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Abstract
It is well known that the main difference between a stationary (or trend-stationary) process and a
process with a unit root is to be observed in their long-term behaviour. This paper exploits this idea
and shows that nearly optimal unit-root tests can admit an interpretation based on prediction
performance.

This result is not only useful in understanding how efficient tests use the information, but it can also
be used to construct new unit-root tests based on prediction errors. A Monte Carlo experiment for
the autoregressive moving-average of order (1,1) indicates that the proposed tests have desirable
size and power properties.
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1 Introduction

1.1 General considerations

This article analyses the relationship between the prediction errors of a predictor that assumes the presence
of a unit root and the efficient detection of such a root. The motivation for this analysis is the intuitive
concept that the main difference between a stationary (or trend-stationary) process and a process with a
unit root is to be observed in their long-term behaviour (see, e.g., Hamilton, 1994, ch. 15). In spite of this
well documented result, there is not yet a theory that relates the optimal detection of a unit root with the
long-term behaviour of a process. This article fills this gap, and proves that nearly optimal unit root tests
can be build using the information of prediction errors. Therefore, prediction errors do contain valuable

information for the efficient detection of a unit root.

Since the work of Dickey and Fuller (1979), there has been an abundance of literature devoted to the detec-
tion of autoregressive unit roots. A possible criterion for classifying the existing literature is the approach
to the detection of the unit root. The original and most commonly-employed approach is that of Dickey and
Fuller (1979), which is based on the asymptotic properties of the ordinary least squares (OLS) estimator.
Important variations of Dickey-Fuller tests (hereafter, DF tests) are their extensions to other estimation
methods, such as maximum likelihood (e.g., Pantula et al., 1994; Yap and Reinsel, 1995; Shin and Fuller,
1998; Shin and Lee, 2000), the weighted symmetric estimator (hereafter, 7y test) (Park and Fuller, 1995;
Fuller, 1996, p. 568) and the generalized least-squares (GLS) estimator under a fixed local alternative
(hereafter, 7gLs test), developed by Elliott et al. (1996) (see also Hwang and Schmidt, 1996, and Xiao and

Phillips, 1998).

A very important approach is the construction of tests observing certain optimal criteria (under normality).
Works following this so-called optimal approach are Sargan and Bhargava (1983) and Bhargava (1986).
These authors extend the basis of optimal serial correlation tests to construct approximate uniformly most
powerful invariant (UMPI) tests and approximate locally best invariant (LBI) tests. Important extensions

of the Sargan and Bhargava tests, and also closely related to DF tests, are the M tests of Stock (1990) (see




also Perron and Ng, 1996). Recently, Ng and Perron (2000) have improved the performance of these M tests
using GLS detrending under a fixed local alternative (hereafter MGLY tests). Important contributions to
this optimal approach are the (infeasible) point optimal invariant (POI) tests and LBI tests developed by
Dufour and King (1991). A sequence of these infeasible POI tests (that use the true value of the root as the
alternative) provide the upper attainable power (Gaussian power envelope) at each alternative. This power
envelope can be used as a benchmark to evaluate the performance of any feasible test. Dufour and King
(1991) found that POI tests perform well in practice if a fixed alternative is properly chosen. According to
this idea, Elliott et al. (1996) and Elliott (1999) proposed a feasible POI test (hereafter Pr test) using a

fixed local-to-unity alternative.

In this article, a new approach, based on prediction errors, is introduced. The usefulness of this new approach
is twofold. First, it proves to be very useful to give an intuitive interpretation of the use of the information
by efficient tests. Second, it allows the construction of new unit-root tests, based on prediction errors. The
new tests are shown to be asymptotically nearly optimal in the vicinity of one. Therefore, this approach
is also related to the mentioned optimal approach. Hence, the intuitive notion that the nonstationarity is
related with the long-term behaviour of the process has optimal properties for unit root detection. The new
tests also have good finite sample properties. In the AR(1) case, the empirical power is similar to the POI
test. The proposed tests can be extended to the general ARMA case by fitting an ARMA model. Therefore,
they need not rely on autoregressive approximations. A Monte Carlo experiment for an ARMA(1,1) model

shows that the proposed tests still have high power with very small size distortion.

The paper proceeds as follows: After setting up the notation and the model in the next subsection, Section
2 introduces test statistics based on the mean squared prediction error (MSPE) of a random walk predictor.
These tests are the basis for the remaining tests of the paper. Section 3 derives tests that are nearly optimal in
the vicinity of unity and shows that they have a prediction-error interpretation. The resulting near-optimal
tests happen to be functions of the statistics proposed in Section 2. Section 4 uses the prediction-error
interpretation to modify the near-optimal tests in order to achieve high power in regions far from the unit
circle. Section 5 compares the proposed tests with some other existing in the literature through a Monte

Carlo experiment in the AR(1) case. Section 6 extends the tests to the ARMA case and compares them




with other tests in a simulation exercise with an ARMA(1,1) model. Section 7 concludes. Mathematical

proofs are given in the Appendix.

1.2 Notation and the model

Let {y:} be a discrete stochastic process. We assume that this process contains a deterministic component
d; and a pure stochastic component z;; namely, y; = d; + ;. It is assumed that the deterministic component
can be a mean, d; = p, and a deterministic trend, d; = p + 6t. The pure stochastic part has the following

structure: x; = px—) + ug, satisfying the following conditions:

Assumption A: x; is initialized at t = 0 by xq, a random variable with finite variance.

Assumption B: w; is a stationary and invertible ARMA(p,q) satisfying ¢(B)u; = 6(B)ar, where a; is
a sequence of iid random variables with E(at) = 0 and E(a?) = 0%, ¢(B) = 1 — ¢1B — -+ — ¢,BP and
6(B) =1—61B—---—6,B7 are polynomials in the backward-shift operator B, with no common factors and

with either ¢, # 0 or 6, # 0.

Assumption C: T~1/2 £7;r1] up > wW(r), T71/2 Zgrl] a oW (r), where w? = E(u?)+2 5 %2, E(wiug) =
02 {6(1)/&(1)}? is the long-run variance of u, and W(r) is a standard Brownian motion defined on C[0,1].
The symbol % denotes weak convergence in distribution. For 0 < r < 1, [T'r] denotes the greatest integer

less than or equal to T'r.

Notice that Assumption A includes the case zp =constant, with probability one, as a special case. Notice
also that the limits of partial sums of u; and a; depend on the same standard Brownian motion W (r). The

data-generating process is, therefore,
Yye=p+0t+xy, o= prio1 +w, w=P(B)ay, (1)

where ¥(B) = ¢(B)~16(B). This process can also be expressed as y; = (1 — p)+ 6p + 6(1 — p)t+ pyi—1 +

1/)(B)at.




2 Tests based on the ratio of observed and expected MSPE

This section shows basic test statistics of the prediction-error approach. They arise by comparing the
empirical MSPE of a predictor with the expected one, under the null hypothesis of a unit root. The
proposed tests are based on the following property: if the process is stationary, as the horizon increases the
empirical MSPE is bounded, although the predictor assumes there is a unit root. On the other hand, if

there is a unit root, the empirical and the expected MSPEs are unbounded. We define e, as the empirical

3li
prediction error of forecasting y; from ¢ = i (j > 4) under the null hypothesis of random walk (u; = a;).
Therefore, e;;; = y; —yi. We first base the test statistics on the cumulative sum of squared prediction errors
from the origin of the series. Then

T T

2 2
Do = b —w)? (2)
t=2 t=2

The expected value of this statistic, under the null hypothesis of a unit root, is:

T
E (;6?|1> =142+ +(T -1} =(1/2)02T(T - 1). (3)

Since ¢2 is not known, the consistent (under the null) estimator 62 = 7! ZtT:Q(yt — y_1)? can be used.

Finally, the test statistic is obtained by dividing the cumulative sum (2) and its estimated expected value
under the null (3). The constant can be dropped since it does not affect the test. Also, for the sake of
simplicity, T(T — 1) is approximated to T2. The proposed statistic of this prediction-error approach is as

follows:

T
o = ZtT:Q(yt —n)
Ty oyt — Yi—1)?

where C stands for cumulative and the subscript shows the origin of the predictions. This test statistic

(4)

is invariant under the group of transformations y; — ay; + b, with a, b constants and, therefore, it is not
affected by the mean value of the series. Therefore, it is also applicable to the case of a non-zero mean.
It can be verified that, under the null hypothesis of a unit root, C}' = Op(1). Under the alternative, the
numerator is, however, of lower order of magnitude than in the previous case since 72 23;2 yZ = 0,(T™).
Therefore, under the stationary alternative, CY' -2, 0. Therefore, a consistent unit-root test against a sta-

tionary alternative has the rejection region CI' < ¢f'.




