setting. 

[Table 2 about here] 

[ Tables 3 and 4 about here] 

6 The general ARMA case 

This section extends the proposed tests to a general ARMA case. For the sake of brevity, only N GLS 

tests are considered. The extension of the proposed tests requires the consistent estimation of 1'1,2, where 

K,2 = W-2(}~, with w 2 = (}2'lf'!(1)2. As a consistent estimator of ()~ we can use o-~ = 'L;=2(Yt - Yt_d 2jT if 

dt = /1 or o-~ = 'L;=2(Yt - Yt-l - 6)2 jT if dt = Il + ot. It can be seen that the numerator of o-~ is part of the 

N GLS test statistic. Therefore, the generalization to a general ARMA case is straightforward. For example, 

th 1" f NGLS-Ji . e genera lzatlOn 0 N IS 

(y Ji _ pT-IyJi)2 ,\:,T (yJi _ pt-lyJi)2 
N GLS-Ji _ T c 1 +cLA=2 t c 1 

N - T02 T 20 2 ' 
(30) 

\vith 0 2 a consistent estimator of w 2 . In the same fashion, the remaining statistics of previous sections can 

be generalized. A second option for the extension to an ARMA case would consist of also incorporating the 

information of the model into the predictions in the numerator of the test statistics. For example, if Ut is an 

1\IA(I), and considering dt = j.L, and at = 0 for t < 1, the prediction of yt from the first observation yi would 
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be Y~I = p~-2(pc - fJ)yi, with fJ an estimator of e, instead of p~-IYi used in (30). A limited experiment 

has revealed that this second approach does not have better empirical performance than the previous one. 

Therefore, for the sake of brevity, further details are omitted. 

6.1 Finite sample performance 

The finite sample properties of N CLS , PT, MZ~LS, TCLS, and TW are compared. The model considered is Yt = 

PYt-1 + at - eat-I, where at are independent, identically distributed, standard normal errors. Experiments 

have been devised for both the nonstationary case (YI = ad and the stationary case, with sample sizes 

T = 100. In the stationary case, and for P < 1, a set of 50 initial observations were generated and discarded 

to avoid the effect of initial values. The selection of the autoregressive truncation lag k for TCLS and TW 

has been made with the BIC and also with the MIC procedures, proposed in Ng and Perron (2000). The 

MIC procedure is designed to diminish the well-known size distortion in the presence of MA components. 

The remaining competing tests need the estimation of w2 . In the literature, there are several well-known 

estimators of w2 . The most popular is the autoregressive estimator of the spectral density at frequency 

zero, defined as w~R = o-~R(l - I:~=I J;)-2, where o-~R is the residual variance obtained from the OL8 

estimation of L:::.Yt = dt + O:Yt-1 + I:~=I <fJ;L:::.Yt-j + et. There are also several procedures for the choice of 

the truncation lag k (see, e.g., Ng and Perron, 1995, 2000). In this experiment, we consider a modification 

of this estimator, proposed in Ng and Perron (2000), involving detrended data from using local-to-unity 

GL8. This estimator of w2 is wbLS-AR = a-~R(l - I:~=I J;)-2, where a-~R is the residual variance obtained 

from the OL8 estimation of L:::.yf = o:YLI + I:~=I <fJ;L:::.Yf_j + Vt; where yf are GL8 detrended data using 

Pc = 1 - elT, with e = 7 if dt = /1, and c = 13.5 if dt = /1 + Dt. Ng and Perron (2000) show that wbLS-AR 

improves the performance of unit-root tests with respect to wbLS-AR. The choice of the truncation lag k in 

WbLS-AR was also made by the BIC and MIC. When the BIC is used, k is restricted to be 3::; k ::; 8, as in 

Elliott et al. (1996). For the MIC, the restriction 0::; k ::; 10(TI100)1/4 is used, as in Ng and Perron (2000). 

