
This is a postprint version of the following published document:

Ferreira, José Luis; Gilboa, I.; Maschler, M. Credible Equilibria in Games 
with Utility Changing during the Play. Games and Economic Behavior. Aug. 
1995, vol. 10, n. 2, p. 284-317. Available in: 
http://dx.doi.org/10.1006/game.1995.1033

© Elsevier

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License.

http://www.sciencedirect.com/science/article/pii/S0899825685710330


Credible Equilibria in Games with Utilities Changing 
during the Play 

J.-L. FERREIRA 

Universidad Car/os Ill de Madrid, Madrid, Spain 

I. GILBOA 

Norlhwestern University, Evanston, Illinois 

AND 

M. MASCHLER* 

The Hebrew University, Jerusalem, Israel 

Whenever one deals with an interactive decision situation of long duration, one 
has to take into account that priorities of the participants may change during 
the conflict. In this paper we propose an extensive-form game model to handle 
such situations and suggest and study a solution concept, called credible equilib-
rium, which generalizes the concept of Nash equilibrium. We also discuss 
possible variants to this concept and applications of the model to other types of 
games. American Mathematical Society Classification Numbers: 90A06. 90A07, 
90A43, 90A56, 90006. 90010, 90035.90040,90080. Journal of Economic Litera-
ture Classification Numbers: C70, C72. 010, 0 11 , 080, 083. 

• We express our thanks and gratitude to Cbaim Fersbtman and Ehud Kalai for several 
conversations, from which we benefitted greatly. In particular. Chaim Fershtman pointed 
out to us that games with changing utilities require further analysis , thus originating this 
research. Ehud Kalai, among other good suggestions, insisted that we verify Theorem 4. I . 
A special thanks is due to an anonymous referee, whose remarks enabled us to improve the 
presentation a great deal. We are grateful to Northwestern University and to the University of 
Tilburg, The Netherlands for the hospitality extended to some of us, while this research 
was conducted. The second author gratefully acknowledges NSF Grant SES-9113108. 

1



I. INTRODUCTION 

As far as we know, a game in which priorities change during the play 
was first discussed by Homer in the story of Odysseus/Uiysses and the 
sirens (Odyssey, ea lOth century B.C.). According to the story, the singing 
of the sirens was renowned for its beauty and so seductive that whoever 
heard it was lured to his death. 

Odysseus achieved his desire to hear the singing of the sirens in a way 
that game theorists, often unjustifiably, ignore. He followed the principle1 

that when people do not like the rules of the game, they change the rules. 
Thus Odysseus invented a new, pure strategy; namely, he put wax in the 
ears of each of his sailors, commanding them to tie him to the mast and 
not to release him until they were safely bound for home. 

Lacking the creativity and imagination of Homer, we shall not follow 
this avenue and regard our games as given and fixed. 

Classical economics and game theory assume that an individual's prefer-
ences are constant throughout the decision-making process, even if the 
latter has several stages. This seemingly implausible assumption is of great 
theoretical value; in particular, it allows a multi-stage decision problem 
to be "collapsed" to a single-stage one (see, e.g., Savage, 1954) and 
enables an extensive game to be represented in a "normal" form, etc. 

Yet, the fact that preferences may well change over time has been 
bothering economic theorists for over four decades. Allais (1947) was 
probably the first (in modern times) to deal with "exogenously" changing 
preferences, i.e., preferences which depend on time alone. ''Endogenous'' 
changes in preferences, namely those resulting from the actions of the 
decision-maker or other players, were studied in the early 1950's (see 
Schoeffler, 1952, and Harsanyi, 1953). 

Situations in which priorities change are plentiful; people change and 
events influence our perception of the world. When one is young one 
loves junk food, both for its taste and for the opportunity its consumption 
gives to meet young friends, old and new, and to have a great time with 
them. As one gets older, one's stomach becomes more sensitive, one also 
associates with different people, so junk food is no longer attractive. When 
one is young, one wants to spend a lot of time on leisure; when one gets 
older, providing for one's family takes priority. One might enjoy watching 
ceremonies of queer cults, but there is a positive probability that one may 
become brainwashed, desert one's family, and follow the cult-a prospect 
that is not attractive before going to the ceremony. The reader can certainly 
provide many more examples of changing priorities. 

It is wise to take into account the possibility of changing priorities in 

1 Expressed by Martin Shubik (oral comunication). 
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any long-range plan. The question then becomes how to model these 
situations and what strategies to recommend, as well as what strategies 
are likely to be played. That is the subject of this paper. 

We wish to emphasize2 that we wish to analyze these situations in terms 
of classical utility theory and classical game theory; namely, we want to 
show that classical views can be applied just as well when preferences 
change, provided that one is very careful about the interpretation of the 
various concepts. We take great care to give at least one precise interpreta-
tion, realizing, of course, that other interpretations may be appropriate 
just as well, but they have to be stated precisely, if one wants to apply 
our model correctly. 

Even a brief survey of the literature is beyond the scope of this paper. 
A very partial list of relevant works includes Strotz (1956), Pollak (1968), 
Phelps and Pollak (1968), Pollak (1970), Von Weissaecker (1971), Black-
orby, Nissen, Primont, and Russell (1973), Peleg and Yaari (1973), Ham-
mood (1976), and Pollak (1976). We will briefly discuss some of these in 
Section 3, as a background to the presentation of our solution concept. 

In Section 2 we present an extensive form model and discuss its rele-
vance to our topic. In Section 3 we propose strategy combinations, which 
we call credible equilibria, to handle the above situations. In Section 4 
we show that the set of credible equilibria is identical to the set of Nash 
equilibria if priorities do not change during the play. Thus, our solution 
is an extension of the Nash non-cooperative solution to situations in which 
priorities change during the play. We then prove, among several other 
results, that the set of credible equilibria contains the set of perfect equilib-
ria of the agent-form game; hence it is never empty. Section 5 studies the 
set of credible equilibria. It shows, among other things, that a credible 
equilibrium path is also a path of a Nash equilibrium for the agent-form 
game. Section 6 provides some examples designed to illustrate characteris-
tics of credible equilibria. Section 7 shows that an extension of the concept 
to a model in which time is a part of the data does not yield new equilibrium 
points. Section 8 discusses some possible variants of the concept. 

Basically, we are dealing in this paper with individuals having various 
utilities during the play of a game. This suggests that our model could be 
applied to another, very important class of situations, where a player is 
a group of individuals, a state, a party, etc. Such a player is to some 
extent a decision-making unit, but it does not have a utility of its own. 
Rather, it represents various groups, each endowed with its own utility 
function. For example, a state may represent farmers, manufacturers, 
ordinary citizens, etc., but there is no such thing as "a utility of the state." 
In Section 9 we discuss the applicability of our model to such situations 

2 We are grateful to an anonymous referee for this remark. 
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and show that the scope of such application is limited. Thus, an extension 
of our model is highly desirable. 

2. THE MODEL 

We start with a game form 3 (T, P, V, C, p). Here, T is a tree, P = {P0 , 

P 1 , ••• , Pn} is the players' partition4 of the nodes of T (P0 is the set of 
Chance's nodes); V= (V0 , V,, ... , Vn), where V;= {uu}}i, 1 is the partition 
of P; into information sets5 (elements of V 0 are singletons); C = 
{C(uu>h~ 1 • 2 ..... nJ~l.l •...• k, is a correspondence, where C(uu) is the set of 
choices which are available to player i at information set uu; p = 
{p(u0)}1~u .. . ~<c is a vector-valued function, where p (u0) is a probability 
distribution on Chance's choices at u0J. For further information concerning 
this notation see, e.g., Selten (1975). 

