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I. INTRODUCTION

This paper is concerned with inference in the semiparametric partially linear
regression model (SPLR model, hereafter) when some (or all) variables entering
in the unknown part of the regression model are discrete.

The SPLR model has received considerable attention in Statistics and
Econometrics; e.g. Green et al (1985), Denby (1986), Engle et al (1986), Rice
(1986), Heckman (1986), Chen (1988), Speckman (1988) and Robinson (1988), to
mention only a few. A common feature of the proposed parameter estimates of
the SPLR model is that the unknown part of the regression model must be smooth
and, therefore, regressors entering in this part must be nonstochastic
variables or absolutely continuous random variables. In econometrics practice,
few observable variables are continuous. Many of them are dummies, qualitative
variables or couﬁfs; and other variables, though continuous in nature, are
recorded at intervals and can be treated as discrete.

When regressors are discrete, a mere average of those observations of the
dependent variable with the same regressor value will yield a consistent
conditional expectation estimate. We show, in the following section, that
sequences of weights constructed in this way are universally consistent in the
sense of Stone (1977). This result suffices to obtain, in Section 3, a Central
Limit Theorem (CLT) for the coefficient estimates of the SPLR model when all
regressors in the unknown part of the model are discrete. This CLT does not
require smoothing and, furthermore, it does not require either independence
between regressors and regression errors, a feature typically present when
regressors are continuous. In Section 4, we extend the methodology introduced
in Section 3 to the case when there are both discrete and continuous
regressors in the unknown part of the model. The proposed nonparametric
weights are the product of the weights introduced in section 2, which apply to
the discrete regressors, and higher order kernels weights, which apply to the

continuous regressors. Proofs are confined to an appendix.

2. NONPARAMETRIC CONSISTENT WEIGHTS WITH DISCRETE REGRESSORS

Let Z be a discrete random variable. That is,

3 DcR?, D countable set, such that P(ZcD)=1. [2.1}




Let (CI,ZI),...,(CD,ZD) be independent and identically distributed (i.i.d.)

random vectors. The vector of conditional expectations mc(s) & E[{|Z=3] can
then be estimated by,

T =YW (), :
mc(3) EJC_; n.'(3) [2.2]
where, hereafter, summations run from 1 to n unless otherwise specified, and
an(ﬁ) = I(ZJ=3)/(EkI(Zk=3)). [2.3]

where I(A) is ;he indicator function of event A and, hereafter, we arbitrarily
define 0/0 to be 0. We prove that, under regularity conditions, this sequence

of weights is consistent in the sense of Stone (1977)

THEOREM 1: If [2.1] holds, EICN<e and (C,Z),

(ql,Zl),...,(cn,Zn) are i.i.d. random vectors, then:

A ro_
Ellmc(Z) mc(Z)lI = o(1).

PROOF: See appendix. ‘ ]

In semiparametric problems, we need nonparametric estimates evaluated at
each data point. Universal consistency results have been used by Robinson
(1987) and Newey (1990) in other semiparametric problems. Such results require
to estimate E[C,IZ,] without using (Cl,Z‘) as in Stone (1977). So, given
(Cl.Z‘).(Cl.Zl),..,(Cl_l.Z‘_l),(CM.ZlH),..,(CD,Z&), i.i.d. random vectors,

m§1(3) = E[§l|2i=3] is estimated by,

mcl(3) = ZFICJW“JQ),

where now an(3) = I(ZJ=3)/(Ek$‘I(Zk=3)). The next corollary follows

immediately from theorem 1.

COROLLARY 1I: If [2.11 holds, EWCN'<e and (€,z),
...,(cn,zn) are i.i.d. random vectors, then

Elm (2 )-m l(zl)ur = o(1). m

< <

This corollary will be wused in next section for proviné asymptotic
normality of a feasible estimate of the SPLR model coefficients, and it is
also applicable to other semipgrametric problems.

The sequence of weights introduced requires no smoothing value. However,

it is easy to deduce from theorem | a similar property for weights which
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_We can construct

depend on a smoothing value. Specifically, let’s define

an( 3) = Y(( 3-ZJ)/hn)/2kw( ( 3—Zk)/hn). [2.5]

where
y is a function from RY to R with bounded support, [2.6]

(hn)c|R+ is a sequence which converges to 0 as n — .  [2.7]

Me(9) = LEW, (3. [2.8)

A similar result to theorem 1 can be proved with the additional assumption
3 p>0 such that V¥ zl,zzefD Ilzl-zzll z wo. [2.9]

As a corollary to theorem 1 we have

COROLLARY 12: If [2.1], [2.6], [2.7], [2.9] hold,
EICN<= and (L,2), (.Z )G ,Z) are  Lid. |

random vectors, then,

~ v
Eumc(z) mc(Z)ll = o(D).