We now extend this test to the case of a null hypothesis of a random walk with a drift, y; = 6 + y¢—1 + uy,
where u; = a;. The prediction errors are e;; =y, —y1 — (t — 1)6. An efficient estimator of §, under the
null, can be obtained from the regression Ay, = 6 + u;. Therefore, § = (T —1)~! (yr —y1) . A consistent

estimator of o2, under the null, is 62 = 7! E;‘rzz(yt — Y1 — 3)2 This leads to the following test statistic:

Cir — E?=2{yt - — 8(t - 1)}2 — 2?22 (:’jt - 91)2
T 2?22(% —Yt-1— 5)2 Tz;‘rzz@t - ﬁt—1)2

where g; is the estimated detrended series. Similarly to C7', the rejection region is C7 < ¢]. The statistics

(5)

C! and C] are already in the literature using different justification. They correspond to (TN;)™! and
(T'N3)~1, respectively, where N; and Nj are in Bhargava (1986). Bhargava (1986) shows that, if the An-
derson approximation is used for the inverse of the covariance of the process, and the first observation is
extracted from its conditional distribution, these statistics lead to approximate LBI tests, under normality.
These statistics are also derived in Tanaka (1996), with the same initial conditions, by taking the second

derivative of the likelihood function, under normality (extended score tests).

Another way of evaluating the prediction errors is to also consider the series in reverse order (backward
process). The use of the reversed time series can be justified by the time-reversibility of Gaussian stationary
processes (see, e.g., Weiss, 1975; Box and Jenkins, 1976, p. 197). This property states that the processes
in direct and reverse order have the same covariance structure. Therefore, under stationarity, better use of
the information could be obtained if both processes are analyzed. The statistic that averages the prediction

errors from both extremes of the series and at each horizon is:

Ok — E;‘rzz(yt - )+ E;‘rz_ll (y+ —yr)?
1T =
2T S oyt — ye1)?

in which the subscript 17" denotes the origin of the predictions. Several authors have also used the property

, (6)

of time-reversibility to improve the performance of DF tests (Sen and Dickey, 1987; Pantula et al., 1994;
Leybourne, 1995; Park and Fuller, 1995; among others). For the case of a null hypothesis of a random walk

with a drift, it can be shown that
Cir =CT.

The following theorem shows the limiting distribution of the statistics C}'and C{‘T when the process is

Yt = Ys—1 + w, ug = Y(B)ay, and that of C] when the process is yy = § + y1—1 + us, ur = Y(B)a;. For



convenience, the following processes are defined: Wg(r) = {W(1 —r) = W(1)},and W7 (r) = W(r)—-rW(1).

Theorem 1 Under Assumptions A, B, and C, when p =1,
(i) Cf < w72 [ {W(r)} dr,
(i) CI(=Cfy) <5 w72 fy {W7(r)} dr,
(1) Cfp L w2 { AW dr + f3 (W)} 2dr},

where k? = w202, 0% = E(u?);w? = o%(1)2.

Remark 1 The consistency of the tests follows from noting that the limiting distributions are O,(1) and are
positive with probability one, so that the critical values of the tests are positive. Since under the alternative

o+ 20,07 20, and Ciy 2 0as T — 00, the consistency holds.

3 Nearly-optimal tests and prediction errors

3.1 Asymptotic results

This section proposes asymptotic tests that are nearly optimal under normality of the disturbances. The
resulting statistics are found to be the same as the statistics proposed in the previous section or functions of
them. In all of these cases, the resulting nearly-optimal tests also allow an interpretation based on prediction
errors and, therefore, are useful to explain how efficient unit-root tests use the information. Very important
conclusions can be obtained from this section. First, it confirms the intuition that the behaviour of a process,
in the long term, provides important information for the efficient detection of the unit root. Secondly, it
is shown here that efficient tests utilize the time-reversibility property of Gaussian stationary processes to
improve their asymptotic performances. The interest here is in asymptotic and invariant tests (invariant to
the values of the parameters describing the deterministic terms) with high power in the vicinity of p = 1.
To obtain these properties, a second-order Taylor expansion of the asymptotic POI test statistics, around
the null hypothesis, is performed. Hence, the proposed tests are, asymptotically, nearly-optimal invariant,

close to the null hypothesis. This section develops tests for the AR(1) case. Section 6 extends the proposed

tests to the ARMA case.

Ve assume, first, the model (1) with § = 0 and ¢(B) = 1 (then, v, = a;). We also assume that wu; is




normally distributed. In this paper, two different assumptions are made about zg:

Assumption A1l (nonstationary case): We assume that o = 0 so x1 = a1. Therefore, y; is extracted from

its conditional distribution.

Assumption A2 (stationary case): We assume that xo =0 when p =1 and xy s random with zero mean

and variance 0%/(1 — p?) when |p| < 1. Therefore, y1 is extracted from its unconditional distribution.

Under Assumption Al, the process x; is nonstationary under the alternative. This assumption is denoted
as the nonstationary case, although some authors also refer to this as the conditional case. The covariance

matrix of the T x 1 vector X = (1, ...,z7)" is 0?Qn(p), where
Oy (p) = Ir — p(Ly + L) + p*L7Lr, (7)

with It a T x T identity matrix and Ly a T' x T matrix with ones on the diagonal immediately below
the main diagonal and zeros elsewhere. This nonstationary model is the same as that of Dufour and King
(1991), with d; = 1. According to these authors, the POI test of p = 1 against p = pgy rejects the null

hypothesis for small values of

ROy (po)Rkn

Sy =
V= v s

, (8)

where %y and %; are GLS residual vectors using Q5'(po) and Q5 (1), respectively. Under Assumption
A2, z; is covariance stationary under the alternative. This assumption is denoted as the stationary case
(also known in the unit root literature as the unconditional case). The covariance matrix of the vector x is

02Qn (1), under the null, and 6%Qs(p), under the alternative, where

Q5 (p) = Q5! (p) — pPee, 9

with e = (1,0,...,0). From the Neyman-Pearson lemma, an asymptotic representation of the POI test

against sonie alternative, |pg| < 1, rejects the null for small values of

X5 (po)ks

S =
0= SR 0%

; (10)




where kg are the GLS residual vectors using Q5'(po) (see, e.g., Kadiyala, 1970; or Elliott, 1999). The
nonstationary case is a reasonable assumption when the time series has its origin at zy. Potential applica-
tions of this assumption can be found, for instance, in engineering, where the beginning of processes and
experiments are known and controlled. On the other hand, the stationary case reflects the situation of a
time series with the origin in a very far past point. This assumption can be of interest, for instance, with
some macroeconomic data. The following theorems show the Taylor-series expansion of (8) and (10) around

p=1

Theorem 2 Let y; = p + xt, where xy = pxi—1 + ay, with xo following Assumption A1. Then,

%, Q3 (p)% —1)?
Swip) = MR sy + L gn )+ 010 - 17,
X QN (D% 2
where
oS —11)?
P lp=1 Zt=2(yt - Yi-1)
0%Sn(p oy = 1)? ~y1)?
S1(1) = 8N2( )| g ZTt_Q( t =1 - T(yT _1) .
P p=1 thz(yt - Yt-1) Zt:Q(yt Yi—1)
Theorem 3 Let y; = po+ x¢, where zy = pxi—1 + at, with xg following Assumption A2. Then,
*: Q5 p)%x —1)2
Sslp) = 28 sy (p_pysuy + L= sn1) + 040 - 1%,
X Q5 (D)%, 2
where
as 1 —1)?
P lp=1 Y=o (Wt — Y1)
Sﬁg’(l) _ 5255(P) — Z;‘r:g(yt - y1)2 + Z,Erz—ll(yt - yT)2
Op* o 23 (e — ye—1)?