We assume that the game form is a game of perfect recall in the sense 
of the following definition (taken from Selten, 1975). 

DEFINITION 2.1. A game form (T, P, V, C, p) is said to be of perfect 
recall if, for every i, i = l, 2, ... , n, and every two information sets uu 
and u;k of the same player i, if one node y, y E u;k, comes after" a choice 
c at uu, then every node x in u;k comes after the same choice c. 

By Kuhn's theorem (Kuhn, 1953; Selten, 1975), we can and will restrict 
ourselves to behavioral strategies. 

We shall also talk about the derived agent-form game, obtained by 
placing, for each i, different agents iJ at the different information sets uu 
of player i. Each agent i.j will play dual roles: on the one hand, we shall 
regard him as a decision-making unit that acts in accordance with his own 
utility function; on the other hand, in reality he is the same player i located 
at a certain stage of the play. To complete the description of our model, 
we endow each agent i.j with a von Neumann-Morgenstern utility function 
h;J• defined on lotteries over endpoints ofT (which represent pure out-
comes). Formally, therefore, our game with utilities7 changing during the 
play is a six-tuple 

1 I.e., a game in extensive form without payments at the endpoints. 
4 The players are I, 2, ... , n. "Chance" is denoted by 0. 
5 To complete the description, we add that for each information set uv there are m(u;} 

edges going out from each node of uij. They are grouped into m(u;) disjoint equivalence 
classes, where each equivalence class consists of one edge from each node of uu. The 
equivalence classes are called the choices. We allow information sets with a single choice. 

6 I.e., the path from the root toy contains an arc of choice c. 
7 We use the word "preferences" when we discuss the "real" situation. Their representa-

tions in the mathematical model will usually be called "utilities." 
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f =(T, P, U, C, p, h), (2.1) 

where T, P, U, C, p are as above, and h = (h 1, h2, ••• , hn), where, for 
an endpoint z, 

h,{z) = (h1 1(z), h12(z), ... , h1 k{z)). 
' ' • I 

(2.2) 

For some j's, and in particular for all j's such that i.j lies on the path 
from the root to endpoint z. hi.j(z) is the utility payment of agent i.j for 
the endpoint z ofT. For other j's h;)z) is allowed to be undefined. 

Discussion. The above construction comes to model a non-coopera-
tive game in extensive form, in which the players' priorities may change 
during the play. To understand the relation between "reality" and our 
model, we provide some explanation and also discuss a possible objection 
to the model. 

(1) As in classical game theory, an "outcome," represented by an 
end point z of T, is the aggregate of everything that happens along the path 
from the root to the endpoint. 

(2) We shall be interested in this paper in certain equilibrium points 
which, in one application, can be viewed as possible agreements that can 
be reached by the players at the start of the game. For this application, 
every decision must be based on what the players think at the start of the 
game. Accordingly, the function h1.j should be interpreted as that utility 
function player i believes at the start of the play he will have when he 
reaches information set uii. We use here the words "believe" or "knows" 
in the sense of • 'ascribing probability one.'' (See the discussion in Aumann 
and Brandenburger, 1995, concerning the relevance of this meaning.) 
Thus, we allow for the possibility that later on a player will find out that 
what he knew was wrong, in ways that he did not expect at all. When a 
person takes a decision, the only thing that matters is what he knows, or 
believes, at the moment that the decision takes place. 

(3) We assume that player i knows his utility function h;.j. There is 
no loss of generality in this assumption. If he is not sure, being a Bayesian, 
he has some probability distribution over various possible utility functions. 
This he can represent by introducing chance moves as done in Harsanyi's 
theory of games with incomplete information (Harsanyi, 1967- t 968). Simi-
larly, there is no loss of generality in assuming that all components of r 
(in (2.1)) are common knowledge. 

(4) The utility functions are merely numerical expressions for the 
agents' preferences. Thus, tautologically one expects each agent to act 
in accordance with maximization of his own utility function. This trivial 
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1.1 Young-me 

1.2 Old-me 

~ 
10 

5 
100 

FIG. I. The young/old me game. 

remark is not always understood, and the misunderstanding leads to a lot 
of confusion. Consider the 1-person game of Fig. I. 

In this game L1 and L2 mean "spend on holiday vacations" and R1 and 
R2 mean "save for home for the aged." We heard again and again that 
the right thing for agent 1.1 to do is to take R 1 • Indeed, agent 1.2 will 
certainly choose R2 , so agent 1.1 should cooperate in order to eventually 
enjoy a good home for the aged (100 is a pretty large number!). This 
reasoning is totally wrong: Had young-me cared for old-me, this should 
have been reflected in 1.1 's utility function. But the data shows clearly 
that young-me prefers to spend money on vacations rather than worry 
about old age. In fact, his preference is for travel when he becomes old 
(see the 20), but he believes that, as an old person, his priorities will be 
different; therefore, he has no chance of getting the 20. Even without a 
theory, it should be clear that the "right" solution for this game8 should 
be L 1R2 • 

(5) Another question that is frequently asked is this: Why do we need 
a new model? Is not the change of utilities simply a matter of gaining 
experience, or learning? To explain this, let us compare the game in Fig. 
I with the one in Fig. 2. 

In this game, player l is a person who cannot stand modern music. He 
believes, however, that if he takes a course in modern music, he will get 

8 For those who are not convinced, let us replace the meaning of L 1 , L2 to be "stay 
home," and R 1, R2 to be "consume heroin," Agent 1.2 is already addicted to heroin. Would 
one still claim that a rational agent I. I should choose R 1? 
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1.1 

FIG. 2. Taking a course in modem music. 

accustomed to this kind of music and learn to love it. L1 , L2 mean ''stay 
home". R 1 means "take the course". R2 means "listen to modern music". 9 

In this case, contrary to the previous example, there is no change in 
the priorities of the agents. The utilities of the agents remain the same, 
in as much as they are defined. Player I expects to learn how to enjoy 
modern music and his expectation from the course matches what he be-
lieves will be after he takes the course. This example is equivalent to the 
ordinary !-person game of Fig. 3. 

(6) A possible objection to our model is this: Following logical positiv-
ism, some people feel that to talk about priorities is sheer "metaphysical 
nonsense'' if they are not derived by observing actual decisions. According 
to this view, utilities must be derived form actual revealed preferences. 
If only revealed preferences count, it makes no sense to talk about revealed 
preferences of a future agent. How can one observe at the present time 
commitments to be taken 20 years from now? This is a serious criticism 
and it requires an honest answer10 : 

(i) This is a criticism of the whole field of game theory, not only 
of our model. In fact, there is hardly any application of game 
theory that is based on actual measurements of utilities. Game 

9 We put a blank as a utility for agent 1.2 after L 1, because it makes no sense to talk 
about the utility of an "educated" person (agent 1.2) for the prospect of not being educated. 
However, we could define agent 1.2 as an agent of player I at a date when the course is 
over. With this interpretation, the blank could have been replaced by 10. 

10 This objection was raised also in Peleg and Yaari (1973). 
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FIG. 3. A classical representation of the previous game. 

theory (including our model, we hope) is useful for the insight it 
sheds on real situations, for recommendations based on rough 
evaluation of priorities, for theoretical analysis, and for clarifi-
cation of issues. But we have to admit that actual measure-
ments of utilities are usually impossible and, in those cases 
where they are possible, they are unreliable. In this connection 
see Aumann (1985). 

(ii) The belief that only revealed preferences count does not make 
much sense. 11 It can be criticized both on practical and theoreti-
cal grounds; with this belief one cannot measure, with any 
reasonable degree of precision, a cardinal utility such as the 
utility of von Neumann and Morgenstern. This is because one 
cannot present the players with simultaneous revealed-prefer-
ence situations. What is done cannot be undone, and once a 
commitment is taken (if taken seriously), it cannot be can-
celled. 

