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1 INTRODUCTION

The concepts of coherent pair and symmetric coherent pair have been introduced by
A. Iserles et al. in Ref. [9] in the framework of the study of orthogonal polynomials asso-
ciated with the Sobolev inner product

Goos=| fedn+i | sedu,
R R
where (1, and y, are non-atomic positive Borel measures on the real line such that

<00, k>0, i=0,1.
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In fact, coherence means that a relation between the MOPS (monic orthogonal polynomial
sequence) {P,(x)}, and {T,(x)},, associated with the measures p, and p, respectively,

P (x) . P;,(x)7 ——

Tu() =~ 1 p
where {7,}, is a sequence of non-zero complex numbers, is satisfied.

The description of the measures satisfying the coherence condition was an open problem
in Ref. [9]. A first result is given in Ref. [15] where the complete set of coherence pairs when
one of the measures is a classical one (Hermite, Laguerre, Jacobi) is described. Later on, in
Ref. [16] it is proved that both measures involved in a coherent pair must be semiclassical.

Finally, in Ref. [20] H. G. Meijer gave the complete classification of the coherent pairs of
measures which is, essentially, the same stated in Ref. [15]. As a conclusion, the Meijer’s
result shows that coherent pairs of measures constitute a restrictive class, helpful in order
to obtain properties of polynomials orthogonal with respect to Sobolev inner products
[14, 19,22, 23].

The aim of this paper is to analyze the extension of the above definition of coherent pairs
(based in the use of the derivative operator) to the situation when the forward difference
operator A is considered. Thus, orthogonal polynomials of a discrete variable [21] appear
in a natural way. Our main result states that if (ug, #1) is a A-coherent pair of linear func-
tionals, one of them must be a classical discrete linear functional. In this situation, the sup-
port of the functional can be finite (Kravchuk, Hahn) or infinite (Meixner, Charlier) and the
extension of the Meijer’s result involves more than a merely formal analogy. First, the con-
cept of weakly quasi-definite linear functional (including both finite and infinite supporting
sets for the functional) is introduced in order to cover both situations. Second, using a limit
process we can recover the Meijer’s classification from the complete description of the
A-coherent pairs which we have already stated in Ref. [5]. Third, we compare the complexity
of the analysis for the A operator with the derivative operator, because the situation, in our
case, is more interesting taking into account that not only quasi-definite linear functionals are
involved.

The outline of the paper is as follows: in Section 2 we give the basic definitions and results
which will be helpful in the following sections. In Section 3 we introduce the concept of
A-coherent pair of linear functionals, and we prove that if (ug, #;) is a A-coherent pair,
both uy and u; are semiclassical discrete linear functionals. In Section 4 we prove that if
(uo, u1) is a A-coherent pair of linear functionals, at least one of them must be a classical
discrete linear functional, where u( and u; are required to have a restriction on their orders.
Finally, in Section 5 we present two examples of A-coherent pair of linear functionals related
to the Meixner and the Hahn linear functional, as examples of quasi-definite and weakly
quasi-definite linear functionals, respectively.

2 NOTATIONS AND BASIC RESULTS

Let P be the linear space of polynomials with complex coefficients and let P’ be its algebraic
dual space. We denote by (u, f) the duality bracket for u € P’ and f € [P, and we denote by
(v), = (u, x"), with n > 0, the canonical moments of u.

DEFINITION 2.1 A linear functional u is said to be weakly quasi-definite if there exists
0 <M < oo such that the principal submatrices Hy = [(u)i+j]f.‘_j:0 are nonsingular for



0 <k <M and, if M # oo, Hy41 is a singular matrix. M is said to be the order of the linear
functional u.

Remark 1 Note that when M = oo this definition coincides with the concept of quasi-
definite linear functional given in Ref. [6, p. 16]. In what follows, we shall have in mind this
fact despite the notation associated to the order of the linear functional.

Given a weakly quasi-definite linear functional u of order M, there exists a family of monic
polynomials {P,(x)}), orthogonal with respect to u, i.e. P,(x) = x"+ terms of lower degree,
for every 0 <n <M, and (u, P,P,) =T1,0,m Iy #0, for every 0 <n,m < M. Such a
sequence will be called monic orthogonal polynomial sequence (MOPS).

Remark 2 Given a weakly quasi-definite linear functional u of order M < oo, it is possible
to build a unique finite family of monic polynomials {P,(x)}*4! such that

(u, X" P,(x)) =0 0<m=<n-—1, 1<n<M+1,
(, x" Py(x)) #0 0=n=<M,
and (u, xM*1 Py41(x)) = 0. Thus, the sequence of orthogonal polynomials is {P,(x)}*,.
Note that this sequence of orthogonal polynomials does not generate P when M < oc.
In the most important occurrences of orthogonal polynomials, the linear functional

u satisfies an extra condition [6, p. 13].

DEFINITION 2.2 A4 linear functional u is called positive-definite if its moments are all real
and det(Hy) > 0, for every k > 0.

DEFINITION 2.3  Given a complex number c, the Dirac functional O. is defined by
(0¢, p(x)) := p(c), for every p € P.

DEFINITION 2.4  Given a linear functional u and a polynomial p, we define the linear

Sfunctional pu as (pu, q) := (u, pq), for every q € P. For each complex number c, the linear
functional (x — ¢) 'u is given by

(=0) 'w.q) :( M>

xX—c
for every q € P.
Note that
(x—¢) "(x—cu) =u—(u),d., foreveryuelP, (2.1)
while (x — ¢)((x — ¢) 'u) = u.
DEFINITION 2.5  The forward and backward difference operators A and V are defined by
Ap(x) :==plx+1) —px)  Vpx):=pkx)—plx-1),

for every p € P, respectively.



Let p and ¢ be two polynomials. Then, we have

AV=VA,  A=V+AV,  Ap(x)=Vpix+1),
Alp(x)q(x)) = q(x)Ap(x) + p(x + 1)Ag(x).

DEFINITION 2.6 For u € P, the linear functional Au is defined as (Au, p) = —(u, Ap), for
every p € P.

PROPOSITION 2.7  For u € P' and p € P, we have Alp(x)u] = p(x — D)Au + Ap(x — Du. In
particular, we obtain (x — c)Au = A[(x + 1 — c)u] — u.

DEFINITION 2.8 A4 linear functional u is said to be a classical discrete linear functional if u
is weakly quasi-definite and there exist polynomials ¢ and W, with deg(¢) <2 and
deg(yy) = 1, such that

Alp)u] = p(x)u. (2.2)

The corresponding MOPS associated with u is said to be a classical discrete MOPS.
Classical discrete orthogonal polynomials can be characterized by means of the Hahn’s
property in the following way [see Ref. 7].