PROOF: See appendix. n

A similar result has been obtained by Devroye and Wagner (1980) when ‘
regressors are continuous and by Bierens (1987) when there are both continuous 1
and discrete regressors. The advantages and disadvantages of smoothing in 1

semiparametric models with discrete regressors will be discussed in section 3.
3. PARTIALLY LINEAR REGRESSION WITH DISCRETE REGRESSORS

Suppose (Y,X,Z) is an RxRPxRI-valued observable random variable such that:
E[Y|X,Z] = B’X + 6(Z) as. [3.1]

where B is an RP-valued unknown parameter vector and 6 is an unknown real
function. Given a random sample ((Yl.Xl.Zl). i=1,..n} from (Y,X,2Z), if we
E E[<||Z‘]. then,

define €, = ci-m , where m

i Ci Ci

€, = B'ex‘:« Ul i=1,2,..., [3.2]
where Ul = ')’l-l-:[')’l |X‘,Z|]. Let us assume that the following conditions hold,
EIV?|X 2] = EIU*] = 0%, [3.3]

3




¢ = E[e)ﬂe)’“] is positive definite (p.d.). [3.4]
Define & = n_lzie)“e)‘“. We can construct the following unfeasible estimate:
B=8"nTe_ e [3.5]

1 X1y’

Under [3.1], [3.3] and [3.4], B is asymptotically normal with asymptotic

variance

172 1

AsyVar(n'?%(B-B)) = o2~ [3.6]

Chamberlain (1992) has shown that [3.6] is a -semiparametric asymptotic
bound for model [3.1l. Heckman (1986) and Engle et al. (1986) proposed
feasible estimates of B using splines, but Rice (1986) proved that the rate of

. -1/2
convergence for these estimates was slower than n

. Chen (1988) proposed an
estimate of B based on a piecewise polynomial estimator of the unknown
function O, whereas Chen and Shiau (1991) proposed a two-stage spline
smoothing estimate of B. They both proved that with those estimators the
negative result reported in Rice (1986) disappears. Speckman (1988} and
Robinson (1988) proposed feasible estimates of B by estimating the conditional
expectations in € and £ -the same approach which we have applied in this
paper-. Robinson (1988) proved that it is possible to obtain asymptotically
efficient semiparametric estimates of B using higher order kernels weights in
a random-design model. Speckman (1988) obtained similar results in a
fixed-design model, and his results also applied to the random-design model
when considering bias and variance of the estimator conditional on X,Z.
However, the asymptotic properties of their estimates are derived assuming
that 8 and the density function of Z are smooth. These assumptions can not be
justified when regressors are discrete. In this case, we can employ the
estimates defined in the previous section to construct a feasible estimate for
the vector of parameters B.

Using the estimate defined in [2.4] we can obtain residuals

t:cl = Q‘-mcl, [3.7]

for any random variable ¢, where rﬁcf ﬁcl(zl). Using these estimated

residuals for §l= Yl,X‘ it is possible to construct feasible estimates for ¢,
B and o‘z. However, it is necessary to make a previous trimming: according to
i i i =Z) = m = 0, m_= 0.
[2.4], if i is an observation such that EH”I(Zk Zl) 0, then m_, Xt
Therefore, those observations must not be taken into account in order to

estimate the parameters of interest. So, let us define the random variable




I| = I(Ek=|1(2k=2|)>0). (3.8]
We can now construct

b= n“):lemé;nzl, [3.9]

B = 6“n"2|£x]?:w1|, [3.10]

¢“=nlp(E -BE . . [3.11]

The estimate B achieves the semiparametric bound [3.6] under certain

regularity conditions which are stated in the following theorem.