In this paper, we also consider the estimator, proposed in 8anchez (2000), defined as 

(31) 
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where OJ, ~i are estimates from the error correction regression 

p q 

!::::.y~ = O:Y~_l + ~<P;!::::.Y~-j + at + ~Biat-j. (32) 
j=l j=l 

The advantage of w~RMA is in the possibility of fitting an ARMA model, whereas w~R and wbLS-AR should 

always rely on autoregressive approximations. There are, besides, many procedures for the identification 

of ARMA models (see Koreisha and Pukkila, 1995; and references therein). As shown in Sanchez (2000), 

the possibility of estimating an ARMA model significantly reduces the size distortion induced by moving 

average polynomials. The estimation method is exact maximum likelihood when dt = J.L and marginal 

likelihood when dt = J.L + 8t. The computations have been done with the NAG routine G13bef. Since the 

estimation methods are nonlinear, a set of initial values were needed. The performance of the tests when 

B ::; 0 is very robust to these initial values. However, when B > 0, the tests are highly sensitive to the initial 

values. Sanchez (2000) analyzes several sets of initial values, both random and fixed. The best performance 

is obtained with initial values close to the unit circle for both parameters: P and B. The initial values used 

in this experiment are: Po = 0.95 and Ba = 0.90. For each parameter configuration, all tests are based on 

the same seeds. Empirical size and power, based on 10,000 replications, are summarized in Tables 5 and 6. 

From these tables, we observe the following: 

1. The advantage of the estimator w~RMA' shown in Sanchez (2000), is also observed with the proposed 

N GLS tests. Tests based on BIC tend to have inflated size, specially at B = 0.8. Tests based on MIC, 

apart from T~V and TGLS, have reasonable size at B = 0.8 in the stationary case. However, they are 

undersize at B = 0 and can have inflated size at negative values of B. Besides, tests based on MIC can 

suffer from a severe loss of power when compared with the AR(l) case. 

2. The NfJLS test has similar performance to PT test and, in the stationary case, to NfjLS test. These 

tests also have better performance than the remaining competing tests. As mentioned above, the 

N GLS and PT tests can be considered as alternative ways to use the optimal theory to build efficient 

tests, although only N GLS tests have a prediction error interpretation. 

\Ye conclude that, as expected from the intuition, the use of prediction errors allows the construction of 

unit-root tests with excellent properties of size and power, even with large moving average roots. These two 

characteristics: intuitive interpretation and good performance, make the N GLS test of potential interest to 
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practitioners. A more detailed set of critical values can be found in Table 7.Since the performance of Nf~LS 

and NfLS is similar only critical values for NfJLS are supplied. 

[Tables 5 to 7 about here] 

7 Concluding remarks 

This paper shows a new approach for unit root detection. This so-called prediction-error approach exploits 

the intuitive relationship between the long-run behaviour of a process and the presence of a unit root, and 

shows the link between our intuition and the optimal detection of such a root. 

From a theoretical point of view, this prediction-error approach appears very useful to understand how 

(nearly) optimal tests use the information. It is seen in this paper that nearly-optimal tests in the vicinity 

of the null can be constructed with the prediction errors of a predictor that assumes the presence of a 

unit root, where the predictions are evaluated from the origin of the series. 'When the series is covariance­

stationary under the alternative, a more efficient use of the information (in the vicinity of the nUll) is 

obtained if the time-reversal series is also considered. In that case, both ends of the series are used as origin 

of the predictions. 

From a practical point of view, the proposed approach allows the construction of tests for a general ARMA 

setting with excellent properties of size and power. These N GLS tests are based on a predictor constructed 

under a local alternative. A Monte Carlo experiment for the ARMA(l,l) model shows that the N GLS tests 

have an excellent relative performance among a set of tests currently in common use. 

The present approach, not only have an intuitive interpretation, but good theoretical and empirical proper­

ties. Then, it can be used to design nonstationarity tests under different circumstances than those exposed 

here. Outliers robust unit root tests, or nonparametric tests, could be some examples of promising directions 

for future research. 
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APPENDIX 

Proof of theorem 1: 

(i) The limiting distribution of cr is a straightforward application of the functional central limit theorem 

(FCLT) to St = I:~=2 Uj. 

