
Software Architecture

OCL2Trigger: Deriving active mechanisms for relational databases using

Model-Driven Architectureq

Harith T. Al-Jumaily *, Dolores Cuadra, Paloma Martínez

Computer Science Department, Carlos III University of Madrid, Av. Universidad 30, Leganés, 28911 Madrid, Spain

Keywords:

Integrity constraints

Model-Driven Architecture

CASE tools

Active database systems

OCL

Sequence diagrams

a b s t r a c t

Transforming integrity constraints into active rules or triggers for verifying database consistency pro

duces a serious and complex problem related to real time behaviour that must be considered for any

implementation. Our main contribution to this work is to provide a complete approach for deriving

the active mechanisms for Relational Databases from the specification of the integrity constraints by

using OCL. This approach is designed in accordance with the MDA approach which consists of transform

ing the specified OCL clauses into a class diagram into SQL:2003 standard triggers, then transforming the

standard triggers into target DBMS triggers. We believe that developing triggers and plugging them into a

given model is insufficient because the behaviour of such triggers is invisible to the developers, and

therefore not controllable. For this reason, a DBMS trigger verification model is used in our approach,

in order to ensure the termination of trigger execution. Our approach is implemented as an add in tool

in Rational Rose called OCL2Trigger.

1. Introduction

The introduction of the MDA approach (Model Driven Architec

ture) (OMG, 2007) in Software Engineering has provided a good

support and consolidation for the automatic generation of code

for application development. MDA focuses on using models as ap

proaches to cover the life cycle of software development. The het

erogeneity and interoperability between systems with different

implementation platforms are resolved by using this approach.

In the context of databases, we believe that MDA is very ambi

tious because we find that when developing databases, conceptual

models used in methodologies such as Elmasri and Navathe (2000)

and Teorey (1999) are more efficient in expressing the semantics of

the real world. Nevertheless, in the transformation of a conceptual

model to a logical model, a development problem arises because

conceptual elements do not have similar logical elements, that is,

the semantics associated to one conceptual element cannot corre

spond to one relational element. Multiplicity constraints are a clear

example of this.

As part of the solution to the development problem, a Computer

Assisted Software Engineering (CASE) tool is used to support soft

ware design practices (Budgen and Thomson, 2003). In this work,

we are interested in database development CASE tools such as

Objecteering/SQL (2007) and Rational Enterprise Edition (2003).

These platforms try to help database developers in different phases

of design. Nevertheless, these tools are frequently simple graphical

interfaces and do not completely carry out the design methodology

that they are supposed to support.

Therefore, in our approach, the MDA approach has been

adapted to implement the OCL2Trigger tool, which is used to en

hance the transformation rules of the conceptual into the relational

schema. The Relational model is considered because most database

methodologies agree that it is useful for transforming the concep

tual into a logical schema. The OCL2Trigger is plugged into the Ra

tional Rose CASE tool, and can automatically transform the OCL/

UML constraints into target DBMS triggers.

Although OCL is an object constraint language, we are inter

ested in converting these constraints into relational database lan

guage as many organizations still use this type of database

system. In addition, most important commercial object oriented

database systems, such as ORACLE use relational tables for saving

their objects. Thus, we believe that it is worth doing more work re

lated to relational databases, especially in the context of the active

mechanisms because in order to achieve best performance, these

mechanisms are implemented as part of the database schema

rather than in the application. Additionally, embedding integrity

constraints in the database schema rather than in external applica

tions is better for preserving logical data independence (Türker and

Gertz, 2000).

q This work is part of the ‘‘Software Process Management Platform: Modelling, reuse

and measurement”. TIN2004/07083 project.

* Corresponding author.

E-mail addresses: haljumai@inf.uc3m.es (H.T. Al-Jumaily), dcuadra@inf.uc3m.es

(D. Cuadra), pmf@inf.uc3m.es (P. Martínez).

1

Nota adhesiva
Published in: Journal of Systems and Software, 2008, vol. 81, n. 12, p. 2299-2314

Nevertheless, because trigger implementation is more compli

cated than procedural implementation, we have detected that

transforming integrity constraints into triggers is insufficient be

cause the behaviour of triggers is invisible and needs to be verified.

Therefore, besides the transformation of integrity constraints into

triggers, our OCL2Triggers tool creates UML sequence diagrams

to verify the interaction of these triggers with themselves and with

the other elements in the schema. These contributions make our

approach useful, practical and intuitive in managing triggers.

The trigger system is specified according to the recent SQL:2003

standard that revises all parts of SQL99 and incorporates new

features (ISO/IEC 9075 Standard, 2003). A trigger is a named

event condition action rule that is activated by a transition in

the database state. Every trigger is associated with a table and is

executed whenever an event occurs to modify that table. An event

is a DML statement (Delete, Insert, and Update (Attribute)) issued

against a table. Once a trigger is activated and its condition is eval

uated as true, the predefined actions are automatically executed. In

this work, we denote the triggers of the SQL:2003 standard as

Trigger:2003.

The rest of this work is organized as follows: in Section 2, re

lated works are presented; in Section 3, the MDA adaptation for

our approach is explained. Section 4 explains how the OCL2Trigger

tool is designed and implemented. In Section 5, some conclusions

and areas for future development are presented.

2. Related work

Different approaches have been applied to transform integrity

constraints into active rules. Some of these approaches reject up

dates when the violation occurs, and the initial state before up

dates is restored (Decker et al., 2006). Another approach is that

in which inconsistency states are detected first but consistency is

restored by issuing corrective actions that depend on the particular

constraint violation. Such works are Ceri and Widom (1990) and

Ceri et al. (1994) in relational, and Ceri and Fraternalli (1997) in ob

ject oriented databases.

In some works, such as Ceri and Widom (1990), a general

framework is described for transforming constraints into active

rules for constraint maintenance. They define a general language

for expressing integrity constraints, and transformation rules are

used to convert integrity constraints into active rules. The contri

bution in Türker and Gertz (2000) is very important in our work

because they issued some simple rules that are independent of a

particular commercial system. These rules implement triggers

based on constraint specifications by using Tuple Relational Calcu

lus (Elmasri and Navathe, 2000). In this work, we will specify the

transformation rules based on constraint specifications by using

OCL. Our approach agrees with the proposal in Olivé (2003) that

introduced OCL as a method for facilitating the definition of integ

rity constraints in conceptual schemas as constraint operations. In

this proposal, constraints have been introduced in the conceptual

schema as operations without defining any rules to specify the

transformation of these operations into a logical schema.

On the other hand, a trigger is a SQL procedure that is automat

ically invoked by the DBMS to respond a specified event. During

the invocation process, a trigger can cascade the activation of

one or more other triggers, including itself. The final database state

should not depend on the order in which these triggers are chosen

for the execution. This problem becomes more complicated when

users need to add new triggers to existing ones because adding

new triggers may produce undesired and unexpected behaviour.

Therefore, when working with triggers we always need to verify

trigger execution. The verification of trigger execution is a major

problem that makes application development a difficult task, i.e.

database developers need to make an additional effort to verify

the behaviour of triggers. The objective of this verification is to

guarantee the termination and the confluence of trigger execution

(Paton and Díaz, 1999).

Termination means that the execution of any set of active rules

must terminate. This is needed to avoid cycling in the execution. A

set of activated rules is confluent if the final state of the database is

independent of the order in which activated rules are executed

(Baralis and Widom, 2000). The non termination state is a major

problem that produces an error causing the execution of the trans

action to abort.

Many works have been done in the area of static termination

analysis. Most of these works such as Paton and Díaz (1999) use

the concept of a Triggering Graph (TG) as approach to detect the

non termination state. The triggering graph was introduced in

Baralis et al. (1993) to detect the non termination state of a set

of activated rules. The termination analyses themselves focus on

identification and elimination rules, which cause infinite execution

in a triggering graph (Hickey, 2000). Redefining this rule and

reconstructing the triggering graph is a good solution for verifying

the termination state of the set of activated rules.

In the last decade, diverse efforts have been developed to re

solve the problem of database development. One of these efforts

is to use the CASE tools for database development. The main

contribution of these tools is to provide automatic processes for

developing all phases supported in a database methodology. Nev

ertheless, the current situation of these tools shows that they pro

vide automatic and graphical user interfaces to reduce manual

work and to make decision making easier. However, the total sup

port of a database development methodology is missing and the

code generated needs to be modified to complete the require

ments. Therefore, tool support is needed to reduce the develop

ment, testing and maintenance effort (Verheecke and Straeten,

2003).

