
This document is published in:

2011 Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC 2011) 
(2011). IEEE, 3419-3422.
DOI: http://dx.doi.org/10.1109/IEMBS.2011.6090925

Ins t i tu t ional  Repos i tory  

© 2011 IEEE. Personal use of this material is permitted. Permission from 
IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or 
redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.

http://dx.doi.org/10.1109/IEMBS.2011.6090925
http://e-archivo.uc3m.es/


Abstract—Advanced liver surgery requires a precise pre-

operative planning, where liver segmentation and remnant 

liver volume are key elements to avoid post-operative liver 

failure. In that context, level-set algorithms have achieved 

better results than others, especially with altered liver 

parenchyma or in cases with previous surgery. In order to 

improve functional liver parenchyma volume measurements, in 

this work we propose two strategies to enhance previous level-

set algorithms: an optimal multi-resolution strategy with fine 

details correction and adaptive curvature, as well as an 

additional semiautomatic step imposing local curvature 

constraints. Results show more accurate segmentations, 

especially in elongated structures, detecting internal lesions and 

avoiding leakages to close structures. 

I. INTRODUCTION

URGICAL planning has been gaining importance over

time in order to improve patient safety in complex 

surgical procedures, encouraged by improvements of 

medical imaging and new surgical devices. This is the case 

of advanced liver surgery [1], where certain modalities of 

liver transplant (e.g. living donor liver transplantation, split 

liver) and extreme hepatic resections require a precise 

description of liver anatomy (tumor size and location, 

vascular inflow and outflow, segmental divisions) as well as 

an estimation of minimum remnant liver volume [2] in order 

to avoid, for example, post-operative hepatic failure or 

“small-for-size” syndrome. 

Preoperative CT or MR studies are, at the moment, the 

most important source of images that hepatic surgeons and 

radiologists employ for daily surgical planning. These 

studies are composed of hundreds of 2D slices. Commercial 

tools allow radiologists to manually segment 2D slices in 
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axial views [3] with very simple algorithms. However, these 

manual segmentations are very time consuming. In this 

context, the development of automatic and semiautomatic 

algorithms for liver segmentation could speed up this task 

and remove human subjectivity. 

Live wire algorithms [4] are the basis of semiautomatic 

liver volume extraction tools currently used in clinical 

practice. The first attempts to perform automatic liver 

segmentation were based on gray-level, trying to establish 

features related with liver density from statistical or 

histogram analysis or using mathematical morphology 

[5][6]. The most important problem of this kind of methods 

is that they do not take into account the high variability in 

CT images, the existence of different modality settings like 

contrast media, and the grey-level differences between 

healthy and pathological organs. Other works try to deal 

with these problems by using neural networks in order to 

learn gray-level features [7], but they usually need large 

training sets of images to capture the variability among 

patients. Deformable models, statistical shape models [8] 

and probabilistic atlases [9] try to learn anatomical features 

as shape, position and size, but they suffer from the same 

problems of neural network approaches, requiring too much 

computation time and failing when processing nonstandard 

liver shapes. Other different approaches use active contours 

algorithms. Snakes [10] and level-sets [11][12] are based on 

a speed function that controls the front propagation of a 

surface toward the liver boundary. Recently, most of new 

segmentation methods combine different techniques: 

statistical shape models, mathematical morphology and 

level-sets approaches. For an extensive review on novel liver 

segmentation methods, we refer the reader to [13]. 

II. BACKGROUND ON LEVEL-SET ALGORITHM

Active contour models deal with automatic or 

semiautomatic delineation of objects in an image by 

evolving a curve guided by external constraint forces and 

influenced by image forces. This framework tries to 

minimize an energy function associated with these forces 

(external and internal, respectively). Traditionally, these 

models were based in edge detection by using gradient 

information. However, this approach fails when targets are 

not well-defined by gradients. In liver CT images this is an 

essential drawback due to the proximity between liver and 

other organs of similar intensity. 

In order to deal with that problem Chan and Vese [14] 
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Fig.  1. Segmentation results obtained by the original level-set 

algorithm (white) and with a Multi-Growth restriction and Multi-

Curvature strategy (red contour). Elongated zones are better segmented 

with the proposed strategy.  

proposed an active contour model that takes into account 

intensity values inside and outside the curve, which can be 

formulated using level-set techniques as follows: 
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where ϕ represents the contour, u0 is the image, c1 and c2 are 

the averages of u0 inside and outside the contour 

respectively, µ≥0, γ≥0, λ1,λ2>0  are fixed parameters, ∆t and 

h are the time and space steps respectively and 

div(ϕn/|ϕn|) introduces curvature constraints. 
Nevertheless, this method works correctly only when the 

image is composed of two homogeneous regions with differ-

rent textures. In CT abdominal images, liver region usually 

is homogeneous and well defined but the rest of the image 

includes several organs with different textures and inten-

sities, compromising the correct behavior of the method. 