PROPOSITION 2.9 Let {P,,(x)}iio be the MOPS associated with a weakly quasi-definite
linear functional u of order M > 1. The sequence {Pn(x)}nM:O is a classical discrete MOPS if
and only if {Q (N7, defined by

AP,,+1 (x)

0<n<M-1, 2.3
n+1 "’ =n= (2.3)

Q,(x) =

is also a MOPS. Furthermore, if u satisfies A{¢p(x)u] = J(x)u then {Qn(x)}nM: 01 is orthogonal
with respect to the functional u := ¢(x)u.

Note that weakly positive-definite classical discrete functionals are associated with a
measure o(x) whose support is a countable set. In such a sense, we shall only consider
here orthogonal polynomials of a discrete variable on [a, b — 1] with weight o(x),

b1
ZPm(xi)Pn(xi)Q(xi) = dyz,b‘n,mv Xip1 =X + 1,
xXi=a
provided that the interval (a, b) is contained in R and the function ¢(x) satisfies

A(o(x)e(x) = Y(x)e(x),  a(x) = d(x) = Y (), 24)

with

owel’| =0, e=01,.. 2.5)



Thus, classical discrete linear functionals u satisfying (2.2) can be represented as

b 1
(u.p) =Y _p(x) o(x), for everyp e P,

Xi=a

where o(x) is a weight function satisfying (2.4) and (2.5). In this situation, classical discrete
linear functionals are the corresponding to Hahn, Meixner, Kravchuk and Charlier MOPS
[21]. Charlier and Meixner functionals are quasi-definite linear functionals and therefore
the corresponding MOPS are infinite sequences. On the other hand, Kravchuk and Hahn
linear functionals are weakly quasi-definite linear functionals and the corresponding
MOPS are finite. Some applications of these finite families can be found in e.g. [12, 21].

In Ref. [11] another systematic study of (positive-definite) orthogonal polynomials of a
discrete variable is given from the second order linear difference equation they satisfy. More-
over, a self-contained overview of classical discrete polynomials has been done in Ref. [1],
where finite orthogonal sequences are not considered (only quasi-definite functionals are
studied).

In the aforementioned classifications [1, 11] there appear other families of orthogonal poly-
nomials, which are outside the scope of this paper since the Hahn’s property they satisfy can
not be written in terms of the forward difference operator A.

Next we introduce the concept of semiclassical discrete linear functional [see Ref. 17].

DEFINITION 2.10 A linear functional u is said to be a semiclassical discrete linear func-
tional if u is weakly quasi-definite and there exist two polynomials ¢ and \ such that

Alp(x)u] = p(x)u (2.6)

where deg(¢p) = t > 0 and deg(yy) = p > 1. A MOPS with respect to a semiclassical discrete
functional u is called a semiclassical discrete MOPS.

It is possible to associate with (2.6) a nonnegative integer s = max{deg(}s) — 1,
deg(¢) — 2}, but a semiclassical discrete functional u satisfies an infinite number of equations
as (2.6). It is enough to multiply both sides of (2.6) by a polynomial ' with deg(f) = ¢ and
from Proposition 2.7 we have A[f (x + 1)p(x)u] = (¢(x)Af (x)+ f(x)¥(x))u. So u fulfills also
Ay (u] = W (), where &;(x) = f(x + 1) and ¥, (x) = G0/ (x) + /(). From
(2.6) we have s; = max{p; — 1,1 — 2} < s+ ¢q. Hence, we can associate with a semiclassi-
cal discrete functional u a set of nonnegative integer numbers /(u).

DEFINITION 2.11  Let u be a semiclassical discrete functional. The minimum of the set h(u)
is called the class of u. When s is the class of u, then the sequence of polynomials orthogonal
with respect to u is said to be of class s.

Note that classical discrete polynomials are semiclassical of class 0.

DEFINITION 2.12  Let {P,(x)}*., be the MOPS associated with the weakly quasi-definite
linear functional u of order M. The family of linear functionals {a,}, defined by
(o0, Pu) = Opm, 0 < m,m < M, is called the dual basis of {P,,(x)}fl/lzo.



In fact,

_ Pu(x)
o, = 7(% Pﬁ(x)) u, 0<n<M. 2.7

An immediate consequence of the above equation can be stated as follows.

PROPOSITION 2.13  Let {P,(x)}), be the MOPS associated with the weakly quasi-definite
linear functional u of order M > 1 and let {Q,,(x)}ﬁlf:o1 as in (2.3). If we denote by {oc,,}ff[:o
and {&,)*.' the corresponding dual bases, then A%, = —(n+ 1)1, 0 <n <M — 1.

3 A-COHERENT PAIRS

DEFINITION 3.1  Let ug and uy be two weakly quasi-definite linear functionals of order M,
and M, whose MOPS are {Pn(x)};u:‘)0 and {T,,(x)}i/[:‘0 respectively, with My > 2 and M > 1.
The pair (ug, uy) is called a A-coherent pair of linear functionals if

AP(x)  AP()

On , 1 <n<min{M— 1, M}, (3.1)
n+1 n

T, (x) =

where {G,}, is a sequence of non-zero complex numbers.

Example 3.2 Let N be the set of positive integers. Monic Kravchuk polynomials kn(”)(x; N)
have the following representation in terms of hypergeometric series [Ref. 21, p. 51]
—n, —x

1
—N p’

O<p<l1l, NeN, 0<n<N, N=>2, (3.2)

KO N) = (—p)'(N — n + 1), 5F, (

where (a), denotes the Pochhammer symbol [2], which is defined by
(a)g=1, (@),=ata+1) --- (a+n—-1), n=>1.
Since Kravchuk polynomials satisfy [see, for example, Ref. 10]

AK®?) (x; N AKP (x; N
Hixl )—O',, w5 ), witho,=np, 1<n<N-1, (3.3)
n n

k(np)(x; N) =

if we denote by u®") the Kravchuk linear functional of order N (the binomial distribution
from probability theory) given by

N
WP Py = Z(JZ) P —p)N S r(s), 0O<p<l1, NeN, foreveryrebPP,
s=0

(3.4)

we have that (u®™), u?M) is a A-coherent pair of linear functionals, if N > 2.