One of the most important phases that should be supported in

these tools is the transformation of integrity constraints into integ

rity maintaining mechanisms. Although, most commercial CASE

tools support the definition of some integrity constraints in the

conceptual schema, not all of these tools provide the support of

maintaining mechanisms to preserve these constraints in the logi

cal phase. Some CASE tools have been studied and the most rele

vant results are shown in Table 1. All of these tools support both

UML modelling and SQL code generation for maintaining integrity

constraints in a relational database. Most of these tools support

only the generation of SQL maintenance mechanisms to enforce

the attribute constraints such as not null, primary key, etc. The

Objecteering/SQL (2007) tool allows the trigger system to map

multiplicity constraints, but only can be used for UML associations.

To be exact, generated triggers conserve only the definition of max

imum multiplicity for insertions, ignoring deletions and updates.

The OCL22SQL tool generates SQL tables and views from a given

UML/OCL model.

Table 1

Generated maintenance mechanisms for enforcing integrity constraints

Tools Maintenance mechanisms type

(ArgoUML, 2007) Attribute constraints included (e.g. not null, primary

key, unique)

(MetaEdit+, 2007) Attribute constraints included

(Objecteering/SQL,

2007)

Allows use of a trigger system to map only the

multiplicity constraints for the UML associations of the

insertions, ignoring deletions and updates

(OCL22SQL, 2007) Generates views to support maintaining integrity

(Rational Enterprise

Edition, 2003)

Attribute constraints included

(Visual Case Tool, 2007) Attribute constraints included

2

In general, the current CASE tools have no strategy for trans

forming integrity constrains into SQL code, and in particular trig

gers. If there is one that has this strategy, it does not have any

way of verifying the interaction of the generated triggers with

themselves and with the other elements of the schema.

One of our objectives is to implement a tool following the

phases proposed in MDA software development which transforms

the OCL constraints into triggers. The MDA phases are denoted as

follows: specifying OCL constraints in the UML class diagram,

transforming the OCL constraints into SQL:2003 standard triggers,

and transforming the standard triggers into target DBMS triggers.

In addition, this tool can represent and verify the trigger execution

by using UML sequence diagrams. This tool is considered as a pro

posal for filling some of the gaps that commercial CASE tools leave

during database development.

We are conscious that there are many publications and tools in

the field of integrity constraints and active database systems. Nev

ertheless, the main contributions of our work are:

� Our approach joins the UML aspects that have been widely

accepted and supported by many CASE tools with the relational

database aspects that have ample propagation in the commer

cial DBMS. The approach is developed within a relational data

base framework because many proposals in the context of

object oriented databases respond completely to the active sys

tem development such as that demonstrated in the previously

related works.

� Certain drawbacks have been detected with the development

tools of active mechanisms. In the case of commercial CASE

tools, most of them do not give a complete support for develop

ing active mechanisms within the relational database. By com

plete support, we mean the development and the verification

of the execution of these mechanisms.

Therefore, our approach not only provides technical support, it

could be considered as a complete solution for generating active

mechanisms from the specification of integrity constraints. More

over, the UML sequence diagram is used to verify the active behav

iour and avoiding non termination which is an added value with

respect to the other CASE tools. In addition, using the Rational Rose

commercial tool makes our approach more accessible and common

than other approaches and research prototypes.

3. Description of the approach

MDA aims to obtain complete (semi)automatic software devel

opment phases. It specifies two principle models; PIM and PSM

(OMG, 2007). The PIM (platform independent model) focuses on

high level business logic without considering the features of the

implementation technology of the system. The PSM (platform spe

cific model) represents the detail of using a specific platform for a

system.

There are three phases for the adaptation of MDA to our ap

proach (see Fig. 1). The first one, called PIM represents the logical

view of the specification of integrity constraints using OCL/UML

into a class diagram. The second one called PSM describes the tech

nology used to build database applications. SQL:2003 is used as a

standard technology to describe the active mechanisms of Rela

tional databases. Finally, the third phase is called Codes which de

scribes the active mechanism technology related to the

commercial DBMS. As well as these phases, we use two transfor

mation models to transform integrity constraints defined by OCL/

UML to trigger code related to a target DBMS; Transforming OCL

to Trigger:2003 Model, and Transforming Trigger:2003 to DBMS

Triggers Model.

In the other hand, as we said in the previous section, the devel

opment of active mechanisms always needs to be verified to guar

antee the termination state of the execution of triggers. Therefore,

the DBMS trigger verification model is used to detect any non ter

mination state in the execution of the generated DBMS triggers.

The sequence diagram is used to help understanding and visualiza

tion of trigger behaviour in the database design phase. According

to our approach, the necessary transformation rules of these three

models are carried out automatically. In the following we will fo

cus on the description of these three models.

3.1. Transforming OCL to Trigger:2003 Model

There are many approaches to constraint classification in data

base literature. Integrity constraints have been classified as static

and dynamic constraints in the Relational model (Elmasri and Nav

athe, 2000). The approach presented by Türker and Gertz (2000)

divides integrity constraints according to the types of enforcement

granularity, i.e. row, table, inter table, and transition constraints.

Our constraints framework initially establishes two types of

constraints:

� Inherent constraints are imposed by the data model itself. These

constraints are not defined by the user; they are defined by the

nature of the model. A schema is well constructed if it fulfils the

inherent constraints of the corresponding model.

� Integrity constraints, also called semantic constraints or user

constraints, are used to define in a systematic manner the busi

ness rules of the discourse universe. Database modifications are

rejected whenever the database final state does not fulfil the

corresponding constraint. Sometimes, predefined actions are

performed to fulfil business rule constraints. Most relational

database systems support procedural mechanisms (such as pro

OCL/UML

SQL: 2003

Triggers

ORACLE

Triggers

DB2

Triggers

MS-SQL

Triggers

etc.

……..

PIM

PSM

Codes

Transforming

Trigger:2003 to DBMS

Trigger Model

Transforming OCL to
Trigger:2003 Model

DBMS Trigger Verification Model

Fig. 1. Applying MDA for our approach.

3

cedures and triggers) to maintain the integrity constraints of the

database. The syntax of these mechanisms depends on the par

ticular characteristics of each DBMS.

Our approach is focused on integrity or semantic constraints

which are divided into two types:

1. Integrity constraints which are expressed directly in a UML

class diagram as relationships between classes (such as, associ

ations, aggregations, generalization, etc.) because they offer

more semantics than others and a greater effort for their

implementation.

2. Integrity constraints which are expressed in a UML class dia

gram using OCL clauses. For example business rules such as

‘‘Married people are of age >= 18”, or ‘‘The salary of an employee

must be less than the salary of a manager”. Although an OCL

expression specifies invariant, pre condition, post condition,

and other types of constraints, in this work the invariant con

straints type is considered. An invariant constraint is a Boolean

expression that can be associated with a class, a type or inter

face in a UML class diagram. OCL invariant constraints are used

also to specify relationship constraints in the corresponding

class although these constraints are already included in a UML

class diagram (Cabot and Teniente, 2006).

In addition, we use an OCL invariant to define relationship con

straints because the OCL2Trigger tool motor processes only OCL

expressions, and sometimes it is impossible to fix the real values

of these constraints without using an OCL expression, as we will

show in this paper.

According to our approach most integrity constraints can be

transformed to trigger but until now our OCL2Trigger tool supports

only the transformation of OCL invariant constraints to a target

DBMS triggers. We hope in future work to be able to include other

types of OCL expression such as pre and post conditions.

Although, triggers are available in most DBMS, unfortunately

the specification of these triggers changes from one DBMS to an

other. There are common components that are valid for almost

database systems. These components usually do not change. To

transform OCL specification to a target DBMS trigger, Trigger:2003

components are used in this work as common components (see

Fig. 2).

Although the current DBMS allow us to use Java for trigger def

initions we consider that the transformation of OCL to SQL is still

necessary because in the context of the Relational model using

SQL, no more effort is needed to use another programming lan

guage, such as Java. In addition, the transformation of OCL expres

sion to a SQL trigger is a straightforward process (1 1) while the

transformation of an OCL invariant to Java requires us to also cre

ate a Java class to represent the OCL invariant, but this class needs

to be invoked using a SQL trigger (Oracle, 2007).

In general, the transformation model of an OCL expression to

Trigger:2003 is a straightforward process. An integrity constraint

contains three basic components which are the same as the three

basic components of a trigger (event, condition, and action). An

event is an operation which is used to modify a database object.