(yr — 1) + 05 (e — 1) (yr — we)
Z;‘rz2(yt - yt—1)2

These Taylor expansions suggest different kinds of asymptotic tests. At first approximation, the test statistics
can be constructed by using only the first derivatives, Sy (1) and Sg(1), as expressed in (11) and (12).
These derivatives are, apart from a constant, identical for both stationary and nonstationary cases. By the
Generalized Neyman-Pearson Lemma (see, e.g., Ferguson, 1967), these first derivatives lead to asymptotically

LBI tests. Therefore, these LBI tests reject the null for small values of

2
Eb =gt - Wrou)” (13)
N e —y)?



where E stands for extreme points of the series and the subscript N or S denotes the nonstationary case
or the stationary case, respectively. This statistic was previously obtained by Nabeya and Tanaka (1990)
and Tanaka (1996), but only under Assumption Al (corresponding to E%;). Statistic (13) also has an
interpretation in terms of prediction errors. It is the ratio of the empirical prediction squared error of the
last observation, calculated from the origin of the series, assuming a unit root, to the consistent estimator
of its expectation. When p = 0 (or p is known, and the series is previously demeaned with that value),
following the same arguments as in the proof of theorems 2 and 3, the corresponding first derivatives lead

to the test statistics:

2 2
o SO it | W (14)
Zt:Q(yt - yt—l)
2
E%, T (15)

Z;‘rzg(yt - yt—l)Q’

for the stationary and nonstationary cases, respectively. These asymptotic LBI tests are only invariant
under transformations of the type y, — ay;. This last statistic, Eg,, was also previously obtained by Nabeya
and Tanaka (1990), Stock (1994), and Tanaka (1996). Tests based on these E statistics only have optimal
power when the alternative is very close to the null (say, p = 0.999...). The power is, however, very low for
alternatives of practical interest. Given the low usefulness of the first derivatives, one could discard this part
of the Taylor expansion and consider test statistics based only on the second derivatives. To obtain random
variables with non-degenerate limiting distributions, it is necessary to divide the second derivatives by T.
This correction makes the second term both in S¥ (1) and S§(1) converge in probability to zero, under the

null hypothesis of a unit root. In the nonstationary case, it is verified that

(yT - yl)2
TZ;I:Q(% - yt—1)2

= Op(T_l)-

In the stationary case, it holds that

Yt e —y)yr —ye) _ Siathe
TS (e — ye1)? (T -1)o3

where 4; = Zr}rz—f ujusyi/T. Note that (16) still holds if u; is a general stationary ARMA model. With

= 0,(T™Y), (16)

these results, the second derivatives satisfy:

1 -
S=Sk(1) = CL +0,(T7Y), (17)
1 _

S794(1) = Gl + 0p(T7Y), (18)




where C{' and Cl. are derived in the previous section using the prediction-error interpretation. Therefore,

the second derivatives lead to the asymptotic tests C{' and Cj, respectively.

An important conclusion can be extracted from these tests based on the first or second derivatives: in the
stationary case, unit-root tests seem to use the time-reversibility property of Gaussian stationary processes
to obtain a more efficient use of the information. This can be seen, e.g., in the asymptotic equivalence
between a test based on S%(1) and on C},,, where prediction errors are evaluated from both ends of the
series. However, in the nonstationary case, a test based on S3(1) is asymptotically equivalent to CY, where
only one extreme of the series is considered. Statistics (13) and (14) also admit this time-reversibility inter-
pretation: when p = 0, expression (15) is a measure of how far the last observation has deviated from the
mark, using zero as a reference. Under Assumption A2, however, if the time-reversal series is also considered,
the corresponding asymptotically LBI test should be based on both extremes, as does (14), since the first
observation will be the last one for the reverse process. Similarly, when p is unknown, the time-reversibility
interpretation can also explain the fact that the corresponding asymptotically LBI tests use the same test
statistic (13), both in the stationary and nonstationary cases. This optimal property of the time-reversibility
is also important to understand why modifications of DF tests, based on the use of the series in reverse
order as well, improve their performance (e.g., Sen and Dickey, 1987; Leybourne, 1995; Park and Fuller,

1995; Shin and So, 1997).

If 1 = 0, following the same arguments as in the proof of theorems 2 and 3, the asymptotic tests based on

the second derivatives use the statistics

T-1
CO — CO — Zt:Q yt2
1 1T T 9"
Ty oy —yi—1)

for the nonstationary and stationary cases, respectively.

A third type of asymptotic test, using this nearly-optimal approach, can be based on both first and second
derivatives of the Taylor expansion. Hence, they also have a prediction-error interpretation. These tests are
asymptotically nearly-optimal invariant in the vicinity of one, and are denoted as N tests. For convenience,

the value of p that determines the neighbourhood around unity is parameterized as p. = 1 — ¢/T', with

10



¢ > 0. This formulation is more appropriate than the use of a fixed value of p, since the power for a
given alternative depends on T. In the nonstationary case, the second-order Taylor expansion leads to
Sn(pe) = 1—¢/T + (¢/T) (E* + cCY) . Therefore, the corresponding N test rejects the null hypothesis for

small values of
Nﬁ,:Eﬁ,Jrch. (19)

Similarly, for the stationary case, Ss(pc) = 1 — ¢/T + {c/(2T)} (E* 4 ¢C%;) , and the corresponding N test

will be
NE = Eg + cChip. (20)
The extension to the p = 0 case leads to:
NY = EY 4 ¢CY, (21)
N2 = E% + C. (22)

The following theorem extends the previous results to the case with deterministic linear trend. Since the
theorem holds for both stationary and nonstationary cases, differences in notation are omitted. This theorem

extends the results of Nabeya and Tanaka (1990) and Tanaka (1996) to the stationary case.

Theorem 4 Let y; = p+ 0t + 1, where xy = pry_1 + ay, with xg either fized or following a random variable

with zero mean and variance o%/(1 — p?). Then,

_ XQ7Hp)x (p—1)°

S(h) = T = L+ (= D)S () +==5=5"(1) + O{(p - 1)},
1N Al
where
S'(1) = %ﬁ)p) = 1,
(1) = PSp)|  _ T {y —wn - b(t -0 _, iy (B —9)”
T P E?:z(yt —- Y1 —6)? St o (i = e-1)?

Since the first derivative is a constant, an LBI test would be of no practical interest. By the Generalized
Neyman-Pearson lemma, the second derivative can be used to construct asymptotically LBIU tests for both
the stationary and nonstationary cases. It can be verified, by dividing the second derivative by 7', that the

asymptotically LBIU tests reject the null for small values of the statistics CT, derived in section 2 using

11



the prediction-error interpretation. The fact that the test statistic is the same in both the stationary and
nonstationary cases, is also compatible with the time-reversibility interpretation of the stationary case since,

as seen in Section 2, C7p = C]. Therefore, the N tests are:

NI, = Nj =C7. (23)

The limiting distributions of the statistics Nk, and N, for the general case of u; = 1(B)as, are shown in
the following theorem. The limiting distribution of N3, and Ng tests is the same as for the N} test. The

proof is a straightforward application of the proof of theorem 1 and is omitted.

Theorem 5 Let y; be the process (1) with p =1 and 6 = 0. Then, under Assumptions A, B, and C
(@) Ny 5w 2{W2L) +e [ (W)Y dr},
(i) N§ L a2 [w2) + e { e+ o (g} dr}]

Remark 2 The consistency of the tests can be established using the same arguments as in remark 1

3.2 Relation with existing tests

The N tests are closely related to the Pr tests in Elliott et al. (1996) and Elliott (1999). These Pr tests are
asymptotically POI tests at the specific alternative p = p., whereas N tests come from an approximation
of asymptotically POI tests around unity. Therefore, both N and Pr tests are alternative ways to use the
optimal theory to construct tests with high power when p is close to the null, although only the N tests
have an explicit prediction-error interpretation. When there are no deterministic components, these tests

(denoted as P2 and NO tests) verify, if p = 1,

P’%—N = CNI% + Op(l)a

PJQ-S = CNg + Op(l)a

where the subscript N or S is added to the Pp tests to distinguish the initial-condition assumption. The
extension of PJQ and tests NV to the case with deterministic components can be interpreted as replacing y;, in
the numerator of the statistics, with its detrended counterpart. The tests differ, however, in the detrending
method. Whereas in Pr tests, detrending is made by GLS under the alternative p¢, in N tests it is made

under the null. This detrending method gives N tests a clear interpretation in terms of prediction errors.

12



The N test is also related with the MZ, test, proposed by Stock (1990) (see also Perron and Ng, 1996,2000),

since it can be written that
MZ, = (E% - 1) (26)) 7. (24)

Therefore, the test also has information about the first and second derivatives of the Taylor expansion of the
asymptotically POT in the non-deterministic case. It can be seen from (24) that the MZ,, is designed assuming
Assumption Al. Under Assumption A2, these tests could have been written as MZ, = (Eg — 1) (2C?)—1,
instead of (24). Analogously, the MSB test of Stock (1990), based on Bhargava’s (1986) R, statistics (see

also Sargan and Bhargava, 1983; and Perron and Ng, 1996), can be expressed as
MSB = 4/C?. (25)

Similarly to Pr tests, Ng and Perron (2000) extend the MZ, and MSB tests to the case with deterministic
components by detrending by GLS under the alternative p.. The resulting tests are denoted by MZgLS and

MSBCLS | respectively.

