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G. López Lagomasino 1 I.A. Rocha 2

Abstract

For any pair of compact intervals ∆1 and ∆2 of the real line such that ∆1∩∆2 = ∅
we obtain two pairs of absolutely continuous probability measures (µ1, µ2) and

(τ1, τ2) supported on ∆1 and ∆2, respectively, such that

· for appropriate constants C1 and C2, (µ1, µ2) is the Nikishin system generated by

(µ1, C1τ1) and (τ1, τ2) the Nikishin system generated by (τ1, C2µ1),

· the polynomials of multiple orthogonality with respect to the Nikishin system

(µ1, µ2) and indices {. . . , (n, n), (n + 1, n), . . .} satisfy a recurrence relations with

constant coefficients of period 2,

· 1/µ̂1(z) and 1/µ̂2(z) are the functions which describe the ratio asymptotics of mul-

tiple orthogonal polynomials with respect to an arbitrary Nikishin system N (σ1, σ2)

verifying supp(σi) = ∆i, and σ′i > 0, i = 1, 2, almost everywhere on ∆i. Analogously,

1/τ̂1(z) and 1/τ̂2(z) give the ratio asymptotics for N (σ2, σ1).

Keywords and phrases: Hermite-Padé orthogonal polynomials, multiple orthogonal poly-

nomials, Nikishin system, varying measures, ratio asymptotics.

AMS Classification: Primary 42C05, 33C25; Secondary 41A21.

1 Introduction

Let Σ = (σ1, σ2) be a system of positive Borel measures such that, for each k = 1, 2,

σk is supported on a compact interval ∆k = [ak, bk] ⊂ R (which does not reduce to a

single point) and ∆1 ∩∆2 = ∅. Let N (Σ) = (s1, s2) be the Nikishin system generated by

Σ. That is,

ds1(x) = dσ1(x), ds2(x) = σ̂2(x)dσ1(x).

For any measure µ,

µ̂(z) =

∫
dµ(x)

z − x
.
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The general definition of a Nikishin system was given in [14] where the author called

them MT systems. Such systems have attracted great attention in connection with the

extension of the asymptotic theory of orthogonal polynomials and the convergence of

simultaneous Hermite-Padé approximation.

For each multi-index n = (n1, n2) ∈ I, where

I = {(0, 0), (1, 0), (1, 1) . . . , (2, 1), . . .},

we consider the monic multiple orthogonal polynomial Qn satisfying
∫

xνQn(x)dsk(x) = 0, 0 ≤ ν ≤ nk − 1, k = 1, 2.

In [14] it was shown that any multi-index (n1, n2) ∈ I is normal. This means that

deg Qn = n1 + n2 and is uniquely determined by the orthogonality conditions and has

degree |n| = n1 + n2. (Regarding normality, for more general classes of multi-indices and

Nikishin systems, see also [5], [6], and [7]). Since for any n ∈ I there exist unique k ∈ Z+

and i ∈ {0, 1} such that |n| = 2k + i, for convenience we write Q2k+i = Qn.

Consider the 3-sheeted Riemann surface

R =
2⋃

k=0

Rk,

formed by the consecutive “glued” sheets

R0 := C \∆1, R1 := C \ (∆1 ∪∆2), R2 := C \∆2,

where the upper and lower banks of the slits of two neighboring sheets are identified. Let

Fi, i = 1, 2, be the single valued rational function on R whose divisor consists of a simple

pole at ∞(0) and a simple zero at ∞(i) with the normalization

Fi(x) = x +O(1), x →∞(0), (1)

and let {Fi,k}2
k=0 be the different branches of Fi corresponding to the different sheets Rk

of R. When supp(σk) = ∆k and σ′k > 0 a.e. on ∆k, k = 1, 2, in [2, Theorem 1.2] it was

proved that

lim
n→∞

Q2n+i(z)

Q2n+i−1(z)
= Fi,0(z), i = 1, 2, (2)

uniformly on compact subsets of C \ ∆1. This result on ratio asymptotics extends E.A.

Rakhmanov’s theorem given for standard orthogonal polynomials on the real line.

Remarks.
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1. The limits Fi,0(z) are expressed in [2, Theorem 1.2] in a different way, but the

equivalence between both expressions is an immediate consequence of Liouville’s

theorem and Cardano’s formulas.

2. Ratio asymptotics of multiple orthogonal polynomials for Nikishin systems also

hold when each σk is supported on ∆k ∪ ek, where ek is a denumerable set without

accumulation points in R\∆k, and σ′k > 0 a.e.. This is proved in [13, Theorem 4.1].