A condition is a logical expression which specifies logical condi

tions on one or several elements of a schema and needs to be ful

filed. An action is an executable behaviour that is invoked when

the corresponding constraint is violated. Besides the basic compo

nents, a trigger has two other components related to its dynamic

behaviour (activation time and granularity). An activation time

specifies when a trigger should be fired, before, or after a triggering

event is produced. A trigger is executed according to its granularity

level. A statement level trigger executes once for each triggering

event, and a row level trigger executes once for each row in the

modified row set.

In the next sections these components will be presented and

how they are derived from the specification of OCL invariants. A

more extensive version of our approach is detailed in Al Jumaily

(2006).

3.1.1. Mapping an OCL invariant to SQL:2003 query

An OCL invariant expression must be true for all instances of

element type at any time. An invariant is a type of Boolean

(OMG, 2007). The formal definition of an OCL invariant is shown

in the following:

Context <class_name> inv <constraint_name>:

<OCL_expression (self)>

Self is an instance of a type (e.g. Company). The context specifies

the class in which an OCL expression is defined. The con

straint_name is a name of an OCL constraint and it will be con

verted to a trigger name. The OCL_expression is a logical

expression that describes a relationship between two expressions.

This expression is evaluated as true if the relationship is fulfiled or

false in the opposite case.

The mapping of the OCL invariant expression to a query is done

directly by using the following SQL:2003 template:

(SELECT * FROM context_table SELF

WHERE NOT OCL_expression)

The context_table of the query is substituted for the class_name

of the OCL. The OCL_expression is mapped using the logical and

mathematical operators of SQL. For example, the mapping of math

ematical operators (, +, *,/) is performed directly. The logical oper

ators (and, or, not, xor) are mapped using counterpart expressions

of SQL.

An OCL invariant clause is used to specify a condition on objects

so if this condition cannot be satisfied, we need to abort the trans

action which leads to the inconsistency in the database state. The

logical negation ‘NOT’ of the original OCL expression is used in

the SQL query because a trigger should be fired whenever the cor

responding OCL expression is not satisfied. For example, a business

rule might be ‘‘the number of employees of a company must al

Trigger name

Activation time

Critical operation
Related table

Granularity

SQL condition

Action

Fig. 2. The SQL:2003 standard trigger syntax.

4

ways exceed 50”. Here, if the number of employees of that com

pany is equal or less than 50, then the corresponding trigger should

be fired to satisfy this constraint.

To convert OCL clauses into SQL queries, some related ap

proaches are considered, for example, Birgit and Heinrich (1999)

where OCL constraints are transformed into SQL Assertion

although current assertions cannot be defined in most commercial

database systems. The similarities between our approach and the

work mentioned above are that we use the OCL invariant main

and basic type patterns and their transformation to SQL queries

in the same way. The differences between the two works, in addi

tion to the use of different mechanisms to enforce OCL constraints,

is that in our work, the patterns are adapted according to our con

straints framework while in the cited work the patterns were spec

ified according to the result type of the OCL expressions. We think

that our study makes the task of classifying the OCL constraints

easier, as well as facilitating the transformation and implementa

tion tasks.

In addition to this, we considered the atomic constraint patterns

used (Wahler et al., 2006) to restrict the fundamental concepts of a

model, e.g., attribute values or relationships between objects. We

adopt some of these constraint patterns to transform PIM to PSM

although in that work these are used to transform the computation

independent model (CIM) into PIM.

In the following sections, we define the transformation patterns

which are used to convert OCL invariant into SQL:2003 query. All

these patterns are derived from the abovementioned formal defini

tion of an OCL invariant:

3.1.1.1. AttributeValueConstraint pattern. This pattern is applied

when a constraint is defined to specify a logical predicate on a tar

get attribute in a class. The formal definition of this OCL pattern is

shown below:

Context <class_name> inv <constraint_name>:

<self.attribute.op. term>

The transformation to SQL query is shown below:

(SELECT * FROM context_table self

WHERE NOT self.attribute.op. term)

The transformation is performed directly. The context_table of the

above query is substituted by the class_name of the corresponding

OCL. The self.attribute and the operator.op. are substituted by the

target attribute name and the counterpart operator of SQL, respec

tively. The principal rules for mapping ‘term’ are shown in the

following:

(a) If the term is a basic type value (e.g. Boolean, Integer, Real

and String), then the term is substituted by the value. For

example, the following expression would specify that the

number of employees of a company must always exceed 50:

Context Company inv numberOfEmployees:

self.numberOfEmployees > 50

According to the above OCL expression the corresponding trig

ger should be fired whenever the number of employees is less

than 50. Applying this rule and the logical negation of the con

straint, the OCL invariant is transformed into the following SQL

query:

(SELECT * FROM Company self

WHERE self.numberOfEmployees <=50)

Although this type of constraint can be enforced using triggers

as well as by using declarative constructors, triggers tend to

consume fewer resources and are much faster than some

declarative constructors such as Check and Assertion (Decker

et al., 2006).

(b) If the term contains associated tables then the mapping is

done by joining these tables by the related keys (Primary

Key = ForeignKey). As shown in the following constraint:

‘‘The budget of a project must not exceed the budget of

the controlling department”.

Context Project inv BudgetDept:

self.budget <=self.department.budget

The transformation to SQL query is shown below:

(SELECT * FROM Project P JOIN Department D

ON P.Deptno = D.Deptno

WHERE p.budget > d.budget)

(c) The operator ‘implies’ does not have a counterpart in SQL so

that it can be mapped using the logical operator AND, and

the logical negation of a constraint is applied to the atomic

expression which becomes directly after ‘implies’. The fol

lowing example shows how a constraint is used to ensure

that every employee over 50 years age gets at least 3000.

Here, the corresponding trigger should be fired whenever

the age of an employee is greater than 50 years and the sal

ary is less than 3000.

Context Person inv EmployeeSalary:

self.age > 50 implies

self.contract.salary >=3000

By applying the previous rule (b) this OCL constraint is trans

formed to a SQL query by joining the associated classes (Person

and Contract) by the related keys. According to (c) the operator

‘implies’ is transformed into AND, and the logical operator ‘>=’

of the atomic expression self.conract.salary >= 3000 is replaced

by its negation ‘<’, the following SQL query shows the transfor

mation of the above OCL:

(SELECT * FROM Person P JOIN Contract C

ON P.Psn = C.Psn

WHERE self.age > 50 AND C.salary < 3000)

3.1.1.2. MultiplicityConstraint pattern. A correct transformation of a

conceptual schema and its constraints to a Relational model is nec

essary to preserve business rules of the discourse universe. Multi

plicity or cardinality constraint is one of the constraints that can be

established in a conceptual schema. Since its introduction by Chen

(1976), the cardinality constraint consists of the minimum and

maximum numbers of entity instances associated in a relationship.

UML multiplicity constraints follow Chen’s style because verifying

the multiplicity constraints is needed to fix an object of a class A

and to see how many objects are related to it in another class: B

(Cuadra et al., 2003). That is to say, the multiplicity constraint is

the number of instances of one class related to one instance of

the associated class.

Although these constraints are defined between the classes in

many UML commercial CASE tools, most of these tools do not gen

erate any mechanisms with which to enforce them in the Rela

tional model. The formal definition of the OCL invariant which

specifies a multiplicity constraint is shown below:

Context <class_name> inv <constraint_name>:

<self.navigation >size().op. term>

Although associations are bi directional, the arrowhead (>) is

added to restrict the direction of the navigation. OCL allows navi

gating from an association class itself to objects which participate

in that association.

The mapping of multiplicity constraints is done using nested

queries and depends on the association type Our work supports

the three types of multiplicity (one to one, one to many, many

to many).

5

Let us consider two classes: A and B. R is an association between

these classes, mapping this association to the Relational model is

shown as the following:

� If R is a one to many association then the associated class A and

B become tables in the Relational model, and the foreign key in

the table B must match an existing primary key in the context

table A.

� If R is a many to many association, a new related table R is cre

ated and the foreign keys in R must match existing primary keys

in A and B.

� One to one association is a particular case of the associations

one to many or many to many.

In general, nulls are allowed in optional multiplicities but are

not allowed when using mandatory multiplicities. Mandatory mul

tiplicities always need triggers to enforce relationships between

the associated classes. The principal rules for mapping multiplicity

constraints into SQL query depend on the minimum and maximum

bounds of these constraints, as shown below:

(a) If the minimum multiplicity of an association is equal or

more to (1) then the following OCL clause is used:

Context <class_name> inv <constraint_name>:

<self.navigation >size () >=1>

Here, we need to navigate from a context class towards an asso

ciated class. To map this OCL to an SQL query the class_name

and the associated class are transformed to context_table and

related_table respectively. In addition, a definition of the

related keys pk, fk between the two previous tables is needed.