The conceptual difficulty that we have with the revealed-
preference view is this: Suppose you decide, by observing 
some of this actions, that a player prefers A to B and B to 
C. What reason do you have to believe that he would have 
manifested the same priorities had the choices been presented 
to him in a different order? Experiments that cannot be re-
peated are of little value! Thus, restriction to revealed prefer-
ences is not only useless, it is also questionable. 

(iii) Whether we like it or not, people seldom measure utilities. 

11 We employ here the tactic that an attack is the best defense. 
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They deduce their priorities (and the priorities of others) by 
introspection. To be sure, past experience takes part in this 
act of introspection and this includes observations of revealed 
preferences in similar situations in the past, but the botom line 
is that important decisions are derived from priorities that 
result from introspection. It is these priorities that count, even 
if they cannot be measured by an outside observer. 12 Now, if 
we are talking about introspection, it does not matter much if 
we discuss a present situation or a future one. If I want to 
estimate my priorities, say 20 years from now, I shall observe 
conditions and behavior of old people, perhaps look at rudi-
mentary available statistics about their illnesses and sufferings, 
and also look for things that make them happy. I shall combine 
these facts (consciously or subconsciously) with what I think 
I know about myself and-rightly or wrongly-deduce my 
future priorities by introspection. It is the outcome of my intro-
spection that will dictate my decisions. 

To sum up: Attempts to determine von Neumann-Morgenstern utilities 
by observing people's behavior did not prove successful. In fact, experts 
on experimental economics 13 claim that real people do not seem to behave 
as utility maximizers. One can take a view, as expressed by John Harsa-
nyi14 that game theory is a theory about ideal people-people who do not 
exist in the real world, and enjoy the subject for its aesthetic value. In 
this sense our model is certainly as useful as the classical one. And we 
can be more flexible, recognize that decisions are made by the process 
of introspection, the results of which govern the players' actions. Utility 
theory and game theory can help the decision-maker by leading his 
thoughts to the required priority determinations, thereby "educating" him 
to be more systematic and logical, hoping that with this help his decisions 
will be reached faster and with fewer "oversights." At any rate, both 
conceptually and practically, introspections about future prospects are 
not more complicated than introspections about the present. 

All the above has very little to do with another main application of 
game theory; namely, to shed more light on conflict situations and to 
deepen our understanding of the conflict per se, even though in reality 
most conflicts cannot be quantified. In this respect, our model is certainly 
an interesting and useful extension of the classical one. 

12 Savage already recognized their importance when he discussed "conceivable acts" 
(Savage, 1972). 

13 Oral communication with Reinhard Selten and Martin Shubik. 
14 Oral communication. 
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3. CREDIBLE EQUILIBRIA 

The purpose of this paper is to generalize the concept ofNash equilibrum 
to games with utilities changing during the play. 

One idea that comes to mind is to recommend an agent-form Nash 
equilibrium. It seems that such an equilibrium is satisfactory; no agent 
will deviate because, by deviation alone, he has nothing to gain. Indeed, 
this recommendation was studied in the important paper of Peleg and 
Yaari (1973). Nevertheless we now feel that this recommendation is not 
good enough. The reason is that Nash equilibrium is robust with respect 
to a deviation of a single agent-not against deviation of several agents. 
But several agents of the same player can cooperate quite easily, to the 
benefit of all of them, because they are all the same individual. Thus, an 
agent-form Nash equilibrium is not necessarily stable. It seems that what 
we need is some kind of coalition-proof equilibrium, 15 where coalitions 
are restricted to agents of the same player. Unfortunately, if we extend 
that definition directly, we may easily reach situations in which no such 
equilibrium exists. Moreover, we may injustifiably reject "good" points: 
Suppose a strategy combination is rejected because a certain coalition of 
agents of a player can deviate and do better-it may well be that this 
deviation will not be obeyed, because some agents of the same player 
(not necessarily a subset of the deviating players) can do better after the 
deviation is "adopted" and cause loss to some members of the deviating 
coalition. If this is the case, the original strategy combination seems to 
us quite reasonable. 

To overcome the above difficulties, we introduce here the concept 
"credible deviation," defined recursively, and define "credible equilib-
rium" as one at which no credible deviations exist. 

To make things precise, we need to establish some notation. Let r = 
(T, P, U, C, p, h) be a game of perfect recall with utilities changing during 
the play. A behavioral strategy s;.i of agent i.j is a probability distribution 
over the choices cii at uii. We note by S;.i the set of these strategies. A 
behavioral strategy for player i is the k,.-tuple s; : = (s;. 1, si.2, ... , s;.k)• 
where s;.i belongs to S;.j. Thus, the set of behavioral strategies for player 
i is X j~o I si.j =: S;. An n-tuple of behavioral strategies is s = (sI' ... ' s n) 
and the set of these n-tuples, called also "points" is S = Xj, 1 S;. 

Let Q be a set of agents (to be thought of as belonging to the same 
player). We denote by -Q the set M\Q, whee M is the set of all agents 
(not only of the same player). For a points, we denote by sQ the vector 
of strategies 16 (s;);JEQ. Similarly, SQ : = X iJEQSiJ. For simplicity we also 

15 A concept that was introduced in Bernheim, Peleg, and Whinston (1987) and in Peleg 
(1992). 

16 Strictly speaking, we should fix an order on the agents to make it a vector. 
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write (s -iJ, si) which expresses a deviation of agent i.j to sjJ, instead of 
the more precise notation (s_{i.Jl, sj). 

Given an n-tuple of behavioral strategies s, it induces a probability 
distribution on the endpoints. Thus, we can denote by jii(s) the utility of 
agent i.j for this lottery. Fors and s' inS, we writes' >;Js iff hJs') > 
h;_is). 

Finally, for a given s and a given agent i.j, we denote by fiJ the game 
obtained from r by converting the strategy of every agent, other than the 
strategies of i.j and the agents of player i that play after him, 17 to chance 
mechanisms playing as in s (and converting the information sets of the 
chance mechanisms to singletons). rrj is the game that the players think 
at the start of the game that agent i.j is facing, given that every agent 
other than he and his followers follow s. Note that fiJ is a 1-person 
game-possibly with several agents. 

We can now introduce our solution concept. Note that, because the 
game is of perfect recall, the probability distributions on the nodes of the 
information sets of agents of player i, given that they are reached, depend 
only on the strategy (n - l)-tuple 18 s_; and not on s;. Indeed, if a non-
singleton information set of an agent i.j0 is reached, all previous choices 
taken by player i are known, the information set results from not knowing 
choices taken by chance and by other players. The probabilities on its 
nodes can be calculated from p and S_;. 

DEFINITION 3.1. Let r = (T, P, U, C, p, h) be a game of perfect recall 
with utilities changing during the play. Lets be an n-tuple of behavoral 
strategies. Let Q be a set of agents of player i, i "i= 0, containing an agent 
i.j0 and possibly some of i's agents that play after i.j0 . A strategy IQI-tuple 
s0 is said to be a credible deviation from s, struck by agent i.j0 using Q, 
if: 

(i) s' > i.Jo s, where s' : = (s0, S_Q); i.e., agent i.j0 strictly prefers that 
everyone play according to s' rather than everyone play according to s. 

(ii) s' >;J (s~iJ• s;) for all i.j E Q, i.j ¥ i.j0 • Thus, agent i.j strictly 
prefers to play s/.1 rather than s;.J, given that the other agents play as 
dictated by s'. We shall refer to this condition by saying that i.j prefers 
to comply with s'. 