It is well known and easy to verify that the polynomials Qn(x) satisfy the recurrence

relations

Q−2(x) = Q−1(x) = 0, Q0(x) = 1

xQn(x) = Qn+1(x) + α∗nQn(x) + β∗nQn−1(x) + γ∗nQn−2(x), n = 0, 1, . . .
(3)

for certain real constants α∗n, β∗n, γ
∗
n. Moreover, as proved in [3, Theorem 1.2], when the

polynomials have ratio asymptotics as expressed in (2), the coefficients of the recurrence

have limits with period 2. More precisely, there exist real constants αi, βi, γi such that

lim
n→∞

α∗2n+i = αi, lim
n→∞

β∗2n+i = βi, lim
n→∞

γ∗2n+i = γi, i = 0, 1.

Remark. When ∆1 = [a, 0], ∆2 = [0, 1] and there is ratio asymptotics, the values

of the constants αi, βi, γi, i = 0, 1, are given in [3, Section 4.5]. Notice that in this case

∆1 ∩∆2 = {0} 6= ∅ and is not considered in the present paper.

Here, we prove that
(

1

F1,0(z)
,

1

F2,0(z)

)
= (µ̂1(z), µ̂2(z)),

α1 − α0

γ1

(
F2,2(z)

F1,2(z)
, F2,2(z)

)
= (τ̂1(z), τ̂2(z)),

where µk are probabilities supported on ∆1, τk are probabilities supported on ∆2, and

dµ2(x) =
γ0

(α1 − α0)2
τ̂1(x)dµ1(x), dτ2(x) =

−γ0

(α1 − α0)2
µ̂1(x)dτ1(x).

Moreover, the sequence of polynomials (Pn)∞n=0, defined by the recurrences

xP2n+i(x) = P2n+i+1(x) + αkP2n+i(x) + βkP2n+i−1(x) + γkP2n+i−2(x),

i = 0, 1, n = 0, 1, . . .
(4)

with initial conditions P−2 = P−1 = 0, P0 = 1, corresponds to the sequence of multiple

orthogonality with respect to the Nikishin system (µ1, µ2) = N (µ1,
γ0

(α1−α0)2
τ1). If the

starting point was a Nikishin system on (∆2, ∆1) , then 1
τ̂1(z)

and 1
τ̂2(z)

would give the ratio

asymptotics for the corresponding multiple orthogonal polynomials.
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Since the polynomials (4) are defined by recurrences with (periodic) constant coef-

ficients they are the analogues of the second kind Chebyshev polynomials in standard

orthogonality. Therefore, we call them Chebyshev-Nikishin multiple orthogonal polyno-

mials, and Chebyshev-Nikishin measures the corresponding orthogonality measures.

In Section 2, we obtain the algebraic equations satisfied by the functions Fk in terms

of the constants αi, βi, γi as well as some relations between these constants. In Section 3,

the measures are described and it is proved that they form a Nikishin system. Finally, in

Section 4, we prove the orthogonality conditions for the sequence of polynomials (Pn)∞n=0.

2 Algebraic equations

First of all, let us find the equations satisfied by the algebraic functions F1 and F2 in

terms of the limits of the recurrence coefficients.

Theorem 2.1. i) The coefficients of the recurrence relation (4) verify

β0 = β1 := β, γ1 = γ0 + β(α1 − α0). (5)

ii) The functions F1, F2, given in (1) satisfy F1 − F2 = α1 − α0.

iii) The algebraic equations for Fi are

F 3
1 − (x + α1 − 2α0)F

2
1 + {(α1 − α0)(x− α0) + β}F1 + γ0 = 0

F 3
2 − (x + α0 − 2α1)F

2
2 + {(α0 − α1)(x− α1) + β}F2 + γ1 = 0.

Proof. Since F1(z) − F2(z) is a bounded function on the compact Riemann surface

R (it is sufficient to look at the divisor of both functions), by Liouville’s theorem, this

function is constant. Let C 6= 0 be the constant such that F1(z) − F2(z) ≡ C. Then,

C = −F2(∞(1)) = F1(∞(2)) since Fk(∞(k)) = 0.

From the recurrence relation (3) we have

x
Q2n+k(x)

Q2(n−1)+k(x)
=

Q2n+k+1(x)

Q2(n−1)+k(x)
+ α∗2n+k

Q2n+k(x)

Q2(n−1)+k(x)
+ β∗2n+k

Q2n+k−1(x)

Q2(n−1)+k(x)
+ γ∗2n+k.