Notice that, when d; = p, it has been proved here that an efficient use of the information leads to different
test statistics, depending on the initial conditions. Therefore, the classic unit-root tests that assume a spe-
cific assumption on the initial values need not have comparable performances under different assumptions.

However, when d; = p + 6t, this comment does not apply.

4 Modified tests with predictors based on a local alternative

The previous section shows how the prediction-error approach leads to (asymptotically nearly) efficient tests
in the vicinity of unity. This section also uses the prediction-error interpretation to modify the proposed
statistics, to achieve greater power at alternatives far from the unit circle. The modified statistics use pre-
dictors constructed under a fixed local alternative instead of under the null of a unit root. It should be noted
that the information regarding the alternative p. has already been used in the definition of the N tests in
the last section. This information is summarized in the parameter c of the statistics (19) to (22). In this

section, the information of this local alternative is extended to the predictors also. All previous tests have

13



greater empirical power with this approach. The best performance is obtained by the modifications of the

N tests (denoted as NCLS tests). Our attention, therefore, is restricted to these tests.

We suppose that the process follows the model (1) with ¢(B) = 1. Under the null hypothesis of a unit
root, the h-steps ahead prediction of y¢ 4 from y; is §i1n;e = 6h + ye. Test statistics proposed in previous
sections use this predictor. It is now considered that the predictor assumes that the process is nearly
nonstationary with p = p.. Therefore, the new predictor is Urine = AO(1 — phy + 8t(1 — phy + 6h + phy,
where ¢ and é¢ are obtained by GLS estimation using the covariance matrix Qn(pc) or Qs(pe). In the
nonstationary case, these estimators can also be obtained by regressing [y1,(1 — pcB)yz, ..., (1 — pcB)yr] on

[21,(1 — pcB)2a, ..., (1 — p.B)zr], where 2, = 1 if d; = p and 2z, = (1,t) if dy = p + 6t. In the stationary case,
1/2

125,

the same procedure can be used, but y; is replaced with (1 — p?)!/2y;, and z; is replaced with (1 — p?)

We denote v} = y; — 4€ and y] = yp — i€ — 6°t. Then, the empirical prediction error of forecasting yi L from
Yyt can be expressed as y;’, — th't Ypih — phytt if dy = s or yp, ), — Urnpe = Yien — oyl if dy = p + 6t.

In the nonstationary case, the modified N test statistics are:

T— 2
NGLS—u _ W= pETW)® | Y sl — el

N 5 (26)
Zt:Q(yt —Yt-1) TZt o (Yt — Yt—1)?
and
T T T
NGLS—T _ D=2l — pe 13!1) 97
N - T 2" ( )
TZz:z(yt Yt—1 — 5)
In the stationary case, the modified N test statistics are
NGLSk _ (v — P2 M) + (U — P o) Zt 2(y — P2+ 3 W — Ay (28)
2 Zt:Q(yt ~Yi-1)? 2T Zt:Q(yt —Yt—1)?
and
T T T
NgLS—T — Zt:Q(yt - t lyl) (29)

TZ?:z(yt —Yt-1— 5)2-
The motivation for these modified tests is clear. If the process is such that p = p, it can be expected that
the numerators of the NG9 tests are smaller than those based on a misspecified random walk predictor,
as in N tests, and, hence, it is easier to reject the null of a unit root. Besides, it is also reasonable to
foresee a similar effect if the process is such that p =~ p.. This modification, however, can alter the limiting

distributions, as stated in the following theorem.
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Theorem 6 Let y; be the process (1) with p =1 and let p. = 1 —c¢/T. Then, under assumptions A, B, and

G,
@) N D 2 W) e fg (W)Y dr},
(i) NGLS—T 4, 2{[01 (Ue(r }er}
(i) NGHSH L 2%{[{% ¥+ (W] +e [ fo IWE) 2 dr + f3 (W)Y ar] }
(iv) NEEST L k2 { [H{Ke(r) dr},
where

Us(r)y =W(r) —rb, b= AW(1) + 3(1 - \) /1 rW{r)dr,A=(1+4+c¢)/(1+c+ 02/3);
Jo

WE(r) = Vi(r) — e TVE(0), V() = W) — B, 6 = {1/(2 + 0)} {W(l) = W(r)dr} ;
Wh(r) = V(1 — ) — e V()

K(r) = Vg (r) —e V5 (0), Vg (r) = {W(r) - G5 —rfi},

83 2+2  cHc2)2 W (1) + ¢ [{ W(r)dr
67 c+c?/2 1+c+c?/3 A+ )W)+ [} rW(r)dr

5 Finite sample performance. AR(1) case

This section reports on a Monte Carlo experiment, for the AR(1) case, to compare the empirical power of
the N and NCLS tests with some others that appear in the literature. The main conclusion of this section
is that the proposed NGLS tests, based on prediction errors, have empirical powers very close to those of
the POI tests, used as a benchmark. As a secondary result, we conclude that the results of Section 3 can be
used to explain the relative behaviour of the competing tests. Elliott et al. (1996) showed that, in absence
of deterministic components, currently used tests (apart from the LBI test) have asymptotic power func-
tions very close to the asymptotic Gaussian power envelope. However, their performance in the presence of
deterministic components can be very different, even asymptotically. Therefore, only processes with some

deterministic component are considered.

The proposed tests are compared with the pivotal Tpg, proposed by Dickey and Fuller (1979); the Pr
tests and TgLs tests, proposed by Elliott et al. (1996) for the nonstationary case, and Elliott (1999) for

the stationary case (denoted by @Qr and DF-GLSu, respectively, in Elliott, 1999); the weighted symmetric
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estimator tests (7w ), proposed by Park and Fuller (1995) (see also Pantula et al., 1994; and Fuller, 1996);
and the MZ&ELS and MSBELY tests of Ng and Perron (1999). The MZSLS and MSB@LS tests have only
been developed for the nonstationary case, but they have been applied here to the stationary case using the
corresponding covariance matrix in the GLS detrending model. The asymptotically POI tests (Sg(p) and
Sn(p)), where the true parameter p is used as the alternative, are also included as a benchmark. For the
sake of clarity, the subscript N is added to those statistics that use GLS estimation with the covariance
matrix Qn(pc), and the subscript S when the matrix Qg(p.) is used. The Monte Carlo experiment was
conducted for sample sizes T = 50,100; but only 7' = 100 is reported. Conclusions are identical in both

sample sizes.

Critical values for some of the tests depend on the value of ¢ in p. = 1 — ¢/T. Since we are interested in
tests with high power in a real situation, the selection of ¢ is based on the empirical performance in finite
samples. Table 1 summarizes the selected value of ¢ for each test. To construct this table, critical values
for each test and a given value of ¢ were obtained from 100,000 replications of the model y; = y;—1 + a,
with @ ~ N(0,1) and y; = a;. Then, the empirical power was evaluated from 100,000 replications of the
model y; = pyi—1 + ay, with a; ~ N(0,1) and y; = a; in the nonstationary case, and y; = al/m in the
stationary case. The selected values of ¢ are those that provide empirical power closer to that of the Sy(p)
and Ss(p) tests for the set of values p = 0.97, 0.95, 0.90, 0.80. The critical values and empirical power of

POI tests are obtained, for each value of p, using a similar Monte Carlo experiment.

It can be observed in Table 1 that, in the nonstationary case, the values of ¢ for the Pr.y, Tgrs.n, MZS_LA?,
and MSBgLS tests agree with the values proposed by the respective authors, using asymptotic criteria. In
the stationary case, the values of ¢, proposed in Elliott (1999) for the Pr.g and 7¢rs.g tests, also take finite
sample performance into consideration and they agree with the values obtained in the present experiment.
There were no reported values for MZS_LSS and MSBELS tests in the stationary case. It should be noted,
however, that the values of ¢ for the MSBZL test are different from the remaining competing tests, whereas
in the nonstationary case, they coincide with those of Pr.y, T¢rs-nv, and MZSLNS tests. The NﬁLS test is

also included in the stationary case because of its excellent performance in that setting. This NG5 test is

always calculated as in (27) and the estimation is made with the matrix Qn(p.). To facilitate comparison,
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the N tests use the same values of ¢ as the NCLS tests.