(iii) No agent of i, whether in Q or not, that plays after i.j0 , can strike 
a credible deviation from s'. 

Note that the definition is not circular, because the relation "plays 
after" is acyclic. 

17 We say that i.j plays after i.j0 if every path from uu to the root passes through uij . 
18 s_, is a short notation for (s1, ••• , s;_ 1, s;+t• ... , s.). 

0 
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Discussion. We view the deviation from s as a set of instructions s0 
given by i.j0 to the members of Q. We wish to emphasize that Q may 
consist of i.j0 alone. Moreover, each member of Q is an agent of player 
i and not of any other player. Following the spirit of the concept of Nash 
equilibrium, agents of player i strike the deviation and agents of other 
players are supposed to play as agreed in s. 

Condition (i) states that i.j0 prefers that these instructions are obeyed, 
given that agents of -Q continue 19 to follows. Indeed, otherwise, why 
did he give such instructions? Note that this implies that i.j0 is reached 
with positive probability under s, because prior to i .j0 there is no distinction 
between elements of s and s'. 

Condition (ii) implies that each member i.j of Q is reached with positive 
probability under s'. When i.j comes to play he has two suggested strate-
gies: The original suggestion s;.J dictated by sand the deviation suggestion 
s;.1 . Which one will he obey? The condition states that each member of 
Q, except2° perhaps i.j0 , actually prefers to comply with s'. In other words, 
when i.j of Q comes to play (equivalently, when i.j considers playing in 
ff.), he prefers sfJ to s;.J, given that other agents follows'. Thus, such an 
agent has an incentive to follow the instructions. Following the spirit 
of Nash equilibrium, we took the position that even if i.j is indifferent 
between sf.J and s;J, he will not switch21 to s;J. 

But there remains some doubt: What guarantees to the agents that every 
agent of i will indeed follow s'? Could not it happen that they "agree" 
on s0 and one of them, whether in Q or not, strikes later a credible 
deviation from s'? Condition (iii) is introduced to prohibit this possibility. 
The players that come to play after i.j0 can rest assured that none of them 
can deviate from s' and do better in a credible way. This is true not only 
for members of Q, but also for agents of i not in Q. Condition (iii) gives 
our definition a recursive ftavor, and it works because, for every agent i.j 
after i.j0 , the "i-length" 22 of ff.~ is smaller than the i-length of rtio· 

Remark. Although it is reasonable to assume that an agent of i not 
only remembers what choices other agents of i took in the past, but also 
knows by what probability distribution they were obtained, we do not 
make this assumption. So, if, say, an agent i.j1 , decides to "cheat" and 
move from a completely mixed strategy s;.h to another one, any agent i.j2 
after him will not recognize that cheating took place. As has been said 
above, knowing L; and knowing that he was reached, is sufficient, in a 

19 Subsequently we shall see that he can count on this. 
20 This exception was put in order to allow for i.j0 to continue using siJo. If other agents 

are asked to continue using siJ, we simply do not include them in Q. 
21 One could think of a different position (see Section 8). 
22 By "i-length" we mean the longest path from an agent i.j, i >" 0, to an endpoint. 
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FIG. 4. A credible deviation that will be violated. 
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game of perfect recall, for agent i.j2 to compute all the probabilities at his 
information set. In fact, sometimes an agent i.j can predict that i.j0 was 
cheating and this will not change his evaluation and behavior, as the next 
example shows. 

ExAMPLE 3.2. Consider the 1-player 3-agent game of Fig. 4. Let 
su = (!, i), su = (1, 0, 0), su = (1, 0, 0). A credible deviation by l.l, 
using all the agents, may be: si. 1 = (i, i), si 2 = (0, I, 0), si. 3 = (0, I, 0). 
It is credible, because after 1.1 plays, every agent is gaining and maximiz-
ing under s'. Nevertheless, 1.I is actually likely to deviate and play (0, 
1), to get 3 instead of2.5. Now, if 1.3 knew that he was cheating he could 
punish him for his "betrayal," say, by playing (0, 0, l), but we do not 
need to go into such considerations. In fact, we shall later prove (Theorem 
5.1) that if i .}0 has a credible deviation from s, then he has another credible 
deviation from s in which it does not pay him to move away. 

With the above discussion and remark we can now state our main 
definition. 

DEFINITION 3.3. Let r be a game with perfect recall and utilities 
changing during the play. An n-tuple s of behavioral strategies is called 
a credible equilibrium if there are no credible deviations from it; i.e., if 
there does not exist an agent i.j0 and a coalition Q and a vector ofbehavioral 
strategies sQ which constitute a credible deviation from s. 

Remark 3.4. Note that conditions (i)-(iii) of Definition 3.I impose 
requirements only on players who play after i.j0 • Thus, the existence of 
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a credible deviation struck by i.j0 and the nature of such a deviation do 
not depend on the utility payments to i.j0 and to other agents of i, at 
endpoints that do not follow u;.;

0
• This is important, because, as we already 

saw, a payment of ij0 need not even be defined at such endpoints, because 
it may well be that he was not even "created" there. 

4. EXISTENCE THEOREMS 

We start by showing that in ordinary games, the set of Nash equilibria 
(Nash, 1951) and the set of credible equilibria coincide. This substantiates 
the claim that we are extending Nash's solution to games with utilities 
changing during the play. 

THEOREM 4.1. Let f = (T, P, U, C, p, h) be a game of perfect recall 
in which, for each player, the utility functions of his agents coincide. 23 

Let f* be the ordinary representation of this game. 24 The set of credible 
equilibria (CrE) off is equal to the set of Nash equilibria (NE) off*. 

Proof. Ifs E NE in f* then sE CrE in f, because no deviation by 
an agent of a player, using a set of agents of that player, can satisfy 
condition (i) of Definition 3.1. 

Conversely, ifs f/3. NE in f*, then there exists a deviation s0 by player 
i, which is a best reply to L; and player i, and therefore each of his agents, 
prefers s' : = (s0, s_0) to s. Let i.j1 , i.j2, ••• , i.jk be the "first members" 
of Q, namely, the members of Q whose paths to the root do not contain 
other members of Q. Because the game is of perfect recall, each agent 
iJ •• v = l, 2, ... , k, can compute his expected payoff in f:.;,• both under 
sand under s'. 25 The difference between these expected payoffs depends 
only on actions taken by the members of Q. :={members of Q who are 
agents in ff.jJ The strategy combination s(z,, which is s' restricted to Q., 
is a maximizing strategy of player i in f:.;,. Moreover, since s f/3. NE, at 
least one agent, say i.j1, is reached with positive probability under s and 
strictly prefers s' : = (s01 , s_Q) to sin ffJ1. We now modify s01 by working 
backwards from the endpoints on members of Q1 • If an agent i.j in Q1 , 

in his turn, is indifferent between sf.j and siJ• given that his information 

23 Strictly speaking, we should have added "whenever defined" (see Fig. 2). However, 
credible equilibria do not depend on utilities of an agent off paths in which he plays, so we 
might as well assume that the utility functions are defined at all endpoints. 