THEOREM 2: 1If [2.1], [3.1], [3.3], [3.4] hold,
ElU*)<w, ENX1*<o and (Y X2 (Y X ,Z ) are
i.i.d. random vectors, then

d

V2318l 25-g) —3—5 N(O,I).

n

PROOF: See appendix. ]

Note that, unlike Robinson (1988), it is not necessary to assume
independence between regressors and regression errors. In addition, no
smoothing is required to prove this theorem and the feasible estimate is

conditionally unbiased: note that if I‘ = 1 then,

zjmwnj(zi)e(zj) = 8(Z). [3.12]

Therefore,
€, = B'Xl+6(2‘)+U‘-):J$‘WnJ(Z‘)({3’XJ+9(ZJ)+Uj) = B’ex|+cm. [3.13]

Hence,

~ ac]l =lea A A

B=B8+¢n 218x18U1I|’ [3.14]
and

E[(B-B)|(X ,Z), i=],..n] = O. [3.15]

Conditional unbiasedness does not hold when regressors are continuous and
smoothers are used for computing conditional expectations (see Robinson 1988
and Speckman 1988). Consistent estimates of conditional expectations with
discrete regressors can also be obtained using smoothers, ‘as Bierens (1983,
1987) has proposed. Our approach avoids the choice of a smoothing value and,
on the other hand, if smoothers are used, [3.12), and then [3.15], do

not necessarily hold.




As noted in section 2, when the support of Z contains many different
points and the sample size is small, it may be convenient to smooth. For

instance, variables like "age" take many values and, in small samples, many
observations are likely to be thrown out when computing B. Hence, the actual
sample size will decrease dramatically. There are at least two ways to solve
this problem in practice,

1) Redefine Z by grouping the observations into intervals (so that the
number of possible values for Z is small) and construct 8 according to [3.10].

2) Estimate the parameters of interest using a nonparametric estimate
which depends on a smoothing value, i.e., estimate &, B and 0‘2 with 3, § and
o2 -estimates defined in the same way as & B, and &% but using the
nonparametric estimate defined in [2.8], instead of the nonparametric
estimate defined in [2.4].

This latter procedure produces estimates which have the same asymptotic
behaviour as the estimates which do not use smoothers. Specifically, in the
same way as corollary 1.2 was deduced from theorem 1, it is straightforward

to obtain the following corollary from theorem 2.

COROLLARY 2.1: If [2.1]1, l2.6], {2.7], [2.9], [3.1],
[3.3], [3.4] hold, E[U‘J<w, EUXI‘<w and (Y X2 ),
...,(Yn,Xn,Zn) are i.i.d. random vectors, then,

nl/25'1$1/2(§-l3) 4 N(O,I). =

Therefore, when all regressors in the unknown part of the regression
function are discrete, asymptotically there is no difference between the
estimate which uses smoothers and the one which does not. With a small sample
size, it seems reasonable to smooth if Z may take many different values, but
otherwise smoothing is not an advantage.

The homoskedasticity assumption can be easily removed but the asymptotic

variance will change in the usual way (see e.g. Eicker 1963 and White 1980).

4. PARTIALLY LINEAR REGRESSION WITH CONTINUOUS AND DISCRETE REGRESSORS

Now, suppose that [3.1] holds for a random vector Z such that,

Z= (2“),2(2)), where Z'V cR® is discrete and

(4.1}

(2)

Z cRY is absolutely continuous; g+s = r, g1, szl

[
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1ven ( 1" 1) (YI Xx zl) (Yl 1 xl lz 2z (Ym'xm’zm)'

ees (Yn,xn,Zn) we need to define a nonparametric estimate of mcl. Suppose we
are given a sequence of weights based on the continuous regressors

(2) (2) . . e . : .
{V (z ),j=1,...,n}. For simplicity, in our semiparametric problem we

use a 'leave—one-out" estimator. So, if we define ZiIZ) = (2:2),...,2:2, :f:,
(2)) we can then construct, for j=i,
w (2= 2z, ‘2’)1(2“’ Y WO AR A D) (¢ Al AP MU )
Now, we estimate mcl by
ﬁlCl = ):Flc (Zm :2))’ [4.3]

for any random variable {. Using these estimates it is possible to construct
estimated residuals & p o as in [3.7], and estimates of the parameters of

interest &, B and &% as in [3.9], [3.10] and [3.11] respectively, where now,
_ 2) ., (2) M_ (1)
- I(Zkl’nk(Z_l ,Zl )I(Zk -Zl )>bn), [4.4]

where bn is a sequence of positive real numbers which we will refer to as
"sequence of trimming values" for obvious reasons.