PROPOSITION 3.3 Let (ug, uy) be a A-coherent pair of linear functionals and let {a&o)}iﬁo

and {afql)},}yz'o be the dual bases of uy and u,, respectively, with My > 2 and M, > 1. If we
denote by {&S,O)},]ti"ol the dual basis corresponding to {Q,,(x)}fy:“o1 defined in (2.3), then

we have

50 = o) — g0, 0<n<min {My—2,M — 1}, (3.5)
n+1) 00 =a,Ad), =AY, 0<nm<min (My—2,M; —1}.  (3.6)

Proof Let Py, be the space of polynomials of degree at most M; and let [P’jwl be its
algebraic dual space. Equation (3.5) is a consequence of (3.1) and using that {ocfll)}f,l:‘o isa
basis of [P’;Wl. Applying the A operator to (3.5) and using Proposition 2.13, (3.6) is obtained.

||

THEOREM 3.4 Let (uy, u1) be a A-coherent pair of linear functionals and let {P,,(x)}ff;”o and
{T,,(x)}f‘f:‘0 be the corresponding MOPS associated with uy and uy, respectively, with My > 2
and My > 1. Then

(1) The functional u, is a semiclassical discrete linear functional of class at most 1. That is,
there exist two polynomials &, and \y,, of degree at most 3 and 2, respectively, such that

Alp ()] = Yy (x)us. (3.7
Their explicit expressions are
_ P2(X-|—1) _P](x—|—1)
0i9 =270 T i) == T o) G9)
Py (x) P> (x)
V() = <u01’ ;) Acy(x — 1) =2 (u:’ %) Aci(x — 1) + A, (x — 1), (3.9)
where
T, T, .
i1 () 1= Ty <u|,+Tl,2i)l> - <u1,(;)§> .0 <n<min{My—2, M, —1}. (3.10)

(i1) There exist polynomials A3 and B, of degree at most 3 and 2, respectively, such that
Az(x)up = Ba(x)uy, (3.11)

where
Az(x) = ¢ (x — 1), By(x) = c1(x — DAcy(x — 1) — co(x — DAci(x — 1).  (3.12)

(iii) The functional ug is a semiclassical discrete linear functional of class at most 6 since it
verifies the distributional equation A[dy(x)ug] = Vo(x)ug, where oy and \, are the
polynomials of degree at most 8 and 7 given by

$o(x) = &1 ()1 (x — DBy (x), (3.13)
Vo) = {Ba(x — DV (x) + ¢, (0)ABa(x — D}A3(x — 1) + ¢, (0)A3(x)ABy(x).  (3.14)



Proof  Let us write (3.6) using (2.7)

Pyi1(x)

R Alc,s1(ur], 0 < n < min{My —2, M, — 1}. (3.15)
Tt n+

n+1)

Forn =0 and n =1 we get in (3.15)

o = Afer (] = = DA + B = D,
P‘” (x)l (3.16)
22"y = Alea(¥)ur] = ca(x — DAuy + Acy(x — Duy.

(o, P3)
(i) From (3.16) it follows that

Py (x) Py (x)
<2m01(x — 1) — (u07 P%) cz(x — 1)>AU1
Py(x) Pi(x)
" (2 (o, P2 D T B

AC2(X — 1))111 =0.

On the other hand,

Po(x + 1) Pi(x+1)
A[<2 wo 22 T e P Cm)”‘]

P] (X) Pz(x)

= ((uo, ) Acr(x—1)—2 o, P2) Aci(x — 1) + Ad;(x 1)>u1.
Hence, A[d,(x)u1] = Y, (x)u;, where ¢, and \; are given in (3.8) and (3.9), respectively.
Thus (i) follows.

(i) Eliminating Au, in the system (3.16) we obtain Aj(x)uy = B, (x)u;, where polynomials
A3 and B, are given in (3.12).

(iii) Finally, by using Proposition 2.7 appropriately we have

AL (), (x — DB (x)uo]
= A[¢; (B2 (1), (x — D] = Al (x)B3(x)u1]
= B3(x — DA[;()u1] + AB3(x — 1), (¥)uy
= B3(x — DV (¥)us + (B2(x — DAB(x — 1) + Bay(x)ABa(x — 1), (¥)uy

= $1(0)AB2(x — DA3(x)up + {Ba(x — D (x) + ¢ ()AB, (x — D}A3(x — Duo.
|

4 GENERAL PROBLEM OF A-COHERENCE

In Theorem 3.4 we have proved that if (ug, ©;) is a A-coherent pair of linear functionals, then
both ug, u; are semiclassical discrete functionals of class at most 6 and 1, respectively. The
main goal of this section is to prove that if (ug, u;) is a A-coherent pair of linear functionals
then at least one of the functionals u, 1; must be a classical discrete functional under certain
conditions on the order of uy and u;. The proof of this statement will consist in 3 steps. Let us
denote by ¢ and 7 the zeros of the polynomial B,(x) defined in (3.12). In the first one, we
prove that if # =&+ 1, uy must be a classical discrete functional (Theorem 4.2). In the



second step we prove that if # # £ and # # ¢ 4 1 then u; must be a classical discrete func-
tional (Theorem 4.6). Finally, as a remark, we prove that the case # = ¢ can not be hold.

PROPOSITION 4.1  Let (ug, u1) be a A-coherent pair of linear functionals, and let {P,,(x)}f:[:oo
and {T,,(x)}i‘,/[:1 o the corresponding MOPS associated with uy and uy, respectively with
M, > 3. Let c,(x) be the polynomials defined in (3.10). For each 1 < n < min{My — 1, M },
we have

P, (x)
{uo, P})

Ba(x) = As(x)Ac,(x — 1) + c,(x — Dm(x), 4.1)
where the polynomials As(x) and By(x) are defined in (3.12) and n(x) := \;(x) — AAs(x),
with s, (x) given in (3.9).

Proof Using (3.11), (3.15) and Proposition 2.7 we obtain

P,(x)
n
(ug, P7)

P,(x)
(uo, P2)
= As){c,(x — DAuy + Ac,(x — Duy}, 1 <n <min{My — 1, My}.

Bo(x)uy =n Asz(ug = Az (x)A[e,(x)ui]
From Proposition 2.7 and (3.7) we get

o, (x — DAy = n(x)uy (4.2)
and then (4.1) holds, since M; > 3. |

THEOREM 4.2 Let (ug, u;) be a A-coherent pair of linear functionals. Let & and n be the
zeros of the polynomial B, (x) defined in (3.12) and suppose that n = £+ 1, i.e., let

By(x) = 0102 o (x =& —(E+ D). (4.3)

(uy, T%Hul 2

Then,

(1) If the order of the linear functional u, is greater than 3, then the functional
u = (x — &uy is a classical discrete linear functional verifying

Alp(o)i] = Py, (4.4)
for some polynomials (}5 and l/~/, with deg(&)) <2 and deg(l]/) = 1. Moreover,

0102 ~

(i) The functional ug is a classical discrete linear functional satisfying

Alp(x — o] = Vo (x)uto, (4.6)

for some polynomial ‘T’o with deg(\TIO) =1



Proof 'We have proved in Theorem 3.4 that u; is a semiclassical discrete linear functional
satisfying the distributional Eq. (3.7).

