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Abstract 
This paper proposes a new empirical approach to assess the impact of knowledge 

spillovers on firms' productivity and demand. I consider a model where process innovations 
spillovers to other firms raise firms relative efficiency and technological diffusion of product 
innovations enhances firms' demand. By modelling knowledge capital as a function of own 
investment in R\&D and spillovers, I can compare the impact of these two complementary sources 
of knowledge on both the supply and the demand side. The results obtained confirm the findings 
already highlighted by previous empirical studies that technological externalities affect 
significantly firms' productivity growth. The new result obtained is that technological diffusion of 
product innovations is larger than the one deriving from process innovations, both in magnitude 
and pervasiveness. 
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1 Introduction

Since the seminal paper of Griliches (1979) on the productivity effect of
R&D, several economists have investigated the relationship between firms’
innovation and productivity growth. The first studies aimed at assessing the
importance of research in explaining productivity improvements relied on in-
serting another type of capital, computed from data on R&D expenditure, to
the list of inputs entering the production function. But economists have soon
realized that this type of capital (generally defined knowledge capital) does
not depend only on firms own investments in R&D. The non-rival character
of knowledge implies that a firm may learn from other firms’ innovations,
whenever the technological contents of their R&D activities are not success-
fully confined inside their walls. Thus, the firm’s productivity also depends
on the pool of general knowledge it has access to. This is what is known as
technological externalities or spillovers. By including a proxy for this variable
in the firm production function, it is possible to determine whether spillovers
play an important role in generating productivity growth.1 The economy, as
a whole, would be enriched with such a positive externality since it represents
a source of increasing social returns.

The common feature of all these studies is that technological innovation
is assumed to be process oriented: the knowledge capital acquired by a firm
improves the mechanism by which input is transformed into output. But this
approach ignores another important dimension of innovation: improvements
in the quality of existing products and the introduction of new goods. Study-
ing the impact of spillovers only on the supply or productivity side can show
only part of the picture. A firm that enhances the quality of its products by
learning the technological innovations introduced by competitors is receiving
a positive externality that can be estimated only shifting the attention to
the demand or consumption side.2 Moreover, consider that the channels of

1There is a large literature that deals with the empirical estimation of spillovers in the
framework of productivity analysis. Griliches (1992) and Nadiri (1993) offer extensive sur-
veys of the main contributions. Although the magnitude of spillover seems to vary largely
between industries and countries, the relevance of technology spillovers is not questioned.
See Los and Verspagen (2000) for a recent study.

2Mansfield, Rapport, Romeo and Wagner (1977) conduct a number of case-studies to
estimate social and private rate of return from investments in product and process in-
novation. Moreover, several papers have used this distinction to get interesting insights
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technology spillovers are hardly the same. Imitation of a product innovation
can be simply achieved through reverse engineering while diffusion of process
innovation may require more sophisticated channels, such as industrial espi-
onage or recruitment of engineers and experts of rival firms. Therefore, the
magnitude and pervasiveness of spillovers for product and process R&D are
likely to be different. Although both of them can possibly lead to an increase
in the output produced by the firm, the forces behind this output expansion
are quite different and deserve a separate analysis.

This paper proposes an original empirical approach to the problem of
assessing the impact of knowledge spillovers on firms’ productivity and de-
mand. I consider a model where process innovations spillovers to other firms
raise firms relative efficiency and technological diffusion of product innova-
tions enhances firms’ demand. To the best of my knowledge, there are no
similar studies in the empirical literature on spillovers. By modelling knowl-
edge capital as a function of own investment in R&D and spillovers, I can
compare the impact of these two complementary sources of knowledge on
both the supply and the demand side. The results obtained confirm the
findings already highlighted by previous empirical studies that technological
externalities affect significantly firms’ productivity growth. The new insight
presented is that the magnitude and pervasiveness of spillovers from product
innovation are larger than those coming from process innovation.3

The data base used in this paper reports detailed information on firms’
individual input, R&D expenditure, types of innovation achieved as well as
observations on output price changes and other demand-related variables,
which is a rather unusual feature. This allows me not only to specify the
richer framework explained above but also to introduce new features in defin-
ing the knowledge capital that can partially overcome the problems usually
found in the empirical literature. By employing the available information on
type and timing of innovations, I can model the transformation of research

in related areas. Mansfield (1983), for example, surveys the major product and process
innovations in the chemical, drug, petroleum, and steel industries to shed some light on
the effects of technological change on market structure. Levin and Reiss (1988) define
a theoretical framework to analyse the tradeoffs that firms face between imperfectly ap-
propriable product and process innovation, when underlying technological opportunities
differ.

3A similar framework is used in Garcia, Jaumandreu and Rodriguez (2002) to study
the elasticity of employment with respect to innovations.
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into productivity gains and product quality improvements. The resulting
measure of internal R&D can then be considered a better proxy for innova-
tion output. As discussed below, this refinement leads to a relevant increase
in the point estimate of R&D capital coefficients for both the production
function and the demand equation. As far as the spillover variable is con-
cerned, I generalize previous characterisations of the potential spillover pool,
constructing different measures of proximity according to basic firm’s charac-
teristics, such as the number of employees or the localization. This approach
can be considered an alternative to the one defined by Jaffe (1986) using
firm data on the distribution of patents,4 as it allows to refine the measure
of spillovers without relying on detailed patenting data (that are generally
not available). The results obtained suggest that size is a main determinant
of the magnitude and extent of technology dissemination.

The nature of this study requires the analysis of a large sample of mar-
kets. To the extent that technological innovations can be applied to several
manufacturing sectors, a cross-sectional approach seems an objective way
to get useful stylized facts on the magnitude of spillovers in industrialized
countries. This paper is based on an unbalanced panel data of Spanish man-
ufacturing firms that includes more than 2,000 entities during the period
1990-1999. The surveyed sample is made up of firms performing and not
performing R&D activities respecting the population proportions.

The article is organized as follows. Section 2 provides the econometric
framework used to estimate the magnitude of spillovers for the production
function and the demand equation. Section 3 presents the data set and the
specification of the knowledge variables. Empirical results are summarized
in Section 4. Some final comments are presented in the concluding section.

4Using data on the distribution of patents, Jaffe (1986) first defines the “technological
position” of a firm’s research program and then he constructs a measure of proximity
among firms according to the correlation of their “technological position vector”. He
assumes that the closer are two firms in their research program, the higher is the fraction
of R&D capital that can leak out.
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2 Modelling Spillovers in Product and Process
R&D

In this section, I discuss the details of the econometric framework that is used
to estimate the impact of spillovers on production and demand. Assume that
the output of firm i in period t, Y pit , is produced from three “conventional”
inputs, labour Lit, materials Mit and physical capital Cit and also depends
on a technological parameter A, which in turn is a function of the industry
j’s specific rate of disembodied technical change, λjt, the individual research
effort of the firm, Rit, and the knowledge spillovers, Sit. In order to control
for short term adjustments associated with the business cycle, the degree
of capacity utilization, U, is added as a further explanatory variable in the
production function..5 According to this explanation, the firm production
function takes the form:

Y pit = A (λjt, Rit, Sit)F (Lit,Mit, Cit, Uit) (1)

Now assume that the demand equation can be written as:

Y git = D(Pit, ADit, Rit, Sit, Z−it) (2)

where Y git is the quantity demanded, Pit refers to price, and ADit stands
for advertising. Again, the knowledge capital of a firm is made up of the
individual research effort Rit and the spillover pool Sit. The latter variable is
meant to measure the effect on demand of any product quality improvements
achieved by learning the technological innovation first introduced by a com-
petitor. Finally, Z−i is a vector of prices, knowledge capital and advertising
for rivals.

Equation (2) adapts to a model of vertical differentiation where both
knowledge capital and advertising will affect the demand through an im-

5The production function is defined as a relation between flow of output and inputs.
While annual price and quantity data are generally available for labour and materials,
physical capital C is usually computed as a stock using the perpetual inventory method.
As noted by Hulten (2000), this approach is valid only as long a flow of services from capital
are proportional to the stock. But proportionality is not always a realistic assumption,
in particular during period of low demand characterized by low capital utilization. This
topic is investigated in a companion paper, Ornaghi (2002).
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provement of real and perceived product quality, respectively.6 Notice that
the demand enhancing effect of knowledge capital can materialise via two
different mechanisms: a market expansion effect and a business stealing ef-
fect. In the first case the introduction of new products, by attracting new
consumers to the market, can benefit the pioneer firm and all the firms that
successfully adopt the innovation without necessarily affecting less innovative
firms. In a context where market expansion effects are minimum compared
to business stealing effect, some firms will expand their activities in detri-
ment of their competitors. In both cases, it is likely that only some firms
will be able to reproduce the innovation achieved by competitors, depending
on their characteristics. Results presented in Section 4 suggest that size is a
main determinant of a firm’s capacity of learning from rivals.