(ii) To obtain the limiting distribution of Cl, it is convenient to rewrite Yt - Y1 - 8(t - 1) = Xt - Xl -

(8 - 8) (t - 1) . Since 8 = (T - 1)-1 (YT - Y1) = 8 + (T _1)-1 I:'f=2 Uj, it can be shown that VT(8 - 8) ~ 

eJ'lj;(I)W(I). By the FCLT and using T-(k+l) I:'f=l tk ~ (k + 1)-1, k = 0,1, ... as T ~ 00, it is veri­

fied that: T- l / 2 {Yt - Yl - 8(t - I)} = T- l / 2 {Xt - Xl - (8 - 8) (t - I)} ~ W {W(r) - rW(I)} == wVVT(r). 

Then, from the continuous mapping theorem (CMT), the distribution can be obtained. 

(iii) By the FCLT, T- l / 2 (YT-t - YT) ~ W {W(1 - r) - W(I)} == wvV~(r). From the CMT, the limiting 

distribution is obtained. o 

Proof of theorem 2: 

The GLS residuals of the numerator of SN are XN,t = Yt - {LN, where 

(A.l) 

Likewise, the residuals of the denominator of SN are xl,t = Yt - iLl, where {Ll is the GLS estimator using 

DiVl (I). Then, {Ll = Yl. The first derivative is S~(I) = (x~DiVl(I)Xlrl 8 (x~DiVl(p)XN) /8plp=1' where 

it can be verified that x~D;\,1(I)Xl = I:'f=2(Yt - Yt_d 2. Then, the numerator of S~(I) can be written 

as 8 (x~DiVl (p )XN) /8pl p=1 = 2 (8x'rv / 8p) DiV1 (p )XN Ip=l + x'rv (8DiVl (p) / 8p) XN Ip=l . Since (8x'rv / 8p) = 

- (8{L-N / 8p) e' and also 

(A.2) 

= 2L'L - (L + L') = DiVl (l) - diag(O, ... ,0, 1), (A.3) 
p=l 

A.l 



where diag expresses a diagonal matrix. Also, from (A.l), it holds that XN,t(1) = (Yt - Y1). Therefore, it 

can be obtained that S~(1) = 1 - {'L.;=2(Yt - Yt_d 2} -1 (YT - Yd 2. For the second derivative, it can be 

written that 

Applying (A.2), the first term in (A.4) is null at p = 1. Also, by (A.3) and applying that 8{LN /8p!P=1 = (Y1 -

YT), it can be obtained that 4 (8x~/8p) (8rri/(p)/8p) XNl p=l = -4(YT-Y1)2. Similarly, since e'ON1(I)e = 1 

it holds that (8x~/8p) 0N1(p) (8XN/8p)l p=1 = (YT -Y1)2. To solve the last term in (A.4), it can be applied 

that 

=2L'L, (A.5) 
p=l 

D 

Proof of theorem 3: 

The GLS residuals of the numerator of Ss are XS,t(p) = Yt - ils. Then, 

Following the same arguments as in theorem 2, it holds that 

(A.7) 

Also, by (9), it holds that 

= 2L'L - (L + L')-2ee'= 0sl(l) - diag(l, 0, ... ,0,1). (A.S) 
p=l 

Then, it can be obtained that Ss(l) 1 - {2 'L.;=2(Yt - Yt_d 2} -1 (YT - Y1)2. Likewise, in the second 

deriYative, it can be obtained that 

(A.9) 

Similarly to the nonstationary case, it can be obtained that the first term in (A.9) is null at p = 1. Applying 

(A.S) it can also be seen that the second term in (A.9) is null in p = 1. Since e'Osl(l)e = 0, the third term 

A.2 
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is also null at unity. To solve the fourth term in (A.9), it can be verified that 

= 2L'L - 2ee' = diag(O, 2, 2, ... ,2,0). (A.lO) 
p=1 

and the theorem holds. o 

Proof of theorem 4: 

The proof is given firstly for the stationary case and then for the nonstationary case. The GLS residuals 

in the numerator of Ss are XS,t = Yt - {lp - 8pt, where (lp and 8p are the GLS estimator using the matrix 

