
This is a postprint version of the following published document:

Griol, D., Carbo, J. & Molina, J. M. (2013). Bringing context-aware
access to the web through spoken interaction. Applied Intelligence, 38(4),
620-640.
DOI: http://dx.doi.org/10.1007/s10489-012-0390-8

© 2013 Springer US

http://dx.doi.org/10.1007/s10489-012-0390-8
http://e-archivo.uc3m.es/
http://link.springer.com/journal/10489

Bringing context-aware access to the web through spoken
interaction

David Griol, Javier Carbo, José Manuel Molina

Abstract The web has become the largest repository of multimedia information and its
convergence with telecommunications is now bringing the benefits of web technology to hand-
held devices. To optimize data access using these devices and provide services which meet
the user needs through intelligent information retrieval, the system must sense and interpret
the user environment and the communication context. In addition, natural spoken conversation
with handheld devices makes possible the use of these applications in environments in which
the use of GUI interfaces is not effective, provides a more natural human-computer in-
teraction, and facilitates access to the web for people with visual or motor disabilities,
allowing their integration and the elimination of barriers to Internet access. In this paper, we
present an architecture for the design of context-aware systems that use speech to access web
services. Our contribution focuses specifically on the use of context information to improve the
effectiveness of providing web services by using a spoken dialog system for the user-system
interaction. We also describe an application of our proposal to develop a context-aware railway
information system, and provide a detailed evaluation of the influence of the context in-
formation in the quality of the services that are supplied.

Group of Applied Artificial Intelligence (GIAA), Computer Science Department, Carlos III University of Madrid, Madrid, Spain
e-mail: david.griol@uc3m.es e-mail: javier.carbo@uc3m.es e-mail: josemanuel.molina@uc3m.es

Keywords Context-aware systems, Spoken dialog systems, User adaptation, Web interfaces,
Systems evaluation

1 Introduction

The Web is becoming more and more pervasive as an ap-
plication platform and its convergence with telecommuni-
cations is now bringing the benefits of web technology to
hand-held devices. The widespread use of new mobile tech-
nology implementing wireless communications enables a
new type of advanced applications to access information ser-
vices on the Internet.

teed independently of his location and computing devices.
Contextual information can therefore be used to select the
services and enhance them for a better adaptation to the
communication channel, the user environment and device,
and the user preferences and needs.

Additionally, consumers expect web services to be acces-
sible from all these devices in a similar way. As personal
devices continue to shrink in size yet expand their capa-
bilities, the conventional GUI model becomes increasingly
cumbersome to use. Speech and language technologies al-
low users to communicate in a natural, flexible, and efficient
manner. In addition, they make it possible to access applica-
tions when traditional input interfaces cannot be used (e.g.
in-car applications, access for disabled people, etc.). In order

As the trend to an increasing number of ubiquitous, con-
nected devices continues to grow, the heterogeneity of client
capabilities and the number of methods for accessing infor-
mation services also increases. Thus, effectively bringing in-
formation and services to people can only be done by sup-
porting pervasive computing, in which technical details are
transparent to the user and the access to services is guaran-

1

to develop these interfaces, in the last years there has been an
increasing interest in simulating human-to-human commu-
nication, employing spoken dialog systems [25, 30, 36, 40].
A dialog system can be understood as an automatic system
which functionality is accessible through natural language,
emulating human conversation.

Several authors [31, 35, 54] have highlighted the impor-
tance of standardizing and sharing a common base for con-
text sensitivity and web services systems. However, most
context-aware systems are closed, composed of highly cou-
pled constituents, and generated ad-hoc for a specific do-
main [6, 54]. The same problem occurs when designing a
dialog system. There is a high variety of applications in
which dialog systems can be used, some of the most wide-
spread are information retrieval from the web [11], database
systems [28], and recommendation systems [9, 24]. How-
ever, these systems are also usually designed ad-hoc for their
specific domain using rule-based models and s tandards in
which developers must specify each one of the steps to be
followed by the system. However, these systems are also
usually designed ad-hoc for their specific domain using rule-
based models and standards in which developers must spec-
ify each one of the steps to be followed by the system. This
makes it difficult to adapt the resulting systems to new tasks
or incorporate additional context information, as it would
require modifying the hand-crafted design, which is very
costly in terms of time and effort as this process cannot be
automated [18, 38, 42]. In addition, although several works
emphasize the importance of taking into account context in-
formation not only to solve the tasks presented to the dialog
system by the user, but also to enhance the system perfor-
mance in the communication task, this information is not
usually considered when designing a dialog model [22, 49].

To facilitate this general-purpose behavior and reduce the
effort required for both the implementation of a new sys-
tem and the adaptation of systems to include a new task, we
propose a statistical methodology for dialog management in
which the dialog model is automatically learned from a di-
alog corpus. This way, the adaptation of the dialog system
only supposes the acquisition of a dialog corpus for the new
task, for which an automatic dialog simulation technique
is proposed in the paper. In addition, the statistical dialog
model is enriched with context information used to adapt
the interaction and provide personalized, context-aware ser-
vices through a natural language conversation. To this end,
our dialog manager is implemented using a classifier based
on neural networks, which takes the previous dialog history
and the context information into account to carry out the se-
lection of the next system action.

In this paper, we also provide a complete implementa-
tion of our architecture in a railway information system.
This system is presented as a reference to describe how our

proposal can be applied for the complete design of context-
aware systems that use spontaneous speech to access the dif-
ferent web services. The architecture facilitates the inclusion
of context information to provide a more natural and adapted
service to each user, and also makes possible an easy adapta-
tion to new domains. In addition, a set of new measures has
been defined for an in-depth evaluation of this system and
to assess the influence of context information in the quality
of the acquired dialogs. The results of this evaluation show
that context information not only allows a higher effective-
ness in the provision of web services, but also increases their
quality.

The remainder of the paper is organized as follows. Sec-
tion 2 describes related research in the development of
context-aware systems and the design of personalized di-
alog systems. Section 3 describes the main characteristics
of our architecture for providing context-aware adaptable
services using speech-based interfaces. Section 4 describes
our approach to manage context information. Section 5 de-
scribes the methodology and measures employed to evaluate
our proposal. Section 6 shows a practical implementation of
our architecture to generate a context-aware railway infor-
mation system and the results of its evaluation using these
measures. Finally, our conclusions are presented.

2 Related work

The use of mobile devices, web services, new communi-
cation channels and pervasive environments is the basis of
many important initiatives and projects like the Future In-
ternet European Initiative.1 However, some usability prob-
lems limit the usage of mobile communication devices for
the end-user, mainly the limited screen size and input facili-
ties of devices such as smartphones and PDAs. Voice-based
interfaces work seamlessly with small devices, and allow
users to easily invoke local applications or access remote
information.

The adaptation capabilities of these interfaces are fre-
quently restricted to static choices made by the users. How-
ever, adaptation can play a much more relevant role in
speech applications. For example, users have diverse ways
of communication. Novice users and experienced users may
want the interface to behave completely differently, such as
maintaining more guided vs. more flexible dialogs. As stated
in [12, 49], processing context is not only useful to adapt the
systems’ behavior, but also to cope with the ambiguities de-
rived from the use of natural language. For instance, context
information can be used to resolve anaphoric references de-
pending on the context of the dialog or the user location.
The performance of a dialog system also depends highly on

1http://www.future-internet.eu/.

2

the environmental conditions, such as, for example, whether
there are people speaking near the system or the noise gen-
erated by other devices.

Thus, context awareness is fundamental for building us-
able interfaces to web services. Additionally, it should also
be employed to adapt the services provided to the user and
the device. In the literature, there are several approaches de-
veloping mobile and context aware systems such as plat-
forms, frameworks and applications for offering context-
aware services. However, there is a lack for an integrated
approach which combines the benefits of the main state-of-
the-art approaches. Additionally, interfaces are usually con-
ceived separately, usually following the GUI metaphor. In
our proposal, we merge context-awareness with oral inter-
faces in order to obtain fully accessible and personalized
web services and information in hand-held devices. This is
one of the main features introduced in our architecture due
to the reduced number of context-aware speech interfaces
that can be found in the literature and its application to very
specific domains. As described in the introduction, we pro-
pose a statistical dialog management technique to automat-
ically learn the dialog strategy and facilitate the adaptation
of the developed systems to new tasks. In order to do so, we
present a novel architecture in which we have addressed the
issues summarized in Table 1.

According to Dey and Abowd [8], “any information that
can be used to characterize the situation of an entity (. . .)
relevant to the interaction between a user and an applica-
tion, including the user and the applications themselves” can
be considered context, thus the first issue to support context-
awareness is to study which information is relevant to pro-
vide adapted web services. Kang et al. [19] differentiate two
types of context: internal and external. The former describes
the user state (e.g. communication context and emotional
state), whereas the latter refers to the environment state (e.g.
location and temporal context).

Most of the studies in the literature focus only on exter-
nal context. One of the most popular is location informa-
tion. For example, the Akogrimo project [37] aims at sup-
porting mobile users to access data, knowledge, and compu-
tational services on the Grid. It only concentrates on con-
text that is related to situations of mobile users, such as
user presence and location, and environmental information.
Similarly, SMAUG [34] is a multi-agent context-aware sys-
tem that allows tutors and pupils of a university to fully
manage their activities. This system offers its users context-
aware information from their environment and also provides
a service that physically locates every user in the system.
Also AmbieAgents [23] is an agent-based infrastructure for
context-based information delivery for mobile users.

However, external and internal context are intimately re-
lated, as it happens in representative examples like service
context and proactive systems [5, 39, 52]. Some systems

combine external context with a static representation of in-
ternal context, such as considering specific age intervals for
their users. For example, Afsarmanesh et al. [1] present an
application for supporting virtual elderly assistance commu-
nities within the framework of the TeleCARE project. One
of the most important contributions of our work is to com-
bine both internal and external context information mean-
ingfully, given that it is essential to provide a useful per-
sonalization of the web services and is of great interest to
optimize the spoken interface.

