
Distance Modulation Competitive Coevolution method to
find initial configuration independent cellular automata

rules

A. Berlanga & P. Isasi & A. Sanchis & J.M. Molina
Departamento de Inforrnatica

Universidad Carlos I11 de Madrid
2891 1, Leganks, Madrid

E-mail: aberlan@ia.uc3m.es

Abstract

One of the main problems in machine learning meth-
ods based on examples is the over-adaptation. This
problem supposes the exact adaptation to the training
examples loosing the capability of generalization. A
solution of these problems arises in using large sets of
examples. In most of the problems, to achieve general-
ized solutions, almost infinity examples sets are needed.
This make the method useless in practice.

In this paper, one way to overcome this problem
is proposed,based on biological competitive evolution
ideas. The evolution is produced as a result of a com-
petition between sets of solutions and sets of examples,
trying to beat one each other. This mechanism allows
the generation of generalized solutions using short ex-
ample sets.

1. Introduction

Coevolution is referred to the simultaneous evolution of
two or more species, where the survival of each specie
depends one each other. When talking about coevolu-
tion in computational terms, it is referring to the abil-
ity of a system to improve its performance by means
of mutual adaptation of its different constituents. The
final performance of the system is improved as a con-
sequence of the incremental adaptation among con-
stituents.

These ideas come from the field of biology where im-
portant theoretical studies [I] and definitions [2] have
been done. The focus of these early ideas was that com-
petition between species could guide the adaptation of
each one separately. These biological ideas have been
expanded in further works [3] where the competition is
mentioned as the principal engine in the evolution of
species, in such a way that a scaling competition takes
place, yielding in an incremental and reciprocal adap-
tation. This kind of adaptation is known with the name
of evolutionary (‘arms race” because of its analogy with

the growing armament in countries, as a consequence
of trying to overcome others armament.

The coevolutive process has proven its capabilities of
generating complexity in nature. From the computa-
tional point of view, the arguments are quite the same.
The computational system is composed by several con-
fronted subsystems, for instance in a game (the com-
putational system) the faced players are the confronted
subsystem. The evaluation of a subsystem depends on
the performance over the opposite one. There are many
works that try to introduce the ideas of coevolution into
the field of evolutionary computation. One of the first
authors in applying the coevolution in an optimization
problem was Hillis with his work over the coevolution of
parasites for improving solutions in a sorting networks
problem [4]. In this work, the competition takes place
between individuals solution and individual examples.
These examples were generated to be a good test bed
for the solutions.

More recently, some works for establishing the the-
oretical basis of coevolution have been done. Pare-
dis, in 1996, proposes a general framework for the
use of coevolution to boost the performance of ge-
netic search [5], and introducing a new type of Ge-
netic Algorithm called Coevolutionary Genetic .41go-
rithm. Rosin and Bellew [6] introduced three new tech-
niques in competitive coevolution: Competitive fitness
sharing, shared sampling, and hall of fame; and pro-
vide several different motivations for these methods and
mathematical insights into their use.

Coevolution has also been used to select an optimal
set of examples for problems, by means of evolution of
examples. The selection of good examples is a typical
problem in learning from examples techniques, mainly
when dealing with complex and real problems. This is
known as the testing problem. A perfect solution to the
testing problem has to select a minimal and complete
set of extremely difficult test cases, for each one of the
possible solutions. Note that each solution could need
a different set of examples. These sets are very difficult

0-7803-5731-0/91k$10.00 01999 IEEE V -607

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

to identify for realistic problems.
In this article,a new method is introduced, based

on Hillis’ ideas to use coevolution for overcoming the
testing problem. A general framework to apply co-
evolution to any evolutionary computation technique
is propodes, in such a way that examples could evolve
towards optimal da ta examples.

2. The Testing Problem

When learning from examples, for testing a solution is
necessary to face it with different situations (examples
set). The problem arises when selecting examples, be-
cause a different selection of situations could ends in
a very different evaluation of the solution. In other
words, the evaluation of a solution is very sensitive to
the selection of situations t o test that solution.