The logical negation of the constraints is applied to the operator

IN of the subquery. The following SQL query is true whenever

an object in the context_table does not have any associated

objects in the related_table.

SELECT * FROM Context_table self

WHERE self.pk NOT IN

(SELECT fk FROM Related_table)

(b) If the maximummultiplicity of an association is known then

the following OCL clause is used:

Context <class_name> inv <constraint_name>:

<self.navigation >size() <= Max>

The transformation is performed as in the pervious rule (a). The

logical negation of the constraint is applied to the atomic

expression which restricts the maximum multiplicity value, as

shown in the following SQL query:

SELECT COUNT(*) FROM Context_table self

WHERE self.pk IN

(SELECT fk FROM Related_table

GROUP BY fk HAVING COUNT(*) > Max)

Although the aggregation and the composition relationships are

not implemented in this work, the MultiplicityConstraint pat

tern can be extended to include this type of constraints. These

relationships are special forms of an association and specify

the possible existence of links between objects of associated

classes. The types of these links are well specified in (Gogolla

and Richters, 1998). Rational Rose, the framework of our

approach, maps these relationships into two types of aggrega

tions. The first type is aggregations by value, also named com

posite aggregations are used when the part cannot exist

without the aggregate. The second type is aggregations by ref

erence, also named aggregations are used when we have multi

ple objects of an aggregate class owning a part class. For these

two types of relationships we need to use the previous multi

plicity pattern query (a) in order to restrict the mandatory mul

tiplicity of the part class, as follows:

SELECT * FROM Aggregate_table self

WHERE self.pk NOT IN

(SELECT fk FROM Part_table)

3.1.1.3. GeneralizationConstraint pattern. A generalization is another

type of relationship constraint that has dynamic aspects which

need to be verified. It is a set of relations which is produced when

a generic entity is disjointed into supertype entity and subtype

entities. A supertype entity contains the generic entity key and

all other common attributes. A subtype entity contains the generic

key and only the specific attributes of the subtype. Although there

are four possible types of these constraints: Disjoint Total, Over

lapping Total, Disjoint Partial, and Overlapping Partial (Teorey,

1999), in this work only the Disjoint Total constraint is considered

because it offers more semantics than the other ones and it needs

more effort to be implemented. A Total constraint specifies that an

object of a supertype can be a member of at most one of the sub

type. A Disjoint constraint specifies that the objects in a different

subtype from the same supertype are completely different.

According to our approach, the transformation of the general

ization into Relational model produces one table for each super

type and subtype class. It is necessary to include an attribute for

partitioning objects (not null) in the supertype table.

As for multiplicity constraints, although generalization con

straints are defined between classes in many UML commercial

CASE tools, most of these tools do not generate any mechanisms

to enforce them.

The formal OCL definition of a generalization relationship is

specified according to the constraint type (Total or Disjoint), as

shown next:

1. Total constraint: An object of the supertype must be a mem

ber of at most one of subtypes.

Context <supertype> inv <constraint_name>:

<self >forAll(cjoclIsKindOf(subtypeA) OR

oclIsKindOf(subtypeB))>

According to this definition, to verify a Total constraint of the

generalization, the corresponding OCL invariant is specified in

the supertype class. This may be useful in an OO language but in

SQL it is useless because, if a trigger is defined in the supertype ta

ble this trigger is activated only when the supertype table is

modified.

Let us consider the case when the supertype table contains a

generic key value, denoted by id, which has an instance in the sub

typeA, and a trigger T is defined in the supertype table to enforce

the Total constraint. If the value id is deleted from subtypeA table

then the Total constraint is lost because the instance id in the

supertype table is not a member of any one of the subtype. In this

case, although an instance was deleted from the relationship, the

defined trigger T on the supertype table was not fired because

the deletion action was produced in the table subtypeA and not

in the table supertype.

In addition, in order to map the above OCL to SQL query, we

need to study the semantics of the generalization relationship

and how it can be transformed to the Relational model (Al Jumaily,

2006). To enforce Total constraints, the following rule is used:

(a) A SQL query is used to ensure that each instance in the

supertype table is a member of at most one of the subtype

tables. The following SQL query is defined for each subtype

table in a generalization. The corresponding trigger should

be fired whenever an instance in a supertype table does

not have a related instance in the subtype tables.

(SELECT pk FROM supertype

WHERE pk NOT IN (SELECT pk FROM subtype)

6

2. Disjoint constraint: Objects in a different subtype from the

same supertype are completely different.

Context <supertype> inv <constraint_name>:

<self >forAll(cjnot(oclIsKindOf(subtypeA)

AND

oclIsKindOf(subtypeB)))>

As it has been shown in the Total constraint case, defining a

trigger on a supertype table is useless for enforcing a Disjoint

constraint. Let us consider that the supertype table contains a

generic key value (id) which has an instance in subtypeA, and

a trigger T is defined on the supertype table to enforce the Dis

joint constraint. If a new pk instance is inserted into the subty

peB table then the Disjoint constraint is lost because the pk

instance in the supertype table is a member of all subtypes.

To enforce Disjoint constraints, the following rule is used:

(b) A SQL query is used to ensure that each instance in the

supertype table can be a member of only one subtype table.

This SQL query is defined for each subtype table in a gener

alization. Each SQL query must ensure that every instance of

the related subtype table cannot be a member of another

subtype table. The following SQL clause is used to define this

constraint. The corresponding trigger should be fired when

ever an object in the subtypeB table can be a member of the

other subtypeA.

(SELECT pk FROM subtypeA

WHERE pk IN (SELECT pk FROM subtypeB)

3.1.2. Deriving the remainder of trigger components

Once the OCL to SQL query is mapped, the next step of the pro

posal is how to derive the other components of a trigger such as

critical operations, activation time, granularity, and actions. These

components are derived from the SQL queries obtained in the pre

vious section.

3.1.2.1. Critical operations. A critical operation is an event that may

violate an integrity constraint, these events are: Insert, Delete, and

Update. If an event violates an integrity constraint, it is necessary

to implement a mechanism for enforcing that constraint. However,

using a mechanism to control an event that does not violate any

constraint would not make sense and would lead to a negative ef

fect on the system performance.

Once the SQL:2003 queries have been established in the previ

ous section, the critical operations are derived from them, as the

following rules:

(a) AttributeValueConstraint critical operations:

� If a SQL query defines a logical predicate to specify an attribute

value in a table then the critical operations are the insertions

into that table, and the updates of that table. For example, a

business rule might be ‘‘the salary of an employee must be >=

1200 and <= 1800”. In this case, an insertion or an update of

employees needs to ensure that their salary must be in the spec

ified range. Normally, a Check mechanism is used to enforce this

type of constraint.

� If a SQL query specifies a logical predicate between attributes in

various rows in the same or in a different table, then the critical

operations are: insert into the tables, and the update of these

attributes. For example, ‘‘The salary of employees must be less

than the salary of the manager”. In this case, insert ‘‘a new man

ager needs to ensure that his/her salary must be greater than the

salary of their employees” and also insert ‘‘a new employee

needs to ensure that his/her salary must be less than the salary

of his/her manager”. The update is considered as a deletion of an

old value and an insertion of a new value, so that it needs to ver

ify that the constraint is the same as for the insertion.

(b) MultiplicityConstraint critical operations:

� If a SQL query defines a minimum or maximummultiplicity con

straint between associated tables, critical operations are shown

in Table 2. Let us consider A and B: associated entities in a binary

relationship R. Let us suppose that the referential actions in this

relationship are On Delete Cascade and On Update Cascade. The

transformation of this relationship to the Relational model is

performed according to the relationship type (see Multiplicity-
Constraint pattern). For example, the one to many relationship

between Department and Employee may specify a constraint

such as ‘‘Every department has at least one employee”. In this

case, critical operations are the insertion of a new department,

Insert(A), deletion of an employee, Delete(B), and updating a for

eign key of Department in Employee, Update(B.a).

(c) GeneralizationConstraint critical operations:

� If a SQL query defines a Total Disjoint constraint, critical opera

tions are the deletion from a subtype table, and the insertion

into a subtype table. For example, a person can be only a student

or a professor. The transformation of this constraint to the Rela

tional model is shown in GeneralizationConstraint pattern. If
an instance is deleted from the table Student, the Total con

straint of the generalization maybe lost because the related

instance in Person is not being a member of any one of the sub

type. If a new instance related to a Person is inserted into the

Professor table, the disjoint constraint maybe lost if there is a

related instance to that Person being a member in the table

Student.