The possible positive impact on a firm demand schedule of other firms’
investments in product improvements is likely to depend on the way markets
are classified. If we define an industry broadly enough to consider vertical
relations or complementary products, then it is evident that a firm’s prod-
uct innovation may have a positive effect on other firms’ demand.7 It is
then an interesting exercise to assess whether any difference in the magni-
tude between spillovers for product and process R&D tends to change with
alternative classification of the industries making up the manufacturing sec-
tor. The results obtained suggest that technological externalities associated
to product innovations have a broader impact: firms can take advantage of
product improvements introduced by firms in not strictly related markets.
On the other hand, spillovers from process innovations are limited to nar-
rowly defined industries.

Following the approach used by Klette (1996 and 1999), the production
function can be expressed in terms of logarithmic deviations from a refer-
ence input-output vector (e.g.,Y pot, Lot,Mot, ..). This point of reference can
be thought of as the representative firm that each firm within an industry
has to compete with. In the empirical application, I have characterised this

6The demand equation might depend on other elements, such as brand image or cus-
tumers’ loyalty. As explained below, estimation in first-differences are not affected as long
as these omitted elements are constant over time.

7Consider the case of the computer industry. Usually the introduction of a new data
processor has a demand expanding effect for producer of computer equipment and software.
Moreover, this can expand the sales of complementary products such as scanners, printers
and multimedia apparatus.
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reference point as the average values of output and inputs within the 3-digit
CNAE code industry in each year.8 The use of a year-specific industry mean
value eliminates the technical change, λj, from specification (1). It follows
that there is no need to introduce time-dummies in the estimation. This nor-
malisation has the additional advantage of refining the model from omitted
factors that are common to all the firms within a (3-digit CNAE) indus-
try, thus attenuating the problem of great heterogeneity associated to cross-
industry studies. In the same way, the demand equation can be expressed
using a log-linear expansion around the reference firm (e.g.,Y dot, Pot, ADot, ..).
Although estimation of the demand relationship would require complete in-
formation on rivals’ prices and other relevant variables, this transformation
allows us to consider the effect of an average change in rival’s prices, knowl-
edge capital and advertising expenditure on the quantity demanded.9

Rewriting equation (1) and (2), in terms of logarithmic deviations from
the representative firm, we obtain:

ŷpit = α1 l̂it + α2m̂it + α3ĉit + α4ûit + α5r̂it + α6ŝit + ε̂it (3)

and

ygit = β1bpit + β2
cadit + β3brit + β4ŝit + ζ̂ it (4)

where lowercase letters with a hat stand for logarithm deviations from the
point of reference of their upper-case counterparts, e.g. ŷpit=ln(Y

p
it/Y

p
ot); ε̂it is

the random error term for the production function, representing the effect of
efficiency differences, functional form discrepancies and measurement errors
while ζ̂ it is the error component capturing stochastic shocks to the demand.

There are two relevant econometric issues that have to be carefully con-
sidered at this point. Firstly, one of the most important components of
ε in the production function is likely to be due to firm-specific factors of
production, such as entrepreneurial ability, that are not observable. This
component determines productivity differences between firms that tend to

8The CNAE classification embraces about 120 different manufacturing sectors. This
classification is similar to the 3-digit ISIC in terms of market definition.

9Normalizing the demand equation with respect to the reference firm, we can also
eliminate any market dynamism (e.g. market expansion or recession) that is common to
all the firms in the industry. Kettle (1996) uses a similar approach to model the demand
equation.
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be rather persistent over time. We can consequently decompose the error
term as:

εit = µi + vit (5)

where µi is the just mentioned fixed-effect that account for the perma-
nent heterogeneity across firms whereas v includes temporary productivity
shocks and measurement errors. To the extent that µi affects the current in-
put choice decisions, the assumption of no correlation between the included
regressors and the disturbance term does not hold and this prevents us from
using Ordinary Least Square (OLS) estimation. The persistency of high au-
tocorrelation of the errors in the OLS estimation (in levels) suggests that
unobserved heterogeneity is a relevant issue that must not be undervalued.10

Therefore, we estimate equation (3) in “first differences” in order to eliminate
the term µi from the specification of the production function:

ỹpit = α1l̃it + α2m̃it + α3c̃it + α4ũit + α5r̃it + α6s̃it + ṽit (P)

where lower case letters with tilde represent log differences of the variables
normalized with respect to the representative firm, that is ỹpit=ln(Y

p
it/Y

p
ot)−

ln(Y pit−1/Y
p
ot−1).

In the same way, there are some (omitted) elements, such as the brand
image or the consumers’ loyalty, buried in the residual of the demand equa-
tion that are presumably constant over time. By taking first differences to
eliminate these omitted variables, we obtain the estimating equation:

ỹgit = β1epit + β2
fadit + β3erit + β4esit + ϑ̂it (G)

Secondly, consistent estimation of equation (P) and (G) by OLS requires
predeterminacy of the regressors. As far as the production function is con-
cerned, whenever a productivity shock is anticipated before the optimal quan-
tity of inputs is chosen, disturbances ṽit are transmitted to the decision equa-
tion of the inputs. This means that there is a positive correlation between
the right-hand variables and the error term, thereby invalidating the use of
OLS estimation. This delicate econometric issue is known in the literature
10This evidence is confirmed by the results of the Hausman test, which rejects the null

hypothesis that the “random effect” estimates are not statistically different from the one
based on the “fixed effect” model. See Greene (1997) for further details.
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as the simultaneity problem.11 Among the three standard input variables
of equation (P), labour, L, is the one more likely to be correlated with the
error term. Besides, using the Sargan difference test, the null hypothesis
of exogeneity of the capacity utilization term is rejected. We then use past
values of labour and capacity utilization to instrument these two endogenous
variables. A similar issue needs to be considered for the demand relation-
ship: the simultaneity between price and quantity demanded. As shown in
a standard downward-sloping demand curve, when the price increases, the
quantity demanded falls. At the same time, quantity affects the price thought
the supply curve whenever the latter is not horizontal (infinite price elastici-
ties). This implies that an unobservable exogenous demand shock can affect
not only purchases but also prices. The latter are then endogenous variables
and OLS regression does not give consistent estimation of the parameters
defined in equation (G). The use of panel data provides a solution to this
problem since we can use lags of this endogenous variable as instruments. I
shall come back on this point in Section 4

3 Data and Variables

The data used in this study are retrieved from the Encuesta sobre Estrate-
gias Empresariales, ESEE, (Business Strategy Survey) an unbalanced panel
sample of Spanish manufacturing firms published by the Fundación Empresa
Pública covering the period 1990-1999. The raw dataset consists of 3,151
firms for a total number of 18,680 observations. A “clean” sample is de-
fined according to a set of criteria which are given in Appendix A. Briefly,
I require value added be positive and I trim outliers in growth rates.12 The
sample employed here consists of all the firms that have been surveyed for at
least three years after dropping all the time observations for which the data
required to the estimation are not available.13 It can be considered approx-

11See Griliches and Mairess (1995), for a detail explanation of the simultaneity bias.
12Only 424 observations are removed applying these criteria. Their main effect is to

increase the point estimate of the coefficient of internal R&D capital and to reduce the
second order autocorrelation among observations.
13Estimations has been run also using the balanced panel sample (firms with all the 10

years observations). The results obtained do not differ sensibly from the one reported in
Section 4.
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imately representative of the manufacturing sector, and hence inference can
be regarded as globally valid.

The ESEE provides detailed data on firms’ output, standard inputs, R&D
expenditures and innovation. Differently from other data set, a crucial fea-
ture of this survey is that it includes observations on firms’ price changes and
other demand related variables, such as advertising. This allows us to define
and estimate the demand equation (G) defined above. The surveyed sam-
ple includes, approximately in population proportion, firms performing and
non-performing R&D activities. Detailed information on the distribution of
R&D performers among different size-classes are reported in Appendix A.

3.1 On Knowledge Capital and other Variables

This section deals with the construction of the two components of a firm’s
knowledge capital, namely, individual research effort (R) and spillover pool
(S). At the end of the section, we also address some other issues concerning
the construction of other variables. A complete explanation of all the vari-
ables used in the demand and production equations, together with descriptive
statistics, can be found in Appendix A.

To define the amount of knowledge produced by internal research activ-
ities, I follow the perpetual inventory method like that commonly used for
physical capital.14 The equation defining the internal R&D capital is the
following:

R∗it = (1− ρ)R∗it−1 + Iit−1 (6)

where R∗it is the R&D stock in period t, Iit is the R&D expenditure
during the period and ρ is the depreciation rate. Investments in R&D take
into account not only the cost of intramural activities but also payments for
outside contracts and imported technology.