To overcome this problem, Rosing and Bellew [6] sug-
gested a new coevolutionary method, the shared sam-
pling. In this method, a population of examples is al-
ways kept. Each example of the population is eval-
uated, computing its performances over a previously
selected set of solutions. In the same way, each so-
lution is evaluated computing its performances over a
previously selected set of examples. The selection of
the examples is carried out proportionally to the eval-
uation of the examples. Examples with better general
evaluations are preferred as test cases for the solutions,
and theirs evaluations computed again.

The Hillis’ solution [4] is similar. In this case the
examples are not selected, each time an evaluation of
a solution is needed. By the opposite, each solution
has a subset (subpopulation) of examples related with
it. This subset is kept constant, and it is in continuous
evolution.

The evolution of examples, in both of the cases, tries
always to generate harder examples for the solutions.
As solutions are more complex and accurate, they must
prove their capabilities with more sophisticated and
complex examples.

In some cases, the above mentioned solutions could
generate a serious problem. Considering, for instance,
one problem where the generation of good solutions
over a reduced examples set is a very difficult task:

0 By one hand, if examples evolve towards hard da ta
sets, the process could ends into an impossibility
of achieving solutions to the problem, and the con-
tinuous adaptation of the examples could stop the
adaptation of the solutions.

0 On the other hand, if the process of adaptation
of examples is carried out in such a way that the
adaptation of solutions is allowed, the solutions
could be reached in a process of over-adaptation,
difficulting the generation of more accurated solu-
tions.

These two problems imply some difficulties in the

process of evaluation of the solutions:

0 Firstly, as the examples set is shared for all solu-
tions, even if the evolution of examples was slowed
down, the solutions could be faced with much more
difficult examples. A good example for a solution
could be a bad one for another. When examples
are too difficult, there is no selective pressure for
solutions to evolve. Fitness values of all solutions
are similar, low fitness, and there is no way of se-
lecting good individuals to improve solutions.

0 Secondly, when a population of solutions has been
adapted t o an examples set, the change of the ex-
amples set could has negative consequences. The
fitness landscape changes abruptly and the previ-
ously evolved solutions has no meaning of evolving
towards the new fitness landscape.

For overcoming these problems, in this work a new
method of adjusting coevolution is proposed, to allow:
the evolution of good solutions and hard test exam-
ples in complex generalization problems. In this way,
a general framework, called Uniform Coevolutionis in-
troduced. Independently of the particular evolution-
ary computation method, for implementing coevolutive
ideas in problems where a complete da ta examples are
needed and not available. The evolution of both, solu-
tions and examples will allow the generation of shorter
and harder da ta examples gradually, and avoiding the
over-adaptation problem.

Our proposal introduce the following ideas:

Independent examples sets Each solution has an
independent examples set in which computes its fitness,
instead of having an examples set for all population
of solutions. Therefore, examples sets evolve indepen-
dently with the accuracy of its related solution.

Smoothing fitness landscape In each step of adap-
tation to an examples set, the individual has to deal
with a new optimization problem. In many cases this
is more difficult because the individual is not a ran-
domly generated one, but a previously learned one. So,
the adaptation t o new examples could be extremely
complicated. The smoothing fitness landscape mecha-
nism tries to solve this problem by means of weighting
the importance of the individual performance over each
component in the examples set. As the solution has to
deal with each example in its related examples set, it
will have a different fitness value for each example. The
final fitness of the solution will have to be in mind all
the values computed. Usually, the average of the val-
ues is used as final fitness function. In the smoothing
fitness mechanism a weighted average is used.