24 Compare Figs. 2 and 3. 
25 I.e., when his followers in fi;, play as dictated either by s, or by s', respectively. 
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set is reachecP6 and the strategies of players after him have been already 
determined, let him switch to s;J. After each switch, player i will still be 
playing a best reply in f *. After all these switches there will be agents 
of Q1 that are reached with zero-probability under the new strategies. Let 
them too switch to play as ins (if they have not already switched). Denote 
by Q2 the members of Q1 who still play as in s', Q2 ¥- 0; sQ2 is still a 
maximizing strategy in ffJ

1
• We claim that sQ

2 
is a credible deviation from 

s, struck by i.j1 • Indeed, we already know that iJ1 prefers 
s' : = (sQ

2
, s_Q

2
); Q2 consists of exactly those agents who prefer to follow 

s' when they come to play. Finally, all agents of i have the same utility 
function and, after i.j1 , no agent can do better than the above maximizing 
strategy; so, no agent after i.j1 can strike a credible deviation from s'. • 

It follows from Theorem 4.1 that CrE is not empty for ordinary games 
of perfect recall. However, we need to establish existence in general as 
well. This will be done as a corollary to the following theorem which 
shows that CrE contains the set of agent form perfect equilibria (APE) 
(see Selten, 1975). 

THEOREM 4.2. Let r = (T, P, U, C, p, h) be a game ofperfect recall 
with utilities changing during the play. Let f * be the agent form game 
obtained from f by considering different agents as different players. Ifs 
is a perfect equilibrium in f* then s is credible in r. 

Proof. s is a limit of a "test sequence" (sk), k = 1,2, ... , where 
sk E NE in a "perturbed agent form game" fk. fk is a game having the 
same T, P, U, C, p, h as r, but the behavioral strategies at each choice 
c are restricted so that the probability to choose c is not smaller than 
some positive number o~, with 2-,Ecr"i>~ < I for every information set 

• k- I) uiJ, and hmk__,x o, - 0, all c. 
Suppose that s is not credible in r. then there exists an agent i.j0 who 

can strike a credible deviation sQ. Let i.C be a last agent27 in Q. Agent 
i.C prefers to play s:.e rather than Su in rre' given that the agents that 
follow him play as in s, because for these agents there is no distinction 
between s' and s and because the deviation was credible. This preference 
will not change if we modify si.e and s slightly. Modify s;.e to s7.e which is 
positive in all components, so that it is a legitimate strategy in fk for 
sufficiently large k. Modify s to sk and one obtains s7.e >u s~e in (fk)f~ for 

26 We also assume that he can be reached with positive probability if player i plays 
appropriately. Remember that in this case the probability distribution on the nodes of his 
information set is determined by the strategy combination L;. If he cannot be reached, no 
matter what i does, he cannot compute the probabilities, but we can safely require that he 
plays s;.1 • 

27 Namely, an agent that after him all agents, if exist, play ins' as ins. 
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FIG. 5. A credible equilibrium not in APE. 

sufficiently large k. This means that skis not in NE in fk, because in fk 
U;t is reached with positive probability under sk, a contradiction. • 

CoROLLARAY 4.3. The set of credible equilibria is never empty. 

Proof Theorem 4.2 and the fact APE is not empty28 (Selten, 1975). • 

One may wonder if all credible equilibrium points are in APE. That this 
is not the case even in ordinary games follows from Theorem 4.1, because 
there are ordinary games with NE 'i' APE. For a simple example which 
is an ordinary game consider Fig. 5. It shows that the concept of CrE 
permits a certain amount of punishment. 

Remark. An agent form subgame perfectness is not sufficient for credi-
bility. A simple example is given in Fig. 6. (The arcs denote the credible 
deviation.) 

5. SOME PROPERTIES OF THE SET OF CREDIBLE EQUILIBRIA 

In this section we shall look more critically at the concept "credible 
equilibrium." We shall try to find flaws and investigate their seriousness. 
Take, first, the concept "credible deviation." Suppose s is not credible. 

28 To be sure, the nonemptiness of APE was proved under the assumption that utility 
payments for each agent are defined at all endpoints. Because of Remark 3.4, we can assume 
that this is the case in our games, because we can add arbitrary payments for agents, off 
their path, without changing CrE. 
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utility of agent 1.1: 0 
utility d agent 2.1: 0 
utility of agent 1.2: 0 
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() 
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() 

FIG. 6. An agent form subgame perfect equilibrium which is not in CrE. 
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2 

Can we always recommend a "best credible deviation"? The answer is 
negative as can be seen in Fig. 7. 

Here, s = (R 1 , R 2 , L3) is not credible. The only credible deviations are 
those struck by agent l.l, instructing all the agents to move to s' : = (L1 , 

L 2 , [0 - e)M3 , (! + e)R3]), 0 < e <!.Note that s' is a credible equilibrium. 
Of course, agent 1.1 would like to choose e as small as possible, but he 
cannot take e = 0, because then 1.2 will not cooperate. Note that this is 

() 
0 
0 

3 
1 
1 

1 
3 
1 

1.1 

FIG. 7. A case in which there does not exist a best credible deviation. 
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utility of agent 1.1: 1 
utility of agent 1.2: 0 
utility of agent 2.1: 0 
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0 

FIG. 8. A case in which CrE is not a closed set. 
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a consequence of the position we took in Definition 3.1, that cooperation 
can only be taken if there is real gain. 

A more serious criticism, at least aesthetically, is the fact that CrE is 
not necessarily closed. Consider, for example, the 2-person game in Fig. 
8, in which agents 1.1 and 1.2 move L 1 and L2 , and agent 2.1 mixes 
between L 3 and R 3 with probabilities (l - e, e). For every e, 0 < e =s J, 
this is a credible equilibrium. It ceases to be, if e = 0. 

Note that this example hinges on our conservative stand that an agent 
will cooperate only in face of a gain. 

In Section 3 we presented an example of a credible deviation (Example 
3.2) that was certain to be violated by the deviating agent himself. This 
was possible because of the need to keep Definition 3.1 recursive and, 
therefore, meaningful. We argued that, nevertheless, each agent of Q, 
after i.j0 , would still prefer to obey sQ. Fortunately, we do not have to 
defend this argument any further, in view of the following theorem which 
shows that we may just as well restrict s0 to cases in which ij0 too cannot 
further violate. 

THEOREM 5.1. If sQ is a credible deviation from s by an agent i.j0 , 

then there exists a deviation s~ from s, by the same agent, such that he 
too cannot strike a credible deviation from s* : = (s~, s_G). 

Proof. The proof involves several steps. 
Step I. Denote by A' the set of pure choices used by i.j0 with positive 

probability under s;.Jo. We can and do assume that by playing s;.Jo agent 
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i.j0 is maximizing under the condition that he must choose from A' and 
that all the agents that play after him (not necessarily only agents of i) 
obeys'. Indeed, if not, replace sf.Jo by .SI.Jo in which iJ0 is maximizing under 
the restrictions stated above. Let Q be a subset of Q, reached with positive 
probability under s: = (s;.J , sQ,U)ol, s -Q) and not containing i.j0 • The combi-
nation (sfio, s{?) is a credible deviation from s, struck by i.j0 , which satisfies 
the maximizing requirement. 

Step 2. Denote by B the set of all agents of i that play after i.j0 and are 
reached with positive probability under s'. Denote by C the set of all 
agents of i that follow pathwise agents of B, but reached with probability 
0 under s'. 

We shall show that if there exists a credible deviation s'D from s', struck 
by ij0 , then D n (B U C) = 0. Suppose D n B ¥- 0 then there is a last 
agent i.j1 in D n B; i.e., an agent such that those that follow him, and 
play differently under s' and s", are reached with probability 0 under s'. 
Let D* consist of i.j1 and the agents in D that play after him. We claim 
that s0• is a credible deviation from s', struck by i.j1-thus arriving at a 
contradiction because s' was credible. To verify the claim, observe that 
condtions (ii) and (iii) of Definition 3 .I are satisfied for s0• , because s'D 
was a credible deviation struck by i.j0 and because every player after i.j1 
is also a player after i.j0 • More care is needed to verify condition (i). 
Consider the game ff.}, and denote by .5" the restriction of s" to this game. 
We know that in ff.},, s" >,..h (.S'~{i.hl, s;J)• because .50 was a credible devia-
tion from s', struck by i.j0 and i.j1 plays after him (and is reached with 
positive probability both under s' and under s"). What we have to show 
is that in ff.},, s" > i.h (s~ 1 ,..1 , 1 , sf.1,). This, in fact, is the case, because i.j1 
was a last agent in D n B. Thus, in fi),, every agent iJ after i.j1 , for 
whom s;j ¥- s;.J, is reached under s' with probability 0, so there is no 
change in payoffs if we require such agents to play s~1 instead of s;J. 