S1S1(p). Likewise, the residuals of the denominator are Xl,t = Yt - {Ll - 8t, where {Ll and 8 are the GLS 

estimator using the matrix S1-1(1). Then, {Ll = Yl - 8 and 8 = (YT - yr)(T _1)-1. It can, then, be verified 

that x~S1-1(1)Xl = 'Lf=2(Yt - Yt-l - 8)2. The numerator of S~(l) can be written as 

8 "n-l( )A I _ 2 8X~n-l( )' I +" 8S1s
1
(p) , aXsHs p Xs - a Hs p Xs Xs 8 Xs 

P p=1 P p=1 P p=1 
(A.11) 

After some algebraic manipulation, it can be obtained that 

[ ;:] r dl n:3:1(~ ~:~:2nl l' 
where nl = YT+Yl + (1- p) 'Lf=-:} Yt, n2 = Yl(1- 2p) + {T - (T - l)p} YT+ (1- p)2 'Lf=-:} tYt, d1 = (1 +p) + 

(T-1)(1-p), d2 = (l+p) + 2:f=2 {t - (t - l)p}, d3 = (1- p2) + 2:f=dt - (t - 1)p}2 ,D = d1d3 - (l-p)d~. 

It can then be obtained that, when p = 1, Pp!p=l = Yl - (T -l)-I(YT - yd, 8p!P=1 = (T -l)-I(YT - Yl) == 8, 

8{lp/8p!p=1 = (YT - yr) (T/4 - 1/2) - (1/2) 'Lf=-;l Yt, and 88p/8p!P=1 = 0. Then, when p = 1, XS,t!p=1 = 

Yt - Yl - 8(t -1). After some algebra, it can be seen that (8x~/8p) S1S1(p) Ip=l = (0,0, ... ,0). Then, the first 

term in (A.11) is null. Applying the result (A.S), it can be seen that the second term in (A.11) is equal to 

one. For the second derivative, we can make a decomposition similar to (A.9). Following the same arguments 

as in the first derivative, it can be seen that the second and third terms of this decomposition are zero. It 

is easy to verify that the term (82x~/8p2)S1s1(p)lp=1 is a vector with all elements equal to zero, except for 

the first and the last one. The term XS!p=l, however, is a vector with first and last elements equal to zero. 

Therefore, the first term in this decomposition is also null. By (A.lO), we obtain that the fourth term of 

this decomposition is 22:f=-;1 {Yt - Yl - 8(t - 1) } 2 and, then, the theorem holds in the stationary case. In 
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the nonstationary case, we also have a decomposition like (A.11). The GLS residuals in the numerator of 

SN are XN,t = Yt - {Lp - 8pt, where {Lp and 8p are now the GLS estimator using the matrix nj\,1(p). After 

some algebra, we obtain that 

where ml = (1 - p)YT + (1 - P + p2)Yl + (1 - p)2 "£;=-;} Yt, m2 = (1 - p)2Yl + {T - (T - l)p} YT + (1 -

p)2 "£;=-;} tYt, bl = 1 + (T - 1)(1 - p)2, b2 = 1 + (1 - p) {(T - p) + (1 - p) ,,£;=-;1 t}, b3 = (1 _ p2) + 

"£;=2 {t - (t - 1)p}2, F = b1b3 - b~. Then, it can be obtained that, when p = 1, {Lplp=1 = Yl - (T -

l)-I(YT - yd, 8plp=1 = (T - l)-I(YT - yd == 8, fJ{Lp/fJpl p=1 = 0, and fJ8p/fJpl p=1 = O. Then, when p = 1, 

XN,tlp=1 = Yt - Yl - 8(t - 1). Therefore, fJx~/fJplp=1 is a vector of zeros. Using the same arguments as 

in the stationary case, we have S~(l) = 1. For the second derivative, we have a decomposition similar to 

(A.4), where it is easy to check that the second and third terms are null. It can also be verified, in this 

nonstationary case, that (fJ2x~/fJp2)njVl(p)lp=1 is a vector with all elements equal to zero, except the first 

and the last ones, and that xNl p=1 is a vector with first and last elements equal to zero. Therefore, the 

first term of this decomposition is null. By (A.5), we obtain that the fourth term of this decomposition is 

