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I. INTRODUCTION 
c 

This paper is concerned with inference in the semiparametric partially linear 

regression model (SPLR model, hereafter) when some (or all) variables entering 

in the unknown part of the regression model are discrete. 
Ic 
IThe SPLR model has received considerable attention in Statistics and 

Econometrics; e.g. Green et al (1985), Denby (986), Engle et al (986), Rice 

(986), Heckmari" (986), Chen (988), Speckman (988) and Robinson (988), to 

mention only a few. A common feature of the proposed parameter estimates of 

the SPLR model is that the unknown part of the regression model must be smooth 

and, therefore, regressors entering in this part must be nonstochastic 

variables or absolutely continuous random variables. In econometrics practice, 

few observable variables are continuous. Many of them are dummies, qualitative 
c 

variables or counts; and other variables, though continuous in nature, are 

recorded at intervals and can be treated as discrete. 

When regressors are discrete, a mere average of those observations of the 

dependent variable with the same regressor value will yield a consistent 
c 

conditional expectation estimate. We show, in the following section, that 

sequences of weights constructed in this way are universally consistent in the 

sense of Stone (977). This result suffices to obtain, in Section 3, a Central 

Limit Theorem (CLT) for the coefficient estimates of the SPLR model when allle 

;c 

regressors in the unknown part of the model are discrete. This CLT does not 

require smoothing and, furthermore, it does not require either independence 

between regressors and regression errors, a feature typically present when 

regressors are continuous. In Section 4, we extend the methodology introduced 

in Section 3 to the case when there are both discrete and continuous 

regressors in the unknown part of the model. The proposed nonparametric 

weights are the product of the weights introduced in section 2, which apply to 

the discrete regressors, and higher order kernels weights, which apply to the 
c 

continuous regressors. Proofs are confined to an appendix. 

2. NONPARAMETRIC CONSISTENT WEIGHTS WITH DISCRETE RE(;RESSORS 

Let Z be a discrete random variable. That is, 

3 VclRq
, V countable set, such that P(ZcV)=l. [2.11 

c 



Let O;;,Z ), ...,0;; ,Z) be independent and identically distributed (LLd.)
1 1 n n 

random vectors. The vector of conditional expectations m l;;(') E El l;; IZ=,J can 

then be estimated by, 

[2.2] 

where, hereafter, summations run from 1 to n unless otherwise specified, and 

[2.3] 

where I(A) is the indicator function of event A and, hereafter, we arbitrarily 

define % to be O. We prove that, under regularity conditions, this sequence 

of weights is consistent in the sense of Stone (1977) 

THEOREM 1: If 12.1l holds, EIIl;;lI
r <lXI and (l;;,Z), 

(l;; ,Z ), ...,(l;; ,Z ) are LLd. random vectors, then: 
1 1 n n
 

r

Elln\(Z)- ml;;(Z)lI = 00). 

PROOF: See appendix. • 

In semiparametric problems, we need nonparametric estimates evaluated at 

each data point. Universal consistency results have been used by Robinson 

(1987) and Newey (1990) in other semiparametric problems. Such results require 

to estimate Ell;; IZ J without using (l;;,Z) as in Stone (977). So, given
I I 1 I 

(l;; ,Z ),(l;; ,Z ), .. ,(l;; ,Z ),(l;; ,Z ), .. ,(l;;,Z), LLd. random vectors,
I I 1 1 1-1 1-1 1+1 1+1 n n 

m,. (,) = Ell;; IZ =,J is estimated by, ­
.,,1 I 1 

where now Wn/') = I(Zt')/(Lk:;ai:/(Zk=,». The next corollary follows 
)

immediately from theorem 1. 

r
COROLLARY 1.1: If 12.1l holds, EIIl;;lI <lXI and (l;;l,Zl)' 

•.. ,(l;; ,Z ) are LLd. random vectors, then 
n n 

Ellm,. (Z )-m,. (Z )lI r = 00). •." 1 1 ." 1 1 

This corollary will be used in next section for proving asymptotic 

normality of a feasible estimate of the SPLR model coefficients, and it is 
(~) i 

also applicable to other semip~rametric problems. 

The sequence of weights introduced requires no smoothing value. However, 

it is easy to deduce from theorem 1 a similar property for weights which 
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depend on a smoothing value. Specifically, let's define 

[2.5] 

where 
I/J is a function from IRq to IR with bounded support, [2.6] 

(h )clR+ is a sequence which converges to 0 as n --+ CIO. [2.7] 
n 

We can construct 

[2.8] 

A	 similar result to theorem 1 can be proved with the additional assumption 

3 fJ.>O such that 'r:I z ,z eV IIz -z 11 ~ fJ.XJ. [2.9]
1 2 1 2 

As a corollary	 to theorem 1 we have 

COROLLARY 1.2: If [2.1l, [2.6], [2.7], [2.9] hold,
 

EII<lI
r 

<CIO and «,Z), « ,Z ), ...,« ,Z ) are !.i.d.
 