In order to overcome this problem, Fernandez-de-Manuel 

et al. [15] presented a variation of this method, extended to 

3D. They substitute the term that computes the intensity 

difference between a point and the average inside and 

outside the contour by a term that computes the absolute 

difference between these averages and include gradient 

information (controlled by the fixed parameter ρ) to achieve 

a more robust algorithm: 
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The algorithm starts with a seed point located inside the 

liver and grows a surface following a multi-resolution 

strategy in order to reduce processing time. 

This approach achieved important improvements for liver 

segmentation results in CT abdominal images. However, 

these segmentations failed occasionally by including small 

areas belonging to proximal structures with similar intensity 

and texture, such as intercostal muscle and heart. In order to 

avoid the contour growing into these structures, Fernandez-

de-Manuel et al. suggested establishing high restrictions in 

global curvature. As a result, elongated structures (distal part 

of liver left lobe, falciform ligament) were mis-segmented. 

III. PROPOSED METHOD

In this paper, we contribute handling these difficulties 

with variations on (2). We propose an optimal multi-

resolution strategy with fine details correction and an 

additional step imposing local curvature constraints. 

A. Optimal Multi-Resolution Level-Set Segmentation. 

Instead of using the same parameter values in all stages of 

the algorithm, we propose to change them depending on the 

resolution step by means of a multi-curvature, multi-growth 

strategy and a fine detail correction at the last multi-

resolution level. 

The basic idea is to apply a high global curvature 

restriction in first steps in order to limit the active contour 

expansion inside the liver and decreasing the probability of 

leaking. At low resolutions, structures are blurred and not 

well defined, making the separation of different organs a 

hard task. As we increase the resolution, structures and 

boundaries are better defined and we can relax the global 

curvature restriction (decreasing µ), allowing the contour to 

come closer to the desired segmentation. 

Contrarily, we intensify the growth restriction along the 

multi-resolution scheme. At first, high values of λ1 in (2) 

provide the contour with enough freedom to grow rapidly, 

and the gradual increment of the growth restriction in 

subsequent steps allows a better voxel classification inside 

or outside the level-set, emending mis-segmented structures. 

The fusion of both strategies implies high growth of the 

contour in first resolution steps, limited by curvature 

constraints to avoid leakages, and low and controlled growth 

at the end with better detail detection and more accurate 

segmentation due to the relaxation of the global curvature 

restriction. The combination of both parameters improves 

segmentation results in elongated structures such as the 

distal part of liver left lobe (see Fig. 1). Thus, the fixed 

parameters λ1, λ2 and µ turn into functions depending on 

time (actually, resolution step): λ1(t),λ2(t) and µ(t). 

On the other hand, the level-set method implemented by 

Fernandez-de-Manuel et al. modifies the contour by 

checking voxels close to its boundary. This narrow band 

level-set approach is widely used because of the 

computation time improvement. However, this strategy 

combined with a multi-resolution scheme fails in the case of 

small structures at the inner part of the liver and far from its 

boundaries that are not big enough to be identified during 

contour growing in low resolution levels. In those cases, if 

the small non detected structures remain out of the narrow 

band, high resolution steps are not able to recover the wrong 

inclusion. This is the case of intraparenchymal small liver 

lesions and falciform ligaments, among others. 

The fine details correction strategy tries to overcome this 

drawback by removing those voxels from the contour that 

have the highest intensity differences from the level-set 

mean intensity. Most of wrongly included structures have 

lower intensities than liver parenchyma, so we select a 
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percentage of voxels with the lowest intensity, depending on 

the segmented volume, in order to remove them from the 

contour. After that, we erase as many voxels with the highest 

intensities as necessary to obtain the same average intensity 

we had at first, in order not to modify the level-set behavior. 

This approach is used only before the last resolution step, 

so that, thanks to low global curvature constraint and high 

growth restriction, details can be detected and over-

segmented structures can be identified. Furthermore, if some 

voxels are incorrectly removed, the level-set behavior will 

fix it in the last resolution step. 

Results show internal tumors detection, a better liver lobes 

separation (due to detection of falciform ligaments and 

hepatic fissures) and decrease of leakages to proximal 

structures (see Fig. 2). In addition, in contrast enhanced CT 

images, some areas corresponding to large hepatic vessels as 

hepatic portal vein and upper suprahepatic veins are 

excluded from our results, which is the common practice by 

radiologists’ manual segmentations of healthy parenchyma. 

B. Local Curvature Constraints (LCC) 

Liver segmentation is particularly challenging due to the 

variability in size and shape, especially in cases with big 

lesions or with prior surgery as hepatectomies. Using a priori 

knowledge could be inappropriate in these scenarios, so we 

propose to use LCC to restrict the contour growth in specific 

areas. Local mean curvature constraints were used before as 

priors obtained from statistical analysis of training sets [16], 

but this method could fail in the special cases mentioned 

above. So we let the user apply these local constraints by 

marking the problematic areas interactively. These marked 

voxels will be the center of a 3D Gaussian function that 

extends and distributes the curvature restriction in space. 
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where σ is the standard deviation and || . || represents the 

Euclidean norm. Thus, curvature restriction will be different 

in each voxel x, following the equation: 
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  (4) 

where cmax is the maxima curvature, cglobal the global curva-

ture restriction in the image and xj
0 are the points marked in

problematic areas corresponding to the 3D Gaussian centers. 