2,,£;=-;1 {Yt - Yl - 8(t - 1) } 2 and, then, the theorem also holds in the nonstationary case. o 

Proof of theorem 6 

(i) In the N~LS-Il- statistic, yt = Yt - {LC, where {LC is estimated by GLS using the matrix njVl(pc), 

Pc = 1 - efT. From Elliott et al. (1996), it can be obtained that T- 1/2yt ~ wW(r). Then, applying that 

limT--->oo p~ = e-c, limT--->oo p~Trl = e-rc , and the CMT, it can be verified that T-liT;;2(y~ - p~-IYn2 ~ 

~-2 {W(1)}2 and T-2iT;;2 "£;=2(yt - p~-IYn2 ~ ~-2 [fo1 {W(r)}2 dr] . 

(ii) In the NjjLS-r test, y[ = Yt - {Lc - 8Ct, where the estimation is by GLS using the matrix njVl(pc). From 

Elliott et al. (1996), T- 1/2y[ ~ wUC(r). It can be checked that UC(O) = O. Then, T-l/2(y[ - p~-IYn ~ 

wUC(r). From the CMT, T-2iT;;2"£;=2(Y[ - p~-IYn2 ~ /'1,-2 [fo1 {UC(r)}2dr] 

(iii) In the NfLS-1l- test, yt = Yt - {Lc, where {Lc is estimated by GLS using ns1 (Pc). From Lemma 3 in 

Elliott (1999), T- 1/2yt ~ wvt(r). Then, T-l/2(y~ - p~-IYn ~ w {Vt(l) - e-cVt(O)} == wWp(l) and 
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T- 1/ 2(yi - p~-ly~) ~ w {Vcj(O) - e-cVt(1)} == wWs (l). Therefore, from the CMT, 

( I.L T-l 1.L)2 (I.L T-l 1.L)2 1 
YT - Pc Yl + Yl - Pc YT ~ _ -2 [{WC (1)}2 + {WC (1)}2] 

2Ta-~ 2Ta-~ 2/'L F B' 

Similarly, it can also be verified that T-l/2(Yr-p~-IYn ~ w {Vt(r) - e-crVt(O)} == wWF(r) and T-l/2(Y~_t­

p~-ly~) ~ w {Vt(l - r) - e-crvt(l)} == wWs(r). Hence, 

"T (I.L t-l 1.L)2 (I.L - t-l 1.L)2 1 [/'1 /'1 ] LA-2 Yt - Pc Yl + YT-t Pc YT ~ -2_ {WC ( )}2 d + {WC ( )}2 d 
2T2 ' 2 2T2 ' 2 /'L 2 F r r B r r. 

(Tu (Tu .0 .0 

(iv) In the NfjLS-T tests, y[ = Yt - (Lc - 8Ct, where the estimation is by GLS with 0SI (Pc). From Elliott 

(1999), T- 1/2y[ ~ wVo(r). Therefore, T-l/2(y[ - p~-IYn ~ w {Vo(r) - e-CrVoT(O)} == wKC(r). Then, 

T -2' -2 "T-l ( T _ t-l T)2 d -2 (1 {KC( )}2 d 
(Tu L...d=1 Yt Pc Yl -+ /'L.lo r r. o 
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Table 1: Selected values of c for different unit-root tests 
Statwnary case 

N?LS NGLS PT-S TGLS-S 
dt = /-t 10 1~.5 10 10 

MZGLS MSB GLS 
a-S' S 

10 7 
dt= /-l + 8t 10 20 10 10 10 7 

Non-stationary case 
N GLS P MZGLSMSBGLS ~ T-N TGLS-N aNN 

7 7 7 7 
8 13.5 13.5 13.5 13.5 

Table 2: Empirical 5% critical values. T = 100. 100,000 Monte Carlo rep. 
Statzonary and Non-statzonary case 

Ns 
dt= /-t 0.7605 
d t= /-l + 8t 0.0380 

TW TDF 
dt= /-l -2.56 -2.90 
dt= jl + 8t -3.28 -3.45 

Stationary case 
NfLS NN N GLS PT-S 
0.4292 0.8702 0.6106 4.71 
0.0269 0.0380 0.0268 2.94 