3.1.2.2. Activation time. An activation time defines whether a trig

ger execution must be produced before or after a related event.

Although some commercial database systems have some limita

tions when activation time is defined, the SQL:2003 standard al

lows two types (Before and After trigger) to be used without

any limitation. Since the Before trigger is executed and verified

immediately before the finishing of the transaction which leads

to that trigger to be fired, SQL:2003 recommends using Before trig

gers to read from a database or to correct an error produced in the

processing of data input. For example, ‘‘The salary of an employee

must be less than 2000” this constraint can be transformed into an

insert trigger with an activation time of Before trigger. In the ac

tion of this trigger, the salary can be assigned to 2000 if its new va

lue is greater than 2000.

In a Relational database, when an event takes place, the consis

tency of the database state must be verified after all cascade events

that may have been produced by the original event. In addition,

using After trigger allows during triggers execution to reach the

old and new transition values. Therefore, in general, After triggers

are useful to update other tables, or to invoke functions to perform

tasks inside or outside the database.

The activation time is derived in our approach according to the

following rules:

(a) Before trigger activation time is used when a SQL query

defines a logical predicate to specify an attribute value in a

table. It is used to correct an error produced in a processing

of data input such as the above example. Our work will be

extended to introduce more OCL constraints types such as

the pre condition constraints.

Table 2

Critical operations of multiplicity constraints

Multiplicity Critical operations

Many-to-many Insert(A,B), Delete(A,B), Delete(R), Update(R.a,R.b)

One-to-many Insert(A), Delete(B), Update(B.a)

One-to-one Insert(A), Delete(B), Update(B.a)

7

(b) After trigger activation time is used when the SQL query

defines other type of logical predicate such as, a logical pred

icate between attributes in various rows in the same or dif

ferent tables, multiplicity constraints, and generalization

constraints. These constraints may produce cascade events;

therefore its verification should be produced only after the

current transaction is finished. Most of the commercial data

base systems support only an After trigger activation time.

Let us consider an example, a constraint like ‘‘the salary of an

employee must be less than 2000” could be defined in OCL as:

Context Employee inv EmpSalary:

self.salary<1200

Applying the AttributeValueConstraint Pattern this OCL con

straint is transformed to the following SQL query:

SELECT * FROM Employee self

WHERE self.salary >= 1200

That is to say, the trigger should be fired wherever the salary of

an employee is greater than or equal to 1200. According to our

transformation rules (see section ‘Critical operations’) the critical

operations of this type of pattern are: Insertion into Employees

or Update Employees.salary. In this case, the Before and After trig

ger can be used as activation time for this constraint although in

the standard SQL:2003, this type of constraint can be enforced by

using Before triggers activation time.

3.1.2.3. Granularity. There are two levels of granularity. The state

ment level trigger is executed once for each triggering event and

the row level trigger is executed for each row in the modified

set. Integrity constraints can usually be established in one row or

a combination of rows. When the constraint only affects one row,

it is converted into a row level trigger, whilst when it affects a

combination of rows, the statement level trigger is needed.

In general, all types of constraint can be verified by using state

ment level triggers. For example, a constraint such as ‘‘the salary of

an employee must be >= 1200 and <= 1800” can be verified using a

statement level trigger but the verification will be to the salary of

all the employees’, and not only to the modified salary. This will

consume more resources and therefore lead to inefficient

databases.

For performance reasons, it is preferable to use row level trig

gers because they allow the verification of conditions to be adapted

to the modified rows only. Furthermore, SQL:2003 standard and

most commercial DBMS allow the use of the WHEN clause only

in the row level triggers.

The granularity is used in our approach according to the follow

ing rules:

(a) Row level granularity is used if a SQL query defines a logical

predicate to specify an attribute value constraint, multiplic

ity constraints, and a generalization constraint.

(b) Statement level granularity is used if a SQL query includes

aggregate functions such as SUM, AVG, MIN, MAX and

COUNT. An example, ‘‘The total salary of employees working

in a department must not exceed the department’s budget”.

This constraint needs to be verified by a statement trigger.

3.1.2.4. Action. Normally, when an integrity constraint is violated, a

specific reaction is fired to reject the actual transaction or to trigger

corrective actions depending on the business rule semantics. Two

types of reaction are applied in the proposal:

(a) Corrective actions are used to enforce the generalization

relationship. These actions are shown below:

� Total constraint is reflected through two triggers. One of

them is the trigger which ensures that each instance in

the supertype table can be a member of at most one of

the subtype tables. The other one is the trigger for each

subtype table which are used to delete the related

instance from the supertype table whenever an instance

is deleted from a subtype table.

� Disjoint constraint is the capture by a trigger in order to

ensure that each instance in the supertype table can be a

member of only one subtype table. There are also other

triggers for each subtype table which is used to delete

an insertion into a subtype whenever the other subtype

contains the same key value.

(b) Rollback action is used if a SQL query defines other types of

constraints, such as attribute values and multiplicity

constraints.

In addition, to make our approach more flexible, we allow the

user to modify a trigger body in order to include more operations

according to the required semantics, as we will explain in Section

4.1.1.

3.2. Transforming trigger:2003 to DBMS triggers model

Although, most Relational DBMS trigger systems have the same

components, the transformation of the trigger:2003 to a target

DBMS trigger should take into account the specific characteristics

of each one. There are some differences between the specific char

acteristics of triggers in these DBMS. These differences create the

issue that triggers of one system cannot be used directly with an

other system without modification. A comparison of the more

important trigger aspects of some Relational systems is shown in

Table 3.

According to the study, all database systems allow the execu

tion of multiple triggers at the same time. The execution of multi

ple triggers can sometimes lead to a non termination problem.

Only disjunctive composite events are allowed in Oracle. The exe

cution of triggers before, or after the event, is performed by all the

database systems that were studied, except SQL Server 2005 which

only allows execution after the event and only using the statement

type granularity. This is to say, all OCL constraints types such as

invariant, pre condition, post condition constraints are mapped

using the After triggers and Statement trigger in SQL Server 2005.

There are some limited strategies which are used to treat the

cascade execution of triggers in the database system such as Oracle

11g, DB2 and SQL Server 2005. In Oracle 11g trigger syntax now in

cludes the Follows clause to guarantee the order of execution for

triggers defined with the same timing point. DB2 contains the op

tion ‘No Before Cascade’ which specifies that the trigger’s action

cannot cause the activation of other triggers. In SQL Server 2005,

it is possible to use the function SP_SETTRIGGERORDER to specify

the trigger which is fired first or last. The After triggers that are

fired between the first and last triggers are executed in undefined

order. The termination strategy is used to prevent the non termi

nation problem in most Relational database systems. For example,

when a trigger in Oracle causes another trigger to be fired, Oracle

allows up to 32 triggers to cascade at any one time. However, this

limit can be changed using the initialization parameter

OPEN_CURSORS. Because Trigger:2003 does not support any limi

tation or cascade execution strategy, our approach does not con

sider any strategy to limit the execution of the triggers.

Once the Trigger:2003 components are derived according to the

previous section, these components are mapped to a target DBMS

8

triggers. The mapping is performed directly, that is, a Trigger:2003

is mapped into one trigger in a target DBMS (1 1). To do this map

ping, DBMS trigger templates are used. A trigger template is a gen

eric trigger in which some values are established as parameters so

that different particular triggers can be derived by giving different

values to the parameters (Domínguez et al., 2002). The values of

trigger templates are obtained from the execution of the following

function:

Trigger2003Components(OCL, Constraint_name, SQL

query, Context_table(), Related_table, Event(), Time,

Granularity, Action)

This function requires the specification of the string value of an

OCL which is submitted to a syntax analysis to obtain the following

values:

Constraint_name is the name of the OCL constraint.

SQLquery is a trigger:2003 condition which will mapped to a

target DBMS trigger condition.

Conext_table() is the name of a table in which the trigger is cre

ated. It is an array type parameter because in some case we can

obtained more than one context table to map some constraint

type, for example for a Total constraint of a generalization we

need to create a trigger for each subtype table.

Related_table: in some types of constraints we need to calculate

a related table or an associated table. As an example, in an asso

ciation between two classes: the context table and the related

table is introduced to map the corresponding trigger.

Event() is the type of critical operation that may violate the OCL

constraints. It is an array type parameter because in some cases

we can predict that more than one event will map some con

straint type. For example for a multiplicity constraint we need

to create a trigger for each event (see Table 1).