Since s;:J = sf.J for every agent in B, it follows that every agent in C is 
reached with probability 0 under s", therefore D n C = 0. 

Step 3. We have shown that s" = s' on paths after iJ0 , reached with 
postive probability under s' and their continuations. Thus, the support A" 
of s7Jo must con tan choices other than the choices in A', then A" n A' = 
0 and s" directs the play to paths disjoint from those reached with positive 
probability under s' and their continuation. As in Step l, we can and do 
assume that iJ0 is maxmizing given that he is restricted to A" and the 
other agents play according to s". 

Step 4. If there exists a credible deviation s£ from s", struck by iJ0 , 

then, as in Step 2, £\{i.j0} does not contain agents of i reached under s" 
with positive probability or agents of i that follow such agents. By argu-
ments similar to those given in Step 2, it does not contain agents of i 
reached with positive probability under s', and path wise followers of such 
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FIG. 9. A credible equilibrium which is not in ANE. 

agents. Thus, if s7.)
0 

is maximizing on its support, it directs the play to 
paths different from the paths supported by s' or s". 

Step 5. We continue in this fashion until we reach a credible deviation 
s~> from an s~-n. struck by i.j0 and player i.j0 cannot strike a credible 
deviation from s~>, neither alone, restricted to the support of s~~, nor by 
directing the play to other paths, because such paths are not available. 

Step 6. sW is also a credible deviation from s, struck by ij0 • Indeed by 
. • • (k) (k-1) • • • I • f . . f G transitiVIty, s >iJo s >;10 >;Jo s >;Jo s, or every agent l.J o , 

sJ~-tl is identical to s;1 and he prefers to comply with s(kl; and neither i.j0 
nor his followers can strike a credible deviation. • 

A credible equilibrium need not be ANE, because agents off the paths 
of the play may sometimes act "irrationally." Figure 9 provides such an 
example. However, if one thinks this is undesirable, one can find comfort 
in the following theorem. 

THEOREM 5.2. The paths that are supported by a credible equilibrium 
are also supported by a credible equilibrium which is also a Nash equilib-
rium for the agent form game. 

Remark 5.3. The importance of Theorem 5.2lies in the fact that people 
may feel uneasy agreeing on a credible equilibrium which is not Nash 
equilibrium for the agents. This theorem states that they can enjoy both 
worlds: They can agree on an ANE which is also credible. Moreover, the 
paths according to such agreements as well as the payoff's will be the 
same as those that did not insist on an ANE, so nothing will be lost by 
this restriction. 

For the proof we need the following. 
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LEMMA 5.4. Let s be a credible equilibrium and let i be a player. 
There exists an n-tuple of strategies s, such that 

(1) s induces the same probability distribution as s on the set of 
nodes. In fact, it coincides with s at all information sets reached under 
s with positive probability. 

(2) Every agent i.k of i is maximizing in i, namely he is maximizing 
his expected payoff given that all other agents obey i. 

(3) s is a credible equilibrium. 
(4) Every agent j.k, j -,.f i, if he was maximizing under s, he is still 

maximizing under s. 
Proof As usual, we consider s -; fixed and known to player i. We 

construct s successively, backwards eliminating agents i.k who are not 
maximizing. 

Let i.k be a last agent who is not maximizing. Temporarily replace s;.k 

by a pure strategy :Su which is a best reply for him. This necessarily 
directs the play to paths not supported by s, because s was a credible 
equilibrium. Along these new paths we modify s by backward induction 
on the agents of i, after i.k, instructing each of them to employ best 
reply, given that he is reached,29 and keeping with s whenever there is 
indifference and whenever he cannot be reached. Agent i .k cannot gain 
by these modifications, compared to s, because if he could, he could also 
strike a credible deviation from s, giving himself and his followers the 
same instructions. So we let him revert to s;.k. The resulting modification 
satisfies (l) with s being the modified strategy n-tuple. It is also credible, 
because all modifications were done on unreachable paths that only i.k 
could direct to them, which he would not because it were not profitable. 

Agent i.k may perhaps, still gain by picking up another pure strategy 
instead of s;.k. We eliminate such avenues successively in a similar fashion 
until eventually i.k is maximizing with respect to the modified strategy n-
tuple. 

This process is repeated until all agents of i are maximizing and so 
(1)-(3) are satisfied. 

For agents of other players, if they are off the support of s (which is 
also the support of i), they are maximizing automatically. If they are in 
the support and maximizing under s, they are also maximizing under s, 
because s = s in the support and they cannot lead the game to paths 
where s -,.f s. This is condition (4). • 

29 We remind the reader that if an agent is reached, then, because the game is of perfect 
recall, he can compute the probabilities of reaching each node of his information set and 
these probabilities depend only on s_1• 
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FIG. 10. A credible deviation that harms an agent. 

Proof of Theorem 5 .2. Apply the lemma consecutively for all the play-
ers. The final modification will be in ANE, because every agent will be 
maximizing. Moreover, this modification coincides with s on the paths 
supported by s. • 

6. EXAMPLES 

The purpose of the examples in this section is to illustrate some features 
of the credible deviations and get a better understanding of them. 

ExAMPLE 6.1. Strategy (L 1 , L 2) in Fig. 10 is not credible despite the fact 
that agent 1.2 receives less than the original payment under the credible 
deviation (R1 , R2). Here we see the importance of the timing of decisions. 
When 1.2 plays, he has no alternative but to comply with the deviation. 
Thus, within the agents of a given player, the concept of credible equilib-
rium has some flavor of perfection, although in general, as we have seen, 
CrE may even contain points not inANE. 

EXAMPLE 6.2. Strategy (L 1 , L 2) is credible in the game of Fig. 11. An 
instruction (R 1 , R2) by agent 1.1, although promising to increase agent 
1.2's payoff, is not safe for agent 1.1 When agent 1.2 comes to play he 
has no motivation to move to R2 • In Section 8 we shall propose other 
variants under which (R 1 , R2) will be considered credible deviation. 

ExAMPLE 6.3. Consider the game in Fig. 12. Here, player I is the 
head of the workers' union in a large firm. He can refrain from certain 
actions which we denote as s1 and s3 as these will save money for the 
firm. Or he can increase his popularity if he begins preparations for a 
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FIG. 11. A credible equilibrium which is not Pareto optimal. 

strike (action c1) and be even more popular if eventually he organizes a 
strike (action c3). The preparations, although consuming from the firm's 
resources, will not be noted for a while by the owner of the firm-player 
2. They are essential if a strike is to take place. 

As said before, at 1.2 the head can convince the workers to declare a 
strike that will cause great damage to the firm. Anyhow, it will increase 
head's popularity. 

The owner has two options. He can refrain (s2), or he can give significant 
bonuses to his employees (action c2), to be revealed after the danger of 
a strike is over. This will increase his popularity, but, of course, will cost 
money to the firm. In fact, the owner can use this money to satisfy the 
workers demands. This is why we placed a utility payoff 4 for him, whether 
he pays the bonuses with, or without a strike. If no bonuses are given, 
the strike is going to be ferocious and the owner expects great damage (0 
utility payment). 