(i) From the definition of B,(x) in (4.3) it follows

0103

ABy(x) =2———F———(x—&).
SR T T
Moreover, from (3.12) we get
AB;(x) = c1(x),

( 1,T2>

using (3.10). Thus we obtain that c¢;(¢) = 0. From (3.12) with x = ¢ 4 1 it follows that

0=By({+ 1) = ci1(Acx(E) — e2(DAe () = —Cz(é) ” T2)

Thus ¢,(&) = 0. Since ¢1(&) = c2(€) =0 from (3.8) we obtain ¢,(£) =0 as well as
(&) = 0 using (3.8) and (3.9).

Hence, we can write

00 = —OPR),  V(x) = (x — OP().

Let us define # = (x — &)u;. From (3.7) and the definition of polynomials 55 and l/~/, it

follows that # satisfies (4.4). In Theorem 3.4 we have proved that deg(¢,) is at most 3, so

deg(¢) < 2. Since deg(\r,) is at most 2, we deduce deg(y/) < 1. If we prove that  can not
be a constant polynomial then we deduce part (i) of the Theorem. Indeed, we shall
distinguish two situations:

) 1f l@ is a non-zero constant v, then (u;, v(x —&)) = (v(x — Euy, 1) = (v, 1) =
(Alp(x)u], 1) = 0. Hence Ti(x) = x — £. From (3.10) then ¢(&) # 0 and this con-
tradicts that ¢;(£) = 0.

(2) Suppose that iy = 0 and let us denote by ¥ = x(x — 1)--- (x — n + 1), 1% = 1. Since
AxH1 = X7 4 1) for each n > 0, it should be

[n+1] [n-H]

+1

(o1t Ay — —<A[¢1<x>u1], x

: +1> < [peoi. >

> = (o, M) = 0.

So, (¢ (x)u1, p(x)) = 0 for every p € P, and then u; should not be a weakly quasi-
definite linear functional of order greater than 3. Hence ¥ = 0.

From the above situations we conclude that deg(n/?) =1.
Moreover, since ¢1(&) = ¢(£) = 0 then ¢ (x) divides cy(x). From (3.11) and (3.12) we
can write

(x — (& + 1)p(x — Dug = Ba(x)us.
10



Multiplying both sides of this equality by (x — (£ + 1)) ', and using (2.1) we obtain

7 0102

P(x — Dup = ) (x = Ot + e [(Bx — Dug)y — ((x — Eur)gl-

(ur, T (uy, T3

With an appropriate choice of the first moments of the functionals uy and u;, it yields

0102

o= Do =)

(x = uy,

Thus we get (4.5).
(i1) From the above equality and (3.15)

oy Pi(x)
(uy, T3) (ug, PY)

Alp(x — Dyug] = A[ 7192 S é)ul] =2 Alei(@u] = .

(ur, T} (1, T3 (u1,T3)

If we define \i(x) = (02/ (u1, T2))(P1(x)/ (uo, P2)), then deg({s,) = 1 and (4.6) holds.
[]

For the remaining steps described in the introduction of this section, some previous lem-
mas are needed.

LEMMA 4.3 Let (ug, uy) be a A-coherent pair of linear functionals and As(x) and By(x) the

polynomials defined in (3.12). Let & be a zero of By(x) such that Az(E) # 0. Then, there
exists a non-zero parameter k independent of n, such that

(-1 +kAc,(E—1)=0, 1<n<min{M;—1,M},
where My > 2 and My > 1 are the order of uy and uy, respectively.
Proof Since B,(&) =0, (4.1) for n = 1 and x = £ reads as
0= A3(HAci (¢ — 1) + c1(¢ — Dr(Q).

Since Ac;(¢ — 1) = a1/(u1, T3) is a non-zero constant then 7(¢) # 0 and

A3(&oy

c(é—-1= —m;«é 0.
If we define
LSO a1
@) " AaE-1D)
our result follows from (4.1) for 1 < n < min{M, — 1, M,}. |

LEMMA 4.4 Let (ug, uy) be a A-coherent pair of linear functionals. Suppose that there exist
parameters &y, &, ki # 0 and ky # 0 such that

cn(&1) +hAcy(Er) =0, and ¢,(&2) + kAck(S) =0, 1 <n <min{M, — 1, M},
4.7)

11



where My and M, are the order of uy and uy, respectively. If My > 2, My >3, and
&y — &l # L then & = &5 and by = ky.

Proof From (3.10), Egs. (4.7) can be written
Tn j ATn j
1) 2TE))
(ur, T,) (ur, T,)

— Tn l(éj) ke ATn l(éj)
@, T2 ) 7w, T2 )

, J=12, 1<n<min{M,—1,M}.

Let us denote

T.(&) |, ATu(E)
i, T2) 7y, T2)

(&) = =1,2, 1<n<min{M—1,M)

and obser\_/e that hg)_(ij) = 1/(u1,_ 1). Foreach 1 <n <min{My — 1, M} and forj = 1,2 we
write anhg)(fj) = hg) 1(&), so hﬁl/)(éj) # 0, for every 1 < n < min{M, — 1, M}, and we get

BV _ by i (&)
b)WY (&)

1 <n<min{My — 1, M)}.