We want to obtain a similar result to theorem 2 for the model defined in
this section. We will use Nadaraya-Watson kernel estimators (Nadaraya 1964,
Watson 1964) for the continuous regressors (though the result probably holds
for many other nonparametric weights as well). In this case, [4.2] becomes

(2) ,(2) (1) (1 (2)

22 %8 1024207, k(2| 2.%)/a )I(Z z‘”

W (Z )= K((Z ). [4.5]

where K is a function from R? to R defined by K(z) = k(zl)k(zz)'--k(zq), Kk is
a function from R to R which we will name "kernel function" and a is a
sequence of positive real numbers which we will refer to as "sequence of
smoothing values".

Some additional assumptions are required to prove that a similar result
to theorem 2 holds when there are both continuous and discrete regressors in
the unknown part of the model. Given deD, we can consider the following
functions from R? to R: ed(u) = o(d,u), Ed(u) E E[X|Zm=d, Z(Z)su.] and fd(u.)
is the conditional probability density function of z? given Zm=d. We will
suppose that these functions verify certain differentiability. conditions.

Inparticular, we require the following assumptions,

IteN: 6 € 5 I gfq, f,e r;"’:q uniformly in D. [4.5]




The kernel function k verifies that k € J(th. [4.6]

The class of functions §’Z and J(w are defined in Robinson (1988), and

"uniformly in D" means that the constants which appear in the definition of
(1)

the class of functions §’Z must not depend on the value d taken by Z
Basically, we have to assume that ed, Ed and fd are all, at least,
(tq-1)-times partially differentiable functions which can be expanded in a
"Taylor series with a local Lipschitz condition on the remainder, fd are all
bounded functions whose partial derivatives are also bounded, ed have all
finite moments of order 4 and ¢, have all finite moments of order 2. In
addition, we assume that a kernel of order 2tq is used in the continuous
nonparametric estimatjon.

Certain conditions on the rate of convergence of the sequences of

trimming values and smoothing values are also required, specifically,

bn — 0, Nb;4a:tq — 0, Nb:ai —> o (as n — ). [4.7]

The following theorem justify asymptotic inferences on B.

THEOREM 3: If [3.1], 13.3], [3.4], [4.1], [4.5],

[4.6], and [4.7] hold, U is independent of (X,Z),

Enxi*<eo and (Y ,X.,Z )XY ,X ,Z) are iid.
1 1 1 n n n

random vectors, then,

n'%6718Y%3-3) —2— N(O,I).

PROQF: See appendix. ]

Observe that when there are not continuous regressors (i.e. g=0), theorem
3 is a weaker result than theorem 2 (because in the latter one it is not
required independence between regressors and regression errors), whereas when
there are not discrete regressors (i.e. s=0), theorem 3 is a weaker result
than Robinson’s theorem (Robinson, 1988). In fact, it would be possible to
establish theorem 3 in a way entirely similar to Robinson's theorem, but we
have preferred this weaker version because its proof is somewhat simpler and
our assumption [4.7] is more understandable than Robinson’s assumption ix.

As noted in previous sections, when the support of the discrete variable
Z“) contains many different values, it may be necessary to smooth in the
discrete part as well. Provided that the kernel used with the discrete
regressors Y and the smoothing values hn used with the discrete regressors

satisfy [2.6] and [2.7] a similar result to corollary 2.1 may be easily

8




.,

o,
i

{1

()

deduced from theorem 3.

In practice, assumption [4.5] is impossible to verify as the functions
fd, ed and Ed are not known. However, in most situations it will be reasonable
to assume certain differentiability in these functions so that theorem 3 may
apply. If we suppose that an=0(n-c) and bn=0(n-d) -what is often the case-,

then it is easy to verify that convergence conditions in assumption

.[4.7] can be interpreted in terms of the set of inequalities for ¢ and d,

c>0, d>0, 1-2tqc+4d<0, 1-2qc-4d>0. [4.8]

This means that in a two-dimensional c¢/d graphic, the point (c,d) chosen must
lie within the triangle whose vertices are (1/q(1+2t),(2t-1)/4(2t+1)),
(1/4tq,0), and (1/2q,0). Table 1 contains admissible values (c,d) for
different ¢ and t. These values have been selected trying to maintain ¢ as
close as possible to (q+4)-l, which is the optimal smoothing value in
nonparametric problems. The choice of d is less important than the choice of ¢
because we can trim as few observations as desired by choosing bl_‘1=Mn-d for a
suitable M.