With respect to context representation and modeling,
a number of methods have been proposed in literature, from
the simple key-value method (in which a variable contains
the actual context), to tagged encoding approaches (which
use context profiles to enable modeling and processing con-
text recursively, and to employ efficient context retrieval al-
gorithms), and object oriented models (which have the bene-
fits of encapsulation and reusability). Along with the formal-
ism employed, there are different languages which might be
used to represent context, for example UML, XML, RDF,
and OWL are widely used and are considered open and inter-
operable. In existing context-aware systems, XML is already
used widely for modeling and implementing context infor-
mation. For example, the Anyserver platform [16] utilizes
various types of context information encoded in XML, such
as device information, networks, and application type. In the
Omnipresent context-aware location-based system [3], con-
text information is modeled based on OWL, while Prezer-
akos et al. [41] use UML to model context and web services.

In our proposal, XML files are used as a language to rep-
resent the context information. We combine aspects from the
tagged encoding approach with the dialog acts (DA) formal-
ism [51], which is employed to represent the information of
the user interaction captured by the sensors in the environ-
ment. This way, we employ the same semantic representa-
tion for the user and system utterances (e.g. question, an-
swer, response, etc.) in the conversational interface as well
as the representation of internal and external context, thus
building a unique structure of the complete “meaning” of
the user queries.

Another issue is how context information is provided
by sensors. Contextual information is usually measured by
hardware or software-based sensors (such as GPS and mon-
itoring programs), or provided by the users. Typically, sen-
sors rely on low level communication protocols to send
the collected context information or they are tightly cou-
pled within their context-aware systems. Since sensing tech-
niques are well developed, existing sensors utilize these
techniques through instrumentation or polling mechanisms,
and extend their capability by acquiring context information
from existing systems. As it will be described in Sect. 3, we
use a commercial platform that captures external context,
then this information, together with the user profile, is used

3

Table 1 Main issues covered by our proposal

Alternatives in the literature Our proposal

Type of systems

Application domain: Domain specific [3, 16], Generic [4, 7, 20,
37, 53, 55]

One of the main points of our proposal is to provide a more natural
interaction with users by means of spoken dialog systems. We propose an
architecture valid for slot-filling dialog tasks. Instead of using rule-based
models to define the dialog model, we have developed our own statistical
methodology for dialog management. This methodology is used for the
automatically learning the dialog model and facilitates an easy adaptation
to a new task. Mobility support is guaranteed by the use of speech as the
communication modality, which allows to easily access the application by
means of mobile devices. Web services are used to obtain the information
that is task-dependent in order to provide an answer to the user

System type: Framework/Toolkits [4, 7, 20, 37, 53],
Application [3]

Mobility support [4, 16, 37, 53, 55]

Level of Web service implementation: Full [3, 4, 7, 20, 53, 55],
Partially [16, 37]

Context information

We merge both types of context in order to tailor the web services and the
oral interface. External context is provided by means of the Appear IQ
platform and internal context is considered by means of user profiles

External: location, device, network, calendar, device, network
[4, 7, 16, 27, 37, 53]
Internal: user peculiarities, preferences, needs [4, 7, 16, 53]

Context representation

Key-value, tagged encoding, object-oriented We have developed an hybrid approach between key-value representation
and dialog act semantics, in which the information which is vital for the
oral interface is integrated into the dialog act and the rest of the contextual
information is represented using XML

Context modeling

UML [50, 53, 55], XML [4, 16, 20, 27], OWL/Ontology [7, 37,
53], tool specific [37]

We use XML files to transmit context information using the OASIS web
services context specification for sharing and passing context information
between services and clients

Context retrieval and reasoning

By means of our architecture all the information is gathered in a way which
is transparent to the user (using previous dialogs)

Retrieval: Device, sensors, explicitly ask users
Reasoning: Reasoning capability support [7, 53], Semantic-based
reasoning [7, 53], Specific reasoning

Context Sensor Techniques

Mode: Automatic [7, 27, 37, 53, 55], Manual [7, 55] By means of our architecture all the information is gathered in a way which
is transparent to the user (by means of the Appear IQ platform to acquire
information related to external context and using the previous dialogs to
automatically annotate user preferences and update the user profiles)

Sensing Techniques: Instrumentation [7, 27, 55], Polling [16, 37,
53, 55]

Sensor interface: Web service [53, 55], Specific [7, 16, 37]

Data retrieval and publishing: Query, Subscription [37],
Push-Only [37]

Context storage

Storage Model: Centralized [37, 53], Distributed [4, 53, 55] We propose the use of relational databases for context storage

Storage Databases: Relational Databases [4, 37], XML [55],
RDF/OWL [53], Others [37]

Access Interface: Web service [4, 53, 55], Others

Request Specification: SQL [4, 37], XPath/XQuery [55],
SPARQL [53], Specific

Context distribution

Overlay network distribution: Centralized [4, 37, 53, 55], P2P [55] Context information is transferred using SOAP messages according to the
OASIS web services context specification. The SOAP message header to
transfer the context information modeled following the OASIS
specifications, and the management of the information is carried out in the
dialog manager of the proposed dialog system

Direct transport distribution: SOAP extension [20, 53], Web
proxy [27]

Access mechanism: Query through Web service [4, 53, 55],
Subscription through Web services Notification/Pubscribe [37],
Subscription through WS call back [37, 55], Subscription through
specific protocol [55]

4

Table 1 (Continued)

Alternatives in the literature Our proposal

Context Adaptation Techniques

Adaptation purpose: Content adaptation [16, 37], Communication
adaptation [27], Service and task selection [37, 53, 55],
Information protection [56, 57], Others

Context information is used for content, communication and service
adaptation. In this way, context information is used to adapt content
resulting from a request and to return the content in a form compatible with
to the context of the requester, optimize the communication, and select the
most suitable system action to perform actions given a dialog situation

Adaptation specification: Modeling [27], Runtime [53]

Adaptation layer: Unspecified, Middleware [16, 53, 56, 57],
Application/Service [37, 55]

in our architecture to provide web services that are adapted
to the user location, geographical context, communication
context preferences and needs.

Reasoning techniques can also be employed to infer new
types of context information. When the context information
is described by OWL and ontologies, typically reasoning
techniques will follow a semantic approach, such as for ex-
ample in SPARQL.2 In our case, there is a module fully in-
tegrated into the dialog system architecture that is able to
reason about the whole semantic of the application, that is,
not only on the web services but also on the contextual in-
formation gathered from the user and the device, which also
includes the semantic representation of each of the user in-
terventions. As in other speech interfaces dealing with web
contents, semantic knowledge is modeled in our architecture
using frames [29]. A frame is a structure for representing a
concept or situation which has several associated attributes
(slots) and values [10]. In the semantic representation de-
fined for our architecture, one or more concepts represent
the intention of the utterance, and a sequence of attribute-
value pairs contains the information about the actual values
provided by the user.

Once the information is retrieved and analyzed, it must be
conveniently stored. Relational databases are widely used to
store context information in context-aware systems out of
the web services domain [17, 32], even in the case of XML
or ontology-based systems [21].

Regarding context distribution techniques, the main ones
are direct transport protocols, techniques using overlay net-
work protocols, and supporting access mechanisms. When
using direct transport protocol, context information is trans-
ferred between two parties using SOAP messages (Simple
Object Access Protocol).3 OASIS proposed a web services
context specification4 that describes a mechanism and ser-
vice structure for sharing and passing context information
between services and clients. A context manager is provided

2http://www.w3.org/TR/rdf-sparql-query/.
3http://www.w3.org/TR/soap.
4http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.pdf.

to manage context sources and context information is repre-
sented as relations and defined by using context collectors
and context information can be queried. We use the SOAP
message header to transfer the context information modeled
following the OASIS specifications, and the management of
the information is carried out in the dialog manager of the
proposed dialog system, as will be described in the next sec-
tion.

Finally, adaptation based on context information is typi-
cally application-specific. Many context-aware middlewares
allow the developer to specify actions that should be per-
formed in particular contexts. In most cases, the middleware
might just support the management and exchange of contex-
tual information. Although the reasons for performing con-
text adaptation are diverse, the main purposes are related to
service selection and task adaptation (context information is
used to select the most suitable service and task to perform
actions given a situation), security and privacy control (con-
text information is used to support adaptive control in se-
curity and privacy management), communication adaptation
(context information is used to select communication proto-
cols and optimize the communication), and content adapta-
tion (context information is used to adapt content resulting
from a request and to return system responses in a form suit-
able to the context of the requester). We propose the use of
contextual information for both tasks: communication and
content adaptation. This way, in our architecture, context in-
formation is used to adapt content resulting from a request
and to return the system responses in a form suitable for the
context of the requester, optimize the communication, and
select the most suitable system action in each dialog situa-
tion.

3 Our context-aware architecture to provide web
services

As stated in the introduction, we have developed a context-
aware architecture that facilitates developing, discovering,
providing and accessing adaptable web services through per-
sonalized speech-based interactions with a context aware

5

Fig. 1 Schema of the different
subsystems in the architecture

Fig. 2 Architecture of the
context-aware subsystem

dialog system. As can be observed in Fig. 1, our architec-
ture consists of three subsystems: (i) sensing subsystem;
(ii) rending subsystem, and (iii) context-aware subsystem.

The proposed architecture was developed as a series of
services which are assembled together in composite appli-
cations, this way it is possible to inter-connect components
while preserving loose coupling. With this Service Oriented
Architecture [33], services achieve integration through the
exchange of messages. In the sensing subsystem, there is
a set of sensors which capture the users’ activity (posi-
tion, voice, environmental noise). Location information is
acquired by the web services manager layer which converts
coordinates into zones, as well as the static user profile like:
name, role, IP/MAC address, date/time. The rest of the pro-
file information is then processed by the context-aware sub-
system, which includes a spoken interface that converts spo-
ken speech inputs into text, analyses the user requests dur-
ing the interaction, decides which are the appropriate web
services to be provided, and synthesizes a spoken output
which is rendered to the user. Context information is used
and updated throughout the entire cycle as will be explained
in Sect. 4.