To improve the specification of the internal knowledge capital, I intro-
duce a slight modification and assume that R&D capital becomes operative
at the time that a new innovation is achieved. Thus, R&D capital in pe-
riod t increases only if a new innovation has been introduced that year. The

14See Hall and Mairesse (1995) for further detail and an empirical application.
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assumption is made that if in period t there are no innovations, past R&D
expenditures do not have economic effects and the R&D stock of the firm
is still the same. This variable can then be considered a better proxy for
innovation output instead of research inputs. Given that firms report the
type of innovation introduced each year, we can model the transformation of
research expenditures into process innovation, Rproc, and product improve-
ments, Rgood, separately. Accordingly, we obtain the following specifications:

Rprocit = dpit ∗R∗it + (1− dpit) ∗Rprocit−1 (7a)

Rgoodit = dgit ∗R∗it + (1− dgit) ∗Rgoodit−1 (7b)

where dpit and dgit are dummies that take value 1 if a process innova-
tion or a product innovation are, respectively, achieved in period t.15 Hence,
productivity improvements and demand shifts are associated with the in-
troduction of innovations of each type. At the same time, the impact of an
innovation is assumed to be proportional to the R&D effort experienced since
the introduction of the last innovation. Both variables outperform simpler
measures of knowledge capital based on law of motion (6) above.16

There are two major problems when computing the internal knowledge
capital. Firstly, equation (6) requires to know the complete history of R&D
expenditures since the birth of the firm. Given that the data are limited to
the period 1990-1999, we need to define a plausible value of the knowledge
stock for 1990. To this purpose, I use the series of R&D expenditures during
the eighties and nineties, provided by the National Institute of Statistics
(Instituto Nacional de Estadistica - INE) for 18 different industries.17 Once

15See Appendix A for detailed information on the percentage of observations with “pos-
itive” process innovation (dp=1) and product innovation (dg=1) and the relative distrib-
ution among size-classes.
16The point estimate of Rproc coefficient increases more than 20% (from around 0.08 to

0.10) while the one of Rgood raises more than 70% (from around 0.14 to 0.25).
17The definition of the initial capital does not seem to be a relevant issue in the case of

Spain, considering that the level of R&D investments during the seventies is negligible and
the expenditures during the eighties are sensibly lower than those of the following decade.
Total R&D investments amount to 282 millions of euros in 1982 compared to 1,483 in
1990. The average amount of R&D expenditures for the period 1982-1989 is 599 millions
compared to a higher 1,581 for 1990-1992. We have computed alternative initial values for
the R&D capital and results are not sensibly different from the one presented in Section
4.
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computed the firms’ average expenditures during the period 1990-1999 and
the associated expenditure at industry level, we assume that the individual
R&D efforts follow the same evolution of total industry investments for each
year since the firm has been established (if the firm has been established
before 1980, we just consider the expenditure during the eighties).18

Secondly, it is necessary to define a value for the depreciation rate. As
pointed out by Pakes and Schankerman (1984), the depreciation of an inno-
vation is not due to a decay in the productivity of knowledge but rather from
the fact that competitors can partly or entirely displace this innovation by
either reproducing it or developing their-own innovations. Given that knowl-
edge capital in normalized with respect to the reference firm, the values Rproc

and Rgood decrease whenever one of the competing firms introduce a process
or product innovation. This means that an important source of depreciation
of firms’ knowledge capital is already considered. Therefore, I decide to use
a depreciation rate of zero (ρ = 0).19 As discussed at length in Appendix
B, the so computed R&D capital variable is assumed not to be affected by
(relevant) measurement errors.

In my dataset a large number of firms report no R&D. The log of the
variable R is then undefined and this causes the estimation to collapse. As
other authors,20 I address this problem by setting the value of the variable
equal to 1 before normalising it with respect to the reference firm. The
implicit assumption behind this transformation is that all firms produce some
new knowledge, although this is not necessary the output of formal R&D
investments.

The potential spillover pool, S, is constructed using a weighted sum of
the other firms’ R&D capital, with weights “w” defined by a certain measure
of proximity between firms. Thus, we can write:
18For example, suppose that firm i average expenditure during the period 1990-1999

amounts to 5% of total industry j average expenditure for the same period. We define
firm i investments for the previous decade applying this percentage to total industry j
R&D investments as reported by the INE.
19We have tested for the robustness of our results using a depreciation rate of 0.15 and

1. We have found that results reported in Section 4 are substantially confirmed using these
two alternative values of ρ. In particular, while internal R&D capital has a lower impact
on firms’ productivity and demand when we use ρ = 1, the spillover variables are more
stable across these alternative specifications.
20See Kettle (1996).
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Si =
X
j 6=i
Rj ∗ wij (8)

where wij denotes the weight assigned to firm j’s R&D stock in the
spillover pools available to firm i.

The simplest way to compute the spillover pool is to assume that the dis-
tance between two firms depends only on the industrial proximity: spillovers
are then the unweighted sum of the R&D stocks for all other firms within the
same industrial sector.21 We label the resulting pairs of spillover variables
S53procbasic and S53

good
basic.

22 This specification rests on the strong assumption that
firms have the same chance of borrowing knowledge from one another, which
is likely not to hold. I then modify this approach by taking into account the
size of the firms. Standard oligopolistic models show that more efficient firms
have larger market shares. At the same time models of (vertical) product
differentiation suggest that the higher is the quality of the product, the larger
is the market share retained by the firm producing that product. In the con-
text of Research Joint Venture, Cassiman and Veugelers (1999) and Hernan,
Marin and Siotis (2003) suggest that size is likely to be highly correlated
with the “absorptive capacity” of the knowledge pool generated inside the
joint venture. This suggests that size is naturally linked to the firms’ stock
of knowledge capital and it can probably play a fundamental role in defining
the absorptive capacity of firms. Our dataset divides firms in six groups de-
pending on the number of employees.23 To define the spillover pool of firm i,
we sum separately the R&D capital of all the firms in the same industry (as
defined by the 53-sector classification) that fall in the same size-group and

21To this porpuse, I have grouped the 120 sectors defined by the 3-digit CNAE code (see
footnote 15) into 53 and 18 industries. The latter is a standard industrial classfication,
similar to the 2-digit ISIC. The 53-sector classification derives from a compromise between
a finer market definition (that is likely to be an important requisit for the correct assess-
ment of spillover effects) with the scarsity of observations that a too fine classification
would imply. See Appendix D for further detail.
22Where 53 refers to the 53-sector classification used to define the industry the firm

belongs to and the subscript basic means that we use the unweighted sum of R&D capi-
tal. The superscript distinguishes between spillovers in process and product innovations,
depending on the R&D variable - Rproc and Rgood - used in equation (8) above.
23Group 1 : 20 or less employees; group 2 : between 21 and 50 employees; group 3 :

between 51 and 100 employees; group 4 : between 101 and 200 employees; group 5 : between
201 and 500 employees; group 6 : more than 500 employees.
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then of those firms that are in each smaller and/or bigger size-group.24 Table
1 reports the results of the estimation of the resulting 11 spillover variables
(see footnote 24 and Appendix C) for the production function (column 1)
and the demand equation (column 2).25

INSERT TABLE 1.1 ABOUT HERE

The general pattern that emerges from these figures is that firms can
benefit from the R&D efforts undertaken by firms of the same size and,
even to a greater extent, by firms with a lower number of employees. At
the same time, firms can hardly take advantage from process or product
innovations introduced by larger competitors. This interesting finding is
probably due to several concomitant reasons. First, it is more likely that
a small firm does not have the necessary financial and/or knowledge bases
to adopt the innovation first introduced by a large competitors than vice
versa.. Moreover, large firms have probably a higher experience in dealing
with all those legal and strategic tools (e.g. patents and secrecy) aimed at
protecting the technological contents of their R&D activities. Finally, it is
not uncommon that small inventors decide to sign agreements with large

24For example, if firm i belongs to group 4, we define six spillover variables: the first
one as the sum of the R&D of all the firms with the same size - group 4 - that are
in the same industrial sector (we labell this varible S53same), other two as the sum of
R&D stocks of all the firm in the same industrial sector that are one size-group smaller
- group 3 - or bigger - group 5 - (we labell these two varibles S53small1 and S53big1,
respectively), the next two as the sum of the R&D capital of all the firms that are two
size-group beneath - group 2 - and ahead - group 6 - (labelled S53small2 and S53big2)
and finally we sum the R&D of the firm in the same industrial sector that are in group 1
(S53small3). Correspondendly, if firm i belongs to group 6, the six spillover variables we
compute are: S53same, S53small1, S53small2, S53small3, S53small4 and S53small5 while if
firm i belongs to group 1 the associated variables are: S53same, S53big1, S53big2, S53big3,
S53big4 and S53big5. Note that when constructing these variables, we implicitly make the
assumption that the impact on any firm belonging to size class k of the R&D undertaken
by all competitors in size class k + s (with | s |≤ 5) depends on s but not on k (e.g.
technological spillovers from firms in group 2 to firms in group 4 are equivalent to those
from firms in group 4 to firms in group 6).
25While all the results presented in this study has been estimated with GMM technique,

coefficients of the production function reported in Table 1.1 has been estimated with
standard OLS method. Compared to GMM, OLS gives similar point estimate of the
several spillover variables reported in Table 1.1 but coefficients are more precisely defined.
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firms to commercialize their new products. This is a clear case where the
product innovation achieved by a small firm has a positive impact on the
demand of a large firm.