Time is the activation time of the corresponding trigger (Before,

or After).

Granularity is the granularity of the corresponding trigger (Row

or Statement).

Action is a specific reaction to be activated when the constraints

is violated.

Once these values are calculated, template functions are called

in order to derive the required trigger. There is one template func

tion for each DBMS and for each OCL pattern considered in this

work. For example, we use one template to transform the Multi

plicityConstraint pattern to an Oracle trigger.

Although Oracle has the same components as Trigger:2003, it is

a less efficient system, because in Oracle the mutating tables prob

lem needs to be solved (Oracle, 2007). Since Oracle 11g was intro

duced, this problem has been solved using Compound Triggers. A

Compound Trigger allows code for one or more triggers for a spe

cific table to be combined into a single trigger.

In this section, we present only one template as an example to

illustrate a generic template of the multiplicity constraint to illus

trate the transformation of the Trigger:2003 to Oracle 11g. The

function OracleTemplate4Multiplicity is shown in Fig. 3. The calling

and the execution of this function is done according to the follow

ing algorithm:

(a) Calling OracleTemplate4Multiplicity with Trigger:2003

parameters which are calculated from the previous function

Trigger2003Components. This function is executed once for

each pair (context_table, event). For example, for an aggre

gation constraint between two classes C1 and C2, such as

‘‘every object in class C1 has at least one object in C2” one

trigger needs to be generated for each pair (table_C2,

Delete), (table_C2, Update), and (table_C1, Insert) (Al Juma

ily, 2006). Although Oracle allows using composite events to

optimize the number of triggers, in this paper we do not use

this type of events although it will be tackled in future

works. The following parameter values are used when the

function is executed to generate triggers for the pair

(table_C2, Delete):

Constraint_name : table_C2_multiplicity

SQLquery : "(SELECT * FROM table_C2 self WHERE

self.id_C1

NOT IN (SELECT self.id_C1 FROM

table_C1))"

Context_table: "table_C2"

Event : "DELETE"

Time : "AFTER"

Granularity : "FOR EACH ROW"

Action : "Raise_Application_Error"

Using compound triggers in Oracle obliges us to use the

two types of activation time and the two types of granular

ity although in the above values, only one value for the

activation time and one value for the granularity is

shown.

(b) Substituting the parameters of the template with the corre

sponding specific values. For example, in order to generate

the trigger for controlling the aggregation constraint shown

in (a) we need to substitute the parameters shown in Oracle

Template4Multiplicity by the corresponding values. The tem

plate parameters are shown as italic and bold text (see

Fig. 3). Although the SQL standard considers a complex

query in the WHEN clause of triggers, most commercial

DBMS have the limitation of considering a complex query

in this clause. So that in the trigger template, we have

included the SQL query of a constraint in the trigger body

with some adaptation to fit in with the specific characteris

tics of Oracle.

(c) Printing the generated trigger. All generated triggers are

saved in a text file *.sql which can be executed directly in

any related DBMS.

Table 3

A comparison among some trigger aspects

Trigger:2003 ORACLE 11g DB2 SQL SERVER 2005

Multiple triggers (N) N N N N

Event type Insert, Delete, Update Insert, Delete, Update Insert, Delete, Update Insert, Delete, Update

Composite events No Yes (only OR) No No

Activation time Before/After Before/After Before/After After

Granularity Row/Statement Row/Statement Row/Statement Statement

Cascade strategy No Yes Yes Yes

Termination strategy No Yes Yes Yes

9

3.3. DBMS trigger verification model

The objective of the verification model is to guarantee the ter

mination of the execution of triggers. Termination indicates that

the execution of any set of active mechanisms must terminate. This

is needed in order to avoid cycles in the execution. The Triggering

Graph (TG) (Baralis et al., 1993) is used to detect non termination

states. The TG is a straightforward graph where each node Ti corre

sponds to a trigger and a direct arc between T1 and T2 is the event

which belongs to T1‘s action and causes the activation of T2. A cycle

or non termination is produced in the TG when a Ti may trigger it

self or when Ti triggers the same initial subset. In Fig. 4, the subset

of triggers S = {T1, T2, T3} is a cycle when T1 is fired again by the

event e3. The termination analysis itself focuses on identifying

and eliminating arcs that could introduce cycles into the TG (Hick

ey, 2000). Redefining rule T3 and reconstructing the graph TG is a

good solution for verifying the termination state of the subset.

On the other hand, the most important aspects of the SQL:2003

standard are the interactions between the triggers and the referen

tial constraint actions (Kulkarni et al., 1998). In Relational dat

abases, the tables are represented by sets of rows, and there are

relationships between tables, which are represented by the for

eign key definition. Referential constraints are predicates on the

database state that must be evaluated. If these restrictions are vio

lated, the database is in an inconsistent state. To maintain the ref

erential integrity of the database, the SQL:2003 standard and most

commercial DBMS use referential constraint actions such as On De

lete Cascade (DC) and On Update Cascade (UC).

A relational table R0 is a Referencing_Table if it has one or both

referential constraint actions (DC and UC) which are defined within

the specification of Referenced_Table R. The triggers which are de

fined on R’ are activated as a consequence of modifying R (Delete or

Update(Attribute)).

The interactions between triggers and these referential actions

make the detection of non termination more difficult because

two types of events can activate triggers in a Relational database.

We sort the events in Direct such as Insert, Delete, and Update

and Indirect such as the previous referential actions. Therefore, in

this work, we take these two types of events into account when

mapping the trigger execution.

Our approach considers that a non termination problem arises

when a trigger T is triggered twice in the same activated set. To dem

onstrate this, the following steps are checked for all trigger sets

that can be activated by any possible event:

1. Check the triggers which are defined in the table r and which

are activated directly by the event e.

2. If r is a referenced table, then check the triggers which are acti

vated by the indirect event (referential actions) on the referenc

ing table r0.

3. If the action of any trigger produces a new event then check the

triggers which are activated by that event.

By applying the previous three steps for any set of {r, e} the ter

mination of any trigger execution scenario is verified. For the

implementation of these steps, the generic algorithm shown in

Fig. 5 is used:

where

{r1, r2, r3, . . ., rn} is the database schema with r1, . . . ,rn relational

tables.

{e1, e2, . . . ,em} is the set of direct events (Insert, Delete,

Update(Attribute).

T3

T2

T1

e
1

e3

e2

Fig. 4. The TG of rule execution.

Fig. 3. Oracle template for Multiplicity Constraints.

10

TG() is the vector for representing the triggering graph. Once an

event e is issued to modify r, the TG() vector is reinitiated.

Cascade(e) is the referential action (indirect event) which is pro

duced by the original event. For example, if the original event is

deleted from any referenced table then Cascade(e) is the action

‘‘On Delete Cascade” against the referencing table, and so on.

TSet = {T1, T2, . . ., Tx} is the set of Before or After triggers which

are activated by the event e on the table r.

Ti.Action: If the trigger action issues any new event e0 to modify

any table r0 then the algorithm is replied to, in order to map the

trigger execution which is activated by that event. In this work,

only After triggers can include actions which modify another

table because the SQL:2003 standard recommends that Before

triggers be used to read from the database, or to verify the attri

bute values before applying them to the database. Another issue

which must be taken into account is that the Before triggers are

executed and verified immediately before the transaction is fin

ished. Nevertheless, in order to obtain the required semantics, it

must be verified that all modifications will be made by the ori

ginal statement. While, the AFTER triggers are useful to update

other tables, or invoke functions to make tasks inside or outside

the database.

Termination is verified: if the algorithm execution touches this

point, it means that the execution of triggers which are activated

by ej to modify ri is correctly verified.

Non termination state is detected when there are two instances

of the same object in TG(). In this case, a message is sent to warn

the user about the existence of this problem and the mapping is

finished immediately.

UML sequence diagrams are used to implement the above algo

rithm and to show the interaction between triggers and objects in a

sequential time order depending on their occurrence. Sequence

diagrams allow users to create a visual representation of a sce

nario. It is a two dimensional diagram, where the vertical dimen

sion is the time axis, and the horizontal dimension shows the

interaction of object roles. In Section 4.3.2 we will explain how

UML sequence diagrams have been adopted for our approach.

4. OCL2Trigger tool design

Now that we have presented our approach we will explain how

it has been implemented as a tool. This tool is called OCL2Trigger,

and it aims to carry out the necessary rules of the transformation

models of our approach automatically. The tool has been added to

Rational Enterprise Edition (2003), one of the most important com

mercial CASE tools in the market. We have chosen to incorporate

our tool into this package, because this commercial tool has the po

tential for adding modules to support software development needs.