Examples involution In spite of all these mecha-
nisms of adaptation, the final process could be un-
reachable. The continuous adaptation of the examples

V -608

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

could modify the fitness landscape of an individual too
abruptly. The examples involution avoids this prob-
lem. In evolutionary computation methods, the evo-
lution is always towards better individuals, in terms
of fitness function. However, in examples involution
mechanism, the adaptation goes both ways, towards
better and worse examples. This means that examples
generally evolve towards better examples, more difficult
for the solution. But when the examples set is becom-
ing so difficult as it is impossible for the solution to
solve them, an evolution towards worse examples is al-
lowed. In this way, the solutions evolve more gradually
in order to solve, in the future, the previous difficult
examples. This mechanism allows to overcome local
optima problems, in which solutions could not evolve
because the examples set is too much difficult.

3. Uniform Coevolution

In Uniform Coevolution method there are also two evo-
lutionary systems competing. The first is related with
the evolution of solutions and the last one with the
evolution of examples sets for the first system.

In the figure 1 the general architecture of the Uni-
form Coevolution is shown. This structure reflects
what it was called Independent examples sets. The ar-
chitecture is composed of A population of solutions
and a set of populations of examples (One population
of examples for each individual in the population of
solutions).

Fi ure 1: Architecture of the Uniform Coevolution.
&e solutions and examples systems are named re-

spectivelv:

Solutions Generator System (SGS).- It is
composed of a population of solution individuals
(SI). For computing their fitness, its necessary to
face each individual with a set of different situ-
ations, examples, represented by a population in
the Example Generator System.
Example Generator System (EGS).- It is a
meta-population composed by meta-individuals,
that are populations of examples (PE). Each P E is
related with a SI. -4 P E is composed by examples
individuals (EI). The fitness of those individuals
is inversely proportional to its related SI'S fitness,
when operating over them.

The evolution of each system depends on the other
evolution. The general procedure is as follows:

1. Initialization of populations:
1 . SGS initialization (M SI individuals)
2. EGS initialization (M P E of N EI individuals

each)
2. Computation of the fitness

1. Evaluation of SI over each individual EI in its
related P E

2. The fitness of SI is a combination of the above
evaluations

3. The fitness of P E is set inversely to the fitness
value of the corresponding SI

3. Generation of new populations
1 . P E evolution by means of generation of new

EI's applying an ad-hoc genetic operator (In-
cremental Genetic Operator -ZGO-)

2. EGS and SGS evolution

3.1. Solution Generator System

The objective of this system is to gradually generate better
solutions to a particular problem. Any evolutionary compu-
tation method can be used, where an individual represents
one problem solution. The evolution of the SGS follows the
dynamics of the evolutive computation method selected.

Computation of solution's fitness.- The genera-
tion of better solutions is driven by the fitness function.
Each individual is evaluated over a set of examples. Lets
call P E , the examples set of the individual i, this popula-
tion is composed of several independent blocks (A . . Z) which
meaning will be explained later. Therefore EZ; is the j-th
example of the block .4 for the set P E i . For smoothing
fitness landscape purposes, a linear combination of evalua-
tions is used as fitness value of the individual. The fitness
for an individual i is computed using the evaluation values
of that individual over a set of N examples, in the following
way:

Fi(t) = Cf=ACT=lQfj (t) X f (E I i ,) (1)
Where f (E I b) is the value of the evaluation of individual

i over the example j (E &) in the block k, from its related
EI's population ({ P E i }) . af j values are used to weight the
importance of each example in the total computation of the
fitness of an individual. As the reward of the performances
depends on the degree of adaptation of the solutions, a
values are variable with time. The equations that drive the
change of a values for one individual i, independently to
the belonging block, are:

l) (2)
(e"i - l)(eVij - 1) + (e'-"' - l)(e'-Yi, -

aij =
(e - 1)2

where I is a measure of the evolution degree of the individ-
ual over its examples set. If the individual i performs well
over its related examples set, the x , will have a value near
zero:

(3)

V -609

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

where E is the average fitness for individual i over all
individuals in the same block in {PE,} . MAX is the max-
imum fitness value that could ever be reached, the optimal
fitness.