Now, results in Table 1.1 are consistent with the following null hypothe-
sis:26

α1 = α2 = α3

α4 = α5 = α6 = 2 ∗ α1
α7 = α8 = 0.5 ∗ α1

and

α9 = α10 = α11 = 0

The Wald-test statistic, with 10 degrees of freedom, takes in fact a value of
6.72 (p-value 0.75) and 14.42 (p-value 0.15) when imposing the restrictions
above to the production function and demand equation coefficients, respec-
tively. At this point the spillover variables are computed defining the weights
wij in accordance with the restrictions defined above. More precisely, the co-
efficient of S53same is normalized to one so that firm i spillover pool is the
sum of the R&D stock of firms of the same size and one or two size-group
smaller, the double of the R&D stock of the firms that are three, four and
five group-size smaller, half of the R&D stock of firms that are one or two
size-group bigger. Final weights used in equation (8) are reported in Table
1.2.

INSERT TABLE 1.2 ABOUT HERE

Notice that the so-computed pairs of spillover variables, labelled S53procsize

and S53goodsize , are greater the larger is the size of the firm. This means that the
positive impact of technology diffusion on firm’s productivity and demand is

26We use this particular set of restrictions as it is accepted for both the production
funtion and the demand equation. Other simplest restrictions (e.g. α1 = α2 = α3 = α4 =
α5 = α6 = α7 and α8 = α9 = α10 = α11 = 0) are accepted for the production function but
not for the demand equation. We prefer to use a common restriction in order to compare
the results obtained.
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more likely to affect large firms.27 In order to test whether the magnitude
of knowledge spillovers changes across industries, a second pairs of variables,
S18procsize and S18

good
size is constructed. For any firm i, this is defined as the

sum of the R&D capital of other firms in the same industry as defined by
the18-sector classification, weighted by the size of the firms as explained
above, minus the R&D stocks of the firms in the same industry for the 53-
sector classification. This distinction allows us to test whether the spillovers
are larger when the market closeness is greater. Moreover, given that the
definition of industry implied by the 18-sector classification is broad enough
to embrace vertical relations and complementary products, the S18goodsize can
be used as a proxy to assess the impact of product innovation on downstream
firms and/or related business activities.

For any firm, I can determine six out of the eleven variables that are used
to estimate the coefficients reported in Table 1.1 above (see footnote 24).
Estimation relies then on imposing a value of zero to the missing values.28

To test the robustness of our results to this transformation, I follow the
same procedure defined above but using 3 size-group instead of 6.29 The
estimated coefficient for this alternative specification are reported in Table
1.3. The same pattern found using six size-groups shows up again: technology

27I have constructed alternative measures of spillovers by modifying the definition of
the weight, wij . In particular, I have defined spillover pools using the “technological
proximity” between firms and their geographical localization. As data on patents per
technology field are not available, I have assumed that the technology distance is captured
by the gap in the R&D expenditures. In this case, the weight wij takes value 1 when
the difference in the R&D efforts is small and it tends to zero as this gap increases. As
far as the location is concerned, I wanted to test whether spillovers between firms in
the same regions were higher than between firms far away. Estimated coefficients for
spillovers using “knowledge gap” and “geographical localization” as weights were either
not significantly different from zero or not robust across different specifications. Some
variables interacting these alternative approaches have also been constructed but with
no remarkable results. These findings confirm that the weightening scheme adopted to
compute the spillover variables is fundamental in determing the magnitude and extent of
technology dissemination.
28See Appendix C for a clarifying example.
29Group 1 (small firm): 50 or less employees; group 2 (medium firm): between 51 and

200 employees; group 3 (large firms): more than 200 employees. If a firm belongs to group
2, we can define the following 3 spillover variables: S53same, S53small1 and S53big1. For
small firms, we can compute the variables S53same, S53big1 and S53big2 while for large
firms, the associate variables are S53same, S53small1 and S53small2. Here, for each firm,
we can compute three out of five spillover variables.
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diffusion from small firms to large firms is more relevant than vice versa.. The
Wald-test do not reject the validity of the following restrictions:30

α1 = α2

α3 = 2 ∗ α1
α4 = 0.5 ∗ α1

and

α5 = 0

This leads to define the weighting scheme reported in Table 1.4.

INSERT TABLE 1.3 and 1.4 ABOUT HERE

Finally, before explaining the regression results, I would like to mention
a number of issues that need to be considered when constructing some of
the remaining variables used to estimate the demand and the production
function.

First, the dependent variables used to estimate equations (P) and (G)
are deflated output, Y p, and deflated sales, Y g, respectively. Most of the
studies in this field use an industry wide price deflator when computing these
variables. The underlying hypothesis made is that all firm in the industry
sell an homogeneous product, charge the same price and that all the prices
move uniformly over time. This hypothesis is obviously not satisfied when
firms compete in imperfect competitive environments, as it seems the case
for some industries we are studying. In these circumstances the estimation
of the parameters can be seriously affected by market power.31 The ESEE

30The Wald-test statistic, with 4 degrees of freedom, takes values 2.11 (p-value 0.72)
and 4.75 (p-value 0.31) for the production function and the demand equation, respectively.
31Klette and Griliches (1995) have examined the biases that can arise when estimation

is carried out with deflated revenue, based on a common deflator. They illustrate the
problem by modelling a demand equation to add to the production function. Griliches
and Mairesse (1995) show that the estimated coefficients will be biased downward on the
order of 1/m, where m is the “mark-up” parameter. The impact of industry wide deflators
on the estimation of scale elasticities is studied at length in a companion paper, Ornaghi
(2002).
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reports the percentage change in the selling price applied by the firms. This
allows us to express the output produced in terms of a reference year t. By
using the log-difference transformation, we then get over the possible biased
introduced by the existence of market power.32

Second, a proper measure of labour and physical capital has to take into
consideration the intensity of utilisation of these variables. By using total
hours of work as labour input, L, and the rate of capacity utilisation, U , we
have a more satisfactory specification of the inputs of the production function
and consequently better estimates of the parameters can be obtained. As ex-
plained in Appendix A, total number of hours is computed using the (mean)
normal hours for each worker, plus overtime minus lost hours. This can pos-
sibly lead to a measurement error due to rounding-off. I then use number
of employees (E) as instruments of the hours of work when estimating the
production function.

Last, physical capital used in R&D laboratories and R&D employment
have to be excluded from labour and capital measures since these inputs
do not produce current output. The database provides information on the
number of employees engaged in R&D activities. This number is subtracted
from the total employment reported by the firm when constructing the labour
input, L, and the relative instrument E. In this way I hope to minimise
the so called “double-counting” problem. On this point, Hall and Mairesse
(1995) affirm that the most important correction is one related to the labour
variable.

4 Regression Results

According to the econometric framework presented in Section 2, the produc-
tion function to estimate is the following:

ỹpit = α1l̃it + α2m̃it + α3c̃it + α4ũit + α5r̃it + α6s̃it + ṽit (P)

32Suppose we have data on sales for two consecutive years: Pt ∗Qt and Pt+1 ∗Qt+1. As
we know the percentage price change, we can express the quantities above in terms of the
reference year t: Qt ∗Pt and Qt+1 ∗Pt. At this point if we take the log-difference, we have
a measure of the output growth rate (log(Qt+1)− log(Qt)), free from price effects.
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Recall that small letters with tilde stand for log differences of the variables
normalized with respect to the reference firm.

The model is specified in first differences to eliminate the unobservable
firm-specific effect, µi. At the same time, I use instruments to correct for
simultaneity. As explained in previous sections, I find that hours of work, L,
and capacity utilization, U , are the variables correlated with the error term,
v, because of the simultaneous determination with output. The production
function is then estimated using instrumental variables with the Generalised
Method of Moments (GMM) technique.33 The set of instruments used in the
first-differenced equations consists of the number of employees, E (adjusted
for the “double counting” problem) and the capacity utilization from t − 2
backwards, and the exogenous variables included in the regressions.34 The
Sargan test of overidentified restrictions is easily passed in all the specification
presented below, confirming the validity of our set of instruments. Moreover,
the m2 statistics for serial correlation support the lack of second order se-
rial correlation.35 Table 2 below summarizes the estimated coefficients for
alternative definitions of the spillover variable.

