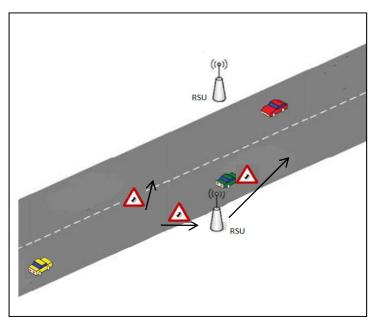


INGENIERÍA EN INFORMÁTICA PROYECTO FIN DE CARRERA

Extensión de NCTUns 5.0 para simular el entorno de infraestructura y desarrollo del sistema de representación de indicadores para EVIGEN

Alumno: Sergio García Rueda


Profesor Tutor: José María de Fuentes García-Romero de Tejada

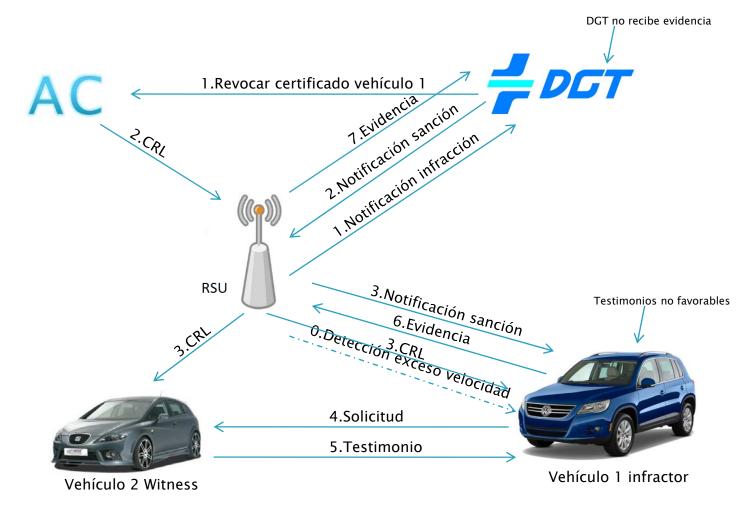
- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

Introducción. Redes vehiculares

- Entidades participantes.
 - Vehículos (OBU).
 - Infraestructuras (RSU).
- Comunicación.
 - OBU-OBU.
 - OBU-RSU o RSU-OBU.
- Fuerte desarrollo.
 - Nuevos servicios o aplicaciones que ofrecen:
 - · Mejoras en seguridad vial.
 - · Mejoras en la actividad de conducción.
 - Protocolo EVIGEN.

Introducción. Protocolo EVIGEN (I)


- Propósito: crear evidencias en entornos vehiculares.
 - Demostrar correcto comportamiento ante una infracción en contra de la seguridad vial.
 - Evidencia creada en base a testimonios aportados por vehículos cercanos.

Participantes:

- Entorno inalámbrico:
 - Vehículo infractor (Requester).
 - Vehículo testigo (Witness).
 - Vehículo no equipado (NoEquipped).
- Entorno de infraestructura:
 - RSU (Road Side Unit).
 - DGT (Dirección General de Tráfico).
 - AC (Autoridad de Certificación).

Introducción. Protocolo EVIGEN (II)

Introducción. Protocolo EVIGEN (III)

- Problemas de seguridad.
 - Comunicación inalámbrica.
 - Elevado número de entidades.
- Servicios de seguridad:
 - Confidencialidad.
 - Integridad.
 - · Autenticación.
 - No repudio en emisión.
- Otras amenazas:
 - Ataques de repetición.
 - Ataques de denegación de servicio.

- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

Motivación

- Elevados costes de implantación en entornos vehiculares.
 - Necesidad de numerosa cantidad de infraestructura situada a lo largo de las carreteras.
 - Grandes pérdidas económicas en caso de fracaso.
- Necesidad de estudiar la viabilidad de las soluciones previamente a su implantación.
 - Determinar su funcionamiento y rendimiento.
- En el presente Proyecto, estudiar la viabilidad del protocolo EVIGEN.
- Simuladores de redes vehiculares.
 - Simulación de escenarios con características muy similares a entornos vehiculares reales.
 - Simulador utilizado en Proyecto: NCTUns 5.0.

- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

Objetivos

- Extender NCTUns 5.0 para la simulación del entorno de infraestructura del protocolo EVIGEN.
- Desarrollar un sistema de representación de indicadores de rendimiento.
- Desarrollar un módulo criptográfico.

- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

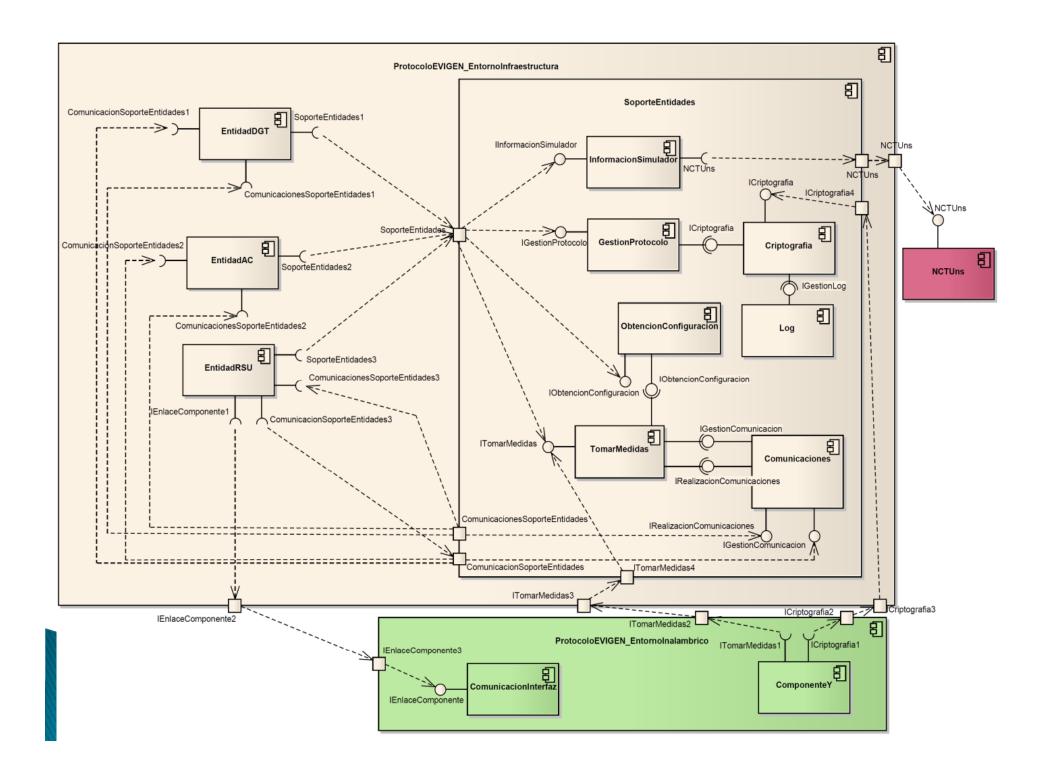
Descripción del sistema. Análisis

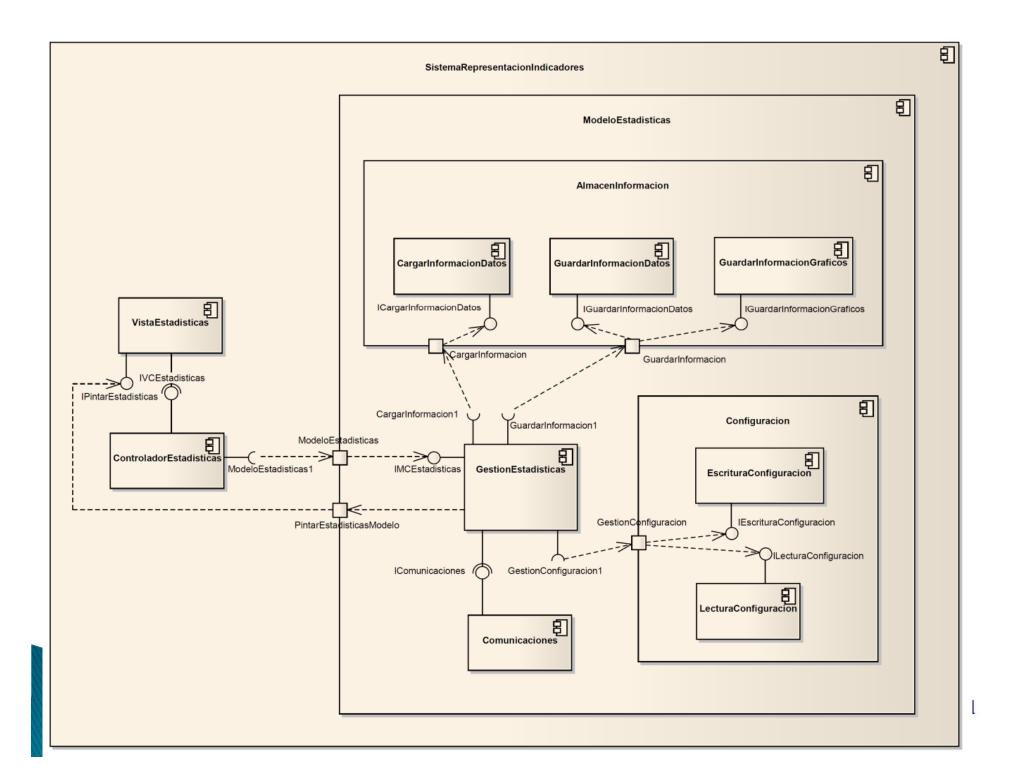
- Dos subsistemas independientes.
 - Extensión del simulador NCTUns 5.0 para simular el entorno de infraestructura de EVIGEN.
 - Sistema de representación de indicadores de rendimiento.
- Módulo criptográfico desarrollado como componente de la simulación del entorno de infraestructura de EVIGEN.