[Table 1 about here]

Finite sample critical values for DF tests are in Fuller (1996). Finite sample critical values for 7¢rg.y tests

(linear trend case) and Pr tests are in Elliott et al. (1996) for the nonstationary case. Finite sample critical

values for the remaining tests have been obtained through 100,000 Monte Carlo replications. All these

critical values, for T = 100, can be found in Table 2. Tables 3 and 4 show the empirical powers of the

competing tests. From the tables, we observe the following:

. As suggested by the asymptotic results, the N test has high power (similar to the benchmark) when

the alternative is close to the unit root (p lower than 0.9). For smaller values of p, however, this test

tends to have lower power than the benchmark.

The N tests are, in general, surpassed by the N¢I¥ tests. These NGL9 tests have empirical power
very close to the benchmark, both for the stationary and nonstationary cases. Although NJ(\;;LS was
constructed to have high power for the nonstationary case, it also has very high power for the stationary

case.

The NG5 Pr, and MZGL¥ tests have similar behaviour, with empirical power identical or very close

to the benchmark.

The MSBEYLS test has lower power than the N6LS| Pr. and MZSLS tests for the case with d; = p,
but it has similar performance when d; = p 4 6t. This result is in accordance with the asymptotic
theory. As can be seen in (25), the MSBCZS test only uses the information of the second derivative of
the Taylor expansion of the asymptotically POI test. This information might be enough to construct
an efficient test if d; = ;; + 6t (see theorem 4). When d; = p, however, more efficient tests might need

the use of both first and second derivatives (see theorems 2 and 3) as N¢LS | Pr, and MZ§%S do.

The asymptotic results of Section 3 also help to explain the relative behaviour of the tests based on
least squares, iy and 7grLs. When d; = p, Table 3 shows that the 7y test has better performance

than the 7gLs test in the stationary case, but is worse in the nonstationary case. This result can
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be explained by the different efficiency (near the unit root) of the information in each case shown in
Section 3. In the stationary case, it has been seen that an efficient use of the information leads to the
use of the series, both in direct and reverse order, as 1y does. On the other hand, in the nonstationary
case, it would be more efficient to use only the series in direct order, just as 7qrs does. This result
suggests that a modification of the 7qpg test, based on the use of a symmetric estimator, could improve

its performance in the stationary case.

6. Regarding the case d; = p + 6t, it has been seen in Section 3 that both the stationary and the non-
stationary cases use the same nearly-optimal test. This means that, in the presence of a deterministic
linear trend and as far as unit root detection is concerned, the series in reverse order contains the same
information as in direct order. This can explain the fact that the performances of ry and 7grs are

very similar in this setting.

[Table 2 about here]

[ Tables 3 and 4 about here]

6 The general ARMA case

This section extends the proposed tests to a general ARMA case. For the sake of brevity, only NGLS
tests are considered. The extension of the proposed tests requires the consistent estimation of x?, where
k2 = w202, with w? = 02(1)2. As a consistent estimator of 02 we can use 62 = Z?ﬁ(yt —y:21)%/T if
dy = puor 5% = Z?:z(yt —yi_1 —6)2/T if d; = p+ 6t. Tt can be seen that the numerator of 62 is part of the
NGLS test statistic. Therefore, the generalization to a general ARMA case is straightforward. For example,

the generalization of NSLS_“ is

— T —
neLs— _ Wr—pe i) Sa i — ot tyl)?
N T2 T202 ’

(30)

with &2 a consistent estimator of w?. In the same fashion, the remaining statistics of previous sections can
be generalized. A second option for the extension to an ARMA case would consist of also incorporating the
information of the model into the predictions in the numerator of the test statistics. For example, if u; is an

MA(1), and considering d; = 1, and a; = 0 for ¢ < 1, the prediction of y/* from the first observation ¥} would
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be Qﬁl = p2(pc — é)y‘l‘, with 6 an estimator of 9, instead of pf~ly} used in (30). A limited experiment
has revealed that this second approach does not have better empirical performance than the previous one.

Therefore, for the sake of brevity, further details are omitted.

6.1 Finite sample performance

The finite sample properties of N¢&9 Pp. MZgLS, TaLs, and Ty are compared. The model considered is y; =
pYi—1 +ar — Bay_1, where a; are independent, identically distributed, standard normal errors. Experiments
have been devised for both the nonstationary case (y; = a;) and the stationary case, with sample sizes
T = 100. In the stationary case, and for p < 1, a set of 50 initial observations were generated and discarded
to avoid the effect of initial values. The selection of the autoregressive truncation lag k for 7¢rs and mw
has been made with the BIC and also with the MIC procedures, proposed in Ng and Perron (2000). The
MIC procedure is designed to diminish the well-known size distortion in the presence of MA components.
The remaining competing tests need the estimation of w?. In the literature, there are several well-known
estimators of w?. The most popular is the autoregressive estimator of the spectral density at frequency
zero, defined as @4 = 645(1 — Z?Zl (2)}-‘)‘2, where 6%y is the residual variance obtained from the OLS
estimation of Ay, = d; + ayi—1 + Z?:l ¢;Ayi—j + €. There are also several procedures for the choice of
the truncation lag k (see, e.g., Ng and Perron, 1995, 2000). In this experiment, we consider a modification
of this estimator, proposed in Ng and Perron (2000), involving detrended data from using local-to-unity
GLS. This estimator of w? is @2, s_ 45 = 645(1 — Z?:l (f)’;)‘?, where 6% 5 is the residual variance obtained
from the OLS estimation of Ayf = ay;_; +Z§:1 @7 Ay;_; + vy; where yi are GLS detrended data using
pe=1—¢/T, with c=7if d, = y, and ¢ = 13.5 if d; = p + ét. Ng and Perron (2000) show that @2, ¢ ,p
improves the performance of unit-root tests with respect to “A%LS—AR' The choice of the truncation lag k in
@2 s_ar was also made by the BIC and MIC. When the BIC is used, k is restricted to be 3< k < 8, as in
Elliott et al. (1996). For the MIC, the restriction 0< k < 10(T'/100)/4 is used, as in Ng and Perron (2000).

In this paper, we also consider the estimator, proposed in Sdnchez (2000), defined as

2 (1=37,6,)°

~9 .
WARMA =0 (1 p 1&)2-
)= J
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where éj, #; are estimates from the error correction regression

P q
Ayf = ayi 1+ GAYj +Ha+ Y biar . (32)

j=1 j=1
The advantage of d)i R4 s in the possibility of fitting an ARMA model, whereas d)i g and Qi s AR Should
always rely on autoregressive approximations. There are, besides, many procedures for the identification
of ARMA models (see Koreisha and Pukkila, 1995; and references therein). As shown in Sénchez (2000),
the possibility of estimating an ARMA model significantly reduces the size distortion induced by moving
average polynomials. The estimation method is exact maximum likelihood when d; = g and marginal
likelihood when dy = p + ét. The computations have been done with the NAG routine G13bef. Since the
estimation methods are nonlinear, a set of initial values were needed. The performance of the tests when
f < 0 is very robust to these initial values. However, when 6 > 0, the tests are highly sensitive to the initial
values. Sanchez (2000) analyzes several sets of initial values, both random and fixed. The best performance
is obtained with initial values close to the unit circle for both parameters: p and 6. The initial values used
in this experiment are: pg = 0.95 and 6y = 0.90. For each parameter configuration, all tests are based on
the same seeds. Empirical size and power, based on 10,000 replications, are summarized in Tables 5 and 6.

From these tables, we observe the following:

1. The advantage of the estimator d)i ras4» shown in Sanchez (2000), is also observed with the proposed
NCLS tests. Tests based on BIC tend to have inflated size, specially at § = 0.8. Tests based on MIC,
apart from 7Ty and Tgrg, have reasonable size at 8 = 0.8 in the stationary case. However, they are
undersize at § = 0 and can have inflated size at negative values of §. Besides, tests based on MIC can

suffer from a severe loss of power when compared with the AR(1) case.

2. The NﬁLS test has similar performance to Pr test and, in the stationary case, to V. ELS test. These
tests also have better performance than the remaining competing tests. As mentioned above, the
NGLS and Pr tests can be considered as alternative ways to use the optimal theory to build efficient

tests, although only NGZ5 tests have a prediction error interpretation.

We conclude that, as expected from the intuition, the use of prediction errors allows the construction of
unit-root tests with excellent properties of size and power, even with large moving average roots. These two

characteristics: intuitive interpretation and good performance, make the NL9 test of potential interest to
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practitioners. A more detailed set of critical values can be found in Table 7.Since the performance of NGLS

and N§S is similar only critical values for NG are supplied.

