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Abstract 
 

Our companion article developed a clear conceptual framework of profit sharing between  two 

rival firms and studied the positive effects of this strategy on each firm's profit under the 

assumption that each firm decides unilaterally to give away voluntarily a part of its profit to its 

rival. This article relaxes partially this assumption by letting only one firm to share its profit 

whereas the other firm keeps its entire profit. 

Contrary to the previous article, we show that no firm wins by adopting such an opportunistic 

behavior. This suggests that profit sharing between firms is a win-win (dominant) strategy if both 

firms are involved and compete in prices. 
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Abstract

Our companion article developed a clear conceptual framework of pro�t
sharing between two rival �rms and studied the positive e¤ects of this strat-
egy on each �rm�s pro�t under the assumption that each �rm decides uni-
laterally to give away voluntarily a part of its pro�t to its rival. This article
relaxes partially this assumption by letting only one �rm to share its pro�t
whereas the other �rm keeps its entire pro�t.
Contrary to the previous article, we show that no �rm wins by adopting

such an opportunistic behavior. This suggests that pro�t sharing between
�rms is a win-win (dominant) strategy if both �rms are involved and compete
in prices.
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1 Introduction

In a companion paper (Waddle 2005b), we examined whether and how
sharing pro�ts may increase the pro�t of two �rms in a duopoly market.
Our companion paper1 focused on such a strategy where both �rms uni-

laterally decide to give away a fraction of their pro�ts to their rivals. The
purpose of this present paper is to relax partially this assumption and to
allow only one �rm to cede a part of its pro�t whereas the other �rm keeps
its entire pro�t and still receives a portion of its rival�s pro�t. In other terms,
we had before a two-side pro�t-sharing while we focus here on just one-side
pro�t-sharing2.
Contrary to the previous article, we show that no �rm (neither the devi-

ating �rm, let alone the loyal �rm) wins by adopting such an opportunistic
behavior. This suggests that pro�t sharing between �rms is a win-win (dom-
inant) strategy if both �rms are involved and compete in prices.
The article proceeds as follows. Section 2 presents the model. Section

3 centers on the second-stage of the game and shows that there exists an
unique NE in prices. Section 4 then turns to the �rst-stage of the game and
demonstrates the existence of an unique SPNE. Section 5 concludes with
suggestions for future research.

2 The model

We consider here a model similar to the one presented in our companion
paper except that we allow only one �rm to share its pro�t whereas the other
�rm keeps its entire pro�t and still receives a fraction of its rival�s pro�t.
As before, let two �rms 1 and 2 in a homogeneous market and suppose

that each �rm incurs a cost c per unit of production. The market demand
function is q = D(p) = 1 � p. We assume that �rms do not have capacity
constraints and always supply the demand they face. Therefore, the pro�t
function of �rm i is:

�i =

8<:
(pi � c)qi if pi < pj
1
2
(pi � c)qi if pi = pj
0 otherwise

i = 1; 2 (i 6= j)

1We refer to our companion article (Waddle 2005b) for a discussion of the relation
between our work and the literature.

2The terms one-side and two-side pro�t sharing are inspired by the one-sided, two-
sided or multi-sided markets where strategies such as "tying" is often used in at least one
platform.
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where qi is the quantity demanded faced by �rm i.
Let �1 denote the part of the pro�t that �rm 1 (the loyal �rm) wants

to share with �rm 2 (the deviating �rm) We suppose that �1 2 ]0; 1[.
Consequently, we can write the new pro�t functions P1(p1(�1); p2(�1)) and
P2(p1(�1); p2(�1)) (hereafter P1 and P2 ) of each �rm as:

P1 = (1� �1)�1(p1(�1); p2(�1))

Pi = �2(p1(�1); p2(�1)) + �1�1(p1(�1); p2(�1))

We consider a two-stage game whose sequences are thus de�ned. In the
�rst stage of the game, �rm 1 chooses �1. In the second stage of the game,
�rms select pi.

In the �rst stage of the game, for �1 �rms simultaneously solve:

Maxa1 P1 = (1� �1)�1

Max P2 = �2 + �1�1

In the second stage of game, for p1 and p2 �rms simultaneously solve:

Maxp1 P1 = (1� �1)�1

Maxp2 P2 = �2 + �1�1

3 Solving the second-stage of the game

To �nd the subgame perfect Nash equilibrium (SPNE), we begin by solving
subgames in the second-stage. Recall that, in the second stage, �rms are
looking for prices that maximize their pro�ts.

Proposition 1 Any prices (p1, p2) such that c < p1 = p2 � pm cannot be
NE in the second stage of the game
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Proof. (p1, p2) such that c < p1 = p2 � pm are not NE if and only if at
least one �rm wants to deviate from those prices by �xing a price p0i above
or below. In fact:

c � p1 = p2 = p � pm ) �1 = �2 > 0

�1 =
1
2
(p1 � c) (1� p1) = 1

2
(p� c) (1� p)

�2 =
1
2
(p2 � c) (1� p2) = 1

2
(p� c) (1� p)

P1 = (1� �1)�1 = (1� �1) 12 (p� c) (1� p)

P1 =
1
2
(1� �1) (p� c) (1� p)

P2 =
1
2
(1 + �1) (p� c) (1� p)

Since �rms�strategies are di¤erent, we have to study separately the de-
viation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (" > 0)() �1 = (1� p1) (p1 � c) > 0 and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c)

If p1 � pm(monopolistic price), then p1 = p� ".

For " very small3, P 01 ' (1� �1) (1� p) (p� c) > P1

P 01 > P1 ) Firm 1 would deviate. In that case, it is useless to check
whether or not �rm 2 will deviate. In fact, the deviation of one �rm is
enough to prove the non-equilibrium.