Figure 2 shows the architecture proposed for the context-
aware subsystem, following the Service Component Archi-
tecture (SCA) specification,5 which allows building coarse-
grained components as assemblies of fine-grained ones. In
our case, there are three such assemblies: the dialog system
front and back end and the services management compos-
ites. Additionally, there are also external services to the sys-
tem, which are applications provided by third-parties.

3.1 Web services manager

We have implemented the Web Services Manager using
the Appear IQ Platform (AIQ).6 Appear IQ is a solution
that scales quickly to meet the changing needs of high-
demanding applications. The platform features a distributed
modular architecture that supports multiple network con-
figurations and can be deployed as a distributed system. It

5http://www.osoa.org/display/Main/Service+Component+Architecture
+Specifications.
6http://www.appearnetworks.com.

6

consists of two main modules: the Appear Context Engine
(ACE) and the Appear Client (AC).

The ACE implements a rules engine, where the domain-
specific rules that are defined determine what should be
available to whom, and where and when it should be avail-
able. These rules are fired by a context-awareness runtime
environment, which gathers all known context information
about a device and produces a context profile for that de-
vice. In our system, the context parameters defined for our
application include physical location, date/time, device type,
network IP address, and user language.

The ACE is installed in a server, while the ACs are in-
cluded in the users’ devices. Thus, the architecture is dis-
tributed, in our case communication is carried out through
several proxies. The network management is carried out
by the Appear Context Proxy (ACP), which eliminates un-
necessary traffic, thus ensuring bandwidth for new user re-
quests, and keeps a cache of active user sessions and most
accessed services. When a wireless device enters the net-
work, it immediately establishes the connection with a local
proxy, which evaluates the position of the client device and
initiates a remote connection with the server. Once the client
is in contact with the server, it provides the set of applica-
tions the user can access depending on his physical position.

Therefore, the functionality of Appear depends mainly on
the Appear Context Engine. The ACE is divided into three
modules that collaborate to implement a dynamic manage-
ment system that allows the administrator to control the ca-
pability of each device once they are connected to the wire-
less network. These modules are: the Device Management
Module, the Push Provisioning Module, and the Synchro-
nization Module.

The Push or Provisioning Module manages the automatic
distribution of applications and content to hand-held de-
vices. It pushes services on these devices using client-side
intelligence when it is necessary to install, configure and
delete user services.

The Device Management Module provides management
tools to deploy control and maintain the set of mobile de-
vices. The context-aware actions on the client side are:
(i) The configuration of the different elements that describe
the specific steps to be taken by the client. They are initially
installed together with the client and then updated using the
Synchronization Module; (ii) Context conditions: an associ-
ated condition to the current context is applied to determine
if the action is applicable. It is made by the rule-engine of
the client: (iii) Mirroring: it is a mechanism by which the
client monitors file updates in a device. These updates are
replicated to a secondary device as a storage card or a re-
mote host using FTP/HTTP.

The Synchronization Module manages the exchange of
files between corporate systems and mobile hand-held de-
vices. The Device Management is continuously provided

with updated versions of the configuration files. There are
three steps in the Synchronization Module: (i) The Synchro-
nization Module compiles contextual data to gain an un-
derstanding of the user’s informational needs; (ii) Available
data is filtered against the user’s context to determine what
information should be the most relevant; (iii) The Module
automates synchronization, detecting files that have changed
and synchronizing them. It is a dynamic synchronization of
the profile based on User and Role, Location, Time, Device
Status and Connectivity.

3.2 Dialog system

As stated in the introduction, a dialog system can be under-
stood as an automatic system capable of emulating human
conversation, with the aim that the system meets a certain
functionality (usually providing information or performing
a certain service). Discarding the simplest case, these appli-
cations require a sequence of interactions between the user
and the system to achieve their final purpose. Therefore, the
user’s goal is gradually reached during several dialog turns.

Thus, it is necessary to endow the system with the abil-
ities to reference information that has appeared previously
during the dialog, take the initiative to recover the dialog
after a failure, request information that is necessary to ful-
fill the objective, or require clarification if it is not confident
about the information provided by the user.

During the communication process, the system initially
generates a message to welcome and inform the user about
the features and functionalities of the system. Then, the sys-
tem must perform a basic set of actions that are cyclically
repeated after each user utterance: recognize the sequence of
words mentioned by the user; extract the meaning of these
words (i.e. understand the information that is useful for the
system domain), perform web services and database access
operations to extract the information required by the user,
and adapt the interaction to the context features described
above; decide what action or actions should be performed
after each user request; and generate a webpage and play a
spoken message to provide a response to the user.

Given the number of operations that must be carried out,
the scheme used for the development of these systems usu-
ally includes several generic modules that deal with mul-
tiple knowledge sources and that must cooperate to satisfy
the user’s requirements. With this premise, a dialog system
can be described in terms of the following modules, which
we have implemented as services. The Automatic Speech
Recognition module (ASR) transforms the user utterance
into the most probable sequence of words. The Natural Lan-
guage Understanding module (NLU) provides a semantic
representation of the meaning of the sequence of words gen-
erated by the ASR module. The Dialog Manager determines
the next action to be taken by the system following a dialog

7

strategy. The traditional approach to do this is to handcraft
a series of rules which determine such behavior. However,
this design method is very time consuming and has the ever-
increasing problem of dialog complexity. As an alternative,
statistical models can be trained from real dialogs, modeling
the variability in user behaviors.

Our dialog manager follows this paradigm and is mainly
based on the modelization of the sequences of the system
and user dialog acts and the introduction of a partition in the
space of all the possible sequences of dialog acts [13]. This
partition, which is defined taking into account the data sup-
plied by the user throughout the dialog, makes the estimation
of a statistical model from the training data manageable. In
order to control the interactions integrating context informa-
tion, our dialog manager represents the dialogs as sequences
of pairs (Ai , Ui), where Ai is the output of the dialog system
(the system answer) at time i, expressed in terms of dialog
acts; and Ui is the semantic representation of the user input
(the result of the understanding process of the user input) at
time i. This way, each dialog is represented by:

(U1,A1), . . . , (Ui,Ai), . . . , (Un,An)

where A1 is the greeting turn of the system, and Un is the
last user turn. We refer to a pair (Ai,Ui) as Si , the state of
the dialog sequence at time i.

In this framework, we consider that, at time i, the ob-
jective of the dialog manager is to find the best system an-
swer Ai . This selection is a local process for each time i and
takes into account the previous history of the dialog, that is
to say, the sequence of states of the dialog preceding time i:

Âi = argmax
Ai∈A

P(Ai |S1, . . . , Si−1)

where set A contains all the possible system answers.
As the number of all possible sequences of states is very

large, we define a data structure in order to establish a parti-
tion in the space of sequences of states (i.e., in the history of
the dialog preceding time i). This data structure, that we call
Dialog Register (DR), contains the information provided by
the user throughout the dialog and the context information
that is provided by the Context Manager.

For the dialog manager to determine the next system re-
sponse, we have assumed that the exact values of the at-
tributes are not significant. They are important for accessing
the web service and for constructing the output sentences of
the system. However, the only information necessary to de-
termine the next system action is the presence or absence of
concepts and attributes. Therefore, the information we used
from the DR is a codification of this data in terms of three
values, {0,1,2}, for each field in the DR according to the
following criteria:

• 0: The concept is unknown, or the value of the attribute
has not yet been provided by the user.

• 1: The concept or attribute is known with a confidence
score that is higher than a certain threshold (between
0 and 1). The confidence score is calculated during the
recognition and understanding processes and can be in-
creased by means of confirmation turns.

• 2: The concept or attribute is activated with a confidence
score that is lower than the given threshold.

After applying the above considerations and establishing
the equivalence relation in the histories of dialogs, the selec-
tion of the best Ai is computed as:

Âi = argmax
Ai∈A

P(Ai |DRi−1, Si−1)

This maximization can be solved by means of a clas-
sification process that takes into account the input pair (DRi

−1, S i−1) and decides which is the best system action. We
propose the use of multilayer perceptrons (MLP) [43] to
define the classification function, where the input layer
received the current situation of the dialog, which is repre-
sented by the term (DRi−1, S i−1). The values of the output
layer can be viewed as the a posteriori probability of select-
ing each one of the system dialog acts (i.e., system prompts)
defined for a specific task.

Once the dialog manager has selected which is the next
system action, the Natural Language Generator module
(NLG) transforms this action into an answer in natural lan-
guage. The methodology that we have selected to incorpo-
rate context information in the natural language generation
module is based on the use of a set of feature-based tem-
plates associated to the different system actions, in which
the names of the different attributes are reflected. These
names are replaced by the values obtained from the dialog
register and the user profile to generate an answer for the
user. Figure 3 shows different templates that have been de-
fined for the case of a railway information system providing
timetables to travel to a specific city on a given date. Finally,
a Text to Speech Synthesizer (TTS) generates the audio sig-
nal transmitted to the user.

4 Our approach to context-awareness

To deal with context information and personalize web ser-
vices, we have incorporated a new module in the architec-
ture of a dialog system. This module, that we have called
Context Manager, loads, updates and manages context in-
formation associated with each one of the users. Once the
Context Manager receives the user’s identification, it reads
the context information from the user profile. The informa-
tion stored in this data structure can be classified into three
different groups:

• General user information. User’s name and machine iden-
tifier, gender, preferred language, pathologies or speech
disorders, age, current location, date, and time.