Descripción del sistema. Análisis.

Simulación entorno de infraestructura de EVIGEN

- Simular comportamiento de entidades de infraestructura.
- Otras consideraciones:
 - Reenvío:
 - Notificaciones de sanción.
 - · CRL.
 - Sancionar al mismo vehículo una vez en un periodo de tiempo determinado.
 - Notificar infracción del mismo vehículo una vez en un intervalo de tiempo concreto.
 - Log de operaciones criptográficas.
 - Parámetros de configuración de entidades -> ficheros.




Descripción del sistema. Análisis.

Sistema de representación de indicadores

- Representar gráficamente información de indicadores:
 - Número de bytes transmitidos.
 - Tiempo envío/respuesta/computación.
 - Tasas éxito-fracaso finalización protocolo/aceptación-rechazo participación protocolo.
- Estadísticas reflejadas:
 - Gráficas con los valores de los indicadores.
 - Media de los valores de los indicadores (número bytes transmitidos y tiempos).
 - Tasas de los indicadores (éxito y fracaso, y aceptación y rechazo).
 - Número de muestras obtenidas de cada indicador.
- Almacenamiento de estadísticas en PDF.
- Almacenamiento y carga de valores de los indicadores de Excel 2003.

Descripción del sistema. Implementación.

Ver video.

Descripción del sistema. Implementación. Módulo criptográfico

- Utiliza librería criptográfica de OpenSSL.
- Ofrece soporte para:
 - Cifrado y descifrado asimétrico con RSA.
 - Cifrado y descifrado simétrico con AES-CCM.
 - Realización y verificación de resumen SHA1.
 - Firma y su verificación con RSA.
 - Validación de certificados X509.

- Introducción.
- Motivación.
- Objetivos.
- Descripción del sistema.
- Conclusiones y líneas futuras.

Conclusiones y líneas futuras (I)

- Objetivos cumplidos:
 - Simular el entorno de infraestructura de EVIGEN en NCTUns 5.0.
 - Herramientas para estudiar el funcionamiento y rendimiento de EVIGEN.
 - Desarrollo de un módulo criptográfico.
- Aspectos aprendidos:
 - Desarrollo de un proyecto mediante técnicas de Ingeniería del Software.
 - Afrontar los problemas presentes durante el Proyecto.
 - Mayor capacidad de investigación.

Conclusiones y líneas futuras (II)

Dificultades:

- Trabajo en solitario.
- Integración en una aplicación ya existente.
- Complejidad implementación considerable:
 - · Implementación de distintos sistemas.
 - Cantidad de funcionalidad a desarrollar adecuada.
 - Gran número de comunicaciones.
 - Uso de tecnología no conocida.
- Integración con otro Proyecto desarrollado en paralelo.

Conclusiones y líneas futuras (III)

- Líneas futuras:
 - Incluir nuevos tipos de infracciones.
 - Implementar mecanismos para la detección de infracciones de manera más fiable.
 - · Simular sensores en las carreteras.
 - Ampliación de NCTUns para realizar las simulaciones en un entorno distribuido.
 - Resultados más fiables.
 - Integración de la solución implementada en NCTUns 6.0.

¿PREGUNTAS?