1 1 n n 

random vectors, then, 

Ellm«Z)- m«Z)lI
r 

= 0(1). 

PROOF: See appendix. • 

A similar result has been obtained by Devroye and Wagner (980) when 

regressors are continuous and by Bierens (1987) when there are both continuous 

and discrete regressors. The advantages and disadvantages of smoothing in 

semiparametric models with discrete regressors will be discussed in section 3. 

3. PARTIALLY LINEAR REGRESSION WITH DISCRETE REGRESSORS 

Suppose (Y,X ,Z) is an IRxlRPxlRq-valued observable random variable such that: 

E[Y IX,Z] = (3'X	 + 8(Z) a.s. [3.1] 

where f3 is an IRP-valued unknown parameter vector and 9 is an unknown real 

function. Given a random sample ((Y ,X ,Z), L=1,••.n} from (Y,X,Z), if we 
I 1 1 

define £l' E <-ml" where ml' E E[< IZ ], then,
",I I ",I '" I I I 

£ = (3'£ + U i=1,2, ... ,	 [3.2]
VI XI I 

where U = Y -E[Y 1X ,Z ]. Let us assume that the following conditions hold,
I I I I I 

222
E[U IX ,Z ] = E[U ] = C" <CIO,	 [3.3]

I I I I 
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[3.4] 

- -1
Define ~ = n LC c'. We can construct the following unfeasible estimate: 

I Xl XI 

--1 -1 
{3=~ n LC C. [3.5]

I XI YI 

Under [3.1l, [3.3] and [3.4], {3 is asymptotically normal with asymptotic 

variance 
1/2 - 2 -1AsyVar(n ((3-(3» = IT ~ • [3.6] 

Chamberlain (992) has shown that [3.6] is a semiparametric asymptotic 

bound for model [3.11. Heckman (986) and Engle et al. (986) proposed 

feasible estimates of (3 using splines, but Rice (986) proved that the rate of 
U-1/2convergence for these estimates was slower than n . Chen (988) proposed an 

estimate of (3 based on a piecewise polynomial estimator of the unknown 

function 9, whereas Chen and Shiau (991) proposed a two-stage spline 

smoothing estimate of (3. They both proved that with those estimators the 

negative result reported in Rice (986) disappears. Speckman (988) and 

Robinson (988) proposed feasible estimates of f3 by estimating the conditional 

expectations in C and C -the same approach which we have applied in this 
YI XI 

paper-. Robinson (988) proved that it is possible to obtain asymptotically 

efficient semiparametric estimates of (3 using higher order kernels weights in 

a random-design model. Speckman (988) obtained similar results in a 

fixed-design model, and his results also applied to the random-design model 

when considering bias and variance of the estimator conditional on X,Z. 

However, the asymptotic properties of their estimates are derived assuming 

that 9 and the density function of 2 are smooth. These assumptions can not be 

justified when regressors are discrete. In this case, we can employ the 

estimates defined in the previous section to construct a feasible estimate for 

the vector of parameters (3. 

Using the estimate defined in [2.41 we can obtain residuals 

[3.71 

for any random variable <,' where m<t m</z/ Using these estimated 

residuals for <= Y,X it is possible to construct feasible estimates for ~, 
I I I 

f3 and IT
2

• However, it is necessary to make a previous trimming: according to 

[2.4], if i is an observation such that ~ .. 1(2 =Z) = 0, then m= 0, m= O. 
'"'k~1 k I YI XI 

Therefore, those observations must not be taken into account in order to 

estimate the parameters of interest. So, let us define the random variable 
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[3.8]
 

c' 
We can now construct 

#lo4l=n-1"'''' 
~e e'l 
L.I xI XI I' 

[3.9] 

[3.10] 

c 
A2 
eT 

-1 A A A 2= n L(C -(3'c ) 1 . 
I VI XI I 

[3.11] 

The estimate ~ achieves the semiparametric bound [3.6] 

regularity conditions which are stated in the following theorem. 

under certain 

c 
are 

hold,[3.4][3.3],[3.1],[2.1 ], 

and (Y ,X ,2 ),...,(Y ,X ,2 )
1 1 1 n n n 

LLd. random vectors, then 

THEOREM 2: If 

EfU
4 J<r¥J, EIIXII

4<r¥J 

c 
PROOF: See appendix. 

d
---.+) N(O,]). 