Non-stationary case 
-16.72 0.1736 -3.21 

NN N?LS PT-N MZG~JMSB&LfGLS_N 
dt= /-t 0.5472 0.4581 3.11 -8.89 0.2286 -2.14 
dt= /-l + 8t 0.0380 0.0305 5.64 -15.76 0.1759 -3.03 
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P 
0.97 
0.95 
0.90 
0.80 

Table 3: AR(l) case. Empirical power at size 5%. T = 100. dt = J1. 100,000 rep. 
Statwnary case 

TCLS-S MZ 
0.11 0.12 0.12 0.12 0.09 0.12 
0.18 0.20 0.20 0.20 0.15 0.20 
0.43 0.52 0.52 0.52 0.39 0.52 
0.76 0.97 0.97 0.97 0.92 0.97 

Non-stationary case 

P SN(p) NN NW-'::> TW PT.N TCLS-N MZ;:~4MSBK/fDF 
0.97 0.17 0.17 0.16 0.15 0.17 0.17 0.16 0.16 0.08 
0.95 0.29 0.29 0.29 0.26 0.29 0.28 0.28 0.27 0.11 
0.90 0.67 0.65 0.67 0.61 0.66 0.66 0.66 0.64 0.29 
0.80 0.98 0.93 0.98 0.98 0.96 0.98 0.98 0.97 0.86 

Table 4: AR(l) case. Empirical power at size 5%. T = 100. dt = J1 + 8t. 100,000 rep. 

p Ss(p) Ns N<c!L::i 
Statwnary case 

Nj.jL::i TW PT-s TCLS MZ~_~S MSB~LfDF 
0.97 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 
0.95 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09 
0.90 0.26 0.24 0.25 0.25 0.25 0.26 0.24 0.26 0.26 0.20 
0.80 0.78 0.64 0.77 0.77 0.78 0.77 0.76 0.78 0.78 0.66 

Non-statwnary case 

P SN(p) NN NfjL::> TW PT-N TCLS-N MZ;:~4 MSBIj/rDF 
0.97 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 
0.95 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.08 
0.90 0.30 0.29 0.30 0.29 0.30 0.30 0.30 0.30 0.19 
0.80 0.82 0.72 0.82 0.81 0.82 0.82 0.82 0.82 0.64 
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Table 5: Empirical size and power for 5% level. T=100. Model: (1 - pB)(Yt - dt) 
(1 - OB)at. Stationary case. 5000 rep. 

Model Test 

ARMA 

PT 
AR(MIC) 

PT 

TCLS 

AR(BIC) 

~AIZCLS 
Cl< 

PT 

p e e 
-0.8 -0.5 o 0.5 0.8 -0.8 -0.5 o 0.5 0.8 

1.00 0.058 0.059 0.057 0.037 0.050 0.069 0.068 0.059 0.029 0.066 
0.90 0.571 0.568 0.526 0.286 0.228 0.301 0.297 0.244 0.103 0.159 

1.00 0.059 0.060 0.058 0.036 0.049 0.068 0.067 0.058 0.028 0.065 
0.90 0.571 0.568 0.518 0.261 0.220 0.301 0.300 0.245 0.103 0.158 

1.00 0.072 0.073 0.072 O.OH 0.055 0.098 0.097 0.087 0.041 0.073 
0.90 0.623 0.619 0.574 0.314 0.238 0.407 0.398 0.335 0.137 0.171 

1.00 0.055 0.056 0.056 0.037 0.051 0.061 0.064 0.058 0.030 0.068 
0.90 0.564 0.563 0.521 0.287 0.232 0.299 0.294 0.250 0.110 0.164 

1.00 0.085 0.050 0.033 0.041 0.056 0.088 0.051 0.028 0.027 0.059 
0.90 0.295 0.273 0.270 0.235 0.296 0.137 0.107 0.077 0.097 0.205 