Repeating this process

hOE)  hE) 1/, 1)
W) hQE) V)

=1, 1=<n=<min{M, -1, M},

ie., hgll)(él) = hfqz)(g’z) for 1 <n <min{M, — 1, M,} or, equivalently,
Ta(&) + kAT(E) = Tu() + RAT.(E), 1 <n <min{My — 1, M}}. (4.8)
So from the initial problem of characterizing &;, &,, k; and k, such that (4.7) holds, we
propose a new problem: determine &, &5, k; and &, such that (4.8) holds.
In order to solve it, we study a more general one: Find all g, v, 6 and n such that
UTu(&1) + VAT, (C1) = 0Tu(&) + nAT,(E), 1 <n <min{My — 1, My} 4.9)
Since {T,,(x)}ff:‘o is a MOPS, it satisfies a three-term recurrence relation [6] which can be

written T,11(x) = (x — BZ)Tn(x) —IT, 1(x), 0 <n < M; — 1 with the initial conditions
T 1(x) = 0 and To(x) = 1. If we apply the A operator to this relation

AT,1(x) = Ty(x) + (x = B, + DAT,(x) = 7,AT, 1(x), 0<n<Mi—1 (410
Using the three-term recurrence relation for {T,(x)}, and (4.10) a new equation is obtained:

(v + wE)T(&1) +v(1 + EDATL(E)) =11 + 6E)Tu(&) + n(1 + E)AT(E),

4.11

12



Let us repeat the process from (4.9) to (4.11), but starting with (4.11) instead of (4.9). Finally,
mimicking the process starting with this new last equation we find an homogeneous system
of four linear equations with variables T,(¢,), T,(&,), AT, (&) and AT, (&,). The determinant
of the matrix of coefficients is, after replacing u =1, v=1Fk;, 6 = 1 and n = k,

ko = Dk = (& = &P (& =& = D& =&+ D). (4.12)

Then, we need to study how are the solutions of this linear system, depending on the value
of (4.12).
If the determinant (4.12) is different of zero, then the solution of the linear system is

T.(&) =AT(&) =0, 3<n=<M, i=12.

Hence it should be T,(&) = Ty(&) =Tu(é + 1) =Tu(é +1) =0, forevery 3 <n < M,
but this contradicts that {T,(x)}*"! is a MOPS.
Now we discuss what happens when (4.12) vanishes.

(1) If k; =1 (i=1,2) then the solution of the system is T,(&;) = —AT,(&), Tu(§) =
AT, (&) =0, for every 3 <n < M. Hence T,(&+ 1) =Tu(§) =Tu(§+1) =0 for
every 3 < n < M,. But since {T,,(x)}i\l/[:‘ o 1s @ MOPS these equations can not be held.

Q) Ifk#1G=1,2),

(a) Suppose &; = &,. Then, it is trivial to check that &k = k.
(b) The case |&; — &, = 1 can not be held because of the hypothesis of the Lemma.
]

LEMMA 4.5 Let (ug,u;) be a A-coherent pair of linear functionals, where My > 2 and
M, > 4 are the order of uy and uy, respectively. Let A3(x) and B,(x) be the polynomials
defined in (3.12) and c,(x) the polynomials defined in (3.10). If By(x) has not a double zero
and that no zero of By(x) is a root of AB,(x) = 0, then there exists a parameter & such that
B, (&) = A3(¢) = 0. Furthermore, we have ¢((&) # 0, ¢i(£ — 1) # 0 and n(&) = 0.

Proof Let us denote &; and &, the zeros of B,(x). If both &; (i = 1, 2) are not zeros of A3(x),
we can apply Lemma 4.3 to obtain two constants k; #0 and k, #0 such that
cn(éy — D+ kAc,(E — 1) =0andc,(& — 1) + kAc, (& — 1) =0, forevery 1 < n < min
{My — 1, M;}. Using Lemma 4.4 we obtain that k; = k, and also that £, = &, in contra-
diction with the hypothesis of this Lemma.

Let us denote £ the common zero of B,(x) and Az(x). If Bo(&) = 0 we have AB,(&) # 0,
and hence ¢ (&) # 0. But we also obtain that ¢,(& — 1) # 0, because if ¢;(¢ — 1) = 0 then it
should be B,(¢ — 1) = AB,(& — 1) = 0 which is not possible.

From (4.1), setting n = 1 and x = &, we obtain that 7(£) = 0. |

THEOREM 4.6  Let (ug, u1) be a A-coherent pair of linear functionals, where My > 2 and
M\ > 4 are the order of uy and u,, respectively. Suppose that B,(x) has not a double zero
and also that no zero of By(x) is a root of AB,(x) = 0. Then

13



(1) There exist a parameter & and two polynomials .;1(x) and mi(x) with deg(ﬁ) <2 and
deg(m;) < 1 such that

~ _ 0102 .
A(x)uo - <u1, T%)(u], T%) (x é)ul ’ (413)
Ty = ——1%2 (v — E)Au,. (4.14)

ur, T} ur, T3)

(ii) If A(&) = 0 then m(&) = 0.
(iii) The functional uy is_a classical discrete linear functional verifying A[A(x+ Du ] =

Uy (0)uy, where deg({r) = 1.
Proof

(1) Letus denote &; and &, the zeros of By(x). Using Lemma 4.5, at least one of them is also
a zero of As(x). Suppose that A3;(£;) = 0. Using again Lemma 4.5 we obtain that
(&) = 0. Let us define

By(x) = (x— ENB(),  As(x) = (x — EDAW),  7(x) = (x — &m (). (4.15)
Then, we can divide both members of (4.1) by x — &; and we obtain

,Qiiam@=2@m%@—w+%@—”m“* (4.16)

1<n §min{M0 — 1,M1}.

If we eliminate u; in (3.16) we get m(x)up = By(x)Au;. From (4.15) we obtain
A(X)uy = B(x)u (4.17)

with an appropriate choice of the first moments of the functionals #y and u;, which was to
be proved. Furthermore, from (3.11) and (4.2) we get

T = B&)Auy +Ro;,,  AX)Au, = 1)y + Kde,. (4.18)

Hence from (4.16) and (3.15) we obtain for 1 <n < min{M, — 1, M}

AW — 1)+ enlx — Dy ()t = QM) (”)o

= B)(Ac,(x — Duy + c,(x — 1)Auy),

ie.,

Ac,(x — DA — Bx)uy) = cu(x — D(BG)Au; — 101 (x)u),
l1<n< min{Mo — 1, M]}

Moreover, using (4.17) the above identity becomes c,(x — 1)Ré¢, = 0 for every 1 <
n < min{My — 1, M;}. Since ¢1(&; — 1) # 0 we obtain R = 0 and this proves (4.14).