[Tables 5 to 7 about here]

7 Concluding remarks

This paper shows a new approach for unit root detection. This so-called prediction-error approach exploits
the intuitive relationship between the long-run behaviour of a process and the presence of a unit root, and

shows the link between our intuition and the optimal detection of such a root.

From a theoretical point of view, this prediction-error approach appears very useful to understand how
(nearly) optimal tests use the information. It is seen in this paper that nearly-optimal tests in the vicinity
of the null can be constructed with the prediction errors of a predictor that assumes the presence of a
unit root, where the predictions are evaluated from the origin of the series. When the series is covariance-
stationary under the alternative, a more efficient use of the information (in the vicinity of the null) is
obtained if the time-reversal series is also considered. In that case, both ends of the series are used as origin

of the predictions.

From a practical point of view, the proposed approach allows the construction of tests for a general ARMA
setting with excellent properties of size and power. These NG5 tests are based on a predictor constructed
under a local alternative. A Monte Carlo experiment for the ARMA(1,1) model shows that the NGL5 tests

have an excellent relative performance among a set of tests currently in common use.

The present approach, not only have an intuitive interpretation, but good theoretical and empirical proper-
ties. Then, it can be used to design nonstationarity tests under different circumstances than those exposed
here. Outliers robust unit root tests, or nonparametric tests, could be some examples of promising directions

for future research.
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APPENDIX

Proof of theorem 1:

(i) The limiting distribution of C¥' is a straightforward application of the functional central limit theorem

(FCLT) to S; = 23':2 uj.

(43) To obtain the limiting distribution of C7, it is convenient to rewrite y; — y; — 6(t — 1) = z; — 2 —
(6—6)(t—1).Since §=(T -1 yr—y) =6+ (T -1)"" ST, u;, it can be shown that VT(6—6) LR
op(1)W(1). By the FCLT and using T‘(k‘H)ZtT:l th — (k+17, k=0,1,... as T — oo, it is veri-
fied that: T—1/2 {yt =6t — 1)} =T/ {mt 2 — (58 (t— 1)} 4 (W) —r W)} = wWT(r).

Then, from the continuous mapping theorem (CMT), the distribution can be obtained.

(i3i) By the FCLT, T-Y2 (yr_; — y7) 4w (Wl —r)—=W(Q)} = wW3(r). From the CMT, the limiting

distribution is obtained. O

Proof of theorem 2:

The GLS residuals of the numerator of Sy are n,; = y: — fin, where

+ (1= 0) > 1o (ye = pyi1)®
: l+(T—1)2(1—p)2 —. (A1)

AN =
Likewise, the residuals of the denominator of Sy are #1; = y; — fu1, where [i; is the GLS estimator using
Q3 (1). Then, fi1 = y1. The first derivative is S (1) = (SC’IQEI(I)ﬁq)_l 3 (X3 (0)%N) /8p‘p=1, where
it can be verified that x|Q3}(1)%; = Zthg(yt — 4-1)%. Then, the numerator of S (1) can be written
as & (KOt (0)) /p],_, = 2 (9% /9p) 05! () |_, + R (9251 (0)/0p) K| _, - Since (9% /0p) =

— (Oftn/0p) €'and also

Oy (PN, =0, (A.2)

it can be shown that 9 (%) Q' (P)xN) /8p‘p:1 = Xy (39;,1 (p)/0p) iN‘p:I . From (7) it can be shown that

905 ()

9 =2L'L — (L + L") = Q3'(1) — diag(0, ...,0,1), (A.3)

p=1

Al



where diag expresses a diagonal matrix. Also, from (A.1), it holds that Xy (1) = (y: — y1). Therefore, it

can be obtained that Sj (1) =1 — {Z;‘F:z(yt - yt_l)z} (yr — y1)%. For the second derivative, it can be

written that

82 O (p)R = %%y 1, . 0%’y 002y () OXy 8)‘(1\/ _, 0% D) .

(A.4)

Applying (A.2), the first term in (A.4) is null at p = 1. Also, by (A.3) and applying that dfin/0pl,=, = (y1—
yr), it can be obtained that 4 (9%}y/9p) (05" (p)/9p) )A(Nipzl = —4(yr—y;)?. Similarly, since e'Qy (1)e = 1

it holds that (9%/y/9p) Q' (p) (0%n/Op) | =1 = (yr —y1)?. To solve the last term in (A.4), it can be applied

that
QQ—I
Ty ) _ 2L'L, (A.5)
dp?
p=1
and, therefore, &}y (02Q3} (p)0p?) }A(N‘pzl =2 Z;‘P:_Ql (y: —y1)? and the theorem holds. O

Proof of theorem 3:

The GLS residuals of the numerator of Sg are Zg;(p) = y: — jts. Then,

QA=pu+0-pyr+350=p%  n+ur+X, l(l—p)yt-

B T Ao (M- -pF  2+(T-2(-) (A.6)
Following the same arguments as in theorem 2, it holds that
Q5! (p)xs|,_, = 0. (A7)
Also, by (9), it holds that
an—;(p) = 2L'L — (L + L')—2ee'= Qg'(1) — diag(1,0,...,0,1). (A.8)
p=1

-1
Then, it can be obtained that Sg(1) = 1 — {2 ZtT:z(yt —yt_l)z} (yr — y1)?. Likewise, in the second

derivative, it can be obtained that

2
. 0°Xs

5 200~-1
K05 (p)ks = 2 O%s ., 905 (o).,

s 8le(p) 5 8x5
5 Q5! (p)%s 9p 8—pxs+ 3 Q31 (p) 3 + X oS (A.9)

Similarly to the nonstationary case, it can be obtained that the first term in (A.9) is null at p = 1. Applying

(A.8) it can also be seen that the second term in (A.9) is null in p = 1. Since e'Q5'(1)e = 0, the third term
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is also null at unity. To solve the fourth term in (A.9), it can be verified that

920!
—;fp N 2 o1L - 2ee’ = diag(0,2,2, .,2,0), (A.10)
P p=1
Hence, X (0°Q5" (0)0p%) %s|,_y = (1/2) 2055 (we —91)? + (1/2) i (yr — ) = i (e ~y1) (ur —we),
and the theorem holds. O

Proof of theorem 4:

The proof is given firstly for the stationary case and then for the nonstationary case. The GLS residuals
in the numerator of Sg are Z5;: = yr — fi, — 5pt, where i, and 5p are the GLS estimator using the matrix
le(p). Likewise, the residuals of the denominator are £1; = y; — fi; — 6t, where i and 6 are the GLS
estimator using the matrix Q~(1). Then, iy =y —é and é = (yr — y1)(T — 1)~L. It can, then, be verified

that X{Q1(1)x; = EtT:Q(yt —y1_1 — 6). The numerator of S%(1) can be written as

0 0114 0% )1 < .99 (p)
%X’SQS (p)Xs - =2 o Q5 (p)ks - + X oy X8 (A.11)
p=1
After some algebraic manipulation, it can be obtained that
. d3n1 — d2n2
L - D
5;) ding — (1 - p)dgnl ’

D
where n1 = yr+y1+(1—p) 3205 g n2 = y1(1-20) +{T — (T = Dp}yr+(1—p)? Y15 tye di = (14+p) +
(T=1D)(1=p),dy = (14p) + 3o {t = (t = Lp}, ds = (1=p) + 30, {t = (t = 1)p}*, D = dudz —(1—p)d3.
It can then be obtained that, when p =1, fis|p=1 = 1 — (T = 1) (yr —u1), 5p|p=1 =(T-D"Yyr—wn) = 8,
Ofio/Bplp=1 = (yr — 1) (T/4 = 1/2) — (1/2) Y21 wt, and 88,/plp= = 0. Then, when p = 1, Zgulp=1 =

Yyt —y1 — O(t — 1). After some algebra, it can be seen that (8%'s/dp) Q31 (p)| (0,0, ...,0). Then, the first

p=1""
term in (A.11) is null. Applying the result (A.8), it can be seen that the second term in (A.11) is equal to
one. For the second derivative, we can make a decomposition similar to (A.9). Following the same arguments
as in the first derivative, it can be seen that the second and third terms of this decomposition are zero. It

is easy to verify that the term (825(’S/8p2)§2§1(p)‘p is a vector with all elements equal to zero, except for

=1
the first and the last one. The term Xg|,~1, however, is a vector with first and last elements equal to zero.