TABLE 1
t=1 t=2 tz3
g=1 c=2/5, d=1/21 c=1/4, d=1/9 c=1/5, d=1/7
q=2 c=1/5, d=1/21 c=1/6, d=1/13
qz3 c=1/(2q+1), d=1/8(q+1)

In semiparametric models, the choice of a is not as critical as in
nonparametric ones. Hence, we think that in most empirical applications this
table may be used as a reference, though further research on the choice of

smoothing values in this model is of interest.

Departamento de Estadistica y Econometria, Universidad Carlos III de Madrid,
28903-GETAFE, Madrid, Spain.




APPENDIX

Proof of theorem 1: We must prove that the sequence of weights defined in
[2.2] satisfies conditions 1-5 of Theorem 1 in Stone (1977). It is
straightforward to see that Stone’s conditions 2 and 3 hold. The other

_conditions also hold as it is proved in propositions 1-3 below.

Proposition 1.1.- For every nonnegative Borel function f from R? to R
with E[f(Z)] < «,

E[ZJWnJ(Z)f(ZJ)] = 2Elf(2)] for all nz1

1A

PROOF: E[ZJWnJ(Z)f(ZJ)] E[ZJZf(ZJ)I(ZJ=Z)/(1+ZkI(Zk=Z))]

RE[2f(Z )I(Z =Z)/(1¥], I(Z =Z))]

E(2f(Z )I(Z=Z JEIn/(2+ _ I(Z =Z))|Z,Z 1)

If we define B: = I_I(Z=2)), and p_= P(Z=z), then

E[n/(2+B:)] = Z:;;[";’] p:(l-pz)n-l-sn/(Z'Ps)

p-lzn—l[ n ]ps+l(1_pz)n-s-l

1A

z &s=0(s+]| "2

p-lzn-l [ n ] ps+l(1_pz)n-s-l

z Ts=0

1A

s+1|72

-1 n, . ~1
P, [1-(1 pz) ] = p,-

Therefore, if P(Z) is the positive discrete random variable with support

B = (pl:iei)} and probability function P(P(Z)=pl) = p, v plefB,

—-— n r—
El ZJW,,,(Z)f(Z,)] = E(2f(Z2 )I(z=Z DEIn/(2+} _ I(Z =2))|Z,Z 1)
= E[2£(Z )1(Z=Z )P(2)"']
= E(2f(Z JEIN(Z=Z )P(2)"'| 2,1} = E[2f(Z)]. .
Lemma !.- Let Z be a discrete random variable with support D and
probability function P(Z=i) = P, vV ieD, let 2’21""’Zn be i.i.d. random

variables and meZ, mz0 (m fixed). Then
lim P(ZkI(Zk=Z)=m) =0

PROOF: P(Z:kI(Zk=Z)=m) = zzEfDP(Z=Z)P(2kI(Zk=Z)=mIZ=Z)' But 2’(1(2:2)

conditional on Z=z has binomial distribution B(n,pz), where szP(Z=z). Hence,

10
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Define P, = max p, <1land q € (po,l).
zeD

(If P, = 1, Z is degenerate and lemma 1

is straightforward). Then, V k21 and V zeD, ( pz/( 1-q))kspz/( 1-q)<pz/p°. Hence,

1K _ k ok _ k-1
Loep(P/ @) <} o P/, = Vpy » Leqp P, < (-0)/p < (1-9)*7/p, »

>y _ -m| n n-m s s+m+]
PRLI(Z,=2Z)=m) = Z:=0[ m ] [ s ](_1) Leep P, "

n -m|n—-m s B+MN n
<[ m ]z“ [s ](-1) (1-g)*™ = [m ](J-q)

s=0

Proposition 1.2.- L W_(2) —*— 1.

m _n-m

q = o(1). =

PROOF: F W_(Z) = I(ZkI(Zk=Z)==0). Then, for €0, P(IZkWnk(Z)-1|>e) =

P(LW_(2)=0) = P(} I(Z =2)=0) = o(1) (by lemma 1)."

Proposition 1.3.- Vn(Z,Zl,...,Z ) =
n

PROOF: Given €>0,

m?x an(Z) —P 5o

— — - —l - -
P(IVn|>e) = P(EkI(Zk-Z#O, (ZkI(Zk-Z)) >e) = P(0<2kI(Zk-Z)<1/e).