• 

c 
Note that, unlike Robinson (1988), it is not necessary to assume 

independence between regressors and regression errors. In addition, no 

smoothing is required to prove this theorem and the feasible estimate is 

conditionally unbiased: note that if 1 = 1 then,
I 

c 
Therefore, 

L W (Z )8(Z )
j:;t I nj i j 

= 8(Z ).
I 

[3.12] 

c 
VI 

= (3'X +8(Z )+U -L W (2 )((3'X +8(2 )+U )
I I I j:;tl nj I j j j 

=(3'£ +£ . 
XI Ul 

[3.13] 

c 

c 

Hence, 
~ ~ -1 -1 A A 

(3 = (3 + cl> n Lee 1,
I XI UI I 

[3.14] 

and 

Conditional unbiasedness does not hold when regressors are continuous and 

smoothers are used for computing conditional expectations (see Robinson 1988 

and Speckman 1988). Consistent estimates of conditional expectations with 

discrete regressors can also be obtained using smoothers,' as Bierens (1983, 

1987) has proposed. Our approach avoids the choice of a smoothing value and, 

on the other hand, if smoothers are used, [3.12], and then [3.15], do 

not necessarily hold. 

E[(~-(3) I(X ,Z), i=l, ...nJ = O. 
I I 

[3.15] 

c 5 

c 
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As noted in section 2, when the support of Z contains many different 

points and the sample size is small, it may be convenient to smooth. For 

instance, variables like "age" take many values and, in small samples, many 

observations are likely to be thrown out when computing ~. Hence, the actual 

sample size will decrease dramatically. There are at least two ways to solve 

this problem in practice, 

1) Redefine Z by grouping the observations into intervals (so that the 

number of possible values for Z is small) and construct ~ according to [3.10]. 

2) Estimate the parameters of interest using a nonparametric estimate 

which depends on a smoothing value, Le., estimate ~, 13 and (1'2 with ~, 13 and 
-2 "'2A lA. 

(1' -estimates defined in the same way as ~, 13, and (1' but using the 

nonparametric estimate defined in [2.8], instead of the nonparametric 

estimate defined in [2.4]. 

This latter procedure produces estimates which have the same asymptotic 

behaviour as the estimates which do not use smoothers. Specifically, in the 

same way as corollary 1.2 was deduced from theorem 1, it is straightforward 

to obtain the following corollary from theorem 2. 

COROLLARY 2.1: If [2.1], [2.6], [2.7], [2.9], [3.1],
 

[3.3], [3.4] hold, ElU
4

]<00, EIIXII 4<00 and (Y,X,Z),

1 1 1 

...lY ,X ,Z ) are LLd. random vectors, then, 
n n n 

--~) NCO,I).d • 

Therefore, when all regressors in the unknown part of the regression 

function are discrete, asymptotically there is no difference between the 

estimate which uses smoothers and the one which does not. With a small sample 

size, it seems reasonable to smooth if Z may take many different values, but 

otherwise smoothing is not an advantage. 

The homoskedasticity assumption can be easily removed but the asymptotic 

variance will change in the usual way (see e.g. Eicker 1963 and White 1980). 

4. PARTIALLY LINEAR REGRESSION WITH CONTINUOUS AND DISCRETE REGRESSORS 

Now, suppose that [3.1l holds for a random vector Z such that, 

Z = (Z(1),Z(2», where Z(l)clR s is discrete and } 
[4.Il 

Z(2)clR Q is absolutely continuous; q+s = r, q~1, s~1. 

6 
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c 
Given (y ,x ,Z ), (y ,x ,Z ), ••• , (Y,X,Z), (Y,X Z ) 

I I I 1 1 1 1-1 I-I I-I 1+1 1+1' 1+1 ' 

••• , (Yn'Xn'Zn) we need to define a nonparametric estimate of m~I. Suppose we 

are given a sequence of weights based on the continuous regressors 
(2) ( 2 ) • 

{V
nj
(Z" ),J=l, ... ,n). For simplicity, in our semiparametric problem we 

use a "leave-one-out" estimator. So, if we define Z(2) = (Z(2) •••,Z(2) Z(2) 
-I I' I-I' 1+1'(2) • 

...,Z ), we can then construct, for j*L,
n 

W (Z )=V (Z(2),Z(2) )1(Z(J)=Z( 1»)/)' V (Z(2) Z(2) )1(Z(I)=Z(I»).c [4.21nj I nj -I I j 1 L..tc* I nk -I' I k 1 

Now, we estimate m~I by 

m. - '"' r W (Z(I) Z(2») [4.31~I - L.j* I '" j nj l' 1 ' 

for any random variable ~. Using these estimates it is possible to construct 

estimated residuals £~I' as in [3.71, and estimates of the parameters of 
• A A "'2 
mterest ~, {3 and er as in [3.91, [3.101 and [3.))1 respectively, where now, 

[4.41 

where b is a sequence of positive real numbers which we will refer to as 
n 

"sequence of trimming values" for obvious reasons. 

We want to obtain a similar result to theorem 2 for the model defined in 

this section. We will use Nadaraya-Watson kernel estimators (Nadaraya 1964, 

Watson 1964) for the continuous regressors (though the result probably holds 

for many other nonparametric weights as well), In this case, [4.21 becomes 

where K is a function from IRq to IR defined by K(z) = k(z )k(z ) •• ·k(z), k is 
I 2 q 

a function from IR to IR which we will name "kernel function" and a is a 
n 

sequence of positive real numbers which we will refer to as "sequence of 

smoothing val ues". 