14



(ii) From the definition of 4(x) we have A(&,) = 0 and then, using Lemma 4.5 it follows that
m1(&;) = 0, so part (ii) of the Theorem is proved.
(iii) Finally, using (4.16) with n = 1,

P1(x)
(uo, P})

A@Aci(x — 1) = B(x) — ¢1(x — Dmy (x)

holds. If we take the first equation of (3.16) and the last equation it follows

A(x) Pl(x)z uy = A(x)Aci(x — Duy + A(x)ei(x — DAuy
<u0; P1>
— (B = = D9 Jan e D,
<an P1>
whence
P@) o e .
5 (A(x)uy — B(x)uy) = c1(x — D(A@)Au; — i (x)uy).
(o, Py)

From the previous equation we obtain Kc;(&; — 1) = 0, by using (4.17) and (4.18).
Since c¢i(&; — 1) #0, then K =0. Thus, the second equation in (4.18) reads as
A(x)Au; = m;(x)u;. Therefore, by using Proposition 2.7 and this last equality, we get

AAGx + Dy = Ay 4+ AX)Au; = (AAX) + 111 ())uy = Py Oy,

where deg(\TJl) < 1. As in Theorem 4.2, we use that u; is weakly quasi-definite of order
M, > 4 to conclude deg(Vr;) = 1, i.e., u; is a classical discrete linear functional. W

Remark Note that if u; is a linear functional of order M| > 7, the polynomial B;(x) can not
have a double zero. For the proof, if & is a double zero of B;(x), then

o1
)= (o (5-3)) @19

applying the A operator in the definition of B,(x) given in (3.12). From (3.5) for n = 0, it
follows

do(x)

T U= —C](X)Lll s

<Ll0, ¢O>

using (2.7) and the definition of ¢;(x) in (3.10). We can now use the definition of ¢ (x) given
in (3.13) as well as (3.11) in order to obtain

<¢1 ()BY(X)

(uo,(])()) +cl(x))u1 =0.

15



Since u; is a weakly quasi-definite linear functional of order greater than 7, then

) (x)B3(x)
——=—2+¢(x)=0.
{uo, ¢o)
By using (4.19) and since B,(&) = 0, the above expression for x = £ gives oy = 0 which is
not possible.
We can summarize the results obtained in this section in the following theorem.

THEOREM 4.7  Let (ug, uy) be a A-coherent pair of linear functionals and let {P,,(x)}ff:”o and
{Tn(x)}i,w:'0 be the corresponding MOPS associated with uy and u,, respectively, with My > 2
and M, > 8. Let

_lax=1) -1 |_0o .
BZ(x) — AC](X _ 1) ACQ(X _ 1) - tity (X 6)()( ;7)3 (420)
where
T, T, .
Ca(X) 1= 0y, t(x) - 1(x)’ th 1=, T2 ), 1 <n<min{My —1,M}. (4.21)
n n 1
One of the following situations hold
(1) If |E —n| =1, then uy is a classical discrete linear functional satisfying
Alp(x = Duol = Wo(@uo-
Moreover,
P — g = 2 (x = &y, (4.22)
it
(2) If |€ —n| # 1, then uy is a classical discrete linear functional satisfying
AAG + Duy] =y ().
Furthermore,
A = 22— Oy, m@ue = 22 (x — E)Auy, (4.23)
it ht
where
() ==y () — AA(). (4.24)

Finally, if A(¢) = 0 then 1,(¢) = 0.

From the above theorem, we have obtained in Ref. [5] the classification of all A-coherent
pairs for Hahn, Kravchuk, Meixner and Charlier linear functionals, which allowed us to

recover the classification given by Meijer in Ref. [20], using a limit process.
16



5 EXAMPLES

In this section we present examples of A-coherent pairs (i, u1) of linear functionals. In the
first example, we deal with quasi-definite linear functionals where uy or u; is the Meixner
linear functional ##. On the other hand, in the second example we present A-coherent
pairs of linear functionals where 1y or u; is the Hahn linear functional u®AN) which is a
weakly quasi-definite linear functional of order N — 1.

5.1 Meixner Case

Let (1o, u1) be a A-coherent pair of linear functionals and assume that u; = u"* is the
Meixner linear functional defined by

s y
(o) wIry+s) A - L . B (51
(™, p) 52 p(s) e O To) 0<u<1, y>0, foreverypeP, (5.1)

[see Ref. 6 and references therein], which satisfies the distributional equation

Alu(x + )"0 = (yp — x(1 — p)ut9.

For this quasi-definite linear functional the moments are given by
. - r\"
(wwh=;;%@Nﬂnth>’ n>0, (5.2)

where S,,(n) denotes the Stirling numbers of second kind [2]

Sy =Y VT (53)
= m =Pl

Let us denote by

u " —n, —x
MU(x) = (F) (M 2F1< )

the polynomials orthogonal with respect to u®#, which are called Meixner polynomials
[see Ref. 10, p. 45, Ref. 21, p. 51]. The following relation between two families of Meixner
polynomials holds [21, (2.4.16)]

1
1—7>, n>0,
u

(.10
MUFED () = M"J':ll( ), n=>0. (5.4)

17



5.1.1 Case uy = u®#

Let (1o, u;) be a A-coherent pair of linear functionals and assume that uy = u®* is the
Meixner linear functional. In this situation, the linear functional #; can be computed
from (4.22)

plx+ U = (x = Oy,
By using Proposition 2.9 and (5.4), the above equation can be written as
ulT0 = (x — Eyuy.
Then, from (2.1) we get
up = (x — &) a0t 415,

As an example, for L = 0 and & = 0 we shall obtain a recurrence relation for the sequences
{o,} and {T,,(x)}nM:‘ o> the MOPS associated with #; which can be computed from Ref. [8]

T(0) x M H10(x) = T,(0) Tt () = Tt ()T (). (5.5)
By using the above equation, (5.4), the three-term recurrence relation

(x— ﬁﬁl}”rl,ll)) Mil}’Jrl-lt)(x) _ ij’fll’”)(x) + j)ilH]’H) Ms/urllvll)(x), (5.6)

satisfied by monic Meixner polynomials MU+ (x), where

A+ p+A+wn

(G+Lw)
ﬁn - l _ ,L[ ’
,y(",'Jrl,p) — un (V + }’l)

" (1 —w’

and the relation between {MU*!1¥)(x)}, and {T,(x)}, since (uo, u1) is a A-coherent pair of
linear functionals,

AMU AMG-0 : ,
To(x) = n’ill(x)_"” . ) = MU () — 6, MIT (), n>1, (5.7)

we obtain
BT+ 01 + ) MTTH@) + 07 = g,m,) M) =0,
where

~ MYEM(0) — 0, MITL0(0)

MG+L0(0) — g, MU (0)

n —

18



and [21]

., w\"
M0 = (25) 6+ D

being (4), the Pochhammer symbol. Since {M{" +1’”)(x)}iV:02 is a set of linearly independent
vectors in P, it yields the following recurrence relation for the coefficients g,

L) yO+1p)
Ot = =B, _—no_ , o nx>1, (5.8)
n

by using again the three-term recurrence relation (5.6).
If we choose (1)), := (u;, 1) = 1, then T;(x) = x — 1. From the A-coherence relation,

—1— ﬁg/-*-l,#).