Taking limits as n →∞, k = 0, 1, using (2) we obtain algebraic expressions on the sheet

R(0) which can be extended to the whole Riemann surface which allow us to write

z Z = F1(z) Z + α0 Z + β0 F1(z) + γ0,

z Z = F2(z) Z + α1 Z + β1 F2(z) + γ1, z ∈ R,
(6)
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where Z = F1(z)F2(z). Then

lim
z→∞(k)

(F1(z) Z + α0 Z + β0 F1(z) + γ0) = lim
z→∞(k)

(F2(z) Z + α1 Z + β1 F2(z) + γ1)

and for k = 1 and k = 2 we get

γ0 = β1F2(∞(1)) + γ1

β0F1(∞(2)) + γ0 = γ1.
(7)

Then γ0 = −β1C + β0C + γ0 and β0 = β1 := β follows. Using that F1(z) − F2(z) ≡ C,

deleting one equation in (6) from the other, we deduce that

0 ≡ (C + (α0 − α1))Z + βC + γ0 − γ1.

Evaluating at∞(1)) (or∞(2))), it follows that βC+γ0−γ1 = 0. Therefore, F1(z)−F2(z) =

α1 − α0 = C and γ1 = γ0 + β(α1 − α0). Finally, the equations of F1(z) and F2(z) can be

obtained after writing F2 in terms of F1 or F1 in terms of F2 in (6). ¤
Remark. In [11, Theorem 3.1] a system of equations is given which allows to derive

the algebraic equations satisfied by F1, F2, in terms of the endpoints of the intervals

∆1, ∆2. Combining those results with ours you can obtain the values γ1, γ2, β, α1, α2 in

terms of the endpoints of the intervals.

Now, consider the functions of second type

Φn(x) =

∫
Qn(t)

x− t
dσ1(t), Ψn(x) =

∫
Φn(t)

x− t
dσ2(t).

In [9, Proposition 1] it is proved that for the multi-index (n1, n2) ∈ I and n = n1 + n2,

∫
xνΦn(x) dσ2(x) = 0, ν = 0, 1, . . . , n2 − 1.

Consequently, Φn(x) has at least n2 zeros on ∆2. Moreover, it is shown in [9, Proposition

3] that Φn(x) has exactly n2 zeros in C \ ∆1, they are all simple, and lie in the interior

of ∆2. Let Qn,2(x) be the monic polynomial defined by the zeros of Φn(x). They also

prove in [9, Proposition 2] that Qn(x) and Qn,2(x) satisfy full orthogonality relations with

respect to certain varying measure. More precisely,

∫
xνQn(x)

dσ1(x)

Qn,2(x)
= 0, 0 ≤ ν ≤ n− 1,

∫
xνQn,2(x)

∫
Q2

n(t)

x− t

dσ1(t)

Qn,2(t)

dσ2(x)

Qn(x)
= 0, 0 ≤ ν ≤ n2 − 1.
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When supp(σk) = ∆k and σ′k > 0 a.e. on ∆k, k = 1, 2, in [2, Theorem 4.1] it is proved

that the polynomials Qn,2 also have ratio asymptotics; that is, there exist functions R1(z)

and R2(z) such that

lim
n→∞

Q2n+i,2(z)

Q2n+i−1,2(z)
= Ri(z), i = 0, 1,

uniformly on compact sets of C \∆2. Moreover, if we denote Q̂n(x) = κnQn(x), κn > 0,

the orthonormal polynomial with respect to dσ1(x)
|Qn,2(x)| and Q̂n,2(x) = κn,2Qn,2, κn,2 > 0, the

orthonormal polynomial with respect to the varying measure
∫ Q̂2

n(t)
|x−t|

dσ1(t)
|Qn,2(t)|

dσ2(x)
|Qn(x)| , in [2,

Corollary 4.1] the ratio asymptotics of Q̂n(x) and Q̂n,2(x) is deduced. In particular, this

gives that the following limits exist and are different from zero

lim
n→∞

κ2n+i

κ2n+i−1

:= κi, lim
n→∞

κ2n+i,2

κ2n+i−1,2

:= κi,2, i = 0, 1.

Then, using the orthogonality relations satisfied by the polynomials, we have

Φ2n+i(x)

Φ2n+i−1(x)
=

∫ Q2n+i(t)
x−t

dσ1(t)∫ Q2n+i−1(t)
x−t

dσ1(t)
=

Q2n+i,2(x)

Q2n+i−1,2(x)

Q2n+i−1(x)

Q2n+i(x)

∫ Q2
2n+i(t)

x−t
dσ1(t)

Q2n+i,2(t)∫ Q2
2n+i−1(t)

x−t
dσ1(t)

Q2n+i−1,2(t)

(8)

=
Q2n+i,2(x)

Q2n+i−1,2(x)

Q2n+i−1(x)

Q2n+i(x)