Some additional assumptions are required to prove that a similar result 

to theorem 2 holds when there are both continuous and discrete regressors in 

the unknown part of the model. Given de'D, we can consider the following 

functions from IRq to IR: S (u) 5 sCd,u), ~ (u) 5 E{X IZ(I)=d, Z(2)=U] and f (u)
d d d 

is the conditional probability density function of Z(2) given Z(l).d. We will 

suppose that these functions verify certain differentiabiIity conditions. 

Inparticular, we require the following assumptions, 

3 telN : S e ~4 t e §': , f e ~(ll uniformly in 'D. [4.51
d tq' "'d tq d tq 
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The kernel function k verifies that k eX. [4.6]
2tq 

The class of functions ~(X and X are defined in Robinson (988), and 
IJ. W 

"uniformly in :0" means that the constants which appear in the definition of 

the class of functions ~(X must not depend on the value d taken by Z ( 1 ~ 
IJ. 

Basically, we have to assume that 8d' E;d and f d are all, at least, 

(tq-1)-times partially differentiable functions which can be expanded in a 

-Taylor series with a local Lipschitz condition on the remainder, f are all 
d 

bounded functions whose partial derivatives are also bounded, 9 have all 
d 

finite moments of order 4 and ~d have all finite moments of order 2. In 

addition, we" assume that a kernel of order 2tq is used in the continuous 

nonparametric estimation. 

Certain conditions on the rate of convergence of the sequences of 

trimming values and smoothing values are also required, specifically, 

4 2
b ~O, Nb a ~ 00 (as n ~ (0). [4.7] 

n n n 

The following theorem justify asymptotic inferences on (3. 

THEOREM 3: If [3.I], [3.3], [3.4], [4.ll, [4.5], 

[4.6], and [4.7) hold, U is independent of (X,Z), 

EIIXII 
4 

<00 and (Y ,X ,Z ), ... ,(Y ,X ,Z )
1 1 1 n n n 

are LLd. 

random vectors, then, 

d
--~) N(O,I). 

PROOF: See appendix. •
 

Observe that when there are not continuous regressors (Le. q=O), theorem 

3 is a weaker result than theorem 2 (because in the latter one it is not 

required independence between regressors and regression errors), whereas when 

there are not discrete regressors (Le. s=O), theorem 3 is a weaker result 

than Robinson's theorem (Robinson, 1988). In fact, it would be possible to 

establish theorem 3 in a way entirely similar to Robinson's theorem, but we 

have preferred this weaker version because its proof is somewhat simpler and 

our assumption [4.7) is more understandable than Robinson's assumpti.on ix. 

As noted in previous sections, when the support of the discrete variable 

Zll) contains many different values, it may be necessary to smooth in the 

discrete part as well. Provided that the kernel used with the discrete 

regressors I/J and the smoothing values h used with the discrete regressors 
n 

satisfy [2.6] and [2.7) a similar result to corollary 2.1 may be easily 

8 
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deduced from theorem 3. 

In practice, assumption [4.51 is impossible to verify as the functions 
r-, f ,9 and ~ are not known. However, in most situations it will be reasonable'_../ d d d 

to assume certain differentiability in these functions so that theorem 3 may 
-c -d •apply. If we suppose that a =O(n ) and b =O(n ) -what IS often the case-, 

n n 

then it is easy to verify that convergence conditions in assumption 

. [4.7] can be interpreted in terms of the set of inequalities for c and d, 

c>o, d>O, 1-2tqc+4d<O, 1-2qc-4d>O. [4.8] 

This means that in a two-dimensional cid graphic, the point (c,d) chosen must 

lie within the triangle whose vertices are (llq(l+2t>,(2t-l)14(2t+l», 

(l14tq,O). and (l12q,O). Table contains admissible values (c,d) for 

different q and t. These values have been selected trying to maintain c as 

close as possible to (q+4)
-) 

, which is the optimal smoothing value in 

~) 
nonparametric problems. The choice of d is less important than the choice of c 

because we can trim as few observations as desired by choosing b =Mn-d for a 
n 

suitable M.
 

TABLE I
 

t=l t=2 t~3 

q=l c=215, d=1I21 c=114, d=1I9 c=115, d=1I7 

q=2 c= liS, d=1121 c=116, d=1113 

q~3 c=1I(2q+ 1) , d=1I8(q+l) 

In semiparametric models, the choice of a is not as critical as in 
n 

nonparametric ones. Hence, we think that in most empirical applications this 

table may be used as a reference, though further research on the choice of 

smoothing values in this model is of interest. 