By the other hand, the yi, value, described in equation 5,
measures the importance of an example evaluation com-
pared with others. Values of y i j equal to zero means that
f (EZ, j) is the lower fitness value over all individuals in the
same block in { P E , } . By the opposite, values of Y i j equal
to one, means that f (EZ, j) is the highest fitness value over
all all individuals in the same block in { P E , } .

(5)
f i j - f i ,min

fi ,mao - f i ,min
Y i j =

where f m a x is the maximal fitness for individual i over
the set of examples and f m i n is the minimal fitness for in-
dividual i over the set of examples.

f i , m i n = Min{f (EZ, j) }Y (7)
In figure 2 the different values of aij depending on zi

and yij can be seen. It can be seen a values for differ-
ent evolution periods. In the initial situation individuals
are randomly generated and their fitness values are very
far from optimal (zi = 0). In this case the weighter evalua-
tion corresponds with the better evaluation, this smoothing
fitness mechanism, as previously mentioned, allows the evo-
lution and improvement of slightly good individuals. As the
individual adapts the difference between good and bad ex-
amples has less importance. At the end of the evolution is
better to increase the weight of bad examples, in order to
find a generalized solution.

r

I

Figure 2: a i , values depending on xi and y i j .

3.2. Example Generator System

A model, for being considered competitive, has to be com-
posed of, at least, two independent systems. In Uniform
Coevolution, the system faced against the SGS is called
the EGS. The EGS is a meta-population composed of a set
of populations of examples { P E , } . Therefore, the EGS is
composed of two dependent evolutive systems: the meta-
population and the PEi , one embedded into the other.

Meta-population.- Examples are divided in M inde-
pendent sets PE, , that are the individuals in the meta-
population. Each P E , is related with, and competes against
a unique solution SZ,. Individuals P E , are composed of a
number of chromosomes. These chromosomes are the pre-
viously mentioned blocks of the PE, . Each chromosome
represents a set of examples. These blocks, that could be
considered independent and evolve in an independent way,
are needed for crossover purposes. When the individuals
in the meta-population interchange theirs genetic materi-
als, the blocks are interchanged (Figure 3). The met.a-
population evolves following the guidelines of the evolutive
computation method selected for implementing the meta-
population.

Y - I

Figure 3: Composition of the meta-population.

Population PE*.- All individuals EI , , in a block are
generated from an especial individual called “seed ezam-
ple”. The generation of EI, , is based on a particularly
designed Genetic Operator called Incremental Genetic Op-
erator IGO. This generation process constitutes the only
method for evolving P E , .

Incremental Genetic Operator.- For designing the
IGO, it is necessary to define a distance function between
examples. This distance is a measure of the existing differ-
ences between examples, most different are two examples a
higher value outputs the function and vice-versa:

D : E x E + R (8)
where E is the set of all possibles examples for a partic-

ular problem. This distance measure is used for generating
the individuals in a block. The “seed example” is kept
constant and the individuals in the block are generated fol-
lowing the ecuation:

(9)
where 6 is a value computed each generation for each

S I , depending on the fitness value for that individual. The
computation of 6 values follows:

(10)

Where a is a scale constant to constrain the maximum
value of the increment, b is another constant to regulate the
shape of the function, F M ~ ~ , F ‘ M , ~ are the best and worse
fitness respectively, and f is the fitness of the individual.

The 6 values are used to generate examples which dis-
tance from one each other is 6.

V -610

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

In figure 4, an example of the shape of the increment
function is shown, for FM,., = 0.

Simple Fixed GA
Simple Random GA

Figure 4: Function to compute the Incremental Genetic
Operator.

Y

100.0 80.84
100.0 91.96

Evolution of population.- Initially, all the seed ex-
amples of the blocks are identical and randomly generated.
The individuals in the blocks are all the same and,in this
initial step, equal to their related seed example.

For the evolution of examples, the following rules are
used:

Generate ramdomly the first example (seed example)
for the individual I (S r i)
Generate the rest of individuals by the equation:

N(O, Ij) = D(Et, E,+1) (11)
Where N(0 , I) is a Normal distribution, means 0, and
deviation I , and D (A , B) is the distance between ex-
amples A and B.
Crossover the blocks of examples. When a new S I
individual is generated by crossover, the examples of
this new SI are inherited from its parents by crossing-
over the blocks of examples of the parents.