OCL2Trigger can be accessed from the Rational Rose Tools menu.

The architecture of the OCL2Trigger tool is shown in Fig. 6. It

consists of three phases: the OCL Constraints Specification Phase,

the Transformation of OCL clauses into DBMS Triggers Phase, and

the Trigger Adaptation and Verification Phase. A brief for each

phase is presented below.

4.1. OCL constraints specification

To specify business rules in a UML class diagram as OCL clauses,

OCL2Trigger tool provides two modules. The first one is used for

editing and checking OCL constraints that cannot be expressed

more easily in the graphical model. The second one is used to gen

erate OCL clauses in those constraints which are expressed in the

graphical model such as multiplicity constraints and generaliza

tions. All OCL constraints of this phase are plugged into the Ra

tional Object Model in the corresponding classes. This phase

contains the following modules.

4.1.1. Edit/Check OCL constraints module

For editing and checking OCL constraints that are used in this

module, users can introduce the integrity constraints of any class

diagram as OCL clauses. To do that, Oclarity tool (EmPowerTec,

2006) is applied. It is an add in for Rational Rose which offers a

comprehensive support for OCL editing and verifying. According

to the current OCL 2.0 specification, Oclarity tool provides full syn

tactic and semantic checking. For example, let us consider the con

straint ‘‘Married people are of age >=18”. It is impossible to specify

this constraint directly in the graphical model without using OCL.

The user can introduce this type of constraint into the correspond

ing class by using the Oclarity editor and he/she can verify their

syntax. Fig. 7 shows the previous constraint in an OCL clause as

well as the syntax verification.

4.1.2. Converting relationship constraints to OCL module

According to our approach, relationship constraints include

multiplicity and generalization constraints. Because these con

straints are defined in the class diagram, the user does not need

to redefine them using OCL. OCL2Trigger is able to transform rela

tionship constraints already included in an object model to OCL

clauses automatically and, save them in that model. This facilitates

Fig. 5. The generic algorithm for detecting non-termination.

11

the task of analysing and processing these clauses using our trans

formation models. In addition, most of these constraints require

the use of OCL to define them, because it is sometimes impossible

to establish the real values of these constraints, as we will show in

the following example:

Fig. 8 shows the constraint associates of the class Flight which

defines that ‘‘the number of passengers is less than or equal to

the number of seats on the airplane that is associated with the

flight”.

In this example, only the maximum multiplicity should be en

forced because the minimum multiplicity is optional (0), so

OCL2Trigger converts this constraint as follows:

context Flight inv:

passengers >size() <=*

Now, by using the Oclarity editor the user can replace the sym

bol (*) with the real value of the maximum multiplicity, as shown

below:

context Flight inv:

passengers >size() <= plane.numberOfSeats

4.2. Transforming OCL clauses into DBMS triggers

Before this phase is done, Rational Rose automatically main

tains the mapping between Rational Object Model and Rational

Data Model where each class is mapped into a Relational table.

The generalization relationship is mapped by using one table per

class (Rational Software, 2000).

To generate the target DBMS trigger the interface shown in

Fig. 9 is implemented. It is able to detect the specified OCL con

straints in the Rational Object Model, and shows them in the list

box ‘‘Current OCL Constraints”. The detection of the specified

OCL constraints in a given model is performed according to the fol

lowing algorithm:

CurrentOCLset() : Empty; n=0;

Set

AllClasses = RoseApp.CurrentModel.GetAllClasses();

For i = 1 to AllClasses.Count

Set theClass = AllClasses.GetAt(i);

For j = 1 to theClass.AllOperation.Count

Set theOperation = AllOperation.GetAt(j);

If theOperation.Stereotype = "inv" Then

CurrentOCLset(n + 1)=theOperation;

End if;

Next j; Next i;

CurrentOCLset is a set of collection objects to represent the

current OCL constraints in a class diagram. This set is initiated

to empty when the algorithm is started. When it is finished, Cur

rentOCLset contains all the OCL constraints included in the dia

gram. An OCL clause is represented in Rational Rose as an

operation with a stereotype. According to our approach, all OCL

clauses are assigned to the stereotype <<inv>>. When Curren

OCL
DBMS

Triggers

Transforming

OCL to

Trigger:2003

Model

Event

Granularity

Activation time

SQL query

Action

Transforming

Trigger:2003 to

DBMS Trigger
Model

OCL

DBMS

Triggers

PSM Codes

OCL

DBMS

Triggers

Transforming

OCL to

Trigger:2003

Model

Event

Granularity

Activation time

SQL query

Action

Transforming

Trigger:2003 to

DBMS Trigger
Model

OCL

DBMS

Triggers

Object
Model

OCL Constraints

Specification Phas

DBMS

Triggers

Data
Model

Transforming

OCL to

Trigger:2003

Model

Transforming

OCL to

Trigger:2003

Model

Transforming

OCL to

Trigger:2003

Model

Event

Granularity

Activation time

SQL query

Action

Transforming

Trigger:2003 to

DBMS Trigger
Model

Transforming

Trigger:2003 to

DBMS Trigger
Model

Transforming

Trigger:2003 to

DBMS Trigger
Model

OCL

Converting

Relationship

Constraints

to OCL

Edit/Chec

OCL

Constraints

Editing

Trigger

Action

Transforming OCL clauses into DBMS Triggers Phase
Trigger Adaptation &

Verification Phase

PIM

Create

Sequence Diagram

DBMS Trigger

Verification Model

Fig. 6. OCL2Trigger Architecture.

Fig. 7. Edit/Check OCL constraints interface.

AirplaneFlight flights plane

0..*

1

PersonPerson

flights

passengers0..*

0..*

numberOfSeats INT

Fig. 8. UML class diagram example.

12

tOCLset is calculated a new set of chosen OCL constraints. Use

rOCLset is created since users can choose any constraints of a

class diagram to be enforced. The list box ‘‘Selected OCL Con-
straints” of the interface shows the selected constraints list. It

contains one or more constraints. The ‘‘DBMS Types” shows the

target commercial database systems included in our approach

(ORACLE 11g, MS Server 2005, and DB2). The ‘‘Trigger Types”
check box represents the trigger types to be required, where

the user can choose to generate triggers for controlling one or

more types of events. For example, if the user chooses only the

DELETE Trigger option this means that OCL2Trigger will generate

only triggers for deleting events.

Once UserOCLset list is chosen, a target DBMS is specified, and

triggers type events are selected the user can obtain the generated

triggers by clicking on the ‘Create Triggers’ button. The following

algorithm shows how can UserOCLset is processed to obtain the

corresponding triggers.

For i = 1 to UserOCLset.Count

Set theOCL = UserOCLset.GetAt(i);

Trigger2003Components(theOCL, Constraint_name,

SQLquery, Context_table(), Related_table, Event(),

Time, Granularity, Action);

TriggersTemplates(DBMStype, TriggersTypes());

Next i;

Once the parameters values are calculated by the Trig

ger2003Components function (see Section 3.2), these values, the

selected DBMS, and the required trigger events are submitted

to the TriggersTemplates function. This function is used to call

the corresponding trigger template to be executed. Finally, the

generated triggers are plugged into their corresponding class into

the Rational Data Model, and are then saved in a text SQL file,

which is ready to be directly submitted to the corresponding

DBMS.

4.3. Trigger Adaptation and Verification

Although sometimes users need to issue a predefined action to

enforce constraints, currently OCL invariants do not support the

specification of any action in a declarative manner. In this paper,

we propose that incorporating actions into the generated triggers

will make our approach more user efficient. Incorporating actions

to triggers by users has advantages, but also adds complexity. The

advantage is that it makes our approach more flexible by having

the ability to incorporate more semantics, whilst the complexity

is produced because the execution of these actions may leads to

undesired and uncalculated behaviours. Therefore, in this section,

we show how the user can incorporate actions into the generated

triggers and how he/she can verify the execution of these triggers.

This phase contains the following modules.

4.3.1. Editing trigger action module

To incorporate actions to a trigger body we use IBM Rational

XDE Developer (IBM Rational, 2007) that provides a Table Specifi

cation for triggers to allow users to create user defined triggers or

to modify an existing trigger body to enforce business rules in the

database. For example, let us consider the constraint ‘‘the salary of

an employee must be >= 1200 and <= 1800”. According to our ap

proach, OCL2Trigger transforms these constraints into a trigger to

reject any value that is less than 1200 or more than 1800. Never

theless, by using this module, the user is able to add or replace

the rejection action by another one such as fixing the salary at

1200. In this case, the user is able to access the trigger body and

introduce an action to fix the salary of the employee to the speci

fied value.