Departamento de Estadistica y Econometria, Universidad Carlos 111 de Madrid, 

28903-GETAFE, Madrid, Spain. 
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APPENDIX
 

I 

Proof of theorem I: We must prove that the sequence of weights defined in ::J 
I 

[2.2] satisfies conditions 1-5 of Theorem in Stone (1977). It is 

straightforward to see that Stone's conditions 2 and 3 hold. The other 

conditions also hold as it is proved in propositions 1-3 below. 

Proposition 1. 1.- For every nonnegative Borel function f from IRd to IR 

with E{f(Z)] < co, 
E[E W (Z)[(Z)J ~ 2E[[(Z)J for all n2:1 

j nj j 

)
PROOF: E[EjWn/Z)[(Z/J ~ EfE/[(Z/I(ZrZ)/O+EkI(Zk=Z))] 

= nEf2[(ZI)I(ZtZ)/O+EkI(Zk=Z))] 

= £(2[(Z )I(Z=Z )E[n/(2+E
n 

I(Z =Z))IZ,Z ])
J 1 k=2 k 1 

If we define B* == En I(Z =z)). and p == P(Z=z), then 
n k=2 k z 

E[n/(2+B*)J = L- J (n-1)ps(J_p t- l - sn/(2+5) 
n s=o 5 z z 

~ P-J~-I ( n ) pS+J(J_p )"-S-I
 
z Ls=O 5+1 z z
 

:) 

~ p-JEn-l( n )pS+I(J_p )"-S-I 
z s=o 5+1 z z 

= p-J[J-(J-p )n] ~ p-J. 
z z z 

Therefore, if P(Z) is the positive discrete random variable with support 

'B = (p:ie'D) and probability function P(NZ)=p) = p 'V pe'B,
J J I 1 

EfE W (Z)[(Z)J ~ £(2[(Z )1(Z=Z )£fn/(2+En I(Z =Z))\Z,Z ])
j nj j J 1 k =2 k 1 

~ E[2[(Z )I(Z=Z )NZ)-l) 
J 1 

.) 
= £(2[(Z )EfI(Z=Z )p(zr11 Z ]) = £[2f(Z )). • 

I 1 1 1 

Lemma 1. - Let Z be a discrete random variable with support 2) and 

probability function P(Z=j) = P. 'V fe2), let Z,Z ,•••,Z be LLd. random 
I 1 n 0 

variables and meZ, m~O (m fixed). Then 

l im NE I(Z =Z)=m) = 0 
n~OO k k 

PROOF: P(~ I(Zk=Z)=m) = ~eVP(Z=z)P(~I(Zk=Z)=m IZ=z). But ~I(Zk=Z) 

conditional on Z=z has binomial distribution B(n,p ), where p EP(Z=Z). Hence, 
z z
 

p(} I(Z =Z)=m) = E p ( n ) pm(J_p )"-m
 
.~ k zeV z m z z 

10 J 
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=[ m+l( n )(L-m(_VII(n-m) 11)
ZeV Pz m 11=0 s Pz 

= L-m( n)(n-m) (-ll(!' .+m+l).
11=0 m s "'zeV Pz 

o 

Define Po = ma:: P z < 1 and q e (po'V, (If Po = 1. Z is degenerate and lemma I 
zE.u 

is straightforward). Then, IrJ k~l and IrJ zeV, (p 10-q)lsp 10-q)<p Ip . Hence, 
z z z 0 

[ ECf"\(P 10-q)l < \' Cf"\ pip = lip .. [ Cf"\ pk < O-qllp < 0-ql-1/p .. 
z.u z Lze.u zoo zE.u zoo 

pfl' I(Z =Z)=m) = L-m( n)(n-m) (-1/([ lI+m+l)
. "'k k 11= 0 m S zEV p z 

o 

Proposition 1.2. - [W (Z)
k nk 

_---'-P_~) 1. 

PROOF: 

P([kWn/Z)=O) 

[W (Z) = I([ I(Z =Z)~O). Then, for c>O,
k nk k k 

= P([kI(Zk=Z)=O) = o(V (by lemma O. . 

P( I[ W (Z)-ll >c)
k nk 

s 

• 

Proposition 1. 3. ­ V (Z.Z .....Z ) ;: 
n 1 n 

max W (Z)
J nJ 

-....;.p--+) O. 

PROOF: Given c>O, 

P( IV I>c) = p(!' I(Z =Z)~O, ([ I(Z =Z»-l>c) = P(O<!' I(Z =Z)<llc). 
n "'k k k k "'k k 

Define :)(c) = IN () (O,llc), which is a finite subset of IN. Then, 

~) 

~" 

NO<[ I(Z =Z)<llc) = [ ""( )p([ I(Z =Z)=m) = 00).
k k me", C k k 

(because the summatory has a finite number of terms, each converging 

to 0 by Lemma O. • 

Proof of Corollary 1.2: By [2.5] we know that 3 M : IIxll~M .. t/J(x) = o. By [2.7] 

there exists nsuch that n~n ~ IIlh ~M and then (~-Z )Ih ~ MI(~~Z). Hence if 
O""n 'J n' 'J 

n~n , then at (,) ;: W (,) and m,J,) ;: m,.(,). • 
o nJ nJ ~ ~ 

-, 

Proof of Theorem 2: From equation [3.14], it suffices to prove that 

n-1/1: £ £ I = n-1/2[ (X -m xv -m )1 _d_~) N(0.0"2~). 
1 XI UI I 1 I XI I U I I 

"'2 p 2
0" ---=------+) 0" • 

[A.I] 

[A.2] 

[A.3] 

Propositions 2.1-2.4 below prove [A.l]; [A.2] and [A.3] may be easily 
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proved employing similar arguments. 