If saving takes place all the way (s 1 , s2 , s3), the firm will have enough 
money to buy a new machine that will ease the workload of the workers 
and also increase production and earn more profits to the owner. This is 
what the owner prefers most. If there is only a partial saving (c1 , s2 , s3), 

the firm can afford only a smaller machine that will make the workload 
easier, but will not generate increased profits to the firm. In all other 
cases, there will not be enough money to buy any machine. 

The head does not really want to cause a strike, provided the workers 
get the small or the big machine (6 > 0, 7 > 3, and 8 > 5). Otherwise he 
does prefer to strike (3 > 1 and 5 > 2). He does prefer, however, that a 
smaller machine be bought rather than the larger one (7 > 6), because of 
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FIG. 12. The strike/no-strike game. 
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his increased popularity from c1 and because the workload for the workers 
is the same, whether a large machine is bought, or a small one. 

We are coming now to an important ingredient: The head expects 
that some amount of change in his personality will take place if he 
starts preparing for a strike (c1): He will be engulfed with love from 
his workers, he will be carried away, and his willingness to cause a 
strike will look somewhat more desirable to him. (Power corrupts, they 
say.) This is why we put 8 > 7, 5 > 3 (twice), and 2 > I. He will 
simply enjoy the love of his people and the desire to show that he 
has great power and his "appetite" for organizing the workers to a 
strike will also increase. 

The owner cares only a little for the smaller machine. If he cannot 
afford the new machine. It does not increase his profits. He would rather 
use the money to give bonuses to the workers in order to avoid or mitigate 
the effects of the strike. This is denoted by 4 > 3 and 4 > 0. 

The rest of the priorities are self-explanatory from the figure. For exam-
ple, if the head does not make any preparation for a strike, the owner would 
rather buy the new machine than give bonuses (6 > 4). Unfortunately he 
does not know that this is the case. 

Clearly, (s 1 , s2 , s3) is not credible: Head 1.1 switches to c1 • Similarly, 
(c1 , s2 , s3) is not credible: Owner will rather spend his money on bonuses. 
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Thus, there is no chance of getting any machine using pure strategies. 
The point (c 1 , c2 , c3) is credible. It yields (3, 4, 5) to the agents-what a 
sad prospect of frictions and strikes in the firm (although not a ferocious 
strike). 

But there exists a credible behavoral strategy that even allows for com-
plete saving with positive probability. It is ([j(s1), ·l(c1)], [i(s2), Hc2)], 

c3). Under this strategy the firm will buy the high-quality machine with 
probability ! and the small machine with probability !. The payoff of l.l 
will be 3 and it will be 4 to 2.1. A strike will occur only with probability 
! and be very damaging with half of this probability. Otherwise, bonuses 
will be given to mitigate the effect of the strike. Agent 1.2, if "created," 
will receive a payment 5. 

It is interesting to note that if agent 1.2 had the same utility function as 
that of 1.1, the only equilibrium point would be (c 1 , c2 , c3). The difference is 
that he is aware that he might be carried away once he starts preparing 
for a strike that is a priori not so pleasant. This awareness causes him 
to consider and agree to a mixed strategy credible equilibrium that gives 
a chance (probability i) to good firm-workers relations. 

7. TIMEWISE CREDIBLE EQUILIBRIA 

The definition of credible deviation can be criticized on the following 
ground: In a classical game, a player has utility values also at endpoints 
he never reaches and these may play an important role in choosing his 
strategy. Why then we do not allow an agent, who wants to strike a 
deviation, to give instructions also to agents that do not follow him? He 
may have a utility function defined at endpoints that follow such agents. 
The following example seems at first convincing. 

EXAMPLE 7 .1. This is a one person game with a chance move. It is 
given in Fig. 13. 

After chance's move, either agent 1.1, or agent l.2 is being called to 
make a move, but each agent has a different utility function over the 
endpoints. 30 The players considers = (L 1 , L 2). On the face of it, it seems 
not "credible" in the following sense: Agent l.l can approach agent 1.2 
with a proposal that agent 1.2 switches to R2 , if he is called to play. In 
return, agent 1.1 promises that he will switch toR 1 , if he is being called 
to play. Is this a convincing deviation? We think not: If agent 1.1 is being 
called to play, he knows that agent I .2 will not play and therefore there 

30 This is because they are being called to play at different dates; otherwise it makes no 
sense to envision that the same individual, at the same moment, has two different utility 
functions. 

25



0 
0 

0 
1 

Chance 

0 
0 

FIG. 13. A "counterexample." 
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is no reason for him to deviate from L1 , because there is no profit in such 
a deviation. Similarly, agent 1.2 will not deviate from L 2 , because he does 
not gain by doing so. 31 

To do justice to the above criticism one has to extend the family of 
games, by introducing dates at each information set, with the provision 
that agents of the same player, who are being called to make a move at 
the same date, have the same utility function. One may want32 to add 
provisions that prohibit games which are impossible to play, such as the 
one in Fig. 14, which can occur only in science fiction, when the agents 
are equipped with "time machines." 

For this family of games one can define the concepts of "timewise 
credible deviation" and "timewise credible equilibrium" in a way similar 
to the definition of Section 2. The only changes are that Q contains agent 
i.j0 , who strikes the deviation, and possibly agents of player i, who play 
timewise33 not earlier than i.j0 and that timewise after he moves, no other 
agent of player i can strike a timewise credible deviation. 

With respect to these definitions we are able to prove the following. 34 

THEOREM 7.2. Let f be a game of perfect recall with dates. Let f* 

11 This argument fails when we work in the framework of the "optimistic credible equilib-
ria" (see Section 8), where one is supposed to deviate even if the deviation yields no profits. 

1' Although this is not essential for our purpose. 
31 As contrasted with pathwise. The latter implies the former, but not vice versa. Thus, 

an agent may give instructions to agents of the same player, playing after him, provided 
that they had not already made their move. 

14 The proof will be omitted for the sake of brevity. 
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1.1 

FIG. 14. A game that is impossible to play. 

be the game, obtained from r by removing the dates. The set oftimewise 
credible equilibria of r is identical with the set of (pathwise) credible 
equilibria of r *. 

Remark 7 .3. Note that the game of Fig. 14, with dates removed, makes 
perfect sense. Both agents 2.1 and 3.1 are required to act without knowing 
if the other has already made his move. 

8. OTHER VARIANTS 

In Section 3 we took the position that when an agent in the deviating 
coalition is indifferent to complying with s' or with s, he will not switch. 
This position gave rise to requirement (ii) in Definition 3 .1. We could take 
the other position, that he will comply with s' in case of indifference. 
After all, what one promises to oneself is perhaps more important than 
what one promises to others. With this position in mind, an interesting 
variant may be to omit requirement (ii) altogether. Accordingly, we shall 
call a deviation SQ satisfying (i) and (iii) of Definition 3.1 an optimistic 
credible deviation35 and we define an optimistic credible equilibrium as 
an n-tuple of strategies from which there do not exist optimistic credible 

35 Replace "credible deviation" in condition (iii) by "optimal credible deviation." 
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f iG. Jj . An OCrE which is not closed. 
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deviations . Condition (i) assures us that it is worthy to agent iJ0 to strike 
the deviation if other members of Q obey him. Condition (iii) asserts that 
he can be reasonably sure that they will and that other agents of i, who 
play after him will keep to s , because none of them can profit by striking 
an optimal credible deviation. 

T he set of optimistic credible equilibria (OCrE) coincides with NE in 
ordinary games, and the proof is essentially the same as in Theorem 4. 1. 
Thus, OCrE is also an extension of the Nash solution concept. It, too , is 
not nece sarily a closeo set as the example in Fig. 15 shows. 