INSERT TABLE 2 ABOUT HERE

Given that all the variables are normalized with respect to the reference
firm, we expect that the constant is not significantly different from zero.
This is actually the case across all specifications, confirming the reliability
of the results obtained. The estimated coefficients of materials, labour and
physical capital take likely values, similar to other studies on manufacturing
firms. The hypothesis of constant returns to scale in standard inputs is always

33See Arellano and Bond (1991 and 1998).
34Simultaneity requires to use lagged levels of hours of work from t− 2 backwards. As

stressed in Section 3.2, I prefer to use number of employees because of measurement errors
that can be possibly autocorrelated. In any case, estimation based on lagged level of the
endogenous variable give similar results. A test of exogeneity of the capacity utilization
based on “Incremental Sargan Test” reveals that this variable has to be considered endoge-
nous, that is why we use past values as instruments. This does not affect point estimates
but it affects their precision, as shown in Table 2.
35As equations in levels are always assumed to have uncorrelated zero mean error terms,

disturbances of specifications in first-differences are expected to present negative first order
autocorrelation and absence of higher orders.
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rejected at conventional significance level. This confirms a well known finding
of most of the empirical studies on the production function: attempts to
control for unobservable heterogeneity and simultaneity gives unreasonably
low estimates of returns to scale.36 The coefficient of capacity utilization
shows a positive value but it is not precisely estimated, probably because its
lagged levels turn out to be poor instruments.37

The main purpose of this analysis is to measure the impact of spillovers on
productivity, also in comparison with internal R&D activities. In column (1),
we report the results for the basic specification, where the spillover variable
is computed as the unweighted sum of the R&D capital of all other firms in
the same industry. The coefficient of S53procbase is positive but not statistically
significant. As we expected, this variable is not enough accurate in reflecting
the impact of technology diffusion on firms’ productivity. The remaining
columns show the estimated coefficient for the spillover variables computed
using the weighting matrices based on 6 size-groups - column (2a) and (2b)
- and 3 size-groups - column (3a) and (3b). The coefficient of S53procsize is now
statistically different from zero across all the specifications. This supports
the idea that relative size is a decisive factor in explaining the absorptive
capacity of firms. Point estimates of the coefficient of S53procsize show that
spillover is less important than internal R&D investments in determining
the productivity of firms. Nevertheless, the relevance of technology diffusion
is not questionable, in particular if we consider that the coefficient of the
spillover variable is, on average, more than one fifth of the coefficient of
internal R&D capital.38 Column (2b) and (3b) show that the coefficient of
S18procsize is not statistically significant. This finding suggests that industrial
proximity plays a fundamental role for the technological diffusion of process
innovations.

Consider now the demand side as defined in equation (G) above:
36See Griliches and Mairesse (1995), among others. Blundell and Bond (1998b) are

en exception: they accept the constant return restriction when using the system GMM
estimator.
37Using the same dataset of our study, Garcia et al. (2002) finds a positive and significant

value of this variable when treated as an exogenous term. The point estimate they report
is close to the one we obtain.
38Reported estimates are rather conservative. If we compute the spillover pools with

different weighting schemes (consistent with the production function but not with the de-
mand equation estimates of Table 1.1), we obtain higher values for the spillover coefficient,
eventually close to 0.05.
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ỹgit = β1epit + β2
fadit + β3erit + β4esit + ṽit (G)

As explained in Section 2, the major econometric issue related to the de-
mand relationship is the endogeneity of the price. Consequently, this variable
has been instrumented using lags from t− 2 to t − 5. The Sargan test con-
firms the validity of the instruments used. Moreover, we fail to reject the null
hypothesis of absence of second order autocorrelation across all the specifi-
cation reported in Table 3. The first three columns of this table presents the
results for the basic specification of the spillover variable while the remaining
are based on the weighting scheme discussed above.

INSERT TABLE 3 ABOUT HERE

The constant always shows a small and not significant trend in the growth
of real sales. The estimates for the price demand elasticity and advertising
show the correct sign and are consistent with previous studies.39 As far as
the spillover effects are concerned, column (1a) shows a large negative co-
efficient for the variable S53goodsize . Sales of firm i are negatively affected by
any product improvements of competitors (competition effect). Neverthe-
less, firm i can possibly take advantage of any innovation if it can learn
and reproduce its contents (knowledge spillovers). It is not a simple task to
disentangle these two opposite effects of competitors’ R&D investments on
firm i sales. The large and highly significant negative coefficient of S53goodsize

states that any firm whose variation of knowledge capital is inferior to the
representative firm suffers a remarkable contraction in market shares. This
variable is then picking up the negative effect of competing against innov-
ative firms.40 In order to isolate the (possible) positive effect of knowledge
diffusion, it is necessary to augment the specification of the demand equa-
tion with variables that control for the drop in sales due to the competition
effect. A high relative growth rate of rivals’ R&D capital affects the evo-
lution of the firm market share relative to its competitors once prices are

39See for instance Garcia et all. (2002).
40Recall that the spillover variable is computed as the sum of rivals’ R&D capital; for

any two firms, this variable takes a higher value for the firm with lower R&D stock. See
Appendix C for a simple numeric example.
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controlled for. Hence, we can use the change of competitors’ market share
(mrk share) as a proxy for the competition effect. Moreover, we can use
industry concentration (concen) as an overall measure of the impact of R&D
investments on market structure.41 Column (1c) in Table 3 shows that under
this new specification the coefficient of our spillover variable is now positive,
although it is not statistically significant. Interestingly enough, the spillover
variable is the only one that records such a remarkable change: all the other
variables are rather stable across this alternative formulation. This suggests
that these two new regressors are counting for the competition effect, with-
out introducing any (relevant) mispecification of the demand equation. The
low precision in estimating the technology diffusion effect call again for a
finer definition of the spillover pools a firm can benefit from. Columns (2a)
and (2b) and columns (3a) and (3b) show that the estimated coefficients for
S53goodsize and S18

good
size are positive and highly significant. This suggests that

learning from rivals plays a fundamental role when it comes to improving the
quality of a product. Spanish firms are less R&D intensive than the average
of European firms. Therefore, it is possible that inward FDI works as chan-
nels for knowledge spillovers.42 The coefficient of S18size and S53size are of
the same order of magnitude, suggesting that technology diffusion goes well
beyond a single sector when this is narrowly defined. As suggested in Sec-
tion 2 spillover effects are potentially wide if we define an industry broadly
enough to consider vertical relations and complementary products. The re-
sults presented give strong support to this intuitive reasoning. As before,
we augment our demand equation with the variables mrk share and concen
in order to drain the negative impact of rivals’ product innovation on firm i
sales due to competition. Results in column (3c) shows that the coefficients
of the spillover variables are practically identical to those reported in the
other columns. This confirms that the computation of the spillover pools
using relative size as a proxy for absorptive capacity is a reliable approach
to disclose the existence and the magnitude of technological diffusion.

It is important to notice that the magnitude of spillovers for product and
process innovations is rather different, also when compared to the internal
R&D activities. Knowledge diffusion associated with product innovations is

41I am indebted to Bronwyn Hall for suggesting me this procedure.
42Bertschek (1995) shows that imports and FDI play an important role for product and

process innovations in the case of German manufacturing firms. We are not aware of any
reliable study of this type for Spanish manufacturing industries.
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larger in magnitude and extent. This implies that the standard approach
based on estimating the production function can only reveal part of the in-
formation about spillovers while there are interesting and pervasive aspect
of R&D externalities that cannot be quantify. This finding is related to
the point made by Quah (2002) in a study on the New Economy develop-
ments. Although his focus is on economic growth and restricted to a particu-
lar group of industries, his paper emphasises endogenous growth results from
the interaction of demand and supply characteristics, not just production-
side developments. In particular the author stresses (pag. 21) that “most
profound changes in the New Economy are not productivity or supply-side
improvements but instead consumption or demand side changes”.

5 Concluding Remarks

This paper analyses the impact of knowledge diffusion for product and process
R&D. Our econometric frameworks modifies the standard approach first sug-
gested by Griliches (1979) by adding a demand equation to the standard pro-
duction function. To the best of my knowledge, there are no similar studies
in the empirical literature on spillovers. In constructing the components of
the knowledge capital, I introduce two new features. First, as it is not in-
novation input (R&D) but innovation output that has a positive impact on
the economic performance of a firm, I have modified the (standard) perpet-
ual inventory method by introducing the notion of operative R&D capital.
Second, the spillover variable is computed assuming that the chance of firm
i borrowing knowledge from firm j depends on the relative size of the two
firms.

Our results suggest that knowledge spillovers play an important role in
improving the quality of products and, to a lesser extent, in increasing the
productivity of the firm. We find that technological diffusion of product
innovations is larger than the one of process innovations both in magnitude
and pervasiveness.