8

Fig. 3 Examples of the set of
templates defined to take into
account context information in
the NLG module

System Dialog Act: (Answer:Departure-Hour)

<User-Name>, the trains to <Destination-City> on <Date>

<User-Name>, I inform you about the trains to travel from <Origin-Station> to
<Destination-City> on <Date>

I inform you about the trains to travel from <Origin-Station> to
<Destination-City> on <Date> at <Time>

I inform you about the trains to travel to <Destination-City> on <Date>

• Skill level: This level is estimated by taking into account
variables like the number of previous sessions, dialogs
and dialog turns, their durations, time that was necessary
to access a specific web service, the date of the last inter-
action with the system, etc. A low, medium, high or expert
level is assigned using these measures.

• Usage statistics: This set stores the counts of each action
over the system that a user performs, and a mark of user
clearance for each possible action. Users’ preferences are
automatically evaluated considering the user’s most re-
quired services during the previous dialogs, date and hour
of the previous interactions, most frequent objective, and
preferred output modality.

This information is used by the push/provisioning, syn-
chronization and device management context-aware mod-
ules in the ACE, that compare the current state of the user’s
device with the context-aware services set out for the device
and order the adaptive client to update the corresponding
services on the device. Context information is used through-
out the entire life-cycle of the service: selection based on
context, filtering of individual services and enhancement of
services at boot or runtime. Then, the device receives an ac-
cess to the different services that are available in the net-
work taking into account the information stored in the ACE
and including the context information. These services are
provided in our architecture by means of spoken dialog sys-
tems. The dialog system is coupled in synchronous mode to
a web service. Context information is received by the Con-
text Manager in the dialog system included at the beginning
of the interaction in order to adapt the behavior of the dif-
ferent modules in the dialog system taking this information
into account.

The dialog system receives user utterances from any tele-
phone, which are transmitted to the automatic speech recog-
nition system and semantically analyzed by the natural lan-
guage understanding module to obtain a frame-based rep-
resentation including confidence scores. Then, the dialog
manager takes into account not only the current user ut-
terance but also the complete dialog history to decide the
next system action. This can lead the system to require ad-
ditional information to the user, to confirm or ask again for

information already provided by the user, or to answer once
the complete information that is required from the user has
been retrieved. When an answer is generated, the informa-
tion is sent to the Web Query Manager, which contacts the
web service using a SOAP attachment. The web service
then provides the result of the query. This is achieved in
the specific application described in this paper, using a WS-
Attachments protocol, proposed by Microsoft and called
DIME (Direct Internet Message Encapsulation), instead of
directly passing a URL to the web Service. This mecha-
nism allows direct sending of an attachment (picture, text,
sound, etc.) to a web service. We used C# language and
Web Services Enhancements (WSE), within Visual Studio,
for our developments. WSE is a .NET class library for build-
ing web services using the latest Web services protocols in-
cluding WS-Security, WS-SecureConversation, WS-Trust,
WS-Policy, WS-SecurityPolicy, WS-Addressing, and WS-
Attachments.

The answer of the web service is transmitted, using again
SOAP attachment, to the language generator module. This
module takes into account the information received from
both the dialog manager and the web service to generate a
sentence in natural language to inform the user. This sen-
tence is translated from text to speech by the Speech Syn-
thesizer to inform the user. At the end of the interaction, the
user profile is updated taking into account the information
acquired during the dialog. The transmission of the context
between modules is carried out by sending XML packages
based on the OASIS Web Services Context Specification.

The complete process can be summarized as follows
(Fig. 4):

1. Device Detection: Once the user is detected in the net-
work by the ACP, this module evaluates the position of
the client device and initiates a remote connection with
the ACE. The ACE gathers all known information about
the device, the user and his context, including physical
location, date/time, device type, user roles, network IP
address range, user locale and other customized context
providers, e.g. temperature, available battery, etc. The
context engine derives a description of the services that
should be available on the device and passes it to the
modules deployed on top of the ACE.

9

Fig. 4 Process followed in the
proposed architecture to provide
a context-aware web service

2. Service Discovery: the Context Profile is generated by the
Context Engine and then transmitted to the client. This
transmission is shown as icons on the hand-held device of
the user interface. Then, the client decides which service
to pull by clicking on the corresponding icon.

3. Download and install: the necessary resources right after
service discovery. Once the resource is available on the
device, the installation proceeds.

4. Start spoken communication: The user selects the spoken
communication interface to receive the information. Im-
mediately, the ACE sends an XML package to the Con-
text Manager in the dialog system informing about its
identification and current location. Using such informa-
tion, the Context Manager selects the profile of the rec-
ognized user and communicates this information to the
different modules of the dialog manager. Each module
uses this knowledge to load its specific information and
models.

5. Spoken communication: The user starts the interaction
with the dialog system. Throughout the interaction, each
module can update the active user profile. Depending on
the information that is modified, the Context Manager
sends the value of the new features only to the mod-
ules in the dialog system that require such information.
Each module in the dialog system is able to adapt its spe-
cific models and characteristics by taking into account
the contextual information that is provided by the Con-
text Manager.

6. Finish spoken communication: At the end of the inter-
action, the user profile is updated using the information
acquired during the last dialog session.

7. Discard Service: when a user leaves the network or if a
context condition has changed for a service.

5 Evaluation methodology and measures

As the study and development of dialog systems becomes
more complex, the task of defining n ew p rocedures and
measures that will be unanimously accepted by the scien-
tific community for the evaluation of this kind of systems
presents more difficulties. A technique that has attracted in-
creasing interest in the last decade is based on the automatic
generation of dialogs between the dialog manager and an ad-
ditional module, called the user simulator, which simulates
user interactions with the dialog system [26, 45]. This tech-
nique makes possible to generate a large number of dialogs
in a very simple way. Therefore, it reduces the time and ef-
fort that would be needed for the detailed evaluation of the
quality of the services provided by a dialog system.

We have developed a methodology for the automatic gen-
eration of dialogs, which can be used for learning and eval-
uating statistical dialog models [14]. Our methodology is
based on the interaction of a user simulator and a dialog
manager simulator. Both modules use a random selection
of one of the possible answers defined for the semantics of
the task (user and system dialog acts). At the beginning of
the simulation, all the system answers are defined with the
same probability. When a successful dialog is simulated, the
probabilities of the answers selected by the dialog manager
during that dialog are incremented before beginning a new
simulation.

The user simulation simulates the user intention, that is,
the simulator provides concepts and attributes that represent
the intention of the user utterance. Therefore, the user sim-
ulator carries out the functions of the ASR and NLU mod-
ules. The semantics selected for the dialog manager is rep-
resented through the set of possible system answers defined

10

for a specific task. The selection of the possible user an-
swers is carried out using the semantics defined for the NLU
module. An error simulator module has also been designed
to perform error generation and the addition of confidence
measures. This information modifies the frames generated
by the user simulator and also incorporates confidence mea-
sures for the different concepts and attributes. The number
of errors that are introduced can be modified to adapt the er-
ror simulator module to the operation of any ASR and NLU
modules.

The model employed for introducing errors and confi-
dence scores is inspired in the one presented in [47]. Both
processes are carried out separately following the noisy
communication channel metaphor by means of a generative
probabilistic model P(c, au|ãu), where au is the actual in-
coming user dialog act, ãu is the recognized hypothesis, and
c is the confidence score associated with this hypothesis.

On the one hand, the probability P(ãu|au) is obtained
by Maximum Likelihood using the initial labeled corpus ac-
quired with real users. To compute it, we consider the rec-
ognized sequence of words wu and the actual sequence ut-
tered by the user w̃u. This probability is decomposed into a
component that generates the word-level utterance that cor-
responds to a given user dialog act, a model that simulates
ASR confusions (learned from the reference transcriptions
and the ASR outputs), and a component that models the se-
mantic decoding process.

P(ãu|au) =
∑

w̃u

P (au|w̃u)
∑

wu

P (w̃u|wu)P (wu|au)

On the other hand, the generation of confidence scores
is carried out by approximating P(c|ãu, au) assuming that
there are two distributions for c. These two distributions are
defined manually, generating confidence scores for correct
and incorrect hypotheses. These definitions are based on a
sampling over the distributions found in the training data
corresponding to our initial corpus.

P(c|aw, ãu) =
{

Pcorr(c) if ãu = au

Pincorr(c) if ãu �= au

The dialog manager considers that the dialog is unsuc-
cessful and decides to abort it when one of the following
conditions take place:

• The dialog exceeds a maximum number of system turns,
defined taking into account the requirements of the task.

• The answer selected by the dialog manager corresponds
to a query not required by the user simulator.

• The web service informs about an error because the user
simulator has not provided the information required.

• The answer generator provides a warning when the se-
lected answer involves the use of a data not contained in
the DR, that is, not provided by the user simulator.

A user request for closing the dialog is selected once the
system has provided the information defined in the objec-
tive(s) of the dialog. The dialogs that fulfill this condition
before the maximum number of turns are considered suc-
cessful.

5.1 Measures defined for the evaluation

It is very difficult t o define new procedures and measures
that will be unanimously accepted by the scientific commu-
nity for the evaluation of voice-based systems. In fact, this
field can be considered to be in an initial phase of develop-
ment. In [48] and [45], a set of statistical measures to eval-
uate the quality of a simulated corpus is proposed. Three
dimensions are defined: high-level features (dialog and turn
lengths), dialog style (speech-act frequency; proportion of
goal-directed actions, grounding, formalities, and unrecog-
nized actions; proportion of information provided, repro-
vided, requested and rerequested), and dialog efficiency
(goal completion rates and times). The simulation presented
in [2, 44, 46] is evaluated by testing the similarity between
real and simulated data by means of statistical measures (di-
alog length, task completion rate and dialog performance).

We have adapted the previously described measures con-
sidering the information that is available in the definition of
the dialog system and context information included in the
user profiles. Our proposed measures can be classified into
three groups: task success/efficiency measures, high-level
dialog features, and dialog style/cooperativeness measures.

• Task success/efficiency measures: These measures study
the goal achievement rates and goal completion times for
the services provided by the system.

• High-level dialog features: These features evaluate the du-
ration of the dialogs, how much information is transmitted
in individual turns, and how active the dialog participants
are.