κ2
2n+i−1

κ2
2n+i

∫ Q̂2
2n+i(t)

|x−t|
dσ1(t)

|Q2n+i,2(t)|
∫ Q̂2

2n+i−1(t)

|x−t|
dσ1(t)

|Q2n+i−1,2(t)|

ci(∆1, ∆2)

where ci(∆1, ∆2) is 1 or −1 depending on i and on the relative position of ∆1 and ∆2. In

[10, Corollary 3], it is proved that the measures Q̂2
n(t) dσ1(t)

|Qn,2(t)| are converge weakly to the

Chebyshev measure of the interval ∆1. Consequently, using (8) and the results mentioned

above, we find that there exist functions Ai(x) such that

lim
n→∞

Φ2n+i(x)

Φ2n+i−1(x)
= Ai(x), i = 0, 1,

uniformly on compact subsets of C \ (∆1 ∪∆2).

Analogously, one proves that there exist functions Bi(x) such that

lim
n→∞

Ψ2n+i(x)

Ψ2n+i−1(x)
= Bi(x), i = 0, 1,

uniformly on compact subsets of C \∆2.

On the other hand, from the orthogonality relations satisfied by Qn with respect to

σ1 and of Φn(x) with respect to σ2 it follows that

xΦn(x) =

∫
xQn(t)

x− t
dσ1(t) =

∫
tQn(t)

x− t
dσ1(t), n ≥ 1,
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and

xΨn(x) =

∫
xΦn(t)

x− t
dσ2(t) =

∫
tΦn(t)

x− t
dσ2(t), n ≥ 2.

Consequently, the functions Φn, n ≥ 1 and Ψn, n ≥ 2, satisfy the same recurrence relations

as the polynomials Qn, n ≥ 0.

Theorem 2.2. The functions of second kind satisfy

lim
n→∞

Φ2n+i(z)

Φ2n+i−1(z)
= Fi,1(z), lim

n→∞
Ψ2n+i(z)

Ψ2n+i−1(z)
= Fi,2(x), i = 1, 2,

and the convergence is uniform on compact subsets of C\(∆1∪∆2)) and C\∆2, respectively.

Proof. Since Φn(x), n ≥ 1, satisfy the same recurrence relations as Qn(x), we may

deduce as in Theorem 2.1 the equations (6) for A0 and A1, obtaining

βA1 + γ0

x− α0 − A1

= A0A1 =
βA0 + γ1

x− α1 − A0

. (9)

Therefore,

(βA1 + γ0)(x− α1 − A0) = (βA0 + γ1)(x− α0 − A1)

or, equivalently,

(β(x− α1) + γ1)A1 − (β(x− α0) + γ0)A0 = γ1(x− α0)− γ0(x− α1).

Taking into account that γ1 = γ0 + β(α1 − α0), the last equality leads to

(β(x− α0) + γ0)(A1 − A0) = (α1 − α0)(β(x− α0) + γ0).

Should β = γ0 = 0, on account of (6), we would have F1 = x−α0 and F2 = x−α1 which

is impossible. Therefore, A1 − A0 = α1 − α0. Substituting A0 in terms of A1 in the first

equality of (9) and A1 in terms of A0 in the second equality, we see that A1 and A0 satisfy

the same algebraic equations as F1 and F2, respectively. From (8), it is easy to deduce

that A0(∞) ∈ C \ {0} and A1(∞) = 0. Therefore, A1 = F1,1 and A0 = F2,1. Analogously,

one proves that B1 = F1,2 and B0 = F2,2. ¤

Dividing xQn(x) by Qn(x) in the recurrence relation and taking limits, one sees that

F1,0(z) = z − α0 +O(1/z), F2,0(z) = z − α1 +O(1/z) z →∞.

Using that F1 − F2 = α1 − α0, F1,1(∞) = F2,2(∞) = 0, and that from the algebraic

equations
∏2

k=0 F1,k(z) = −γ0,
∏2

k=0 F2,k(z) = −γ1, one immediately obtains that

F1,1(z) =
−γ0

α1 − α0

1

z
+O(1/z2), F1,2(z) = α1 − α0 +O(1/z),

F2,1(z) = α0 − α1 +O(1/z), F2,2(z) =
γ1

α1 − α0

1

z
+O(1/z2).

(10)
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3 Chebyshev-Nikishin measures

From the proof of [2, Theorem 2.1] we know that the analytic functions Qn(x) and

Φn(x) satisfy

Q′
n+1(x)Qn(x)−Qn+1(x)Q′

n(x) 6= 0, x ∈ ∆1,

Φ′
n+1(x)Φn(x)− Φn+1(x)Φ′

n(x) 6= 0, x ∈ ∆2.