Define 3(e) = N n (0,1/¢), which is a finite subset of N. Then,

P(O<Y, I(Z =Z)<1/€) =

(because the summatory has a finite

to 0 by Lemma 1).

z:meB( e)

number

P(Y,I(Z, =Z)=m) = o(1),

of terms,

each converging

Proof of Corollary 1.2: By [2.5] we know that 3 M : lixli2M = y(x) = 0. By [2.7]
there exists n such that nzn u/hnzM and then (3~ZJ)/hn Z,MI(';#ZJ). Hence if

nzn , then ﬁ’nj(a) E an(a) and r71€(3) = r?zc(a). a
Proof of Theorem 2: From equation [3.14], it suffices to prove that
“1/2e n A _ o -172 _a 2 d 2
nVPpe & 1= nT L (X - U DT —S— N(0,670), [A.1]
¢ —— &, [A.2]
ot P gt [A.3]

Propositions 2.1-2.4 below prove

11

[A.1];

[A.2]

and

[A.3]

may be easily




proved employing similar arguments.

-1/2

Proposition 2.1.- Elin zl(mm-rﬁx])ﬁ'zmIlllz = o(1).

-1/2

PROOF:  Eln™"* L(m_-m )m I1° =

-1 -~ 2~2 -1 - -~ , 0 -~
n ZJ;:IE[ “le le" mUlII]+ n Z:lzj, j*lE[IlmUl(le-le) (mXJ mXJ)mUJIj]

PN 2~2 ~ ~ , -o\ ~
E["mxx mx1ll muxIl] + (n I)E[Ixmm(mxx-mm) (mxz mxz)muzIz]'
We will prove that the first term converges to 0 and the second one is 0.
For the first term, applying Cauchy-Schwartz inequality,
' ~A 242 aA 242 A & ad 20172
E[llmx1 mxx" mu111] = E["mxx-mm" mu1] < {Ellmx1 mx1“ E[mm]} ,

Ellmxl-r'ﬁxllll‘ converges to O (applying corollary 1) and fﬁm is an estimate of

m, E[U1|Zl] = 0, and hence E[rﬁ:l] converges to O applying also corollary 1.

As for the second term, defining 3§ (Xl,...Xn,Zl,...,Zn}, then,
E“xm01(mx1-mx1) (mxz-mxz)muzIz] =
~ , _n 2 _
Elzj‘j‘=311(mx1-mx1) (m =M JUW (ZOW (Z)I] =
a y —A 2 =
(n-2)E(Il(mx]-mx1) (mx2 mxz)wns(zl)wns(zz)IzE[UsI5]}
2 , _
o(n Z)EJ,jatlzl,]#zE[Il(mxl Xj) (mx2 Xl)WnJ(Zl)Wnl(Zz)Wns(Zl)Wns(Zz)I2].
All terms in this last expression are 0 because if W:](ZI,ZZ,...,Zn) =
an( Zl)Wm( Zz)wns( Zl)Wns( Zz);\ then,
17, Iz =Z ) if Z =Z =Z =Z =2
W*I(Z ,Zz,...,Z ) ={ k=2" Tk 1 1 T2 T3y
o n 0 otherwise.
Therefore:
E[Il(mXI—XJ) (mxz—Xi)an(Zl)Wnl(Zz)Wns(Zl)Wns(Zz)Iz] =
* s _ -
E(1W (Z,Z .2 )L E[(m =X )(m ~X)|Z .2 ]}
»* , _
E[Ilwj1(21’Zz""’zn)Iz(mxl_me) (mx2 mx])] = 0.
(The last equality holds because the variable whose expectation is taken is 0;
note that, if w’:l(zl,zz,...,zn) * 0, then Z=Z and Z,Z, therefore
(m, -m, )'(m,-m ) = (E[x|zl]-1-:[x|zj]) (E[X|Z ]-EIX|Z 1) = 0). =

Proposition 2.2 Enn"’“}:l(xl—mx])ﬁmrl||2 = o(l).

-1/ - 2, _
PROOF:  Ellin 2zl(xl m om I1°] =
-1 2~2 -1 ba A _ -
n ZlE[IIXI-mx]II m I1+n Z:IZ:J'HHE[Il(Xl le) mmmUJ(XJ me)IJ]
2~2 A ~ _
E[1X -m 1 mUlIl] + (n J)E[Il(}(l mx1) mmmuz(x2 mxz)Iz].
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242 yA A _
I-:[IIXl mx1" mu111] + (n—I)E[Il(xl-mXI)m muz(x2 m_ )M _].