1.00 0.087 0.048 0.033 0.036 0.050 0.089 0.049 0.028 0.028 0.061 
0.90 0.277 0.255 0.244 0.210 0.279 0.141 0.106 0.077 0.096 0.205 

1.00 0.096 0.060 0.042 0.045 0.058 0.115 0.073 0.043 0.045 0.077 
0.90 0.317 0.303 0.300 0.251 0.311 0.193 0.160 0.128 0.149 0.233 

1.00 0.080 0.047 0.034 0.039 0.055 0.079 0.048 0.026 0.029 0.065 
0.90 0.294 0.270 0.263 0.237 0.301 0.141 0.112 0.083 0.111 0.218 

1.00 0.027 0.024 0.021 0.032 0.082 0.030 0.029 0.028 0.033 0.109 
O.!JO 0.169 0.173 0.192 0.212 0.401 0.118 0.119 0.127 0.142 0.299 

1.00 0.020 0.024 0.022 0.036 0.106 0.007 0.016 0.024 0.045 0.181 
0.90 0.132 0.181 0.241 0.273 0.515 0.033 0.060 0.121 0.169 0.449 

1.00 
0.90 

1.00 
0.90 

1.00 
0.90 

1.00 
0.90 

1.00 
0.90 

1.00 
0.90 

0.142 0.106 0.086 0.086 0.357 
0.580 0.556 0.536 0.528 0.894 

0.150 0.112 0.085 0.085 0.351 
0.582 0.559 0.526 0.503 0.889 

0.158 0.127 0.099 0.099 0.391 
0.609 0.597 0.574 0.561 0.924 

0.139 0.104 0.085 0.085 0.359 
0.575 0.553 0.532 0.529 0.904 

0.065 0.052 0.052 0.074 0.437 
0.348 0.331 0.313 0.442 0.965 

0.067 0.037 0.051 0.122 0.690 
0.410 0.346 0.456 0.74!J 0.998 

0.255 0.166 0.127 0.095 0.375 
0.479 0.414 0.340 0.294 0.711 

0.255 0.169 0.126 0.094 0.373 
0.47!J 0.415 0.341 0.293 0.706 

0.293 0.207 0.157 0.131 0.455 
0.542 0.487 0.421 0.382 0.785 

0.241 0.155 0.122 0.101 0.388 
0.473 0.417 0.341 0.308 0.727 

0.079 0.059 0.049 0.083 0.564 
0.245 0.220 0.18!J 0.303 0.896 

0.076 0.033 0.052 0.148 0.845 
0.242 0.148 0.211 0.495 0.995 

Th N GLS n d ~1 'ZGLS h . A 2 A A d 1 . e tests , rT, an lVJ Cl< use t e spectral estimator W AR"'f A when an RM mo e IS 

fitted, and the spectral estimator wbLS_ARwhen an AR approximation is used. 
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Table 6: Empirical size and power for 5% level. T=100. Model: (1 - pB)(Yt - dt ) 
(1 - BB}at. Non-Stationary case. 5000 rep. 

Model Test 

p 

ARMA -0.8 -0.5 o 0.5 0.8 -0.8 -0.5 o 0.5 0.8 
1.00 0.055 0.057 0.055 0.042 0.050 0.064 0.064 0.060 0.031 0.067 
0.90 0.732 0.717 0.643 0.339 0.232 0.352 0.343 0.285 0.123 0.164 

1.00 0.060 0.063 0.062 0.045 0.053 0.088 0.090 0.082 0.039 0.072 
0.90 0.758 0.741 0.670 0.353 0.236 0.437 0.428 0.359 0.150 0.174 

PT 1.00 0.055 0.056 0.057 0.043 0.050 0.062 0.063 0.059 0.031 0.068 
0.90 0.747 0.732 0.649 0.347 0.231 0.351 0.344 0.287 0.126 0.165 

AR(MIC) 
1.00 0.085 0.050 0.033 0.041 0.056 0.088 0.051 0.028 0.027 0.059 
0.90 0.295 0.273 0.270 0.235 0.296 0.137 0.107 0.077 0.097 0.205 

1.00 0.096 0.060 0.042 0.045 0.058 0.115 0.073 0.043 0.045 0.077 
0.90 0.317 0.303 0.300 0.251 0.311 0.193 0.160 0.128 0.149 0.233 