These findings have an interesting policy implication. If innovators are
unable to appropriate the full benefits of their innovations, then the amount
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of R&D may be lower than socially optimal, since firms consider only “pri-
vate” returns on investments when planning their R&D activities. From
our estimations, it emerges that the average gap between private and social
rates of return is higher for product innovation than for process innovation.
This suggests the opportunity of a different public policy towards taxation of
R&D investments or government subsidies to R&D activities depending on
the type of innovation that firms are focused on. More evidence is obviously
required before moving in this direction.

This analysis leaves some important questions unanswered. I have shown
that the magnitude of spillovers for product and process innovation is dif-
ferent but further work is needed to determine the channels that actually
permit knowledge to flow and how these differ between product and process
innovation. Process innovations are often linked to the skills of managers,
engineers and technicians and competing firms can hardly benefit from these
innovations. One possible channel is through mobility of R&D engineers.
However, firms that are afraid of losing their technological advantages be-
cause of this mobility can engage in simple, although costly, activities (e.g.,
increasing wages and fringe benefits) designed at preventing their own em-
ployees from leaving the firm. Product improvements are possibly simpler
to learn and replicate, for example through reverse engineering. This line of
reasoning can explain the relevant discrepancy between diffusion of product
and process innovations presented above. A recent attempt to determine the
models or mechanism that actually permit knowledge to flow is the work of
Jaffe, Trajtenberg and Fogarty. (2000) based on case-studies of American
firms.

24



Appendix A: Data and Variable
A1 Construction of Data Sample
The survey provides data on manufacturing firms with 10 or more em-

ployees. When this was designed, all firms with more than 200 employees
were required to participate while a representative sample of about 5% of the
firms with 200 or less employees was randomly selected. In 1990, the first
year of the panel, 715 firms with more than 200 employees were surveyed,
which accounts for 68% of all the Spanish firms of this size. Newly estab-
lished firms have been added every subsequent year to replace the exits due
to death and attrition.
We start with a sample of 3,151 firms in an unbalanced panel data. The

total number of observations is 18,680. We then clean our dataset according
to the following criteria:
1) We remove all the observations with negative value added. There are

157 such observations, amounting to less than 1% of the original sample.
2) We drop all observations where the quantity produced by the firm

doubled (or the growth rate is less than minus 50%) but there is not an
increase either in the number of employees or in the physical capital of at
least 50% (or a decrease of labour and capital less than minus 25%). This
removes 193 observations (about 1% of the initial sample).
3) We remove all observations where the internal R&D capital records a

growth rate higher than 400%. This removes other 74 observations.
In total, 424 observations are removed applying the filters above. The

subsample we use in our study consists of all the firms that have been sur-
veyed for at least three years. There are 2,430 firms satisfying this condition,
for a total number of 16,637 observations. At this point, we remove any ob-
servations for which the data required to the estimation are not available. In
the tables showing the results of the estimation, we report the exact number
of observations making up the final samples.

A2 Description of Variables
Advertising (AD): Nominal amount of advertising expenditures deflated

by the firms’ output price.
Capacity Utilization (U): Yearly average rate of capacity utilization re-

ported by the firms
Competitors’ Market Share (Mrk share): We first determine firm i market

share (where the market is defined by the 3-digit CNAE code). Then, we
determine the rivals’ share as 1 minus firm i market share.
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Concentration (Concen): Herfindal index of industry concentration com-
puted using the market share (as defined above) of all firms in the same
3-digit industry.
Employment (E): Approximation to the average number of works during

the year; it does not consider employees engaged in R&D activities.
Labour (L): Labour consists of the total hours of work. It has been

constructed using the number of works, adjusted for the double counting of
R&D employees, times the normal hours plus overtime and minus lost hours.
Materials (M): Nominal materials are given by the sum of purchases and

external services minus the variation of intermediate inventories. We use
firms’ specific deflator based on the variation in the cost of raw materials
and energy as reported by the firm.
Operative R&D stocks for Process Innovations (Rproc): This variable is

constructed using the perpetual inventory method, assuming a depreciation
rate of zero (ρ = 0). The word “operative” specifies that only successful
innovation is considered in our empirical estimation. Computation is fully
explained in Section 3.2.
Operative R&D stocks for Product Innovations (Rgood): As for the vari-

able Rproc above, R&D expenditures are capitalized only when firms achieve
a product innovation. See Section 3.2 for further detail.
Output (Y p): Nominal output is defined as the sum of sales and the

variation of inventories. We deflate the nominal amount using the firms’s
specific output price as defined below
Physical Capital (C): It has been constructed capitalising firms’ invest-

ments in machinery and equipment and using sectorial rates of depreciation.
The capital stock does not include buildings. This variable is taken from
Martin and Suarez (1997).
Price (P): Paasche type price index calculated from the variation of price

reported in the ESEE. This variable is not expressed in levels but in growth
rate. It is used to estimate the price elasticities in the demand equation and
to deflate nominal output.
Sales (Y g): Amount of total sales reported by the firms deflated by firms’

specific output price as defined below.
Size Weighted Spillovers (S53 size): Sum of R&D capital of other firms

in the same industry as defined by the 53-sector classification, weighted by
the size of the firms. We use two different weighting matrices as explained
in Section 3.2
Size Weighted Spillovers (S18 size): Sum of others’ R&D capital in the
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same industry as defined by the 18-sector classification, weighted by the size
of the firms, minus the R&D stocks of the firms in the same industry at
53-sector classification. We use two different weighting matrices as explained
in Section 3.2
Unweighted Spillovers (S53 basic): Unweighted sum of the R&D capital of

other firms in the same industry at 53-sector classification.
Unweighted Spillovers (S18 basic): Unweighted sum of others’ R&D capital

in the same industry at 18-sector classification, minus the R&D stocks of the
firms in the same industry at 53-sector classification.

Table A1: R&D Performers and Innovation
% of Firms % of Obs % of Obs

Size Groupa R&D performersb with dp=1c with dg=1c

1 27.4 20.1 16.6
2 40.5 28.9 21.1
3 60.5 34.7 27.4
4 77.9 36.5 31.1
5 91.0 48.5 36.2
6 93.8 59.1 45.7

Total 56.5 34.0 26.4

Note:
aGroup 1 : 20 or less employees; group 2 : between 21 and 50 employees;

group 3 : between 51 and 100 employees; group 4 : between 101 and 200
employees; group 5 : between 201 and 500 employees; group 6 : more than
500 employees.

bFirms that report non-zero R&D expenditures in at least one of the year
of the surveyed period.

cNumber of observations in which firms report to have achieve a process
innovation (dp=1) or a product innovation (dg=1).
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Table A2: Descriptive Statistics
Growth rates of the variable; sample period: 1990-1999.
Variable Name Mean St. Dev. IQ(5)a IQ(95)a

Output Y p 0.037 0.201 -0.301 0.356
Sales Y g 0.037 0.309 -0.348 0.408
Labour L 0.003 0.190 -0.262 0.273
Employment E 0.003 0.178 -0.241 0.251
Materials M 0.026 0.322 -0.450 0.494
Physical Capital C 0.093 0.323 -0.115 0.604
Capacity Utilizationb U 0.805 0.152 0.5 1
Price P 0.014 0.059 -0.051 0.086
Advertising AD 0.107 2.806 -5.298 5.937
Operative R&D Rproc 0.020 0.100 0.00 0.126
Unweigh. Spill. 53 S53procbasic 0.015 0.404 -0.387 0.461
Size-weigh. Spill. 53c S53procsize 0.013 0.676 -0.834 0.884
Size-weigh. Spill 18c S18procsize 0.028 0.878 -0.693 0.789
Operative R&D Rgood 0.022 0.280 0.00 0.088
Unweigh. Spill. 53 S53goodbasic 0.003 0.423 -0.409 0.444
Size-weigh. Spill. 53c S53goodsize 0.006 0.678 -0.885 0.872
Size-weigh. Spill. 18c S18goodsize 0.023 0.931 -0.739 0.823
Note:
aThe IQ is the interquantile range, the value of the variable at the 5

percent and 95 percent level
bVariable expressed in Levels
cWe report descriptive statistics for the size-weighted spillover variable

defined using the matrix in Table 1B (based on 6 size-group).
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Appendix B: Errors in Variable
As discussed in Section 3.2, we put a lot of efforts in determining firms’

internal R&D stocks. We consider all possible source of investments (intra-
mural, contracted outside and imported technology), we test for alternative
initial values and we take into consideration the (supposed) timing when
R&D investments are expected to affect the productivity and the demand
faced by the firm (the “operative” capital). Although we are aware that our
variable R cannot be considered a perfect measure of the internal R&D capi-
tal, we feel confident that it is not affected by (relevant) measurement errors.
Point estimates reported in Section 4 are close to other studies and seem to
confirm our view. A possible alternative generally employed in the context
of panel data is to use past values of the endogenous variable as instruments.
Unfortunately, the R&D capital is highly persistent and lags of this variable
in levels turn out to be poor instruments to estimate equations in differences.
We also tried to use R&D employees as an external instruments. However,
the Sargan test rejects the validity of this approach.
Note that the bias due to measurement errors is negative when the coef-

ficients for the internal R&D stock is positive (see Arellano (2000)). There-
fore, if we find a positive and significant relationship between productivity
and demand changes and internal R&D capital, we might argue that the true
relationship is even stronger.