-1/2 A A 2 
Proposition 2.1. - Elln E/mXI-mXI)mU/III = o(V. 

PROOF: Ell -1/2 ~( A)A 111 2 
n £..1 mxl-mXI mU! I =
 

1 2
 n- r: E[lIm -m 11 2m I]+ n-IE E E[I m (m -m )'(m -m )m 1] = 
1=1 XI XI UI I I l, l~1 I UI XI XI Xl xJ uJ J
 

A 2 A 2 ,..,..,.. ,..
 
E[lIm -m 11 m 1] + (n-VE[I m (m -m )'(m -m )m 1].


XI Xl UI 1 I UI XI Xl· X2 X2 U2 2
 

We will prove that the first term converges to 0 and the second one is O.
 

For the first term, applying Cauchy-Schwartz inequality,
 

A 2A2 A 2A2 A 4 A4 1/2

E[lIm -m 11 m 1] ~ E[lIm -m 11 m ]:s {Ellm -m 11 E[m]} ,

Xl Xl Ul 1 Xl Xl Ul Xl Xl Ul 

A A4 
Ellm -m 11 converges to 0 (applying corollary I) and m is an estimate of

Xl Xl Ul 
m E E[U 1Z ] = 0, and hence E[m

4
] converges to 0 applying also corollary 1.

Ul 1 1 Ul
 

As for the second term, defining ~ = {X ,...X ,Z ,...,Z J, then,

1 n 1 n 

E[I m (m -m )'(m -m )m 1] = 
1 Ul XI XI X2 X2 U2 2 

2
E[r: 1 (m -m )'(m -m )U W (Z)W (Z)I ] = 

J=3 1 XI XI X2 X2 J nJ 1 nJ 2 2 

(n-2)E(1 (m -m )'(m -m )W (Z)W (Z)I EW21~]) = 
1 Xl Xl X2 X2 n3 1 n3 2 2 3
 

2
cr (n-2)E .. E E[I (m -X )'(m -X)W (Z)W (Z)W (Z)W (Z)I].
J, J.-l I, 1~2 1 Xl J X2 I nJ 1 nl 2 n3 1 n3 2 2 

If
All terms in this last expression are 0 because if W (2,Z ,...,2) = 

JI 1 2 n 

W (Z)W (Z)W (Z)W (Z), then,
nJ 1 nl 2 n3 1 n3 2
 

" liEn I(Z =Z ) if Z =Z =Z =Z =Z
 ,... {k=2 k 1 1 2 3 J I -.)',W (Z,Z , ... ,Z ) = - , 

JI 1 2 n 0 I
otherwise. 

Therefore: 
E[I (m -X )'(m -X)W (Z)W (Z)W (Z)W (Z)I] = 

1 XI J X2 i nj 1 nl 2 n3 1 n3 2 2 
N 

E{I W (Z ,Z , ••• ,Z )1 E[(m -X )'(m -X )IZ , ••• ,Z ]) = 
1 JI 1 2 n 2 XI J X2 I 1 n
 

N ,

E[I W (Z,Z , .•. ,Z )1 (m -m ) (m -m )] = o. 

1 J I 1 2 n 2 Xl XJ X2 XI 

(The last equality holds because the variable whose expectation is taken is 0; 
If 

note that, if W (Z,Z , ••• ,Z) ~ 0, then Z =Z and Z =Z, therefore 
JI 1 2 n 1 J 2 I 

)(m -m )'(m -m ) E (E[XIZ ]-E[XIZ ])'(E[XIZ ]-E[XIZ]) = 0). • 
Xl XJ X2 XI 1 J 2 I 

-1/~ A 2
Proposition 2.2 Elln L (X -m )m 1 11 = 0(1).

I I XI UI I 

-1I~ A 2
PROOF: E[lIn L (X -m )m 1 11 ] = 

I I XI UI I
 

n-l~ E[IIX -m 11 2m2 1 ] +.n -lE E .. E[I (X -m )'m m (X -m )1] =
 
£..1 I XI UI I I J, J.-I I I XI UI UJ J XJ J
 

2 A2 A A
 
E[IIX -m 11 m 1] + (n-VE[I (X -m )'m m (X -m )I].