The dynamic of the whole system is as follow:

Initially a set of iVf random SI’s are generated.
For each one of the above SI’S a set of N seed examples
are also randomly generated. One for each block.
The fitness of the SI is computed over each individual
in its related PE population.
The final fitness value for the SI is computed using
the equation 1.
The fitness value for each EI individual in each popu-
lation is set inversely to the fitness value of the corre-
sponding SI when dealing with the E l .
For the SI‘s an evolutionary method is used to com-
pute the followings generations.
The offsprings inherit the population of El‘ s from
theirs parents, mutated in the way above described.

4. The majority function in one-dimensinal CA

To check the capabilities of the model, a classical problem
in the field of learning rules for Cellular Automata (CA)
has been selected: the majority function in one dimensional
CA [7].

A one dimensional CA is a linear array composed of N
cells that can take one of k possible states. A rule is defined
to update the state of the cells. The rule decides the state

V -611

of a cell based on its previous state and the state of their
surrounding cells. The problem is to find a rule able to set
all the cells of a binary CA to 0’s or 1’s depending on the
density of the initial configuration. If the CA has more 0’s
than 1’s in the initial configuration, the rule has to set all
the cells to 0 in a finite period of time, ant to 1 elsewhere.
No rule is known able to solve the problem for all possible
initial Configurations. There are some rules able to solve the
problem for an important number of initial configurations.
If the density of 0’s in the initial configuration (P O) is high
or short, the problems become an easy problem. Since PO
goes near 4 the problems arise in difficulty [8].

There are some works that use Genetics Algorihtms [9,
101, or Genetic Programming [ll], to explore the space of
rules, for this kind of CA. Even some schematas of coevo-
lution have been used for this problem [12] showing the
difficulty of coevolving two populations towards continuous
improvement.

In this work we are showing the results achieved in the
majority function problem using a simple genetic algorithm
and the uniform coevolution model. First a simple GA
without coevolution has been used for comparision pur-
poses. Two different schematas of GA have been imple-
mented, with two different computations of the fitness func-
tion:

Simple fixed GA.- In this case the computation of
the fitness function is the result of the evaluation of
a rule over some fixed initial configurations randomly
generated. The initial configurations are the same for
all the rule, in all generations.
Simple random GA.- The computation of the fit-
ness function is the result of the evaluation of the rule
over some variable random initial configurtations. The
initial configurations are changed each time a rule has
to be evaluated.

These schematas have been compared with the Uniform
Coevolution model. Each experiment consists on 25 evo-
lutions of the model, with a different random seed. The
best individual of each evolution has been evaluated with a
test set of initial configurations. In table 4. can be seen the
result of each experiment in both, learning set and test set:

I I Learning I Test I

1 Uniform Coevolutive GA 100.0 i 92.26 1
Table 1:

All the experiment show a high adaptation level in train-
ing period. The main difference, if observed in more detail,
is that the experiment with fixed training examples shows a
faster adaptation. The advantage of Uniform Coevolution
arises when generalization capabilities are observed. The
Uniform Coevolution is able to solve 0.3% more test cases,
in average, that random and 11.42% more than fixed exper-
iments.

In order to test the roboustness of the method to find
good solutions, the figure 5 has been included:

In this figure the probability of finding a solutions is
shown. In the x-axis the goodness of the solution is plotted,

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

Figure 5: Probablilitie of finding solutions.

and in the y-axis the probability of the method to find a SO-

lution of, at least, that goodness. Figure 5 corresponds with
test set. It is clear that in the random method the shape of
the plot is more abrupt. This means that the probability of
finding a solution able to solve more than 90% of the test
cases is much higher. This high level of generalization is due
to that the random generation of training cases slows down
the learning process in training period, and makes more
general the achieved solution. This is clearer with Uniform
Coevolution. The probability of finding better solutions is
even higher. The specific adaptation to each solution of
the training cases makes the method to converge faster and
more accurate to the generalization capabilities.