PT 
1.00 0.080 0.047 0.034 0.039 0.055 0.079 0.048 0.026 0.029 0.065 
0.90 0.294 0.270 0.263 0.237 0.301 0.141 0.112 0.083 0.111 0.218 

TCLS 
1.00 0.036 0.038 0.031 0.039 0.079 0.034 0.033 0.029 0.037 0.098 
0.90 0.358 0.279 0.357 0.279 0.263 0.143 0.146 0.147 0.159 0.221 

1.00 0.020 0.024 0.022 0.036 0.106 0.007 0.016 0.024 0.045 0.183 
0.90 0.175 0.232 0.299 0.299 0.522 0.042 0.066 0.129 0.173 0.441 

AR(BIC) 
1.00 0.142 0.106 0.086 0.086 0.357 0.255 0.166 0.127 0.095 0.375 
0.90 0.580 0.556 0.536 0.528 0.894 0.479 0.414 0.340 0.294 0.711 

1.00 0.158 0.127 0.099 0.099 0.391 0.293 0.207 0.157 0.131 0.455 
0.90 0.609 0.597 0.574 0.561 0.924 0.542 0.487 0.421 0.382 0.785 

PT 
1.00 0.139 0.104 0.085 0.085 0.359 0.241 0.155 0.122 0.101 0.388 
0.90 0.575 0.553 0.532 0.529 0.904 0.473 0.417 0.341 0.308 0.727 

TCLS 
1.00 0.063 0.062 0.050 0.075 0.355 0.079 0.064 0.049 0.080 0.506 
0.90 0.563 0.599 0.536 0.560 0.727 0.275 0.262 0.219 0.334 0.802 

1.00 0.066 0.041 0.051 0.126 0.695 0.078 0.038 0.052 0.142 0.857 
0.90 0.480 0.444 0.527 0.791 0.999 0.264 0.171 0.230 0.521 0.997 

The tests N GLS , PT, and lvIZ~LSuse the spectral estimator W~RMAwhcn an ARI\IA model is 

fitted, and the spectral estimator wbLS_ARwhen an AR approximation is used. 
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Table 7: Critical values 
StatlOnary case Non-statlOnary case 

T 1% 2.5% 5% 10% T 1% 2.5% 5% 10% 
N~LS tL with c = 13.5 NGLS-tL 'th - 8 N Wl c-

25 0.4207 0.4943 0.5782 0.7081 25 0.2843 0.3418 0.4056 0.4993 
50 0.4146 0.4987 0.5917 0.7318 50 0.2835 0.3486 0.4251 0.5440 

100 0.4285 0.5249 0.6406 0.8045 100 0.2930 0.3699 0.4581 0.5988 
150 0.4426 0.5518 0.6728 0.8587 150 0.2988 0.3787 0.4743 0.6268 
250 0.4555 0.5770 0.7120 0.9284 250 0.3027 0.3920 0.4945 0.6650 
500 0.4780 0.6105 0.7674 1.0180 500 0.3103 0.3989 0.5088 0.6928 
00 0.5165 0.6697 0.8551 1.1726 00 0.3152 0.4120 0.5303 0.7301 

NZLS- T with c = 20 NZLS- T with c = 8 

25 0.0221 0.0248 0.0277 0.0319 25 0.0253 0.0289 0.0326 0.0380 
50 0.0204 0.0234 0.0266 0.0311 50 0.0231 0.0270 0.0311 0.0369 

100 0.0201 0.0234 0.0268 0.0317 100 0.0221 0.0262 0.0305 0.0367 
150 0.0201 0.0234 0.0272 0.0324 150 0.0219 0.0260 0.0303 0.0366 
250 0.0199 0.0236 0.0276 0.0331 250 0.0217 0.0258 0.0302 0.0366 
500 0.0203 0.0242 0.0282 0.0341 500 0.0215 0.0257 0.0302 0.0367 
00 0.0206 0.0246 0.0290 0.0354 00 0.0212 0.0255 0.0299 0.0366 
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