Appendix C: Computing the Spillover Variable.
This appendix presents two simple numeric example that deals with some

difficulties in defining the spillover variables: the first is based on the com-
putation of the spillover variable as the unweighted sum of the R&D stock
of competing firms while in the second, we take into account the size of the
firms.
I) Consider the following case:

Indus. Indus. R&D Sp53ba Sp18ba Sp53ba Sp18ba
Firm (53) (18) capital (norm.) (norm.)
1 1 1 0 45 60 1.5 1
2 1 1 15 30 60 1 1
3 1 1 30 15 60 0.5 1
4 2 1 10 50 45 1.667 1
5 2 1 10 50 45 1.667 1
6 2 1 40 20 45 0.444 1

Note that the six firms belong to two different industries when these
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are defined by the 53-industry classification but they all belong to the same
industry when we use the broader 18 sector classification. For any firm i,
the variable SP53basic (column 5) is defined as the sum of the R&D stock
(column 4) of all the other firms in the same industry (for the 53-industry
classification). SP18basic (column 6) is computed as the sum of the R&D
stock of all the other firms in the same industry at 18-sector classification
excluding SP53basic. Recall that we normalize all the variables w.r.t. their 3-
digit CNAE industry averages, before proceeding to the empirical estimation
(to keep things simple, we suppose that the CNAE classification corresponds
to the 53-industry classification in column 2). The last two columns report
the values of the spillover variables after this normalization. We can draw
two main insights from this example: i) a higher value of SP53basic necessary
indicates a lower internal R&D capital; ii) it is not possible to use SP18basic
in a regression since it takes value 1 for all the firms.
II) Consider, now, this second example, where we compute the spillover

variable taking into account the size of the firm:
Indus. Size R&D Sp53 Sp53 Sp53 Sp53 Sp53

Firm (53) capital same small1 small2 big1 big2
1 1 1 0 10 - - 40 60
2 1 1 10 0 - - 40 60
3 1 2 10 30 10 - 60 -
4 1 2 30 10 10 - 60 -
5 1 3 20 40 40 10 - -
6 1 3 40 20 40 10 - -

We assume that firms belong to three different size classes: small (group
1), medium (group 2) and big (group 3). For any firm, I can compute 3 out of
5 spillover variables reported above. For example, for firm 1, I can compute
the spillover from firms of the same size, SP53same (which corresponds to the
R&D capital of firm 2), from firms one size-group bigger, SP53big1 (which is
the sum of the R&D capital of firm 3 and 4) and from firms two size-group
bigger, SP53same (which corresponds to the sum of the R&D capital of firm
5 and 6). To estimate the coefficients of these 5 variables, we replace missing
observations with zero before normalizing w.r.t. their average values. This
transformation has the effect of rescaling the relative value of all the spillover
variables (except SP53same) since it reduces their means. Our approach re-
lies implicitly on the assumption that the impact on any firm belonging to
size class k (with k=1,2,3 ) of the spillovers coming from competitors in size
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class k+s (with | s |≤ 2) depends on s but not on k (e.g. SP53small1 mea-
sures technology diffusion from median firm to big firm and from small firm
to medium firm, at the same time). Although this modus operandi can be
open to criticism, we need to observe that: i) the sources and channels of
technology diffusion are so complex that any approach used to get a proxy
for the spillover pools can be criticized and defended at the same time. We
feel that the differences in size (more than the absolute size of the firm) can
play an important role in defining differences in the absorptive capacity; ii)
we check for the robustness of our results (in particular to the replacement
of missing observations with zeros) by defining two different size classifica-
tion (one with 6 groups and the other with 3 groups) and we obtain similar
and sensible results, as discussed in Section 3.2; moreover, estimations have
been run also using the balanced panel sample with no sensible differences in
the results obtained (so that these are robust also to changes in the sample
composition); iii) the estimated coefficients of these variables are not used to
make inferences about spillover in product and process innovation (the ulti-
mate objective of our analysis) but are simply used as weights to compute a
finer spillover variable than the basic one. We could impose similar weights
ex-ante (on the base of some assumptions) without going through this pro-
cedure. For example, we compute the spillover variable summing only the
R&D stocks of all the firms of the same size or smaller (this is equivalent to
a weighting matrix with value 1 if size(firm i)≥size(firm j ) and zero other-
wise). We find that the general results presented in Section 4 are still valid
under this (ad hoc) approach.
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Appendix D: Definition of Industrial Sectors
The ESEE reports the 3-digit CNAE sector that firms belong to. There

are 122 different manufacturing sectors. To construct the spillover variables,
we defined two different industrial classification: one grouping those 3-digit
sectors into 53 industries and another one into 18 industries. In other words,
the sectors defined by the CNAE has been grouped into 53 industries and
the later has been successively grouped into 18 (larger) industries.

Table D1: 18 Industry Classification
Sector Definition 3-digit CNAE
1 Ferrous and non ferrous metals 221 to 224
2 Non-metallic minerals 240 to 249
3 Chemical products 251 to 255
4 Metal products 311 to 319
5 Industrial and agricultur machinery 321 to 329
6 Office and data processing machine 330, 391 to 399
7 Electrical and electronic goods 341 to 347, 351

to 355
8 Vehicles, cars and motors 361 to 363
9 Other transport equipment 371 to 372, 381

to 389
10 Meat and preserved meat 413
11 Food and tobacco 411 to 412, 414

to 423, 429
12 Beverages 424 to 428
13 Textiles and clothing 431 to 439, 453

to 456
14 Leather and shoes 441 to 442, 451

to 452
15 Timber and furniture 461 to 468
16 Paper and printing products 471 to 475
17 Rubber and Plastic products 481 to 482
18 Other manufacturing products 491 to 495
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Table D2: 53 Industry Classification
Sector Definition 3-digit CNAE
1 Ferrous and non ferrous metals 221 to 224
2 Structural clay products 240 to 241
3 Concrete 242, 248 to 249
4 Concrete mixer and other by-products 243
5 Stone and ceramic 244 to 245, 247
6 Glass 246
7 Inorganic and organic chemicals and syn-

tetic materials
251 to 252

8 Paints, Varnishes and other chemical
products

253

9 Drugs 254
10 Soap and Detergents 255
11 Metal foundaries and primary smelting

and refining
311 to 313

12 Fabricated structural metal products
(doors, frames, ..)

314

13 Heating equipment 315, 319
14 Miscellaneous metal products (bolts, nuts,

screws, ..)
316

15 Farm machinery and equipment 321
16 Metal work machinery and textile

machinery
322 to 323

17 Machinery for chemical industry 324
18 Mining and construction machinery and

convey equipments
325 to 326

19 Engines and turbines and other machiner-
ies, not elsewhere classified

327 to 329

20 Office equipments and medical and photo-
graphic instruments

330, 391 to 399

21 Electric transmission and wiring
equipment

341 to 342

22 Electrical industrial apparatus 343 to 344
23 Houshold appliances 345
24 Electric lightening 346
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Sector Definition 3-digit CNAE
25 Miscellaneous electric products 347
26 Telephone apparatus and radio

broadcasting
351 to 353

27 Electronic componets 354 to 355
28 Motor vehicles and motorcycles 361 to 362
29 Motor vehicles parts and accessories 363
30 Ship and boat building and repairing 371 to 372
31 Railroad and aircraft equipement 381 to 383, 389
32 Oil and Milk production and derivatives 411 to 412, 414

to 415
33 Livestock 413
34 Fishing 416 to 418
35 Bakery products 419
36 Sugar and cacao 420 to 421
37 Wine, beer and alchoolic beverages 424 to 428
38 Other diary products and tobacco 422 to 423, 429
39 Cotton and silk products (including dye-

ing and finishing)
431, 433 to 434,
436, 439

40 Wool products (including dyeing and
finishing)

432, 435, 437

41 Leather products: luggage and gloves 441 to 442
42 Footwear 451 to 452
43 Apparel and other finished products made

from fabrics
453

44 Leather products: fur goods 454 to 456
45 Timber and wood products (exept

forniture)
461 to 467

46 Forniture 468
47 Pulp, paper and paperboard mills 471 to 472
48 Converted paper and paperboard

products
473

49 Commercial printing 474
50 Newspapers, periodicals and books

publishing
475

51 Rubber products 481
52 Plastic products 482
53 Other manufacturing products 491 to 495
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TABLES 
 
Table 1.1: Spillovers for 6 Size-Group 
 

Variable Coeff Productiona 

(1) 
Demanda 

(2) 
Other variablesb  Incl. Incl. 
S53same α1  0.0032** (0.0013)  0.0122*** (0.0016) 
S53small1 α2  0.0022** (0.0011)  0.0150*** (0.0015) 
S53small2 α3  0.0021* (0.0012)  0.0140*** (0.0015) 
S53small3 α4  0.0066*** (0.0015)  0.0225*** (0.0018) 
S53small4 α5  0.0050*** (0.0015)  0.0219*** (0.0018) 
S53small5 α6  0.0059*** (0.0019)  0.0226*** (0.0019) 
S53big1 α7  0.0030*** (0.0010)  0.0060*** (0.0012) 
S53big2 α8  0.0006 (0.0009)  0.0037*** (0.0010) 
S53big3 α9  0.0005 (0.0010) - 0.0021* (0.0013) 
S53big4 α10 - 0.0004 (0.0011) - 0.0022 (0.0014) 
S53big5 α11  0.0001 (0.0010) - 0.0005 (0.0011) 
Heteroskedasticity robust standard errors shown in parentheses. * significant at 10% level; ** 
significant at 5%; *** significant at 1%. 
aEstimation is by generalized instrumental variables regression after first differencing. 
bFor the production function, this includes labour, material, physical capital, capacity 
utilization and internal R&D capital (for process innovation). For the demand side, it includes 
prices, advertising and internal R&D capital (for product innovation). 
 