 In order to check the performance and to obtain the best 

values for cmax and σ (which controls the size and magnitude 

of the 3D Gaussian function) in each resolution step, we 

created simulated images that contain areas with curvature 

changes (see Fig. 3). The best results were obtained with 

Gaussian size of 12.5x12.5x12.5 mm3 and cmax=5. Thus, the

function µ(t) becomes dependent on specific points marked, 

xj
0, and the Gaussian parameters cmax and σ: µ(t, xj

0,cmax,, σ).

IV. DATA AND VALIDATION

The improvements on the liver segmentation tool have 

been validated on seven 3D abdominal CT images with 

variability in liver size, shape and position, different 

modality settings including or excluding contrast media and 

diverse pathological states (livers with primary or secondary 

tumors, livers ongoing lobar ipsolateral atrophy and contra-

lateral hypertrophy after portal vein embolization, relapse 

tumors after liver lobectomies, and liver after hepatectomies 

undergoing chemotherapy). Study 3 was acquired on a 

Philips AV Expander spiral CT and the rest of cases were 

acquired on a Philips Brilliance 16 slice CT scanner. Pixel 

spacing varied from 0.69 to 0.84 mm in each slice, and the 

distance between slices was 5 mm in case 3; 3 mm in cases 6  

and 7, and 1 mm in the rest of cases. 

In all the cases, the gold standard was the segmentation of 

the healthy parenchyma made manually by radiologists on 

2D slices in transversal views, excluding tumors, lesions and 

principal vessels such as cava and portal veins, in order to 

obtain more accurate estimations of functional liver volume. 

The new algorithm uses 4 resolution steps with 

#iterations=[200,150,100,70] and parameters h=1, 

1/λ1=[5.5,5.5,7.5,x] with x∈{8,10,12.5} depending on the 

image, λ2=[1,1,1,1] and µ=[1,1,0.75,0.5], fixed manually. 

Five metrics were used to perform the validation: volume-

tric overlap error (VOE), relative volume difference (RVD) 

and average, root mean square and maximum symmetric 

Fig.  2. Examples of livers slices with internal tumors and structures 

(a1, b1). Segmentations before (a2, b2) and after (a3, b3) introducing 

the fine details correction in the optimal multi-resolution strategy. The 

improvements in the detection of internal small lesions and falciform 

ligaments and the prevention of leakages are remarkable. 

(b1) 

(b2) 

(b3) 

(a1) 

(a2) 

(a3) 

Fig. 3. (a) Simulated image with local curvature distribution obtained 

by marking a pixel as the center of the 3D Gaussian function. (b) 3D 

Reconstruction of the image (yellow) and segmentation results with 

LCC (orange) and without it (green). 

(a)   (b) 
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surface distances (ASSD, RMSD, MSSD), described in [16]. 

V. RESULTS AND DISCUSSION 

Table I shows the segmentation results, comparing the 

five different metrics between the original level-set 

algorithm [15] and the new one with the improvements 

described in this paper. Moreover, the number of points 

where the user established local curvature constraints and 

the computation times using an AMD Athlon II X4 630 

processor 2.8 GHz and 6 GB of RAM have been included in 

the table. The results show absolute volume differences 

smaller than 6% in all the cases, with VOE between 4 and 

10%, which evidence the improvements over previous 

results (decrease 3.04% in VOE on average). Avoiding 

overestimation of remnant liver volume is critical in surgical 

planning. For this reason, our algorithm tends to be 

conservative in almost all cases, obtaining negative volume 

differences caused by under-segmentation. Although these 

volume differences do not seem significant when the total 

non-tumoral parenchyma volume is considered, they have an 

important impact when the surgical strategy is defined and 

the quantification of the planned remnant liver is considered, 

where a 5 or 10% volume difference might overcome the 

threshold level for safety liver surgery. 

The most relevant results are related with distance 

metrics. The better segmentation of elongated structures, 

internal tumors and the control of leakages performed high 

improvements in MSSD, achieving reductions of more than 

15 mm. in some cases, which results in ASSD and RMSD 

improvements too. So, in all the cases, maximum distances 

correspond to points located in vessels, excluded from 

manual segmentations, but sometimes included in ours. 

Cases 1, 3 and 6 are specially challenging because contrast 

media was not used during the acquisition. In most cases, 

some local curvature constraints were added in principal 

vessels and areas between liver and close structures such as 

heart or stomach to avoid leakages toward these structures. 

Fig, 4 shows the differences in the level-set evolution of 

the original and modified method, and illustrates a better 

behavior in unsettle areas wrongly segmented before. The 

proposed improvements have demonstrated good performan-

ce and results seem promising, but further studies are needed 

especially in vessel segmentation to achieve more accurate 

measures on remnant and non-tumoral liver volume.  
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Fig.  4. Evolution of the Level-set algorithm comparing original 
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steps and removing mis-segmented structures in the final results. 
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