In this example (M 1 , L 1 , I( I - e)L3 , s R3]) is in OCrE whenever 0 < 
e ~ I but if e = 0. agent I. I can instruct agent 1.2 to move right, and this 
is an optimistic c redible deviation. 

We believe that OCrE is worth studying, because of it s simpler definition 
as compared to CrE and because it yields interesting strategies. The se t 
OCrE need not contain APE and the game in Fig. 16 is an appropriate 
example . 

Here , (M1• L2 • L3) is the unique perfect equilibrium point for the agent 
form game . It is not optimist ically c redible because !. 1 can ins truc t 1.2 
to move right. The point (M1 , R2 , L 3) is both in CrE and in OCrE. 

Unfortunately. OCrE may be empty. as can be seen in the game of Fig. 
17. 
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Fto. 16. An ex.ample in which OCrE n APE - 0. 
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Fto. 17. A game with a n empty OCrE. 
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In this example 1.2 and 2.1 play matching pennies. Thus, ifs E OCrE 
then su = {!, !) and s2.1 = {!, !). But then, l.l can strike an optimistic 
credible deviation by instructing 1.2 to move "left." One may feel that 
this counterexample is sufficient to discard OCrE. We do not think so. 
OCrE conceptually is simpler than CrE and if it does contain some points, 
these may have some advantage. 

In another variant of the OCrE concept, one requires that in case of 
indifference between complying with s' and complying with s in [fj, 
i.j E Q, agent i.j will comply with s' only if, when the instruction was 
given, agent ij was promised some gain ins' as compared to s. It is as 
if ij0 "tells" ij in Q: "If I would not have struck the deviation and we 
all played according to the original point s, you would have received a 
certain amount, a. Now that I strike the deviation, you will get b, and b 
is greater than a. True, when it will be your turn to play you will get b 
even if you play s;.j, but where will your gratitude to me-your own flesh 
and blood-be for the profits I threw upon you?" We feel that this concept 
should also be studied, but we must say that it has one drawback: It 
requires utilities of agent i.j to be defined even if s is played, perhaps 
under outcomes in which i.j is not even created. 

9. OTHER APPLICATIONS 

Up to now we restricted ourselves to one scenario: The players are 
individuals who play a game in extensive form and their utilities may 
change during the play. But the model that we constructed may be useful 
in other applications. In this section we shall discusss two of them. 

A. Violation of von Neumann-Morgenstern Independence 
Axiom. The last decade, which has witnessed a proliferation of studies 
of generalizations of von Neumann-Morgenstern (1947) expected utility 
theory, saw a revival of interest in the changing-preference problem. 
Indeed, in many models, the violation of von Neumann-Morgenstern 
independence axiom is equivalent to dynamic inconsistency in decision 
makers' preferences in a multi-stage decision problem under risk (see 
Hammond, 1988; Karni and Safra, 1989a, 1989b; Machina, 1989). Differ-
ently put, the violation of the axiom is (at least technically) equivalent to 
a change in the decision-maker's utility function (over lotteries). Thus, 
our concept of CrE may be applied to such models as well. 

B. Application to the Theory of Organizations. In many game mod-
els, a player is not an individual. It can be a state, a political party, a 
firm, etc.-in short, an organization. In such cases almost always it makes 
no sense to attribute to such an organization a von Neumann-Morgenstern 
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utility function. We do not refer here only to situations that fall under 
Condorcet paradox (Condorcet, 1785), but to a more fundamental fact 
that a non-individual player may not have priorities of its own. What is 
the utility function of a state?, Is it the utility of the farmers?, The utility 
of the manufacturers?, The white collar people?, The plain citizens?, The 
prime minister? When analyzing such situations one has two options36: 

One option is to treat all the individuals in each organization as the players 
of the game and the other option is to treat each organization as a single 
'decision-making unit' that represents 'agents' each having a different 
utility function. 37 

Often, the first option yields an extremely complicated game, not amena-
ble to meaningful treatment; there are too many players and different 
communication patterns if members of the same organization are con-
cerned and if members of different organizations are concerned. Often all 
this information is not even fully known. Shall we treat a game between 
Coca Cola and Pepsi Cola as a game involving all employees of these 
industries? Even if one can derive results for such games the analysis will 
hardly be insightful. 

Thus, in many cases it is more expedient to regard the game as a game 
in which the organizations are the players, even though a lot of information 
may be lost in this way. Thus, under the second option we regard each 
organization as a player who is capable of choosing a strategy and giving 
instructions to the groups it represents (these groups are its agents) but 
he has to take into consideration their priorities, otherwise his instructions 
will not be obeyed. Each such group is capable of deviating from the 
instructions given by its organization, or by one of its agents, and it will 
deviate if it finds the deviation profitable and safe. In such situations a 
model similar to ours may be useful. 

Applications of game theory in which players in the game model are 
not individuals are numerous and among the most important. In many 
cases classical game theory usually ignores the fact that preferences of 
the various agents may differ. This is not a sensible approach. As explained 
above, it may be infeasible to treat every individual as a player. If the 
model developed in this paper could be used to handle such situations, that 
would be a significant contribution to applied game theory. For example, a 
game theorist could tell the instruction-giving units (the organizations): 
"You can, of course, agree on any strategy combination, but only credible 
combinations will be abided by. Here, I computed for you a set of those 
combinations that are likely to be followed." 

l6 We are grateful to the anonymous referee who suggested that this is clarified. 
37 One may even want to aggregate individuals who have a similar utility function into 

"one agent." 
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FIG. 18. A credible deviation that does not make sense. 

We feel that the present model is quite convincing in those situations 
in which perfect recall prevails. We will recommend adopting only credible 
equilibria for treaties to be considered by the organizations. However, 
in many applications discussed here, perfect recall is not a reasonable 
requirement. Why should the farmers know what the manufacturers did 
in the past, where farmers and manufacturers are agents of one company, 
for example38? In such cases there are difficulties in our model. To begin 
with, one cannot limit oneself to behavioral strategies. But this is not the 
main difficulty. There are more basic ones: The concept itself is not 
convincing and requires a modification. Take, for example, the one-person 
game of Fig. 18. Here, (L 1 , L2) is not credible because agent 1.1 can 
instruct himself and agent 1.2 to move right. If agent 1.2 knew that agent 
1.1 was moving right, he would have certainly chosen to comply. But he 
does not know, and if he complies, then it behooves agent 1.1 to remain 
at L1 so as to get 3. So, the deviation (R 1 , R2) is perhaps not safe, despite 
the fact that it complies with Definition 3.1. 

And there are other difficulties. For example, to be useful, the model 
should allow an agent to occupy several information sets, belonging to 
different dates, if dates are specified. It should be clear who plays after 
whom, so as to know to whom instructions of the deviating player can 
be given. The strategy space should also be clearly specified: Do we allow 
agents to use correlated strategies, for example? Suppose that the agents 
have agreed on a strategy combination and that some agents deviated in 

38 Of course, if the instructions can only by delivered publicly, as it should be in most 
cases of democratic societies, one can claim that perfect recall prevails. 
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such a way that others do not know it, due to the imperfect recall. And 
suppose that, contrary to the agreement, an agent finds himself at an 
information set that should have been reached with zero probability. He 
knows that a violation has occurred but often does not know which one. 
How will he interpret the observation? We see that with lack of perfect 
recall all the problematic issues of "refinements" pop up despite the fact 
that our goal was to only generalize the Nash solution. Thus, applications 
of CE to games where a player represents several groups is at present 
limited. The extension of this model to games without perfect recall re-
mains a challenging topic for further research. 
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