• Dialog style/cooperativeness measures: These measures
analyze the frequency of different speech acts and reflect
the proportion of actions that is goal-directed (i.e. not in-
dexed in dialog formalities).

By means of task success/efficiency measures in our eval-
uation, we investigate the success rate and efficiency of the
services provided by the system. We are particularly inter-
ested in goal achievement rates and goal completion times.
The dialogs were only considered successful if they fulfilled
the complete list of objectives that had been previously de-
fined for it. We have also evaluated the influence in these
measures of the different context information sources de-
fined in a system.

Six high-level dialog features have been defined for the
evaluation of the dialogs: the average number of turns per
dialog, the percentage of different dialogs without consider-
ing the attribute values, the number of repetitions of the most

11

seen dialog, the number of turns of the most seen dialog, the
number of turns of the shortest dialog, and the number of
turns of the longest dialog. Using these measures, we tried
to evaluate the success of the simulated dialogs as well as
its efficiency and variability with regard to the different ser-
vices.

For dialog style features, we define and count a set of
system/user dialog acts. On the system side, we have mea-
sured the confirmation of concepts and attributes, questions
to require information, and system answers generated after
a database query. On the user side, we have measured the
percentage of turns in which the user carries out a request to
the system, provides information, confirms a concept or at-
tribute, the Yes/No answers, and other answers not included
in the previous categories. Finally, we have measured the
proportion of goal-directed actions (request and provide in-
formation) versus the grounding actions (confirmations) and
rest of actions.

The previous measures evaluate the overall quality of the
acquired dialogs and provided services as a whole. In addi-
tion, we have carried out a specific evaluation of the opera-
tion of our dialog management methodology. From our pre-
vious work on statistical dialog management [13], we pro-
pose four measures to evaluate the performance of the dialog
manager. The first measure, which we call % unseen, makes
reference to the percentage of unseen situations, i.e., the di-
alog situations that are present in the test partition but are
not present in the corpus used for learning the dialog model.
The other three measures are calculated by comparing the
answer automatically generated by the dialog manager for
each input in the test partition with regard to the reference
answer annotated in the corpus. This way, the evaluation is
carried out turn by turn. These three measures are: (i) % ex-
act: the percentage of answers provided by the dialog man-
ager that are equal to reference answer in the corresponding
turn of the training corpus; (ii) % correct: the percentage of
answers provided by the dialog manager that are coherent
with the current state of the dialog although they are not the
same as the reference answer; (iii) % error: the percentage
of answers provided by the dialog manager that would cause
the failure of the dialog.

6 Implementation and evaluation of a context-aware
railway information system

We have applied our context aware methodology to develop
and evaluate an adaptive system in a railway information do-
main. The system provides information in natural language
about train services, types, schedules, and fares [15]. The in-
formation offered to inform the user is extracted from a web
service developed with the information available in the web
of the Spanish National Railways.

We defined f our c oncepts t o r epresent t he different
queries that the user can perform (Hour, Price, Train-Type,
Trip-Time, and Services), three task-independent concepts
(Affirmation, Negation, and Not-Understood). The attributes
needed by the system to answer the different user queries are
Origin, Destination, Departure-Date, Arrival-Date, Ticket-
Class, Departure-Hour, Arrival-Hour, Train-Type, Order-
Number, and Services-List. An example of the semantic in-
terpretation of a sentence is shown in Fig. 5.

The labeling of the system turns is similar to the label-
ing defined for the user turns. To do so, 30 task-dependent
concepts were defined:

• Task-independent concepts (Acceptance, Rejection, Not-
Understood, New-Query, Waiting, Opening, and Clos-
ing).

• Concepts used to inform the user about the result of a spe-
cific query (Hour, Price, Train-Type, Trip-Time, and Ser-
vices).

• Concepts defined to require the user the attributes that
are necessary for a specific query (Origin, Destination,
Departure-Date, Arrival-Date, Ticket-Class, Departure-
Hour, Arrival-Hour, Train-Type, Order-Number, and
Services-List).

• Concepts used for the confirmation of the previous con-
cepts and attributes.

A total of 51 system actions (different dialog acts) were
defined taking into account the information that the system
provides, asks or confirms. The DR defined for the task is
a sequence of 19 fields, corresponding to the five concepts
(Hour, Price, Train-Type, Trip-Time, Services), ten attributes
defined for the task (Origin, Destination, Departure-Date,
Arrival-Date, Departure-Hour, Arrival-Hour, Ticket-Class,
Train-Type, Order-Number, Services-List) defined for the
task, three task-independent concepts that users can provide
(Acceptance, Rejection and Not-Understood), and a refer-
ence to the user profile.

A set of 30 scenarios were manually defined to cover
the different queries for which the system should be able to
respond, including different user requirements and profiles.
Two main types of scenarios were defined. Type S1 scenar-
ios defined only one objective for the dialog; i.e., the user
must obtain information about only one type of the possible
queries to the system (e.g., to obtain timetable information
from an origin city to a destination for a specific date). Type
S2 scenarios defined two objectives for the dialog (e.g., to
obtain timetables and prices for a specific origin, destination
and date). An example of a S2 scenario is as follows:

User name: José García
Location: Atocha Station
Date and Time: 2009-05-01, 9:00am
Device: PDAQ 00-18-41-32-0B-59
Objective: Timetables and prices to Granada

12

Fig. 5 An example of the
labeling of a user turn in the
railway information system

Input sentence:
[SPANISH] Sí, me gustaría conocer los precios para ir mañana de Valencia a Madrid.

[ENGLISH] Yes, I would like to know the prices for tomorrow evening, leaving from

Valencia to Madrid.

Semantic interpretation:
(Affirmation)
(Price)

Origin: Valencia
Destination: Madrid
Departure-Date: Tomorrow
Departure-Hour: Evening

For each scenario, once context information is received
by the Context Manager, it loads the specific context pro-
file characteristics. This information is then checked by the
rest of the modules in the dialog system to personalize the
provided service. In the previous example, the context infor-
mation in the user profile is the following:

Name: José García

Gender: Male | Age: 29 | Language: Spanish | Skill level:
High | Pathologies: None...

Preferences: Timetables, Talgo Train, Business Class,
Atocha Station, 10:00am...

Current_Location: Atocha Station | Platform zone

To evaluate our architecture, we have acquired a set of
dialogs for each of the scenarios defined for the railway in-
formation system, including or not considering the Context
Manager in our architecture or not (context-aware system
and context-unaware system). The dialog simulation tech-
nique described in the previous section was used to acquire
a total of 1000 successful dialogs for the task (500 dialogs
using the context-aware system and 500 dialogs using the
context-unaware system). To compare the corpora acquired,
we computed the mean value for each corpus with respect
to each of the evaluation measures described in the previ-
ous section. We then used two-tailed t-tests to compare the
means across the two corpora as described in [2]. All differ-
ences reported as statistically significant have p-values less
than 0.05 after Bonferroni corrections.

As an example of the difference between the resulting di-
alogs when the Context Manager and user profiles are or are
not included, Fig. 6 shows a dialog for the railway infor-
mation domain acquired without incorporating the Context
Manager, and a dialog of the same scenario acquired using
our approach. Turns starting with S refer to system turns,
and turns with U refer to user turns. As it can be observed,
the context-aware system shows a tendency of providing the
required services with higher agility and using more natural
answers than the context-unaware system.

Using the codification previously described for the in-
formation in the DR, when a dialog starts (in the greeting

turn of the system) all the values in the dialog register are
initialized to “0”. The information provided by the Context
Manager at the beginning of the dialog and the information
provided by the users in each dialog turn is employed to up-
date the previous DR and obtain the current one, as shown in
Fig. 7. If there is information available about the user gen-
der, usage statistics and skill level, it is incorporated to a user
profile that is addressed from the dialog register, as was ex-
plained in Sect. 4. This information is used not only for the
selection of the next system action by the dialog manager,
but also to include this data for the generation of the system
prompts provided by the natural language generator module
(as Fig. 6 shows).

In the example described in the figure, the semantic in-
terpretation of a user’s utterance provided by the NLU mod-
ule can be observed. Confidence scores, also provided by
this module to determine the reliability, are shown between
brackets. In this case, the confidence score assigned to the
attribute Date is very low. Thus, a “2” value is added in the
corresponding position of the DR1. The concept (Hour) and
the attribute Destination are recognized with a high confi-
dence score, adding a “1” value in the corresponding posi-
tions of the DR1. The attribute Origin is in this case provided
by the Context Manager. As the input to the MLP is gener-
ated using DR1, the codification of the labeling of the last
system turn (A1), and the task-independent information pro-
vided in the last user turn (none in this case), the probabil-
ities assigned by the MLP for the different prompts defined
for the task are in this case 0.63 to confirm the departure
date, 0.22 to ask again for this piece of information, 0.09 to
ask for the ticket class type, 0.06 to ask for the type of train,
and a 0.00 probability to the rest of 47 system prompts de-
fined for the task. This way, the output selected for the MLP
in this case is confirming the departure date. This process is
repeated to predict the next system response after each user
turn.

6.1 Evaluation results of the user simulator

First, we evaluated the user simulator that we developed.
We were interested in assessing its efficiency and the dia-

13

Fig. 6 An example of a dialog
for the railway domain using the
context-unaware system (above)
or the context-aware system
(below)

S1: Welcome to the railway information system. How can
I help you?

No prompts personalization

U1: I want to know timetables to Granada.
S2: From which station do you want to leave? There is not information about the current location of

the user
U2: Atocha Station.
S3: Please, tell me date. No date stored
U3: Today.
S4: There are five trains leaving from Atocha Station to
Granada at 10:00 am, 11:30 am, 15:00 pm and 19:00 pm.
Anything else?

No information about the user preferences: timetables

U4: Tell me the price of the first one.
S5: Please, tell me the ticket class. No information about the user preferences: ticket class
U5: Business class.
S6: The price in business class is 35.5 euros. Anything
else?
U6: No, thank you.
S7: Thank you for using the railway information system.
Have a good trip!