This allowed the authors to show that the zeros of the polynomials Qn and Qn,2 interlace

those of Qn+1 and Qn+1,2. An immediate consequence is that in the decomposition in

simple fractions of Qn(x)
Qn+1(x)

and Qn+1,2(x)

Qn,2(x)
all the residues have the same sign (recall that the

zeros of Qn and Qn,2 are simple). Therefore, since we are considering monic polynomials,

and there is ratio aymptotics, there exist probability measures µ1, µ2 supported on ∆1,

and τ1, τ2 supported on ∆2, such that

lim
n→∞

Q2n(z)

Q2n+1(z)
= µ̂1(z), lim

n→∞
Q2n−1(z)

Q2n(z)
= µ̂2(z),

lim
n→∞

Q2n+1,2(z)

Q2n,2(z)
= 1 + Cτ̂1(z), lim

n→∞
Q2n−1,2(z)

Q2n,2(z)
= τ̂2(z),

for some real constant C.

Lemma 3.1. The constant C in the definition of τ̂1(z) is equal to −γ1

(α1−α0)2
and the mea-

sures satisfy the relations

i) µ̂2(z)− µ̂1(z) = (α1 − α0) µ̂1(z)µ̂2(z),

ii) µ̂2(z)− τ̂2(z) =
γ0

(α1 − α0)2
µ̂1(z)τ̂1(z),

iii) τ̂2(z)− τ̂1(z) =
γ1

(α1 − α0)2
τ̂1(z)τ̂2(z).

Proof. From (8), (10), Theorem 2.2, and the fact that the measures are probabilistic,

it is clear that

F1,0(z) =
1

µ̂1(z)
, F1,1(z) =

γ0

α0 − α1

(1 + Cτ̂1(z))µ̂1(z), F1,2(z) =
α1 − α0

1 + Cτ̂1(z)
,

F2,0(z) =
1

µ̂2(z)
, F2,1(z) = (α0 − α1)

µ̂2(z)

τ̂2(z)
, F2,2(z) =

γ1

α1 − α0

τ̂2(z).

Using these relations, the equality F1,0(z) − F2,0(z) = α1 − α0 immediately gives i).

The expression F1,2(z)− F2,2(z) = α1 − α0 means that

α1 − α0

1 + Cτ̂1(z)
− γ1

α1 − α0

τ̂2(z) = α1 − α0
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which is equivalent to −γ1(1 + Cτ̂1(z))τ̂2(z) = (α1 − α0)
2Cτ̂1(z). Due to the behavior at

∞, this implies that C = −γ1

(α1−α0)2
. Consequently, (1 + Cτ̂1(z))τ̂2(z) = τ̂1(z) which is iii).

Now, from F1,1(z)− F2,1(z) = α1 − α0, we deduce that

γ0

α0 − α1

(1 + Cτ̂1(z))µ̂1(z)− (α0 − α1)
µ̂2(z)

τ̂2(z)
= α1 − α0

and using that (1 + Cτ̂1(z))τ̂2(z) = τ̂1(z) we obtain ii). ¤
From the existing relations between the Cauchy transform of the measures µk, τk, and

the algebraic functions F1 and F2, it is clear that these measures are absolutely continuous.

We denote by µ′k and τ ′k their Radon-Nikodym derivatives. We express by µ̂±k and τ̂±k the

boundary values of these functions on ∆±
1 and ∆±

2 respectively.

The measures µ1 and τ1 define the Nikishin systems (µ1, µ2), (τ1, τ2). In the same way

that (µ1, µ2) gives the ratio asymptotics of polynomials defined by a Nikishin system on

∆1 in which the second generating measure is supported on ∆2, (τ1, τ2) gives the ratio

asymptotics of polynomials defined by a Nikishin system on ∆2 for which the second

measure of the generating system is supported on ∆1. This is the next result.

Theorem 3.1. The measures µk and τk, k = 1, 2, satisfy the following relations

dµ2(x) =
γ0

(α1 − α0)2
τ̂1(x)dµ1(x), dτ2(x) =

−γ0

(α1 − α0)2
µ̂1(x)dτ1(x).

Moreover, τ̂1(z) and τ̂2(z) are the functions which describe the asymptotic behavior of

orthogonal polynomials of a Nikishin system on ∆2 where the second generating measure

is taken on ∆1.

Proof. Since µ̂1(z)τ̂1(z) vanishes at infinity, we can write

µ̂1(z)τ̂1(z) =
1

2πi

∫

Γ

µ̂1(ξ)τ̂1(ξ)

z − ξ
dξ

where Γ is a positively oriented closed simple curve with ∆1 and ∆2 in its interior and z

in the exterior of Γ. For k = 1, 2, let Γk be any positively oriented closed simple curve

surrounding ∆k which leaves ∆j, k 6= j, in the exterior. Then

µ̂1(z)τ̂1(z) =
1

2πi

∫

Γ1

µ̂1(ξ)τ̂1(ξ)

z − ξ
dξ +

1

2πi

∫

Γ2

µ̂1(ξ)τ̂1(ξ)

z − ξ
dξ.