Moreover, by using (5.6) and (5.8), from (5.7) we have

(+1
T,,(x) M(”_H u)(x) + (ﬁ( y+1,0) + VO-

n

S
) M(3+1 #)( )

G+1,0) +1,0) O () G+1,p)
—xM' .M(x)_’_y/ Iz - Mn’z”“(x)

n 1

y(/+1 )
=M 0+ T, (), nz 2.
On 1

n

a recurrence relation for the sequence {T,(x)},.

5.1.2 Case u; = u®»

Let (19, ;) be a A-coherent pair of linear functionals and assume that u; = u%® is the
Meixner linear functional. We shall consider the following three situations:
Case y > 1 In this situation, from (4.23) we get

up = (x = Hu 1,

We assume that & < 0 in order to obtain positive-definite linear functionals. We shall obtain a
recurrence relation for the MOPS {P,(x)}, associated to u, as well as a recurrence relation
for the coherence parameters g,,.

The sequence {P,(x)},, can be computed from Ref. [8]

MY ()

(x—&P,(x) = Y S M( ) — MO LOE) (&)

v —rtl _2IMO L (), (5.9)

Moreover, they satisfy the following three-term recurrence relation

Poi(¥) = (x = B)P,(x) — C,P, 1(x), n>1, Po(x):=1, Pi(x):=x—By, (5.10)

19



where

b MEa O MM

n+l1 m - ) jtl

+ Mi,Hl,u)(f) ME{ l,u)(g)

o MO M@

neT y L) £)2 n
(MY M9(E))

n>1,

)

and

go 1w _ 0= Dutn+p) oy _ G +n—2)
" l—p S (1 - p’

are the coefficients of the three-term recurrence relation satisfied by monic Meixner polyno-
mials Mg’ L (x)

MU () = (x — BY 10) MO M9(x) — €O B0 MU (), (5.11)

By using

APy(d) AP)

Mi’%ﬂ)(x) T +1 n

as well as (5.9), (5.10) and (5.11), we obtain

O—n:é_é_cnv nzzv
On 1
with
o1 P (=¢+u(=1+y+9%)

T P T (T (a2 (CT ) ©)
Case y =1 Then, up to numerical factors, ¢y can be deduced from (4.23)
xup = (x — EulP.,
From Lemma 4.5, £ =0 and
uo = u"® + Ky
using (2.1). Let K > 0 and let us denote by {P,(x)};2, the sequence of polynomials orthogo-

nal with respect to this quasi-definite linear functional u (perturbation of u{"*) by a Dirac
functional). These polynomials satisfy the following three-term recurrence relation [13]

P,1(x) = (x — B,)P,(x) — C,P, 1(x), n>1,
Po(x) =1, Pi(x) = x — By,
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where

= 2n+1 n(K +1) n+1)(K+1)
By = Tt kG- TR -1 "2
& nu(K(#”l—l)—l)(K(u”“—l) 1)

(1= (K (= 1) =1y

, n>1.

Furthermore, they can be written in terms of hypergeometric series [4]

. N
mw:MQiﬁ3n<” fx+~1_j,
pn—1 N I

Tn

where

Kn
7:,,:—'“ , K=>0.
14+ K(1 —pr)

It can be checked that the A-coherence relation reads

AP,11(x) AP,(x)
— Oy s n= 15
n+1 n

1, _
ME, H)(x) —

where

(L, K -
=M ST T T KA — ) T

are non-zero real numbers, since K > 0.
Case 0 <y < 1 In this situation uy = u; = u®#. The coherence relation reads

AMUP ) AMOR ()

M(V,u)(x) — ntl On n , n>1,
" n+1 n -
where
o, =n K
n ‘Ll _ 1

5.2 Hahn Case

Let u*) be the Hahn linear functional given by

, ! W+ B+2)T@+ N —s)T(B+s+ 1)
WPV E:rw (s),

+ DI(B+ DI+ f+ N + DI(N — )I(s + 1)

for every r € P,



where o > —1, f > —1, and N € N, which satisfies the distributional equation
AI(N —x = D(x 4 B+ Du®PN] = (N = D) + 1) — x(o + f + 2))u®FY,
For this weakly quasi-definite linear functional of order N — 1 the moments are given by

, n>0,
(x+B+2), B

W10, = 3 Sy

m=0

where (4), denotes the Pochhammer symbol and S,,(n) are the Stirling numbers of second
kind given in (5.3).
Let us denote by

(a+p+n+1),

. -n, —x, n+oa+f+1
OB (x; N) = LU muien, g, ( ‘ 1>’

B+1, 1—N
0<n<N-1,
the polynomials orthogonal with respect to u®*#)_ which are called the Hahn polynomials

[see Ref. 10, p. 33, Ref. 21, p. 52]. The following relation between two families of Hahn
polynomials holds [21, (2.4.13)]

(2.9)
HEHAD (N — 1) = AH, [ (x: N)

<n<N-2. 12
| , 0<n<N (5.12)

5.2.1 Case uy = u@FM

Let (uo, u1) be a A-coherent pair of linear functionals and assume that uy = u*#") is the
Hahn linear functional. In this situation, the linear functional u; can be computed from (4.22)

(N —x — D(x+ 4+ Du®PN = (x — E)uy.
By using Proposition 2.9 and (5.12), the above equation can be written as
(1+1 p+IN 1) _ (x _ i)ul
Then, from (2.1) we get
Uy = (x— &) Ly D +L3:.