S1: Good morning José, I check trains information
leaving from Atocha Station. Do you want timetables
information?

Prompt personalization including the user’s name. The
user location is known and his preference about
consulting timetables

U1: Yes, I want to know timetables to Granada.
S2: The following two trains leave today at 10:00 am and
10:27 am from Atocha Station to Granada. Anything
else?

The system uses the current hour and the date to
personalize the timetables service. In this case, there is
not any information about other possible queries
performed by the user in previous dialogs

U2: Please, tell me the price of the first one.
S3: The price in business class is 35.5 euros. Anything
else?

The system uses the ticket-class preferences included in
the user profile

U3: No, thank you.
S4: Thank you José. Have a good trip! Prompt personalization including the user’s name

Fig. 7 Excerpt of a dialog with
its correspondent user profile
and dialog register for one of the
turns

log success rate. Figure 8 shows the goal achievement rates
and goal completion times for the different types of scenar-
ios and systems (context-aware and context-unaware). The
first important advantage of our proposal is a reduction in
the number of dialogs that were necessary to simulate in
order to obtain the 250 successful dialogs for the S1 and
S2 scenarios in the context-aware and context-unaware sys-
tems. In other words, the percentage of dialogs in which the

system successfully provides the complete list of services
predefined for the corresponding scenario.

While only a 26.6 % of successful simulated dialogs is
obtained for the S1 types using the context-unaware system,
this percentage increases to 47.4 % for the same type of sce-
narios using the context-aware system. Regarding S2 sce-
narios, only a 12.1 % of successful dialogs are obtained us-
ing the context-unaware system. This percentage increases

14

Fig. 8 Goal completion rates for the simulation process (percentage
of successful dialogs with respect to the total amount of automatically
generated dialogs) and completion times (in dialog turns)

to 21.3 % using the context-aware system. This is mainly
due to the valuable context information that is directly pro-
vided to the system without the user’s participation (e.g.,
current location and user’s preferences). Given that this in-
formation is not provided by the user in most of the dialogs
acquired with the context-aware system, recognition errors
are less probable. Therefore, the context-aware user simu-
lator provides more successful dialogs, which is a very im-
portant implication for the area of automatic generation of
dialog corpora.

Our analysis shows that not only the dialogs of the
context-aware system achieve their goals more frequently,
but also their average completion time is shorter. As Fig. 8
shows, the average duration of the S1 dialogs acquired us-
ing the context-unaware system is 9.4 turns. This dura-
tion decreases to 4.8 turns using the context-aware system.
With regard to the S2 dialogs, the average duration using
the context-unaware system is 12.6 turns. This duration de-
creases to 8.2 turns using the context-aware system.

We have also evaluated the percentage of completed sub-
goals in the S2 type, that is, the percentage of services that
are successfully provided regardless of the success of the
dialog as a whole (the dialog is only considered successful
when it provides the complete set of services that were re-
quired). This percentage is 54.3 % for the context-unaware
system and 77.6 % for the context-aware dialogs. These re-
sults can also be explained by the introduction of context
information. This information makes possible to directly in-
corporate values in the system that are needed to success-
fully achieve the required services without employing addi-
tional user and system turns. This not only reduces the in-
formation that the user must convey, but also the number of
possible confirmations of these values.

Manual analysis of the dialogs also shows that the differ-
ent phases of the dialogs (greeting, exchange of information,
access to the services, ending) are fairly realistic when con-
text information is introduced to select the different system
actions and access the different services.

Table 2 Results of the evaluation of the dialog management method-
ology

% unseen % exact % correct % error

Context-unaware 21.77 % 88.11 % 96.45 % 3.55 %

Context-aware 17.68 % 91.15 % 98.23 % 1.77 %

6.2 Evaluation results for the dialog management
methodology

Two dialog managers were developed using, respectively,
each one of the two corpora of 500 dialogs acquired using
the context-aware and the context-unaware systems. A 5-
fold cross-validation process was used to carry out the eval-
uation of both managers. Each one of the acquired corpus
was randomly split into five subsets (20 % of the corpus).
Our experiment consisted of five trials. Each trial used a dif-
ferent test subset out of the five subsets, and the remaining
80 % of the corpus was used as the training set. A validation
subset (20 %) was extracted from each training set. MLPs
were trained using the backpropagation with momentum al-
gorithm. The topology used was two hidden layers with 110
units each.

Table 2 shows the results of the evaluation of the different
measures proposed. As can be observed, the number of un-
seen situations (not present in the training corpus) is reduced
in the context-aware system, the variability of the different
dialogs is reduced (given that the number of turns is also re-
duced, as shown in the dialog examples presented in Fig. 6).
This is the main reason for obtaining better results for the
rest of measures in the evaluation of the dialog manager de-
veloped for the context-aware system.

The results of the % exact and % correct measures show
the satisfactory operation of the developed dialog manager
for both systems. The codification developed to represent
the state of the dialog and the good operation of the MLP
classifier make it possible for the answer generated by the
manager to agree with the reference answer for the corre-
sponding turn by a percentage of 88.11 % and 91.15 %, re-
spectively, for the context-unaware and context-aware sys-
tems.

Finally, the percentage of answers generated by the MLP
that can cause the failure of the system is only 1.77 % for the
context-aware system. An answer that is coherent with the
current state of the dialog is generated in 98.23 % of cases
for this system. These last two results also demonstrate the
correct operation of the classification methodology devel-
oped to deal with the uncertainty of the complete set of pos-
sible situations during a dialog.

6.3 Evaluation results of the high-level dialog features

As stated in the previous section, the second group of ex-
periments covers the following statistical properties: (i) Di-

15

Table 3 Results of the
high-level dialog features
defined for the comparison of
the two kinds of dialogs for the
railway information system

Context-unaware Context-aware

Type S1 Type S2 Type S1 Type S2

Percentage of different dialogs 92.9 % 98.3 % 71.9 % 83.7 %

Number of repetitions of the most seen dialog 5 3 12 7

Number of turns of the most seen dialog 7 9 5 7

Number of turns of the shortest dialog 5 7 5 7

Number of turns of the longest dialog 25 27 17 19

Fig. 9 Task length distribution

alog length, measured as the mean and shape of the dis-
tribution of the number of turns per task, and the number
of turns of the shortest dialog, the number of turns of the
longest dialog, and the number of turns of the most seen
dialog; (ii) Different dialogs in each corpus, measured in
the percentage of different dialogs and the number of rep-
etitions of the most seen dialog; (iii) Turn length, mea-
sured by the number of actions per turn; (iv) Participant
activity as a ratio of system and user actions per dialog.
Table 3 shows the comparison of the different high-level
measures for the context-aware and context-unaware sys-
tems.

As can be observed, there is also a reduction in the num-
ber of turns of the longest, shortest and most seen dialogs
for the context-aware system. The number of different di-
alogs is also lower using the context-aware system, due to
the reduction in the number of turns, as can be observed in
the number of repetitions of the most seen dialog. This is
because users have more variability in order to provide the
different information that is needed to access the different
services in the context-unaware system.

In fact, the shape of the distributions for the task length
for the total of dialogs acquired with or without context in-
formation (Fig. 9) shows that the context-unaware dialogs
have the largest standard deviation given that the task length
of these dialogs is more disperse. Context-aware dialogs

Fig. 10 Mean task and turn length

have minimum deviation since the successful dialogs are
usually those which require the minimum number of turns
to achieve the objective(s) predefined for both kinds of sce-
narios.

Figure 10 shows that there is a slight reduction in the
mean values of the turn length for the context-aware dialogs.
These dialogs are statistically shorter, as they provide 1.1
actions per user turn instead of the 1.2 actions provided by
the context-unaware dialogs for the S1 scenarios, and 1.4
actions instead of 1.8 for the S2 scenarios. This is again be-
cause the users have to explicitly provide more information
in the context-unaware system.

In the rest of the paper we have grouped the outcomes of
scenarios S1 and S2 into a single result. This way, regarding
the dialog participant activity, Fig. 11 shows the ratio of user
versus system actions. Context-aware dialogs have a higher
proportion of system actions, as less information requires
confirmation in the context-aware system.

6.4 Evaluation results for the dialog style and
cooperativeness

The experiments described in this subsection cover the fol-
lowing statistical properties: frequency of different user and
system actions (dialog acts), and proportion of goal-directed
actions (request and provide information) versus grounding
actions (confirmations) and rest of actions.

16

Fig. 11 Ratio of user vs. system actions

Fig. 12 Histogram of user dialog acts

Fig. 13 Histogram of system dialog acts

The histograms in Figs. 12 and 13, respectively, show
the frequency of the most dominant user and system di-
alog acts in the context-aware and context-unaware di-
alogs. On the system side, S_request, S_confirm, and S_
inform indicate actions through which the system respec-
tively requests, confirms, or provides information. S_other
stands for other types of system prompts (e.g, Waiting and
Not-Understood dialog acts). On the user side, U_provide,
U_query, U_confirm, and U_yesno, respectively, identify
actions by which the user provides, requests, confirms in-
formation or gives a yes/no answer, while U_unkown repre-

Fig. 14 Proportions of dialog spent on-goal directed actions, ground
actions and other possible actions

sents all other user actions (e.g, dialog formalities or out of
task information).

In both cases, it can be observed that there are signif-
icant differences in the distribution of dialog acts. On the
one hand, it can be observed that users need to provide less
information using the context-aware architecture. This ex-
plains the higher proportion for the rest of user actions in
the context-aware system. A higher proportion of yes/no ac-
tions for the context-aware dialogs is also observed. These
actions are mainly used to confirm that the specific services
have been correctly provided using context information.

On the other hand, there is a reduction in the system re-
quests when the context-aware architecture is used. This ex-
plains the higher proportion of the inform and confirmation
system actions in the context-aware system.