Taking limits when Γ1 and Γ2 shrink to ∆1 and ∆2 respectively, using the Sokhotski

formula, we obtain

µ̂1(z)τ̂1(z) =
1

2πi

∫

∆1

(µ̂−1 (x)− µ̂+
1 (x))τ̂1(x)

z − x
dx +

1

2πi

∫

∆2

(τ̂−1 (x)− τ̂+
1 (x))µ̂1(x)

z − x
dx
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=

∫

∆1

µ′1(x)τ̂1(x)

z − x
dx +

∫

∆2

τ ′1(x)µ̂1(x)

z − x
dx

From ii) of Lemma 3.1, it follows that

∫

∆1

(
γ0

(α1 − α0)2
µ′1(x)τ̂1(x)− µ′2(x)

)
dx

z − x

= −
∫

∆2

(
γ0

(α1 − α0)2
µ̂1(x)τ ′1(x) + τ ′2(x)

)
dx

z − x
.

Then, both integrals represent entire functions. Since they take the value zero at infinity,

by Liouville’s theorem, both integrals are identically equal to zero and we conclude that

dµ2(x) =
γ0

(α1 − α0)2
τ̂1(x)dµ1(x), dτ2(x) = − γ0

(α1 − α0)2
µ̂1(x)dτ1(x).

On the other hand, by Sokhotski’s formula

µ′2(x) =
1

2πi

(
1

F−
2,0(x)

− 1

F+
2,0(x)

)
=

1

2πi

(
F+

2,0(x)− F−
2,0(x)

F−
2,0(x)F+

2,0(x)

)
=

1

2πi

F+
2,0(x)− F+

2,1(x)

F+
2,0(x)F+

2,1(x)

=
1

2πi

(F+
1,0(x)− F+

1,1(x))F2,2(x)

−γ1

, x ∈ ∆1.

Analogously,

µ′1(x) =
1

2πi

(
1

F−
1,0(x)

− 1

F+
1,0(x)

)
=

1

2πi

(F+
1,0(x)− F+

1,1(x))F1,2(x)

−γ0

, x ∈ ∆1.

Hence
µ′1(x)

µ′2(x)
= γ1F1,2(x)

γ0F2,2(x)
, x ∈ ∆1. But µ′2(x) = γ0

(α1−α0)2
τ̂1(x)µ′1(x) and, consequently,

1

τ̂1(z)
=

γ1

(α1 − α0)2

F1,2(z)

F2,2(z)
, z ∈ C \∆2.

Notice that F1

F2
= 1 + α1−α0

F2
lives on R and has for divisor a simple pole at ∞(2) and

a simple zero at ∞(1). Except for a constant factor, these are the characteristics which

define one of the functions which describes the ratio asymptotics of Nikishin polynomials

on ∆2 with the second generating measure on ∆1. So this function must be
1

τ̂1(z)
. We

have analogous conclusions for τ̂2 since

1

τ̂2(z)
=

γ1

α1 − α0

1

F2,2(z)
, z ∈ C \∆2.

With this we conclude the proof. ¤

10



4 Chebyshev-Nikishin polynomials

With the recurrence (3) of the Nikishin polyomials (Qn)∞n=0 we can associate the

matrices

An(x) =




0 1 0

0 0 1

−α∗2n −β∗2n x− γ∗2n


 , Bn(x) =




0 1 0

0 0 1

−α∗2n+1 −β∗2n+1 x− γ∗2n+1


 ,

and we have 


Q2n(x)

Q2n+1(x)

Q2n+2(x)


 = Bn−1(x)An−1(x)




Q2(n−1)(x)

Q2(n−1)+1(x)

Q2(n−1)+2(x)


 .

Let A(x) = limn→∞ An(x) and B(x) = limn→∞ Bn(x). Then

B(x)A(x) =




0 1 0

0 0 1

−γ1 −β x− α1







0 1 0

0 0 1

−γ0 −β x− α0




=




0 0 1

−γ0 −β x− α0

−γ0(x− α1) −γ1 − β(x− α1) −β + (x− α1)(x− α0)


 .

From the vector version of the Poincaré-Perron theorem (see, for example, [4, pag.

1750]), lim
n→∞

Q2n+2(x)

Q2n(z)
= lim

n→∞
Q2n+1(z)

Q2n−1(z)
= F1,0(z)F2,0(z) is some eigenvalue of the matrix

B(x)A(x). As a consequence, Z := F1F2 satisfies the equation

0 = det(B(z)A(z)− Z I)

= Z3 − {(z − α0)(z − α1)− 2β}Z2 + {β2 + γ1(z − α0) + γ0(x− α1)}Z − γ0γ1.