Therefore, the first term in this decomposition is also null. By (A.10), we obtain that the fourth term of

- 2
this decomposition is 2 ZtT:—Ql {yt -y —6(t — 1)} and, then, the theorem holds in the stationary case. In
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the nonstationary case, we also have a decomposition like (A.11). The GLS residuals in the numerator of
SN are Tyt =Y — flp — 5pt, where /i, and 5p are now the GLS estimator using the matrix Q;,l (p). After

some algebra, we obtain that

bsmy — bomy

™
©

F
bymg —bomy |
F

=2}
™

where m; = (1 — p)yr + (1 — p + p®)y1 + (1 — p)? ZtT:_gl v, mo = (1 — p)2y1 + {T — (T - Vp}yr + (1 -
PSS b = 1+ (T = DA =2 b = 1+ (1= ) {(T =)+ (1= ST ), by = (1= ) +
Zthz {t— (t—1)p}*, F = bibs — b3. Then, it can be obtained that, when p = 1, fi,|,=; = y1 — (T —
D)~ yr — y1), plp=1 = (T = 1)"Yyr —w1) = 8, 8f1,/0plp=1 = 0, and 88,/dp|,=1 = 0. Then, when p = 1,
INtlo=1 = Y —y1 — 5(t — 1). Therefore, 0%y /0p|p=1 is a vector of zeros. Using the same arguments as
in the stationary case, we have S}, (1) = 1. For the second derivative, we have a decomposition similar to
(A.4), where it is easy to check that the second and third terms are null. It can also be verified, in this
nonstationary case, that (8°x)y/9p?)Q5} (,o)|p=1 is a vector with all elements equal to zero, except the first
and the last ones, and that Xy|,—; is a vector with first and last elements equal to zero. Therefore, the
first term of this decomposition is null. By (A.5), we obtain that the fourth term of this decomposition is

. 2
2 ZtT:_Ql {yt —y1 —6(t — 1)} and, then, the theorem also holds in the nonstationary case. O

Proof of theorem 6

(7) In the NgLS"" statistic, y}' = y, — [i°, where {i° is estimated by GLS using the matrix Qy'(oc),

pec = 1 — ¢/T. From Elliott et al. (1996), it can be obtained that 7~1/2y} A wW (r). Then, applying that

lim7_,e0 pL = €7¢, limp_ pg = = e "¢, and the CMT, it can be verified that T4 2( —plI- 1y’1‘)
KW ()Y and T2 ok — oy 5 w72 [ W) dr ]
(i7) In the NGLS T test, yl = ys — fi° — 6°t, where the estimation is by GLS using the matrix Oy Y(pc). From

Elliott et al. (1996), T—/2y7 % wle(r). Tt can be checked that U°(0) = 0. Then, T-2(y] — pt~ 1y{)

wUS(r). From the CMT, T—26,2 "7, (y7 — pb~ 1yI) K2 UO {Ue(r)}2dr

(4i7) In the NgLS_“ test, y' = y — f1°, where ji° is estimated by GLS using Q3'(pc). From Lemma 3 in

Elliott (1999), T~42y* 4 WV (r). Then, T-Y2(yk — pT=1y") & w {VF(1) — eV(0)} = wWg(1) and
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T2yt — pT=1yk) 4w {V5(0) — e™V{' (1)} = wW§(1). Therefore, from the CMT,

(v — pIyl)? +(y"—ch 'yr)? 4 1

2762 157 2 [we) + (W)

8o

Similarly, it can also be verified that T—1/2(y¥ —pi~ Ly L (Vi (r) — e VEH(0)} = wWE(r) and T~ Y/2(yh_,—

AL ) S w V(1 = 1) — e TV (1)} = wW(r). Hence,

Yooyt =AW W ) 0 /.1 7% 2 ! 2
= S k2 E(r)} d Wg(r)}odr| .
27262 * 27262 "2l WEr) T+_/O {Wa(r)) dr

(7v) In the NgLS_T tests, y7 = y; — fi° — 6°t, where the estimation is by GLS with Qz'(pc). From Elliott
(1999), T—1/2y7 < wVg (). Therefore, T=Y2(y] — pt~14]) < w{Vy(r) —e V7 (0)} = wK®(r). Then,

T=2672 T y7 — o y])2 5 w2 [ {Ke(r)} dr. O
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Table 1: Selected values of ¢ for different unit-root tests
Stationary case
NGES NELS Prg  1ors.s MZSLE MSBSES
di=pt 10 135 10 10 10 7
di=p+6t 10 20 10 10 10 7
Non-stationary case
NGES Pry  Tors.y MZS5 MSBGES
di= 1+ bt 8 13.5 13.5 13.5 13.5

Table 2: Empirical 5% critical values. T = 100. 100,000 Monte Carlo rep.

Stationary and Non-stationary case
Tw__TDF
dt: 14 -Z. -4
di= p+ 6t -3.28 -3.45
tationary case
Ng  NSLS Ny NGLS pro MZCLSMSBSLPorss
di= p 77605 0. ) . 71 -11.20 O. )
di= 11+ 6t 0.0380 0.0269 0.0380 0.0268 2.94 -16.72 0.1736 -3.21
Non-stationary case
Ny NSLS Pry MZSLEMSBSG crs.n
di= 0.5472 0.45817 311 -8.89 0.2286¢ -2.14
di= p+ 6t 0.0380 0.0305 5.64 -15.76 0.1759 -3.03
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Table 3: AR(1) case. Empirical power at size 5%. T = 100. d; = . 100,000 rep.

Stationary case

p | Ss(p)| Ns NS"LS Ny N](\’,'LS Tw Pr.s Tgrs-s MZS_LQSMSB‘%'LFDF

0.97] 0.12 |0.12 0.12 0.11 0.12 0.12 0.12 0.09 0.12 0.11 0.08
0.95| 0.20 |0.19 0.20 0.18 0.20 0.20 0.20 0.15 0.20 0.19 0.13
0.90( 0.52 [0.45 0.52 0.43 0.52 0.52 0.52 0.39 0.52 0.50 0.34
0.80| 0.97 |0.82 0.97 0.76 0.97 0.97 0.97 0.92 0.97 097 0.87
Non-stationary case

p [Sw(p) [Ny NG™ 1w  Pry Ters.w MZS5 MSBY rpp

097 017 [0.17 0.16 0.15 0.17 0.17 0.16 0.16 0.08
095 029 |0.29 0.29 0.26 0.29 0.28 0.28 0.27 0.11
0.90| 0.67 |0.65 0.67 0.61 0.66 0.66 0.66 0.64 0.29
0.80| 0.98 |0.93 0.98 0.98 0.96 0.98 0.98 097 0.86

Table 4: AR(1) case. Empirical power at size 5%. T = 100. d; = p + 6t. 100,000 rep.

Stationary case
P Ss(p) NS Ng’LS N,%"Lb Tw PT_5 TGLS MZ%_%‘SMSB%’L)SDF
0.97| 0.07 |0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06
0.95| 0.10 |0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.09
0.90| 0.26 |0.24 0.25 0.25 0.25 0.26 0.24 0.26 0.26 020
0.80| 0.78 |0.64 0.77 0.77 0.78 0.77 0.76 0.78 0.78 0.66
Non-stationary case
p |Sv(p) [Ny NG 1w  Pry Ters.y MZS5 MSBF'7hr
0.97| 0.07 |0.07 0.07 0.07 0.07 0.07 0.07 0.07  0.07
0.95| 0.11 |0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.08
0.90| 0.30 |[0.29 0.30 0.29 0.30 0.30 0.30 0.30 0.19
0.80| 082 |0.72 0.82 0.81 0.82 0.82 0.82 082 0.64
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Table 5: Empirical size and power for 5% level. T=100.

(1 — 6B)a¢. Stationary case. 5000 rep.