If L=0 and ¢ =0, we shall obtain a recurrence relation for the sequences {o,} and
{T,,(x)},}‘l/[:1 o> the MOPS associated with u; which can be computed from [8]

T,(0) x Hi,a+1'/j+l>(x§ N —1) =Ty(0) Tpr1(x) = T 41(0)T,(x). (5.13)
By using the above equation, (5.12), the three-term recurrence relation

(x — ﬁ(na+1,/f+1,zv 1)) HSH]’/M)(X? N-1)= ngofll /5+1)( x; N—1)+ ygx+l,ﬁ+l,N 1)

x H P v — 1), (5.14)
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satisfied by monic Hahn polynomials HS"“'BH) (x; N — 1), where

ﬁ(a+l,ﬂ+l,N 1)

2(2N+a—ﬁ 4+ N -2)B+2)(o+p+2)+n2N +o—f— 4)(oc+ﬁ+3)
Qn+a+pB+2)2n+oa+p+4)

(@+1.8+1.N 1)
Vn

n(N—n—1)(n+oc+l)(n+[3+1)(n+oc+[3+2)(n+N+cx+ﬁ+1)
Qn+oa+f+1)2n+a+p+27 Qn+o+p+3)

’

and the relation between {H*H'AD (x; N — 1)}V 2 and {T,(x)}, since (ug,u;) is a
A-coherent pair of linear functionals,

AH*P(x; N) AH®P)(x; N)

T,,(x) — n+1 -0, n — HS[O(+1.[3+1) ()C; N — 1)
n—+1 n
— g, H M) e N— 1), 1 < n < min{N — 2, My}, (5.15)
we obtain
(ﬂglx+l,ﬁ+l,N 1) +0, “ + wn) Hg[a(+l,[3+l) (X; N — 1)
(y(“+1 SALN 1) ) Hf,”ll’ﬁ“) (x; N—1)=0,
where
H(°<+1 B+ 0;N—1)—¢ HE+LA+D (0; N—1)
n+1 ) n+111, s
TR 0 N - D - T 0N -
and [21]

(ﬁ+2)n (N—}’l— l)n
(n+o+p+3),

)

H(:x+l,ﬁ+l) (0’ N — 1) — (_l)n

being (4), the Pochhammer symbol. Since {H*™1A+D (x; N — 1)} 2 is a set of linearly
independent vectors in Py », it yields the following recurrence relation for the coefficients o,

OFLAHLN 1)

Gpil = _ﬁgx+l,/3+l,N ) _nai, n>1, (5.16)
n

by using again the three-term recurrence relation (5.14).
If we choose (1), := (u;, 1) = 1, then T;(x) = x — 1. From the A-coherence relation,

o1 =1 _ﬁgx+1,ﬂ+l,N D

23



Moreover, by using (5.14) and (5.16), from (5.15) we have

JOFLBHIN D
T,(x) = H£x+|.ﬂ+1) (; N—1)+ ﬂytl,ﬁHﬁN 1) + 1 Hi“ﬁl-ﬁ+1) (; N—1)

On 1
= xH;OH—ll,ﬂ‘Fl) (x; N — 1) 4 VE,:Z+1L[H—LN 1)

1,5+1
y HUAMY (6 N - 1) _ LA+
Ou 1 n 2

(x; N — 1))

JEELAHLY D
= xHS,“tl'ﬂH) (r; N—1) +M0_71Tn 1(x), n=2.

n

a recurrence relation for the sequence {T,,(x)}n}'/’:1 0

5.2.2 Case u; = u®hM

Let (1o, u;) be a A-coherent pair of linear functionals and assume that u; = u®*#Y) is the
Hahn linear functional. We must consider the following situations:

Case o, f > 0 In this situation, from (4.23) we get

Uy = (x _ é)u(a Lp 1,N+1).

We assume that £ < 0 or £ > N in order to obtain nonnegative-definite linear functionals.
We shall obtain a recurrence relation for the MOPS {P,,(x)}fy:"0 associated to u, as well as
a recurrence relation for the coherence parameters .

The monic sequence {P,,(x)}M"0 can be computed from [8]

n=

(@ LB Dg.
H, &N+
(= OPu0) = B2 s N+ 1) — e NH)H;“ YD (¢ N A1), (5.17)

Moreover, they satisfy the following three-term recurrence relation

Poi(¥) = (x —B)P,(x) =GP, 1(x), 1<n<My—1, Pyx):=1, Pi(x):=x— By,
(5.18)

where

B . g LB LNHD Hyy " V& N+ 1) _Hi’ill,ﬁ "GN+

n = HE Y D@ N+ ) HY OGN+

C, = Y M@ N+ EE Y DE N+
HE P D& N+ 1)

Cf,x LELNAD s
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and

Be LB vy _ B2 +a+ ) N+n(=l+oat+f+n) (= f+2N)
" (—2+oa+p+2n) (a+ f+2n)

CS’c{ LB 1N+1)

:_n(rx—l—n—l)(ﬁ+n—l) @+p+n—-2)y(n—N—-1)(@+p+n+N-1)
@+ p+2n—3) (=2+a+p+2n)? (=1 +a+f+2n)

)

are the coefficients of the three-term recurrence relation

HY Y D N+ 1) = (= B® WP IVEDy g 1P Dy N 4 1)
— ¢y VNI D N 1), (5.19)

satisfied by monic Hahn polynomials HE{" LB D(x; N 4 1). By using

AP,i() _  AP,)

H®P(x; N) =
w5 N) n+1 n

as well as (5.17), (5.18) and (5.19), we obtain

Unzé_Bn_Cnv n227
On 1
with
o1 I+ + W = DE +N) («+ ) — BNS)

)

T+ D2+ NBA+HN — DN — 9@ — f+ 21+ HNE +9) (1 +9E)
and 9 . =1+4+a+f.

Case f =0 From Lemma 4.5 then ¢ = 0, and from (4.23)

uo = u® VONED L 150 a>0.

Let us assume that L > 0 and let us denote by {P,,(x)}ﬁ,\f:o the sequence of polynomials ortho-
gonal with respect to this weakly quasi-definite linear functional u, (perturbation of
u® LON+D by a Dirac functional). These polynomials can be written in terms of hypergeo-
metric series [3]

Pn(x) =

(=" W)'n! T'(ee +n) (—n, —x, a+n—1, gy +1
4 F3

1), 0<n<N,
(N —n)! T(a + 2n) —N, 1, 1, ‘ ) =n=
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where

) x(e+n—1)
o Tx+@+2n— D,
0 = L (I +0)y, H(N —n+1),
(1 + L Ker"” 11’0)(0, 0)) (@), 1(@+n), (1+a+N),

(—=1)" (14 a),, (N —m+1),)
), (@ +m), (=N),, 1 +a+N),

n 1
Ker 19(0,0):= )"
m=0 (

It can be checked that the A-coherence relation reads

AP
n+1(x)_o_nAPn(x)7 l<n<N_L
n+1 n

H*O(x; N) =

where,

_—n(a+n)(N—n) @+N+n) (e+N+1), | AN +al+1) - LN —n+1),)
" (x+2n) (@+2n+1) (x+N+1), LN + oL+ 1)) — L(N —n),,) ’

are non-zero real numbers.

Remark 3 Note that the classification of A-coherent pairs, assuming that one of the linear
functionals g or u; is the Charlier or the Kravchuk linear functional, can be done by using
the same arguments as in the previous examples [5].
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