Let (Pn)∞n=0 and (P ∗
n)∞n=0 be the sequences of monic polynomials defined by the recur-

rences

xP2n(x) = P2n+1(x) + α0P2n(x) + βP2n−1(x) + γ0P2n−2(x), n = 0, 1, . . .

xP2n+1(x) = P2n+2(x) + α1P2n+1(x) + βP2n(x) + γ1P2n−1(x), n = 0, 1, . . .

xP ∗
2n(x) = P ∗

2n+1(x) + α1P
∗
2n(x) + βP ∗

2n−1(x) + γ1P
∗
2n−2(x), n = 0, 1, . . .

xP ∗
2n+1(x) = P ∗

2n+2(x) + α0P
∗
2n+1(x) + βP ∗

2n(x) + γ0P
∗
2n−1(x), n = 0, 1, . . .

11



with initial conditions P0(x) = P ∗
0 (x) = 1, P−2(x) = P ∗

−2(x) = P−1(x) = P ∗
−1(x) = 0.

Then



P2n(x)

P2n+1(x)

P2n+2(x)


 = (B(x)A(x))n+1




0

0

1


 ,




P ∗
2n(x)

P ∗
2n+1(x)

P ∗
2n+2(x)


 = (A(x)B(x))n+1




0

0

1




Using the relation βF1+γ0

x−F1−α0
= Z = βF2+γ1

x−F2−α1
deduced from (6) one can prove that

(1, F1,k, Zk) is an eigenvector associated to the eigenvalue Zk for B(x)A(x) and k = 0, 1, 2.

Taking into account that A(x)B(x) has the same expression as B(x)A(x) but interchang-

ing the indices 0 and 1 in the entries of the matrix, it follows that (1, F2,k, Zk), k = 0, 1, 2,

are eigenvectors for A(x)B(x). Then we have

B(x)A(x) = P (x)D(x)P−1(x), A(x)B(x) = Q(x)D(x)Q−1(x)

with

P (x) =




1 1 1

F1,0 F1,1 F1,2

Z0 Z1 Z2


 , Q(x) =




1 1 1

F2,0 F2,1 F2,2

Z0 Z1 Z2


 , D(x) =




Z0 0 0

0 Z1 0

0 0 Z2


 .

Therefore,




P2n

P2n+1

P2n+2


 = PDn+1P−1




0

0

1


 =




a1,3Z
n+1
0 + a2,3Z

n+1
1 + a3,3Z

n+1
2

a1,3F0Z
n+1
0 + a2,3F1Z

n+1
1 + a3,3F2Z

n+1
2

a1,3Z
n+2
0 + a2,3Z

n+2
1 + a3,3Z

n+2
2


 ,

where ai,j for i, j ∈ {1, 2, 3} are the entries of P−1.

The matrices P and Q have the same determinant because

det P =

=

∣∣∣∣∣∣∣∣

1 1 1

F1,0 F1,1 F1,2

Z0 Z1 Z2

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

1 1 1

F1,0 F1,1 F1,2

F 2
1,0 F 2

1,1 F 2
1,2

∣∣∣∣∣∣∣∣
=

∏

2≥j>k≥0

(F1,j − F1,k) =
∏

2≥j>k≥0

(F2,j − F2,k)

= det Q.

12



Moreover,

P−1 det P =




∣∣∣∣∣
F1,1 Z1

F1,2 Z2

∣∣∣∣∣ −
∣∣∣∣∣

1 Z1

1 Z2

∣∣∣∣∣

∣∣∣∣∣
1 F1,1

1 F1,2

∣∣∣∣∣

−
∣∣∣∣∣

F1,0 Z0

F1,2 Z2

∣∣∣∣∣

∣∣∣∣∣
1 Z0

1 Z2

∣∣∣∣∣ −
∣∣∣∣∣

1 F1,0

1 F1,2

∣∣∣∣∣∣∣∣∣∣
F1,0 Z0

F1,1 Z1

∣∣∣∣∣ −
∣∣∣∣∣

1 Z0

1 Z1

∣∣∣∣∣

∣∣∣∣∣
1 F1,0

1 F1,1

∣∣∣∣∣




(11)

and it is clear that, if ak,j are the coefficients of P−1 and bk,j are the coefficients of Q−1,

then ak,j = bk,j for j = 2, 3 and for all k, and bk,1 = ak,1 − (α1 − α0)ak,2, k = 1, 2, 3. As a

consequence, we have the following representation for the polynomials,

P2n(x) = a1,3Z
n+1
0 + a2,3Z

n+1
1 + a3,3Z

n+1
2 , P ∗

2n(x) = P2n(x),

P2n+1(x) = a1,3F1,0 Zn+1
0 + a2,3F1,1 Zn+1

1 + a3,3F1,2 Zn+1
2 , (12)

P ∗
2n+1(x) = a1,3F2,0 Zn+1

0 + a2,3F2,1 Zn+1
1 + a3,3F2,2 Zn+1

2 ,

P ∗
2n+1(x) = P2n+1(x)− (α1 − α0)P2n(x).