Ul X2 2

The first term converges to 0 as in prop. 2.1. As for the second one,

E[Il(xl-mx]) muxmuz(xz-mxz)Iz] =

vy _ 2
15[):’J‘=311(xl m, (X, mxz)U,Wn,(zl)Wn,(zz”z]

2 ,
c (n-Z)E(Iana(Zl)Wna(Zz)IzE[(Xl-mXI) (xz-mx2)|zl.....zn]} = 0. .

Proposition 2.3.~ Eln™*F(m -m JUI1? = o(1).

. -1/ _a 2_
PROOF:  Elin 2zl(mxi U1 1

~ 2,,2 A y -A
I-:‘[Ilmxl mx1" UlIl] + (n-I)E[IlUl(mXI-mXI) (mx2 mxz)UzIzl.

The first term converges to 0 (applying CS inequality as in previous
propositions) and the second one is 0 (because Ul and Uz, conditional on 3,

are independent random variables whose expectation is 0). .

Proposition 2.4.- n'l/zzi(xl—mx])UlIl — 5 N(0,c%).

PROOF: By Central Limit Theorem it follows that,
n-l/zz](xl-mx’)ul —2 5 N(O, ¢%9),
(because E[(X-mx)U]=E((X-mx)E[U|X,Z]) = 0 and E[(X-mx)Uz(X-mx)'] = o%8).
' On the other hand:
Eln” 2 (X -m U (1-1 1% = n”'(LEI ICX =m, U 1%(1-1)] +
LI, =
= E[N(X -m U 1%(1-1 )] = ¢°ELIX -m_02(1-1)].

E[U](X]-mx])’(Xj-me)UJ(I-Il)(I-IJ)] =

(The term with double summation is 0 because (Ul,Xl,Zl) and (UJ,XJ,ZJ) are
independent when i#j). Applying now Cauchy-Schwartz inequality and lemma 1 we

conclude that this final term converges to 0. .

Proof of Theorem 3: The following lemmas will be used in the proof. They are
versions of Robinson’s (1988) lemmas adapted to the mixed case. Throughout

this section, Robinson will mean Robinson (1988).

Lemma 2.- Let Z be a random variable which satisfies [4.1], f the

d
“)--d, k a function

conditional probability density function of z'? given Z
from R to R such that IIuk(u)ldu«n. K a function defined by

K(u ,...,u )=k(ul)-°-k(u) and a a sequence of positive real numbers. If
1 q q n

13




ueR) then,

(2) (1)

h(d,u) = E[|K(Z""-u)/a)|1(Z d)] O(a:).

(1)

Lq1=p(z ‘12

PROOF:h(d,u)=P(z* ' 3)E( 1 K((z'*2u)ra )l |2 d)JI K((v-c)/a )\ £ (vdv

(1)

= MP(Z "=d) [J-Ik(u)ldu] a:SCa:, where C=M Ulk(u)ldu] <oo. u

Lemma 3.- Under the same conditions as in lemma 2, if g(d,u) is a
function from R* to R such that E[1g(Z",Z'*)I] < » and Z, z, are iid.
random vectors, then,

(1) (2) (2)_ (2)

E[Ig(Z K((Z, )a )|1(z“’-z“’)1 = 0(a).

PROOF; If h(Z“) Z(Z)) is as defined in lemma 2, then

E”g(z(l) (2))K((z(2) (2))/ )II(Z(I) Z(l))]
= Ellgz",z *)|Elk(Z,?-z 2 va )12} =z )| Z0,z 2 1)
= E[Ig(z“’ z:2)Inz",z'*)1 = calEl gz, z.*)Hi1 = cal
(the last inequality holds by lemma 2) where C’= CEllg(Z:”,ZiZ))Ikeo. =

Lemma 4.- If the assumptions of theorem 2 are satisfied then,

E[(]—II)I = o(1).

PROOF: First we prove that if deD, then E[(I-Il)|2(1)=d] converges to O.