Conclusion: (p1, p2) such that c < p1 = p2 � pm cannot be NE in the
second-stage of the game.

Proposition 2 Any prices (pi, pj) such that c < pi = pm < pj cannot be
NE in the second stage of the game

3There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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Proof. (p1, p2) s. t. c < p2 = pm < p1 (c < p1 = pm < p2) constitute a
NE if and only if no �rm has interest to deviate from those prices by �xing
a price p0i above or below.

A:� c < p2 = pm < p1 ) �1 = 0 and �2 = (p2 � c) (1� p2) > 0

P1 = 0

P2 = �2 = (p2 � c) (1� p2)

Since prices p1 and p2 are di¤erent, we have to study separately the
deviation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (" > 0)() �1 = (1� p1) (p1 � c) and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c) > P1 = 0

P 01 > P1 )Firm 1 would deviate and therefore c < p2 = pm < p1 cannot
be a NE.

B:� c < p1 = pm < p2 ) �1 = (p1 � c) (1� p1) and �2 = 0

P1 = (1� �1) (p1 � c) (1� p1)

P2 = �1�1 = �1 (p1 � c) (1� p1)

Since prices p1 and p2 are di¤erent, we have to study separately the
deviation for both �rms. Let us check �rst for �rm 2. Suppose that:

i) p2 = p1 � " (" > 0)() �2 = (1� p2) (p2 � c) and �1 = 0

P 02 = �2 = (1� p2) (p2 � c) = (1� p1 + ") (p1 � c� ")

For " very small, P 02 ' (1� p1) (p1 � c) > P2
P 02 > P2 )Firm 2 would deviate and therefore c < p1 = pm < p2 cannot

be a NE.

Conclusion: Any prices (pi, pj) such that c � pi = pm < pj cannot be a
NE in the second-stage of the game.

Proposition 3 Any prices (p1, p2) such that p1 = p2 = c is NE in the second
stage of the game
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Proof. (p1, p2) s.t. p1 = p2 = c is NE if and only if no �rm has interest
to deviate from those prices to �x a price p0i above or below.

p2 = p2 = c) �1 = 0 and �2 = 0

P1 = (1� �1)�1 = 0

P2 = �2 + �1�1 = 0

Since �rms�strategies are di¤erent, we have to study separately the de-
viation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (p1 < p2 and p1 < c) ) �1 < 0 and �2 = 0

P 01 = (1� �1)�1 < 0

) P 01 < P1 = 0)Firm 1 has no interest by �xing a price below p2

ii) p1 = p2 + " (p1 > p2 = c) () �2 = (1� p2) (p2 � c) = 0 and �1 = 0
(�rm 1 does not produce)

P 001 = 0 = P1 )Firm 1 has no interest by �xing a price above p2

Let us check now for �rm 2. Suppose that:

i) p2 = p1 � " (p1 < p2 and p1 < c) ) �2 < 0 and �1 = 0

P 02 = �1�1 = 0

) P 02 = P2 = 0)Firm 2 has no interest by �xing a price below p1

ii) p2 = p1 + " (p1 > p2 = c) () �1 = (1� p1) (p1 � c) = 0 and �2 = 0
(�rm 2 does not produce)

P 002 = 0 = P2 )Firm 2 has no interest by �xing a price above p1

Conclusion: 8 �1 2 ]0; 1[, any prices (p1, p2) s.t. p1 = p2 = c constitute
a NE in the second-stage of the game.

The second-stage being entirely solved and NE being found, we can thus
move to the �rst-stage of the game in order to �nd SPNEa
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4 Solving the �rst-stage of the game

In the �rst-stage of the game, �rms choose the �i optimal maximizing
their pro�t to share with their rival.
Solving backwards, we have solved the second-stage of the game in the

previous section and have found the NEa in prices summarized below:

i) (p1; p2) : p1 = p2 = c if 0 < �1 < 1 with:�
P1 = 0
P2 = 0

Now, in the current section, we draw our attention to the �rst-stage of
the game searching for SPNEa in �1.

Proposition 4 The strategies (�1; p1 (�1)), p2 (�1) s.t.:
i) �1 2 ]0; 1[
ii) p�1 = p

�
2 = c if 0 < �1 < 1

are SPNEa of the game

Proof. The strategies (�1; p1 (�1)), p2 (�1) s.t. i) and ii) are satis�ed,
are SPNEa if and only if no �rm has interest to deviate from those prices by
choosing a �0i above or below.

Let us check for �rm 1. For instance, suppose that:

i) �01 < �1 ) 0 < �01 < 1)

P 01 = 0 = P1 ) Firm 1 does not deviate.

ii) �01 > �1 ) 0 < �01 < 1)

P 001 = 0 = P1 ) Firm 1 does not deviate.

Conclusion: The strategies (�1; p1 (�1)), p2 (�1) s.t. i) and ii) are satis-
�ed, are SPNEa.
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5 Conclusion

This paper has shown how (one-side) pro�t sharing between two �rms in a
homogeneous market may be deceitful. After all, it shed light on that such an
opportunistic behavior is not at all pro�table neither to the deviating �rm,
nor to the loyal one. It has thus suggested that our theory of (two-side) pro�t
sharing between �rms is a win-win (dominant) strategy if �rms compete in
prices.

There are many dimensions along which this simple model can be en-
riched. For instance, a natural one is the extension of our model to the
Cournot, Stackelberg models and the like. Pro�t Sharing Between Firms: A
Lose-Lose Strategy (Waddle 2005e) focuses on this issue.
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