Remark. Since |Z0| > |Z1| and |Z0| > |Z2| in a neighborhood of infinity, formulas (12)

mean that the polynomials P2n and P2n+1 have strong asymptotics and they behave like

Zn
0 = (F1,0F2,0)

n in C \∆1. This coincides with the general result on strong asymptotics

given in [1] for multiple orthogonal polynomials associated with Nikishin systems defined

by absolutely continuous measures in the Szegő class.

Theorem 4.1. i) (Pn)∞n=0 is the sequence of monic multiple orthogonal polynomials

associated with the Nikishin system (µ1, µ2) and the multi-indices of the form (n, n)

and (n + 1, n).

ii) (P ∗
n)∞n=0 is the sequence of monic multiple orthogonal polynomials associated with

the Nikishin system (µ1, µ2) and the multi-indices of the form (n, n) and (n, n + 1).

Proof. Let Z = F1F2. Recall that Z has a double pole at ∞(0) and simple zeros at

∞(1) and ∞(2). From (12), taking into account that µ̂1(z) = 1
F1,0(z)

, µ̂2(z) = 1
F2,0(z)

, that

the determinant of P has a double pole at infinity, and the expressions of ak,3(z) given in

(11), we can write the following identities:

µ̂1(z)P2n(z) = a1,3(z)
Zn+1

0

F1,0

+ a2,3(z)
Zn+1

1

F1,0

+ a3,3(z)
Zn+1

2

F1,0
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= a1,3(z)F2,0Z
n
0 + a2,3(z)F2,1Z

n
1 + a3,3(z)F2,2Z

n
2 + a2,3(z)

(
Z1

F1,0

− F2,1

)
Zn

1 +

+a3,3(z)

(
Z2

F1,0

− F2,2

)
Zn

2 = P ∗
2n−1(z) +O(1/zn+1), z →∞,

µ̂2(z)P ∗
2n(z) = a1,3(z)F1,0Z

n
0 + a2,3(z)

Zn+1
1

F2,0

+ a3,3(z)
Zn+1

2

F2,0

= P2n−1(z) +O(1/zn+1), z →∞,

µ̂1(z)P2n+1(z) = a1,3(z)Zn
0 + a2,3(z)

F1,1Z
n+1
1

F1,0

+ a3,3(z)
F1,2Z

n+1
2

F1,0

= P2n(z) + a2,3(z)

(
F1,1

F1,0

− 1

)
Zn+1

1 + a3,3(z)

(
F1,2

F1,0

− 1

)
Zn+1

2

= P2n(z) +O(1/zn+2), z →∞,

and

µ̂2(z)P ∗
2n+1(z) = a1,3(z)Zn+1

0 + a2,3(z)
F2,1Z

n+1
1

F2,0

+ a3,3(z)
F2,2Z

n+1
2

F2,0

= P2n(z) +O(1/zn+2), z →∞, .

If Γ is a simple closed Jordan curve that surrounds ∆1, using Cauchy’s integral formula

and Fubini’s theorem, from these relations it follows that

0 =
1

2πi

∫

Γ

zνP2n(z)µ̂1(z)dz =

∫
xνP2n(x)dµ1(x), ν = 0, . . . , n− 1,

0 =
1

2πi

∫

Γ

zνP ∗
2n(z)µ̂2(z)dz =

∫
xνP ∗

2n(x)dµ2(x), ν = 0, . . . , n− 1,

0 =
1

2πi

∫

Γ

zνP2n+1(z)µ̂1(z)dz =

∫
xνP2n+1(x)dµ1(x), ν = 0, . . . , n,

and

0 =
1

2πi

∫

Γ

zνP ∗
2n+1(z)µ̂2(z)dz =

∫
xνP ∗

2n+1(x)dµ2(x), ν = 0, . . . , n,

Taking into consideration that P2n = P ∗
2n and P ∗

2n+1(x) = P2n+1(x)− (α1−α0)P2n(x) (see

(12)), the rest of the orthogonality relations immediately follow and we are done. ¤
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Padé polynomials for Nikishin systems, Sbornik: Math. 196 (2005), 1089-1107.
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[10] B. de la Calle and G. López Lagomasino, Weak convergence of varying measures and
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