 
Table 1.2: Weighting Matrix 
 

Firm j size-group Firm i 
size-groupa 1 2 3 4 5 6 

1 1 0.5 0.25 0 0 0 
2 1 1 0.5 0.25 0 0 
3 1 1 1 0.5 0.25 0 
4 2 1 1 1 0.5 0.25 
5 2 2 1 1 1 0.5 
6 2 2 2 1 1 1 

This weighting scheme is derived from the restriction on the coefficient reported in Table 1.1. 
The six size-groups are: group1 = 20 or less employees; group2 = between 21 and 50 
eimpoyees; group 3 = between 51 and 100 employees; group 4 = between 101 and 200 
employees; group 5 = between 201 and 500 employees; group 6 = more than 500 employees. 
Look at the first row; when firm i has less than 20 employees (group 1) can benefit from the 
entire R&D capital of other firms in the same size-group (group 1), from half of the R&D 
capital of other firms in size-group 2 and from a quarter of the R&D capital of firms in size-
group 3; this firm cannot take advantage of the research efforts undertaken by large firms 
(group 4, 5 and 6).   
 



Table 1.3: Spillovers for 3 Size-Group 
 

Variable Coeff Productiona 

(1) 
Demanda 

(2) 
Other variablesb  Incl. Incl. 
S53same α1  0.0051** (0.0022)  0.0219*** (0.0040) 
S53small1 α2  0.0033** (0.0016)  0.0170*** (0.0026) 
S53small2 α3  0.0053*** (0.0019)  0.0312*** (0.0035) 
S53big1 α4  0.0025** (0.0012)  0.0104*** (0.0019) 
S53big2 α5  0.0008 (0.0014) - 0.0012 (0.0024) 
Heteroskedasticity robust standard errors shown in parentheses. * significant at 10% level; ** 
significant at 5%; *** significant at 1%. 
aEstimation is by generalized instrumental variables regression after first differencing. 
bFor the production function, this includes labour, material, physical capital, capacity 
utilization and internal R&D capital (for process innovation). For the demand side, it includes 
prices, advertising and internal R&D capital (for product innovation). 
 
 
 

Table 1.4: Weighting Matrix 
 

Firm j size-group Firm i 
size-groupa 1 2 3 

1 1 0.5 0 
2 1 1 0.5 
3 2 1 1 

This weighting scheme is derived from the restriction on the coefficient reported in Table 1.3. 
The three size-groups are: group1 = 50 or less employees; group2 = between 51 and 200 
eimpoyees; group 3 = more than 200 employees. Look at the first row; when firm i has less 
than 50 employees (group 1) can benefit from the entire R&D capital of other firms in the 
same size-group (group 1), from half of the R&D capital of other firms in size-group 2 but it 
cannot take advantage of the research efforts undertaken by large firms (group 3).   
 



Table 2: Production Function 
 
Sample Period: 1991-1999; 
Dependent Variable: Output growth rate 
Estimation Method: GMM estimatesa 

Variables Basic 6 Size-Gr 6 Size-Gr 3 Size-Gr 3 Size-Gr 
 (1) (2a) (2b) (3a) (3b) 

constant -0.003 -0.003 -0.003 -0.003 -0.003 
 (0.003) (0.003) (0.003) (0.002) (0.002) 
l 0.354*** 0.326*** 0.311*** 0.313*** 0.312*** 
 (0.072) (0.081) (0.083) (0.079) (0.079) 
m 0.380*** 0.391*** 0.394*** 0.394*** 0.394*** 
 (0.020) (0.021) (0.021) (0.021) (0.021) 
c 0.089*** 0.084*** 0.085*** 0.085*** 0.085*** 
 (0.015) (0.015) (0.015) (0.015) (0.015) 
u 0.051 0.032 0.031 0.038 0.039 
 (0.068) (0.069) (0.069) (0.069) (0.069) 
rproc 0.110*** 0.097*** 0.098*** 0.098*** 0.098*** 
 (0.026) (0.023) (0.024) (0.023) (0.023) 
s53proc 0.034 0.016* 0.018** 0.021*** 0.023** 
 (0.042) (0.009) (0.008) (0.007) (0.008) 
s18proc - - -0.002 - -0.005 
   (0.007)  (0.007) 
Obs 11,004 11,004 11,004 11,004 11,004 
Sargan T (df)b 76.9 (70) 80.5 (70) 80.6 (70) 80.0 (70) 80.2 (70) 
m1c -11.63 -12.33 -12.33 -12.32 -12.32 
m2c -1.47 -1.58 -1.58 -1.71 -1.71 
Heteroskedasticity robust standard errors shown in parentheses. * significant at 10% level; ** 
significant at 5%; *** significant at 1%. 
aEstimation is by generalized instrumental variables regression after first differencing. IVs: 
number of workers (E) and capacity utilization (U) lagged levels from t-2 and all earlier periods. 
bSargan test of overidentifying restrictions with degrees of freedom reported in parentheses 
cm1 and m2 Arellano and Bond (1991) test for first order and second order autocorrelation. 
 
 



Table 3: Demand Equation 
 
Sample Period: 1991-1999; 
Dependent Variable: Output growth rate 
Estimation Method: GMM estimatesa 

Variables Basic Basic Basic 6 Size-Gr 6 Size-Gr 6 Size-Gr 3 Size-Gr 3 Size-Gr 
 (1a) (1b) (1c) (2a) (2b) (2c) (3a) (3b) 

constant -0.003 -0.008** 0.002 -0.001 -0.002 0.001 -0.001 -0.002 
 (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 
p -2.205*** -2.157*** -1.762*** -2.177*** -2.205*** -1.761*** -2.174*** -2.183*** 
 (0.643) (0.643) (0.551) (0.627) (0.631) (0.539) (0.634) (0.633) 
ad 0.013*** 0.012*** 0.011*** 0.013*** 0.012*** 0.010*** 0.013*** 0.013*** 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 
rproc 0.263*** 0.219*** 0.206*** 0.243*** 0.235*** 0.175*** 0.253*** 0.246*** 
 (0.026) (0.026) (0.023) (0.026) (0.024) (0.020) (0.025) (0.024) 
s53proc -0.419*** -0.067 0.134 0.117*** 0.085*** 0.069*** 0.085*** 0.060*** 
 (0.128) (0.172) (0.106) (0.013) (0.012) (0.011) (0.011) (0.011) 
s18proc - - - - 0.090*** 0.094*** - 0.087*** 
     (0.013) (0.012)  (0.014) 
mrk share - -2.496*** -3.240*** - - -3.126*** - - 
  (0.261) (0.166)   (0.156)   
concen - - -2.346*** - - -2.353*** - - 
   (0.122)   (0.121)   
Obs 13,539 13,539 13,539 13,539 13,539 13,539 13,539 13,539 
Sargan T (df)b 18.6 (25) 20.0 (25) 22.1 (25) 19.9 (25) 19.5 (25) 21.6 (25) 19.6 (25) 18.6 (25) 
m1c -5.96 -5.71 -5.39 -6.27 -6.33 -5.62 -6.08 -6.12 
m2c -1.74 -1.35 -1.02 -1.52 -1.34 -0.89 -1.67 -1.57 
Heteroskedasticity robust standard errors shown in parentheses. * significant at 10% level; ** significant at 5%; *** significant at 1%. 
aEstimation is by generalized instrumental variables regression after first differencing. IVs: lags of p from t-2 to t-5. 
bSargan test of overidentifying restrictions with degrees of freedom reported in parentheses 
cm1 and m2 Arellano and Bond (1991) test for first order and second order autocorrelation. 
 