Model: (1 — pB)(y: — dt) =

Model Test, dt =pu dt =L + 5t
p 4 [4
ARMA -0.8 -0.5 0 0.5 0.8 -0.8 -0.5 0 0.5 0.8
NGLS 1.00 0.058 0.059 0.057 0.037 0.050 0.069 0.068 0.059 0.029 0.066
N 0.90 0.571 0.568 0.526 0.286 0.228 0.301 0.297 0.244 0.103 0.159
NGLS 1.00 0.059 0.060 0.058 0.036 0.049 0.068 0.067 0.058 0.028 0.065
S 0.90 0.571 0.568 0.518 0.261 0.220 0.301 0.300 0.245 0.103 0.158
MZGLS 1.00 0.072 0.073 0.072 0.044 0.055 0.098 0.097 0.087 0.041 0.073
a 0.90 0.623 0.619 0.574 0.314 0.238 0.407 0.398 0.335 0.137 0.171
P 1.00 0.055 0.056 0.056 0.037 0.051 0.061 0.064 0.058 0.030 0.068
T 0.90 0.564 0.563 0.521 0.287 0.232 0.299 0.294 0.250 0.110 0.164
AR{MIC)
NGLS 1.00 0.085 0.050 0.033 0.041 0.056 0.088 0.051 0.028 0.027 0.059
N 0.90 0.295 0.273 0.270 0.235 0.296 0.137 0.107 0.077 0.097 0.205
NGLS 1.00 0.087 0.048 0.033 0.036 0.050 0.089 0.049 0.028 0.028 0.061
S 0.90 0.277 0.255 0.244 0.210 0.279 0.141 0.106 0.077 0.096 0.205
MZGLS 1.00 0.096 0.060 0.042 0.045 0.058 0.115 0.073 0.043 0.045 0.077
a 0.90 0.317 0.303 0.300 0.251 0.311 0.193 0.160 0.128 0.149 0.233
P 1.00 0.080 0.047 0.034 0.039 0.055 0.079 0.048 0.026 0.029 0.065
T 0.90 0.294 0.270 0.263 0.237 0.301 0.141 0.112 0.083 0.111 0.218
T 1.00 0.027 0.024 0.021 0.032 0.082 0.030 0.029 0.028 0.033 0.109
GLS 0.90 0.169 0.173 0.192 0.212 0.401 0.118 0.119 0.127 0.142 0.299
T 1.00 0.020 0.024 0.022 0.036 0.106 0.007 0.016 0.024 0.045 0.181
w 0.90 0.132 0.181 0.241 0.273 0.515 0.033 0.060 0.121 0.169 0.449
AR(BIC)
NG’LS 1.00 0.142 (0.106 0.086 0.086 0.357 0.255 0.166 0.127 0.095 0.375
N 0.90 0.580 0.556 0.536 0.528 0.894 0.479 0.414 0.340 0.294 0.711
]VGLS 1.00 0.150 0.1 0.085 0.085 0.351 0.255 0.169 0.126 0.094 0.373
S 0.90 0.582 0.5 0.526 0.503 0.889 0.479 0415 0.341 0.293 0.706
]\[ZGLS 1.00 0.158 0.127 0.099 0.099 0.391 0.293 0.207 0.157 0.131 0.455
a 0.90 0.609 0.597 0.574 0.561 0.924 0.542 0.487 0.421 0.382 0.785
P 1.00 0.139 0.104 0.085 0.085 0.359 0.241 0.155 0.122 0.101 0.388
T 0.90 0.575 0.553 0.532 0.529 0.904 0.473 0.417 0.341 0.308 0.727
T 1.00 0.065 0.052 0.052 0.074 0.437 0.079 0.059 0.049 0.083 0.564
GLS 0.90 0.348 0.331 0.313 0.442 0.965 0.245 0.220 0.189 0.303 0.896
1.00 0.067 0.037 0.051 0.122 0.690 0.076 0.033 0.052 0.148 0.845
T™™W 0'90 0.410 0.346 0.456 0.749 0.998 0.242 0.148 0.211 0.495 0.995

The tests NGLS, Pr, and ]V[ZgLSuse the spectral estimator GJ%RMAwhen an
fitted, and the spectral estimator @éLS_ARwhen an AR approximation is used.
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Table 6: Empirical size and power for 5% level. T=100.

(1 — 6 B)a;. Non-Stationary case. 5000 rep.

Model: (1 — pB)}(y: — di) =

Model Test di = p dy = p+ 6t
p 4 [
ARMA 08 05 0 05 08 08 -05 0 05 08
NGLS 1.00 0055 0057 0055 0042 0050 0064 0.064 0.060 0.031 0067
N 090 0732 0.717 0.643 0.330 0.232  0.352 0.343 0.285 0.123 0.164
MZGLS 100 0060 0.063 0062 0.045 0053 0088 0090 0.082 0.039 0.072
@ 0.00 0758 0.741 0.670 0.353 0.236  0.437 0.428 0.359 0.150 0.174
p 1.00  0.055 0.056 0.057 0.043 0.050 0.062 0.063 0.059 0.031 0.068
T 0.90 0.747 0.732 0.649 0.347 0.231  0.351 0.344 0.287 0.126 0.165
AR(MIC)
NGLS 1.00  0.085 0.050 0.033 0.041 0.056 0.088 0.051 0.028 0.027 0.059
N 0.90 0295 0273 0270 0.235 0.296 0.137 0.107 0.077 0.097 0.205
MZGLS 100 0096 0060 0042 0.045 0058 0115 0.073 0043 0.045 0077
@ 0.90 0317 0.303 0.300 0.251 0.311 0.193 0.160 0.128 0.149 0.233
P 1.00  0.080 0.047 0.034 0.039 0.055 0.079 0.048 0.026 0.029 0.065
T 090 0294 0270 0.263 0.237 0.301 0.141 0.112 0.083 0.111 0.218
- 1.00  0.036 0.038 0.031 0.039 0.079 0.034 0.033 0.029 0.037 0.098
GLS 000 0358 0.279 0.357 0.279 0.263 0.143 0.146 0.147 0.159 0.221
- 100 0.020 0.024 0.022 0.036 0.106 0.007 0.016 0.024 0.045 0.183
w 090 0.175 0.232 0.299 0.209 0.522  0.042 0.066 0.129 0.173 0.441
AR(BIC)
NGLS 1.00  0.142 0.106 0.086 0.086 0.357 0.255 0.166 0.127 0.095 0.375
N 0.90 0.580 0.556 0.536 0.528 0.894 0.479 0.414 0.340 0.294 0.711
A[ZGES 100 0158 0.127 0099 0.000 0.391 0203 0.207 0157 0.131 0.455
14q 000 0.609 0.597 0.574 0.561 0924 0.542 0.487 0.421 0.382 0.785
P 100 0.139 0.104 0.085 0.085 0.359 0.241 0.155 0.122 0.101 0.388
T 090 0575 0.553 0.532 0.529 0.904 0.473 0.417 0.341 0.308 0.727
- 1.00  0.063 0.062 0.050 0.075 0.355 0.079 0.064 0.049 0.080 0.506
GLS 0.90  0.563 0.599 0.536 0.560 0.727  0.275 0.262 0.219 0.334 0.802
- 100 0.066 0.041 0.051 0.126 0.695 0.078 0.038 0.052 0.142 0.857
w 0.90 0.480 0.444 0.527 0.791 0.999  0.264 0.171 0.230 0.521 0.997

The tests NGLS, Pr, and ]\/[ZSLSuse the spectral estimator “:),%XRMAthn an
fitted, and the spectral estimator “:%'LS—ARWhen an AR approximation is used.
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Table 7: Critical values

Stationary case

Non-stationary case

T 1% 25% 5% 10% T 1% 25% 5% 10%
Ny Hwith ¢ = 135 Ny">™* with c = 8
25 0.4207 0.4943 0.5782 0.7081 25 0.2843 0.3418 0.4056 0.4993
50 0.4146 0.4987 0.5917 0.7318 50 0.2835 0.3486 0.4251 0.5440
100 0.4285 0.5249 0.6406 0.8045 100 0.2930 0.3699 0.4581 0.5988
150 0.4426 0.5518 0.6728 0.8587 150 0.2988 0.3787 0.4743 0.6268
250 0.4555 0.5770 0.7120 0.9284 250 0.3027 0.3920 0.4945 0.6650
500 0.4780 0.6105 0.7674 1.0180 500 0.3103 0.3989 0.5088 0.6928
oo 0.5165 0.6697 0.8551 1.1726 oo 0.3152 0.4120 0.5303 0.7301
NGES=T with ¢ = 20 NGES= with c =8
25 0.0221 0.0248 0.0277 0.0319 25 0.0253 0.0289 0.0326 0.0380
50 0.0204 0.0234 0.0266 0.0311 50 0.0231 0.0270 0.0311 0.0369
100 0.0201 0.0234 0.0268 0.0317 100 0.0221 0.0262 0.0305 0.0367
150 0.0201 0.0234 0.0272 0.0324 150 0.0219 0.0260 0.0303 0.0366
250 0.0199 0.0236 0.0276 0.0331 250 0.0217 0.0258 0.0302 0.0366
500 0.0203 0.0242 0.0282 0.0341 500 0.0215 0.0257 0.0302 0.0367
oo 0.0206 0.0246 0.0290 0.0354 oo 0.0212 0.0255 0.0299 0.0366
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