1 Xl Ul 1 1 1 Xl UI U2 2 X2 2 
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c 

2m2
EllIX -m 11 1 J + (n-VE[I (X -m )'m m (X -m )I J.

I XI UI I 1 I Xl Ul U2 2 X2 2 

The first term converges to 0 as in prop. 2.1. As for the second one, 

c 
Ell (X -m )'m m (X -m )I J = 

I I XI UI U2 2 X2 2 
2= EEt: 31 (X -m )'(X -m )V W (Z)W (Z)I J 

J= I I XI 2 X2 J nJ I nJ 2 2 
2

•= er (n-2)E{I W (Z)W (Z)I E[(X -m )'(X -m )IZ ,...,Z J) • O.
I n3 I n3 2 2 I XI 2 X2 I n c 

. . -I/~ A 2ProposltlOn 2.3. - Elln L (m -m )V 1 11 = 00). 
o I XI XI I I 

-1I~ A 2PROOF: Ell n L (m -m )V 1 11 = 
I XI XI I I 0c 

A A A22
E l Um -m 11 V 1 J + (n-1)E[I V (m -m )'(m -m )V 1 J.

XI XI I I I I XI XI X2 X2 2 2 

The first term converges to 0 (applying CS inequality as in previous 

propositions) and the second one is 0 (because V and V, conditional on ~, 
I 2 

are independent random variables whose expectation is 0). • 

d 2Proposition 2.4. - n-1I2L (X -m )V 1 ------+) N(O,er ~). 
i I XI I I 

PROOF: By Central Limit Theorem it follows that, 

d 2n-111: (X -m )V ------+) N(O, er ~),
I I XI I 

2(because E[(X-m )VJ=E{(X-m )E{U IX,Z]) = 0 and E[(X-m )V (X-m )'J = er2~). 
X X X X 

On the other hand: 
-1/2 2 -I 2

Elln L/X -m )V/1-1 I )11 = n (LjE{I(XI-mXI)VI" O-II)J +
I xl 

= + LILJ.J~IE{u/XI-mx/(X J-mx/V/I-IIXI-I/J 

2
= E{II(X -m )V 11 

20-1 )J = er ElIIX -m 11 20-1 )J.
I XI I I I XI I 

~o 

(The term with double summation is 0 because (V,X,Z) and (V,X,Z) are
I I I J J J 

independent when i~ j), Applying now Cauchy-Schwartz inequality and lemma 1 we 

conclude that this final term converges to O. • 

Proof of Theorem 3: The following lemmas will be used in the proof. They are 

versions of Robinson's (1988) lemmas adapted to the mixed case. Throughout
'.

this section, Robinson will mean Robinson (1988). 

Lemma 2. - Let Z be a random variable which satisfies [4.11, f the 
d 

. f Z< 2). Z< I) dconditional probability densit-y f unctIOn 0 gIven = , It a function 

from IR to IR such that JIuk(u) IdU<IJl, K a function defined by 

K(u ,... ,u )=k(u ) ...k(u) and a a sequence of positive real numbers. If 
I q I q n 
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uelR) then, 

(1) (2) I (1) (1) JPROOF:h(d,u)=NZ =d)E[IK((Z -u)/a)1 Z =d)=NZ =d) IK((v-c)/a )If (v)dv 
n N d 

:5 MNZ ( 14:d) (J Ik(u) IdU) qa::5ca:, where C=M (J Ik(u) IdU) q<co. • 

Lemma 3. - Under the same conditions as in lemma 2, if g(d,u) is a 

function from IRr 
to IR such that E[lg(Z(l),Z(2»1l < co and ZI' Z2 are LLd. 

random vectors, then, 

PROOF: If h(Z(l),Z (2» is as defined in lemma 2, then :) i 

E[ Ig(Z(l) Z( 2) )K((Z( 2) -Z( 2) )/a ) II(Z(l)=z(l») 
1'1 2 1 n 21 

= E( Ig(Z(l) Z( 2» IE[K((Z(2) -Z( 2) )/a ) II(Z(l)=Z(l) IZ(l) Z( 2) lJ 
1'1 2 1 n 21 1'1 

= E[lg(Z~l),Z:2»lh(Z(]),Z(2»):5 Ca~E[lg(Z~l),Z~2»1l = C'a: ) 

(the last inequality holds by lemma 2) where C'= CE[ 1g(Z(l) ,Z( 2) ) I )<co. •1 1 

Lemma 4. - If the assumptions of theorem 2 are satisfied then,
 

E[(1-1 ») = 00).

1 

PROOF: First we prove that if deD, then E[(1-1 ) IZ(l)=d) converges to O.
 