Let 2(2)(d) be the conditional r. v. Z given Zm= d. For any meN, we have,

El(-1)|2"=a] = P(a/na:)zj:zz(z“’ d)K((z‘z’(a) zP)sa) < b) s

(1 (2) (2)

P((1/nal)E) 12 =)K((Z P (@rzP()ra ), T, I(z“’-d»m) +

(1)

P(T). I(z‘”-d)sm) = P(L,_1(Z=d)sm) + P(z';=21(z;”=d)/n<bn) +

PSS 12V =aadE_ 2 K22 @22 @)ra b, T 12 =apm).

Note that the last term is the nonparametric kernel estimator of the
conditional density fa when there are Z" I(Z“)—d) observations. Therefore,
applying Robinson’s prop. 4, we know that thls term converges to O when the
number of observations converges to w. This decomposition of E[(I- I)|Zm d]
proves that it converges to 0: given €>0, there exists m, such that if mzm0
then the last term is less or equal than £€/3; as a result from lemma 1, then
there exists rzo?.m0 such that if nzn0 then P(Z:s I(Zm-d)sm Xe/3. And as
Z" I(Zm—d)/n converges in probability to P(Z

=d), then there exists n
such that if nzn, then P(Zn I(Z“)-d)/n<bn) <e/3. Hence, if anax(nl,no) then

14
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such that if nzn then P(Z I(Z“)

El(1-1 )| 2" =d)<e.
Finally, given &>0, there (exists PcD, P finite, such that
P(Z"cD-P)xs/2; then, EI-1)] s T, _oEI(-1)|2%=a] + P(z"cD-P) and the

first term can be made arbitrarily small because it is a finite sum of terms

-d)/n<bn) <e/3. Hence, if nzmax(nl,no} then

each one converging to 0. =

Lemma S.- Under the same conditions as in lemma 2, let g(d,u) be a
function from R* to R and define gd(u) = g(d,u). If there exist positive real
numbers A, «, p such that V deD (and uniformly in d) fd € 5’;’:, g, € §’z and k €

J(“m (where l-IKAs=l, m-IKu=m and n=min(u,A+1)) then,

E\E(g(Z "2 *))-g2"\2.* DKz M2 )2 s1zMz V| 2102 ) 1 %=0(a 24 ™)

PROOF: Similar to lemma 3's proof and applying Robinson’s lemma 5 to

(2) (2)

E(|El(g(Z,* (d)-g (2| (d)))x((zj2’(d)-z;2’(d))/an)|°‘1, where 2:2)(d) is the

conditional random varijable 2:2) given Zf”=d. =
1

We can .now prove theorem 3. 1t will suffice to prove that

N Zzi(xx-r?zx])(Ux-rﬁUl)Ii — 5 N(0,0%0), [A.4]
-1 _" e ) P
N Z‘(X‘ mx‘)(X] mxx) I —— ¢, [A.5]
NV (X -m_ X6 -m )] —E—s0 [A.6]
(S TS ' M T - T ’ )
& —P [A.7]

All of these results can be proved in a similar way to Robinson’s propositions
1-15 though under our assumptions some of his propositjons may be omitted and
apply Cauchy-Schwartz inequality may be used instead. (Also observe that
Robinson uses an ordinary nonparametric estimator, whereas we use a
"leave-one-out" one, so the summations in our proof only run from 2 to n). The
lemmas in Robinson’s appendix B do not apply any more; instead, the lemmas

specified above must be employed. For instance, [A.4] follows from

N-VZZ‘(X"’TIX‘)U,I‘ —2 5 N(0,0%) (applying CLT, Cauchy-Schwartz

inequality and our previous lemma 4 in a similar way to Robinson’s prop. 15);

-1 A 202 -1_-q, -2 . . , )
N E[Zkllmx‘ mx‘ll U‘I‘] O(N a bn ) (as in Robinson’s prop. 10);

NTEIL IX -m VR T ]

-1 -q, -2 . . N .
uly O(N a bn ) (as in Robinson’s prop. 11);

15




NTEIT 1 -m 2

-1/2

120%17 = o(N'a% % a®'% %) (as in Robinson’s prop. 8);
i i n n n n

3

N IIZ](mx]-ﬁm)r/ﬁUiIillzL) 0 (applying Cauchy-Schwartz inequality and

similar results to Robinson’s prop. 5 and 13);

N_I/ZIIZI(El-rﬁg])/ﬁU]II||2—p—> 0 (applying Cauchy-Schwartz inequality and

.similar results to Robinson's prop. 2 and 13).

[A.5], [A.6] and [A.7] follow in a similar way. [
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