Finally, we grouped all user and system actions into three
categories: “goal directed” (actions to provide or request in-
formation), “grounding” (confirmations and negations), and
“rest”. Figure 14 shows a comparison between these cat-
egories. As can be observed, the dialogs provided by the
context-aware system have a better quality, as the propor-
tion of goal-directed actions is higher.

6.5 Evaluation with real users

Finally, we evaluated the behavior of our system with real
users using the same set of type S1 and S2 scenarios
designed for the user simulation. A total of 150 dialogs
were recorded from interactions of six users employing the
context-aware and context-unaware systems. The evaluation
was carried out by students and lecturers in our department
following the types of scenarios described in the paper in
different settings with their own devices. An objective and
subjective evaluation were carried out. We considered the
following measures for the objective evaluation:

1. Dialog success rate (% success). This is the percentage of
successfully completed tasks. In each scenario, the user
has to obtain one or several items of information, and the
dialog success depends on whether the system provides

17

Table 4 Results of the objective evaluation of the context-aware and
context-unaware systems with real users

% success nT % confirm % ECR nCE nNCE

Context-unaware 84 % 12.4 34 % 82 % 0.84 0.18

Context-aware 93 % 7.2 26 % 91 % 0.88 0.09

correct data (according to the aims of the scenario) or
incorrect data to the user.

2. Average number of turns per dialog (nT).
3. Confirmation rate (% confirm) was computed as the ra-

tio between the number of explicit confirmations turns
(nCT) and the number of turns in the dialog (nCT/nT).

4. Average number of corrected errors per dialog (nCE).
This is the average of errors detected and corrected by
the dialog manager. We have considered only those errors
that modify the values of the attributes and thus could
cause the failure of the dialog. The errors are detected
using the confidence scores provided by the automatic
speech recognizer and the speech understanding module.
Implicit and explicit confirmations are employed to con-
firm or again require values detected with low reliability.

5. Average number of uncorrected errors per dialog (nNCE).
This is the average of errors not corrected by the dialog
manager. Again, only errors that modify the values of the
attributes are considered.

6. Error correction rate (% ECR). The percentage of cor-
rected errors, computed as nCE/(nCE + nNCE).

The results presented in Table 4 show that both systems
could interact correctly with the users in most cases. How-
ever, the context-aware system obtained a higher success
rate, improving the context-unaware results by 9 % absolute.
Using the context-aware system, the average number of re-
quired turns is also reduced from 12.4 to 7.2. These values
are slightly higher for both systems due to the fact that in
some dialogs the real users provided additional information
which was not mandatory for the corresponding scenario or
asked for additional information not included in the defini-
tion of the scenario once its objectives were achieved.

The confirmation and error correction rates were also im-
proved by the context-aware system, as context informa-
tion makes it possible to require less information from the
user, reducing the probability of introducing ASR errors.
The main problem detected was that when there was a user
input misrecognized with a very high ASR confidence, this
erroneous information was forwarded to the dialog manager.
However, as the success rate shows, this fact did not have a
considerable impact on the system operation.

In addition, we asked the users to complete a question-
naire to assess their subjective opinion about the system per-
formance. The questionnaire had five questions: (i) Q1: How
well did the system understand you?; (ii) Q2: How well did

Table 5 Results of the subjective evaluation of the context-aware and
context-unaware systems with real users (0 = worst, 5 = best evalua-
tion)

Q1 Q2 Q3 Q4 Q5

Context-unaware 4.6 3.6 3.8 3.4 3.2

Context-aware 4.7 3.9 4.3 4.2 3.3

you understand the system messages?; (iii) Q3: Was it easy
for you to get the requested information?; (iv) Q4: Was the
interaction rate adequate?; (v) Q5: Was it easy for you to
correct the system errors?. The possible answers for each
one of the questions were the same: Never, Seldom, Some-
times, Usually, and Always. All the answers were assigned
a numeric value between one and five (in the same order as
they appear in the questionnaire). Table 5 shows the average
results of the subjective evaluation.

From the results, it can be observed that both systems are
considered to correctly understand the different user queries
and obtain a similar evaluation regarding the facility of cor-
recting errors introduced by the ASR module. However, the
context-aware system has a higher evaluation rate regarding
the facility of obtaining the data required to fulfill the com-
plete set of objectives of the scenario and the suitability of
the interaction rate during the dialog.

7 Conclusions

Context-aware systems in combination with mobile devices
offer new opportunities in the areas of natural language pro-
cessing and intelligent information retrieval from the web.
In this paper, we have presented a system architecture that
combines different aspects from these important research ar-
eas to provide context aware adaptable web services. This
allows us to deal with the increasing complexity that the
design of these kinds of systems require, including sensing
changes in the user environment, its integration in hand-held
mobile devices to access web services from almost every-
where, and the use of the most natural communication be-
tween the user and the system. We have described our con-
text model and provided a detailed description of the archi-
tecture’s main components.

In our architecture, the different functionalities are dis-
tributed into specific modules, taking profit of the web to
guarantee the most efficient, natural and adapted service
to the user. Three subsystems have been defined that carry
out sensing and rendering functions, context-aware web ser-
vices management, and communication with the user. Con-
text information is captured, updated, managed and stored
by means of the interaction between the different modules
in the three layers. The Appear IQ Platform has been inte-
grated for the web services management, dealing with the
different processes that are required to implement this layer.

18

One of the most important contributions of our architec-
ture is that it provides a natural and intelligent interaction to
access web services by means of the integration of context-
aware spoken dialog systems in the communication layer.
This way, users can access these services using their voice;
this allows the system to provide the most natural commu-
nication with the user. On the other hand, it also allows the
system to be employed in environments in which traditional
interfaces are not supported and also facilitates access for
people with disabilities.

A Context Manager has been introduced in the architec-
ture of the dialog system to facilitate the provisioning of
personalized services using spoken interfaces. This module
deals with context information used to adapt the different
modules of the dialog system. To store this context informa-
tion, we have defined a data structure that manages this in-
formation into user profiles. These profiles include not only
external context, but also information about the user’s pref-
erences and needs.

We have also defined our own methodology for dialog
management in dialog systems. This methodology is based
on the use of a classification process to select the system
answer by taking into account the previous history of the di-
alog. We have adapted this methodology to build a context-
aware dialog manager by using a data structure that stores
not only the information provided by the user regarding the
task, but also the context information that is provided by the
context manager.

In addition, we have provided a complete implementation
of our architecture in a system that provides personalized
services in a railway information system. To develop this
system we have defined the complete requirements for the
task and develop the different modules, and the necessary
information to be incorporated in the user profiles.

For its evaluation, we have employed a simulation tech-
nique that makes it possible to acquire a great number of di-
alogs and then carry out a detailed evaluation of the quality
of both the dialogs and the services. A total of 1000 suc-
cessful dialogs have been acquired using this methodology
from which we have studied the influence of context infor-
mation on the quality of the services that are provided by the
system.

To compare the dialogs acquired using a context-aware
and a context-unaware version of the system, we have de-
fined a set of measures adapted to the main characteristics of
our proposed architecture. Using these measures, we evalu-
ate the success of the dialogs and services provided, as well
as their efficiency and variability with regard to the different
objectives specified in the set of dialog scenarios.

The results of the evaluation show that context informa-
tion not only allows a higher success rate in the provision of
web services, but also its use increases the quality of the pro-
vided services. Using context information, the time required

to provide a service can be reduced by 50 % in several cases.
The quality of the interaction between the user and the sys-
tem is increased, due to the fact that context-aware dialogs
present a better ratio of goal-directed actions selected by the
system to successfully provide the different services. This
way, actions that might discourage users (e.g., confirmations
or re-request of information) are reduced.

We have currently adapted the implementation of our ar-
chitecture for the railway information domain to allow the
complete interaction by means of our website. As future
work, we intend to carry out a study of the relationships be-
tween this subjective opinion and the values of the different
statistical measures defined in this work. We also want to
carry out a detailed study of the user rejections of system-
hypothesized actions using the values extracted from the
user profile and extending the evaluation with a higher num-
ber of users.

Finally, we also want to apply our context-aware archi-
tecture to deal with more complex tasks. The methodol-
ogy that we have developed for dialog management permits
an easy modelization of dialog management in slot-filling
tasks, which are very common in dialog systems. For more
difficult domains, a previous plan recognition phase would
be necessary. Information regarding the task is centralized
in our approach in the DR. Thus, the adaptation to new tasks
consists of adapting the structure of this register and the user
profile to the requirements of the new task.

Acknowledgements Research funded by projects CICYT TIN2011-
28620-C02-01, CICYT TEC 2011-28626-C02-02, CAM CONTEXTS
(S2009/TIC-1485), and DPS2008-07029-C02-02.