(2). (l) 1


Let Z(2)(d) be the conditional r. v. Z given Z = d. For any melN, we have,
J J J 

E[(1-1 )IZ(l)=d) = P((J/naq)r:: I(Z{J)=d)K((Z(2)(d)-Z(2)(d»/a) < b) :5 
1 n J=2 J J 1 n n ..~ 

Note that the last term is the nonparametric kernel estimator of the 

conditional density f when there are r: I(Z(l)=d) observations. Therefore, 
d J=2 J 

applying Robinson's prop. 4, we know that this term converges to 0 when the 

number of observations converges to co. This decomposition of E[(1-1 ) IZ(l)=d)
• 1 

proves that it converges to 0: given c>O, there exists m such that if m?;mo 0 
then the last term is less or equal than c/3; as a result from lemma I, then 

there exists n?;m such that if n?;n then PCI:: I(Z(l)=d):5m )<c/3. And as 
o 0 . 0 ~=2 J 0

L I(Z(l)=d)/n converges in probability to NZ( =d), then there exists n 
J=2 J (l) 1 

such that if n?;n then Nr:: 1(Z =d)/n<b) <c/3. Hence, if n?;max(n,n ) then 
1 J=2 J n 1 0 

14 J 
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c 

such that if n~n then Nr.n I(Z(l)=d)ln<b) <c/3. Hence, if n~max(n,n } then 
1 J=2 J n 1 0 

El(1-I I) IZ(l)=dJ<c. 

c 

c 

~' 

'"". 

Finally, given 0>0, there exists 'Pe'D, l' finite, such that 
(l) (l)

NZ e'D-1' )<012; then, El(1-I )J ~ r. <DEl(1-I ) IZIl)=dJ + NZ e'D-'P) and the 
1 de".. 1 

first term can be made arbitrarily small because it is a finite sum of terms 

each one converging to O. • 
Lemma 5.- Under the same conditions as in lemma 2, let g(d,u) be a 

function from IR
r 

to IR and define g (u) = g(d,u). If there exist positive real 
d 

numbers A, ex, Il such that 'V de'D (and uniformly in d) f E ~~, g E ~cx and k E 
d 1\ d Il 

1< (where l-l<A~l, m-l<ll~m and T/=min(Il,A+1») then,
I+m-I 

El E[(g(Z(lIZI 2 1)_ (ZWZI 2 1»K((ZI 21Z 121)la )I(ZllbZW IZlllZI 21 j ICX"O(aCX1q+l) I) 
1'1 g 2' 2 1 2 n 1 2 1'1 n 

PROOF: Similar to lemma 3's proof and applying Robinson's lemma 5 to 

E(IE[(g (ZI21(d»_ (ZI2)(d»)K((ZI2)(d)_ZI21(d»la )l lX) where Zl 2 I (d) is the 
d 1 gd 2 1 2 n' 1 

conditional random variable Z{ 2 I given Z{J)=d. •I i 

We can ·now prove theorem 3. It will suffice to prove that 

d 2N-lI~ (X -m )(V -m )1 ----,l) N(O,O' ~), [AA]
i I XI I VI i 

-1 ,.. ,.. 
_....:.p--?) ~, [A.5]N r./XI-mxlXI-mx/11 

N-lI~ (X -m )(e -me )1 _....:.p-~) 0, [A.6]
I I XI I i I 

/\2 P 2 
0' )0'. lA.7] 

All of these results can be proved in a similar way to Robinson's propositions 

1-15 though under our assumptions some of his propositions may be omitted and 

apply Cauchy-Schwartz inequal ity may be used instead. (Also observe that 

Robinson uses an ordinary nonparametric estimator, whereas we use a 

"leave-one-out" one, so the summations in our proof only run from 2 to n). The 

lemmas in Robinson's appendix B do not apply any more; instead, the lemmas 

specified above must be employed. For instance, [AA] follows from 

d 2N-I/~ (X -m )V 1 N(O,O'~) (applying CLT, Cauchy-Schwartz
I I XIII 

inequality and our previous lemma 4 in a similar way to Robinson's prop. 15); 

-I 2 2 -I -q -2A

N Elr. IIrn -m 11 V 1 J = O(N ab) (as in Robinson's prop. 10);
I XI XI I Inn
 

-I 2/\ 2 -I -q -2)
N Elr. IIX -rn 11 m 1 J = O(N a b (as in Robinson's prop. 11);
I I XI VI Inn 
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-1 ~ 2 2 -1 -q -2 2tq-2

N El'£. II~ -m~ 11 U I] = O(N a b + ab) (as in Robinson's prop. 8);

I I <,,1 I Inn n n
 

I

N- /2I1'£. (m -m )frt I 11 2 ~ 0 (applying Cauchy-Schwartz inequality and
 

I XI XI Ui I
 

similar results to Robinson's prop. 5 and 13);
 

N-
1

/211'£. (~-m~)frt I 11 2 ~ 0 (applying Cauchy-Schwartz inequality and

1 1 <,,1 UI I
 

.similar results to Robinson's prop. 2 and 13).
 

[A.S], [A.6] and [A.?] follow in a similar way.
 • 
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