Finally, the evolution of the generalization capabilities of
the best individual of each method is shown in figure 6.

- C ” u * . o l

Figure 6: Evolution of generalization capability.

The evolution of the generalization capabilities for fixed
training examples method is gradual, slow and reachs a
local minimum very at the beginning of the evolution. By
the opposite, the the generalization capability for uniform
Coevolution Method grows faster and reach a higher value.
The irregularities in the plot coresponds to the involution
process in which some individuals takes advantage of the
evolution of easier learning sets for them. This individual
disapears in next generations as a result of the coevolution
process. However, this mechanism allows to explore new,
and some times better, search space areas.

5. Conclusions

It is clear that coevolution is a good paradigm to solve
the testing problem. The adaptation of particular training
examples for each specific solution can help in the faster
and more accurate learning of solutions. Usually, to fix the
learning examples makes the method to over-adapt to that
examples. This is more evident in evolutionary computa-
tion methods. By the opposite, to generate newer examples

set, each evaluation period makes harder the evolution of
solutions. In some cases the method becomes inapplicable.

Uniform Coevolution overcomes these difficulties by
evolving independent examples data sets for each partic-
ular solution. Moreover, the data set becomes gradually
more complex as the solution becomes more accurate. The
experiments show the learning and generalization capabili-
ties of the method, that is able to solve better and faster a
hard CA problem.

The paper present the Uniform Coevolution as a new
framework of coevolutionary learning, that could be imple-
mented in many existing learning methods. Here, a GA has
been used as the main learning method for Uniform Coevo-
lution, but it could be included in other techniques, i.e. Ge-
netic Programming, Evolutionary Strategies, or some sim-
bolic learning methods.

6. References

P. R. Ehrlich and P. H. Raven. Butterflies and plants:
a study in coevolution. Evolution, I(18):586-416, 1964.
J. Roughgarden. Resource partitioning among com-
peting species: a coevolutionary approach. Evolution,

R. Dawkins and J.R. Krebs. Arms races between and
within species. In Proceedings of the Royal Society of
London B, pages 489-511, 1979.
W. D. Hillis. CO-evolving parasites improve simulated
evolution as an optimization procedure. In C.G. Lang-
ton, editor, Artificial Life ZI, pages 313-324, Reading,
MA, 1991. Santa Fe Institute, Addison-Wesley.
J. Paredis. Coevolutionary computation. Artificial
Life, 2:355-375, 1996.
C . D. Rosin and R. K. Belew. New methods for
competitive coevolution. Evolutionary computation,

S. Wolfram. Cellular Automata and Complexity.
Addison-Wesley, 1996.
M. Mitchell, P.T. Hraber, and J.P. Crutchfield. Re-
visiting the edge of chaos: Evolving cellular automata
to perform computations. Complex Systems, 7:89-130,
1993.
M. Mitchell, J.P. Crutchfield, and P.T. Hraber. Evolv-
ing cellular automata to perform computations: Mech-
anisms and impediments. Physica D, 75361-391, 1994.
R. Das, M. Mitchell, and J.P. Crutchfield. A genetic
algorithm discovers particle-based computation in cel-
lular automata. In Parallel Problem Solving from Na-
ture ZII, volume 866, pages 344-353. Springer-Verlag,
1994.
D. Andre, F.H. Bennett 111, and J.R. Koza. Evolu-
tion of intricate long-distance communication signals
in cellular automata using genetic programming. In
Fifth Artificial Life Conference, pages 16-18, 1996.
J. Paredis. Coevolving cellular automata: Be aware of
the red queen! In Seventh International Conference on
Genetic Algorithms, page 393.400. Morgan Kaufmann,
1997.

1(18):586-416, 1964.

5(1):1-29, 1997.

V -612

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:26 from IEEE Xplore. Restrictions apply.