References

1. Afsarmanesh H, Masís VG, Hertzberger L (2003) Virtual commu-
nity support in telecare. In: Proc of the 4th IFIP working confer-
ence on virtual enterprises (PRO-VE’03), pp 211–220

2. Ai H, Raux A, Bohus D, Eskenazi M, Litman D (2007) Comparing
spoken dialog corpora collected with recruited subjects versus real
users. In: Proc of the 8th SIGdial workshop, pp 124–131

3. Almeida DD, Baptista CDS, Silva ED, Campelo C, Figueiredo
HD, Lacerda Y (2006) A context-aware system based on service-
oriented architecture. In: Proc of the 20th int conference on ad-
vanced information networking and applications (AINA’06), pp
205–210

4. Athanasopoulos D, Zarras A, Issarny V, Pitoura E, Vassiliadis P
(2008) CoWSAMI: interface-aware context gathering in ambient
intelligence environments. Pervasive Mob Comput 4(3):360–389

5. Bressan S, Goh C, Levina N, Madnick S, Shah A, Siegel M (2000)
Context knowledge representation and reasoning in the context in-
terchange system. Int J Appl Intell 13:165–180

6. Brown B, Randell R (2004) Building a context sensitive telephone:
some hopes and pitfalls for context sensitive computing. Comput
Support Coop Work 13:329–345

7. Chen I, Yang S, Zhang J (2006) Ubiquitous provision of context
aware web services. In: Proc of IEEE int conference on services
computing, pp 60–68

19

8. Dey A, Abowd G (2000) Towards a better understanding of con-
text and context-awareness. In: Proc of the 2000 conference on
human factors in computer systems (CHI’00), pp 304–307

9. Felfernig A, Friedrich G, Isak K, Shchekotykhin K, Teppan E, Jan-
nach D (2009) Automated debugging of recommender user inter-
face descriptions. Int J Appl Intell 31:1–14

10. Fikes R, Kehler T (1985) The role of frame-based representation in
knowledge representation and reasoning. Commun ACM 28:904–
920

11. Glass J, Flammia G, Goodine D, Phillips M, Polifroni J, Sakai S,
Seneff S, Zue V (1995) Multilingual spoken-language understand-
ing in the MIT voyager system. Speech Commun 17:1–18

12. González-Rodríguez M, Manrubia J, Vidau A, González Gallego
M (2009) Improving accessibility with user-tailored interfaces. Int
J Appl Intell 30:65–71

13. Griol D, Hurtado LF, Segarra E, Sanchis E (2008) A statistical
approach to spoken dialog systems design and evaluation. Speech
Commun 50(8–9):666–682

14. Griol D, Callejas Z, López-Cózar R (2009) Acquiring and eval-
uating a dialog corpus through a dialog simulation technique. In:
Proc of the 9th SIGdial workshop, pp 326–332

15. Griol D, Sanchez-Pi N, Carbó J, Molina J (2009) Context-
aware approach for orally accessible web services. In: Proc of
IEEE/WIC/ACM international joint conference on web intelli-
gence and intelligent agent technology, pp 171–174

16. Han B, Jia W, Shen J, Yuen M (2008) Context-awareness in mobile
web services. In: Proc of the 2nd int symposium on parallel and
distributed processing and applications (ISPA 2004), pp 519–528

17. Henricksen K, Indulska J, Rakotonirainy A (2002) Modeling con-
text information in pervasive computing systems. In: Proc of the
1st int conference on pervasive computing, pp 167–180

18. Iglesias A, Martínez P, Aler R, Fernández F (2009) Learning
teaching strategies in an adaptive and intelligent educational sys-
tem through reinforcement learning. Int J Appl Intell 31:89–106

19. Kang H, Suh E, Yoo K (2008) Packet-based context aware system
to determine information system user’s context. Expert Syst Appl
35:286–300

20. Keidl M, Kemper A (2004) Towards context-aware adaptable web
services. In: Proc of the 13th international world wide web con-
ference (WWW’04), pp 55–65

21. Kerschberg L, Weishar D (2000) Conceptual models and architec-
tures for advanced information systems. Int J Appl Intell 13:149–
164

22. Ko J, Murase F, Mitamura T, Nyberg E, Tateishi M, Akahori I
(2006) Context-aware dialog strategies for multimodal mobile di-
alog systems. In: Proc of AAAI international workshop on model-
ing and retrieval of context, pp 7–12

23. Lech T, Wienhofen L (2005) AmbieAgents: a scalable infrastruc-
ture for mobile and context-aware information services. In: Proc
of the 4th int joint conference on autonomous agents and multia-
gent systems (AAMAS’05), pp 625–631

24. Liu J, Seneff S, Zue V (2010) Dialogue-Oriented review summary
generation for spoken dialogue recommendation systems. In: Proc
of human language technologies: the 2010 annual conference, pp
64–72. of the North American Chapter of the ACL

25. López-Cózar R, Araki M (2005) Spoken, multilingual and mul-
timodal dialogue systems: development and assessment. Wiley,
New York

26. López-Cózar R, la Torre AD, Segura J, Rubio A, Sánchez V
(2002) Testing dialogue systems by means of automatic genera-
tion of conversations. Interact Comput 14(5):521–546

27. Matsumura K, Ishida T, Murakami Y, Fujishiro Y (2006) Situated
web service: context-aware approach to high-speed web service
communication. In: Proc of IEEE int conference on web services
(ICWS’06), pp 673–680

28. Melin H, Sandell A, Ihse M (2001) CTT-bank: a speech controlled
telephone banking system—an initial evaluation. In: TMH quar-
terly progress and status report (TMH-QPSR), vol 1, pp 1–27

29. Minsky M (1975) The psychology of computer vision. McGraw-
Hill, New York, pp 211–277. Chapter: A framework for represent-
ing knowledge

30. Moubaiddin A, Obeid N (2009) Partial information basis for
agent-based collaborative dialogue. Int J Appl Intell 30:142–167

31. Mäntyjärvia J, Seppänen T (2003) Adapting applications in hand-
held devices using fuzzy context information. Interact Comput
15(4):521–538

32. Naguib H, Coulouris G, Mitchell S (2001) Middleware support
for context-aware multimedia applications. In: Proc of the 3rd int
working conference on new developments in distributed applica-
tions and interoperable systems, pp 9–22

33. Newcomer E, Lomow G (2005) Service-oriented architecture with
web services. Addison-Wesley, Reading

34. Nieto-Carvajal I, Botía J, Ruiz P, Gómez-Skarmeta A (2004) Im-
plementation and evaluation of a location-aware wireless multi-
agent system. In: Proc of the int conference on embedded and
ubiquitous computing (EUC’04), pp 528–537

35. Nihei K (2004) Context sharing platform. NEC J Adv Technol
1(3):200–204

36. O’Shea K (2012) An approach to conversational agent design us-
ing semantic sentence similarity. Int J Appl Intell.
doi:10.1007/s10489-012-0349-9

37. Osland P, Viken B, Solsvik F, Nygreen G, Wedvik J, Mykl-
bust S (2006) Enabling context-aware applications. In: Proc of the
int conference on convergence in services, media and networks
(ICIN’06), pp 1–6

38. Paek T, Pieraccini R (2008) Automating spoken dialogue man-
agement design using machine learning: an industry perspective.
Speech Commun 50:716–729

39. Partala T, Kallinen A (2012) Understanding the most satisfying
and unsatisfying user experiences: emotions, psychological needs,
and context. Interact Comput 24(1):25–34

40. Pieraccini R, Rabiner L (2012) The voice in the machine: building
computers that understand speech. MIT Press, Cambridge

41. Prezerakos G, Tselikas N, Cortese G (2007) Model-driven com-
position of context-aware web services using contextUML and as-
pects. In: Proc of IEEE int conference on web services (ICWS’07),
pp 320–329

42. Rouillard J (2007) Web services and speech-based applications
around voicexml. J Netw 2(1):27–35

43. Rumelhart DE, Hinton GE, Williams RJ (1986) PDP: computa-
tional models of cognition and perception, I. MIT Press, Cam-
bridge, pp 319–362. Chapter: Learning internal representations by
error propagation

44. Schatzmann J, Georgila K, Young S (2005) Quantitative evalua-
tion of user simulation techniques for spoken dialogue systems.
In: Proc of the 6th SIGdial workshop, pp 45–54

45. Schatzmann J, Weilhammer K, Stuttle M, Young S (2006) A sur-
vey of statistical user simulation techniques for reinforcement-
learning of dialogue management strategies. Knowl Eng Rev
21(2):97–126

46. Schatzmann J, Thomson B, Weilhammer K, Ye H, Young S
(2007) Agenda-based user simulation for bootstrapping a POMDP
dialogue system. In: Proc of human language technologies
HLT/NAACL’07 conference, pp 149–152

47. Schatzmann J, Thomson B, Young S (2007) Error simulation for
training statistical dialogue systems. In: Proc of IEEE automatic
speech recognition and understanding workshop (ASRU’07), pp
526–531

48. Scheffler K, Young S (2001) Corpus-based dialogue simulation
for automatic strategy learning and evaluation. In: Proc of the 2nd

20

meeting of the North American chapter of the association for com-
putational linguistics (NAACL-2001). Workshop on adaptation in
dialogue systems, pp 64–70

49. Seneff S, Adler M, Glass J, Sherry B, Hazen T, Wang C, Wu T
(2007) Exploiting context information in spoken dialogue interac-
tion with mobile devices. In: Proc of int workshop on improved
mobile user experience (IMUx’07), pp 1–11

50. Sheng Q, Benatallah B (2005) ContextUML: a UML-based mod-
eling language for model-driven development of context-aware
web services development. In: Proc of IEEE int conference on mo-
bile business (ICMB’05), pp 206–212

51. Stolcke A, Coccaro N, Bates R, Taylor P, Ess-Dykema CV, Ries K,
Shriberg E, Jurafsky D, Martin R, Meteer M (2000) Dialogue act
modeling for automatic tagging and recognition of conversational
speech. Comput Linguist 26(3):339–373

52. Strauss P, Minker W (2010) Proactive spoken dialogue interaction
in multi-party environments. Springer, Berlin

53. Truong H, Dustdar S, Baggio D, Corlosquet S, Dorn C, Giuliani G,
Gombotz R (2008) inContext: a pervasive and collaborative work-
ing environment for emerging team forms. In: Proc of the int sym-
posium on applications and the Internet (SAINT’08), pp 1–8

54. Truong HL, Dustdar S (2009) A survey on context-aware web ser-
vice systems. Int J Web Inf Syst 5(1):5–31

55. Truong HL, Juszczyk L, Manzoor A, Dustdar S (2007) ESCAPE -
an adaptive framework for managing and providing context infor-
mation in emergency situations. In: Proc of the 2nd European con-
ference on smart sensing and context (EuroSSC 2007), pp 207–
222

56. Wang C, Li T, Feng L (2008) Context-aware environment-role-
based access control model for web services. In: Proc of the int
conference on multimedia and ubiquitous engineering (MUE’08),
pp 288–293

57. Zuidweg M, Filho JG, van Sinderen M (2003) Using P3P in a
web services-based context-aware application platform. In: Proc
of the 9th open European summer school and IFIP (EUNICE’03),
pp 238–243

21