4.3.2. Create sequence diagram module

In Section 3.3, the generic algorithm for detecting non termina

tion problem in triggers execution has been explained. Now in this

section we will explain how this algorithm has been mapped to the

sequence diagram in OCL2Trigger tool. To verify trigger execution,

UML sequence diagrams are used to show the interaction between

objects and events in a sequential time order depending on their

occurrences. Sequence diagrams allow users to create a visual rep

resentation of a scenario. These are two dimensional diagrams,

where the vertical dimension is the time axis, and the horizontal

dimension shows object roles in their interactions. In this ap

proach, a scenario diagram is created for each event that may be

issued to modify a table, and the cascade events that may follow

after that event. Therefore, for each table in the data model three

scenario diagrams are created, one for each DML statement.

If large database schemata with many tables are considered in

the proposal then the most interesting sequence diagrams to the

user are those in which a non termination problem is detected.

Therefore, our OCL2Trigger tool detects these diagrams and shows

them to the user to make the task of triggers development easier.

Applying UML sequence diagram notations to map trigger exe

cution is explained as follows:

� Tables: Tables are represented in Rational Rose as a stereotype of

an object instance. The scenario diagram contains one or more

object instances that have the behaviour shown in the diagram.

Fig. 9. Transforming OCL clauses into DBMS Triggers interface.

13

A table has three relevant basic behaviours for static analysis of

termination: these behaviours are Insert, Delete, and Update. An

object instance has a lifeline, which represents the existence of

the object over a period of time.

� Trigger/Message: Messages in a sequence diagram are methods

or operations, which are used to illustrate the object behaviour.

A message is a communication carried between two objects to

define the interaction between them. A message is represented

in the sequence diagram by using the message icon connecting

a sender object lifeline together with a receiver object lifeline.

The message icons appear as solid arrows with a sequence num

ber and a message label. The first message always starts at the

top of the diagram and other messages follow it. When theSend-
er is equal to theReceiver, this means that the theSender object
is sending a message to itself, MessageToSelf. Each message is

associated with an integer number that shows the relative posi

tion of the message in the diagram. For example, if theSe-
quence = 3, this message is the third message in the diagram.

On the other hand, triggers that are associated to a table fire

when that table is modified. When a trigger queries or modifies

the related table, it is exactly the same as when an object sends a

message to itself. Therefore, in our approach a trigger is repre

sented in a sequence diagram as a message from the sender to

itself, i.e. theSender = theReceiver, which means that this trig

ger is represented as MessageToSelf. The trigger name is

included into the message icon. Before triggers and After trig

gers are represented by using the same notationMessageToSelf.
The notation Message is used for other operations related to the

behaviour of triggers, as shown in the following:

� Direct events such as (Insert, Delete, and Update (Attribute))

in this case, theSender– theReceiver.
� Indirect events (referential constraint actions). These actions

are represented in the sequence diagrams as messages from a

referenced table (theSender) to a referencing table (theRe-
ceiver). The event types are indicated on the message icon.

� Note: We use notes to warn users about the results of the veri

fication. Our tool represents two types of notes to users. The first

is ‘‘Termination state was correctly verified” which is sent

when the execution of a given scenario is correctly terminated.

The second note is ‘‘Non termination state was detected. Please,

solve the problem and try again”. This note is sent when the

verification of a scenario detects a non termination state in

the execution of triggers.

To show the mapping of the generic algorithm (Fig. 5) to se

quence diagrams, an example is presented. In this example, Pro-
fessor is a referenced table while Belongs is a referencing table.

Each table is represented in the sequence diagram as an object

instance with a lifeline see Fig. 10. The object instance User is

used to represent the point at which the initial event is started.

The referential action between these two tables is On Delete

Cascade (DC_PROF). T1 and T2 which are two triggers for delet

ing are defined on Belongs. In this example, we will apply only

the DELETE event as an example in two scenarios illustrated

below.

4.3.2.1. Scenario 1: (Fig. 10A). The scenario is begun when the Actor

issues a direct event to delete from the table Professor. The map

ping is started by calling the function Sub Main() for the pair (Pro

fessor,DELETE). In this function the triggering graph vector TG() is

reinitiated and the DELETE event is applied to Professor. This event

is represented in the sequence diagram as a solid arrow with a

message label (1:DELETE). The function Sub TMapping(Professor,

DELETE) is called. It immediately calls the other function Sub Trig

gersSet(Professor,DELETE,Before) to calculate TG(). Because there is

not any Before trigger applied to Professor the function Sub Trigger

Set is finished, and TG() is returned empty. At this point, the algo

rithm needs to check whether there is a cascade event produced by

(1:DELETE) or not. In this case, the referential action DC_PROF is the

cascade event on Belongs. It is represented in the sequence diagram

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

5. DELETE

6. DC_PROF

7. T1 (B/R)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

5. DELETE

6. DC_PROF

7. T1 (B/R)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

Non-Terminationstate is detected. Please,
solve the problemand try again.

- . ,
.

Termination state is verified

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

5. DELETE

6. DC_PROF

7. T1 (B/R)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

5. DELETE

6. DC_PROF

7. T1 (B/R)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

: User : Professor : Belongs

1: DELETE

2: DC_PROF

3. T1 (B/R)

4. T2 (A/S)

Non-Terminationstate is detected. Please,
solve the problemand try again.

- . ,
.

Termination state is verified

Fig. 10. Sequence diagrams to detect non-termination problem.

14

as a solid arrow with a message name (2:DC_PROF). The function

TriggerSet(Belongs, DELETE,Before) is called again to calculate the

new TG(). In this case, Belongs has one Before trigger which is rep

resented in the sequence diagram as a MessageToSelf with a mes

sage label (3:T1(B/R)). If TG() has an instance of T1(B/R) then a

non termination state is detected and a message is sent to the user.

In any other case, a new instance in TG(1) = {T1(B/R)} is created.

According to the SQL:2003 recommendation Before triggers is

used to read from a database or to correct an error produced in

the processing of data input (see section, Activation Time) there
fore, we do not need to check whether the action of T1(B/R) may

produce new events. The event cascade(DELETE) is applied to Be

longs. Then the function TriggersSet(Belongs,DELETE,After) is called

to calculate the new TG(). There is only one After trigger defined

on Belongs: (4:T2(A/S)) represents this trigger. If TG() has an in

stance of T2(A/S) then a non termination state is detected, other

wise a new instance in TG(2) = T2(A/S) is created. If a new event

is issued from the action of T2 the algorithm should be repeated

again calling the function TMapping with the pair (new event, ta

ble) as parameters. If there is not any cascade event in the trigger

action then the algorithm is finished and the termination is verified

by sending a message to the user.

4.3.2.2. Scenario 2: (Fig. 10B). In this scenario the action of T is mod

ified to incorporate the event DELETE from Professor. In order to

avoid repetition, in this scenario, the sequence of operations is sim

ilar to the previous one until it reaches the message (4:T2(A/S)).

Until now, the trigger set TG() has two instances {T1(B/R), T2(A/

S)}. Because the action of T2 has the new event DELETE from Profes

sor, the function Sub TMapping(Professor,DELETE) is called again

which immediately calls Sub TriggersSet(Professor,DELETE, Before)

to calculate the new instances in TG(). Because there is not any Be

fore trigger applied to Professor the function Sub TriggerSet is fin

ished, and TG() is returned with only the previous instances. At

this point, the algorithm checks again whether there is a cascade

event produced by (5:DELETE) or not. The referential action

(6:DC_PROF) is executed on Belongs. Then the trigger (6:T1(B/R))

is fired and added to the triggers set as TG(3) = T1(B/R). Now, the

TG() has three instances {T1(B/R), T2(A/S),T1(B/R)} this means that

there are two instances which have been applied to the same ob

ject. In this case, a non termination state is detected and a message

is sent to the user to warn him about the existence of this problem.

When a non termination is detected the mapping is finished

immediately.

5. Conclusions

Although the database CASE tools have been developed to re

solve the database modelling problem and to provide automatic

processes to develop all phases supported in a database methodol

ogy, the current state of these tools is that they provide conceptual

models with more abstraction and are concerned with expressing

the semantics of the real world more accurately. However, the

move from the conceptual level to the logical level is not supported

by these tools, and the generated code needs to be modified to

comply with the requirements of the real world.

It is true that various studies have lead to important results

such as the creation of the current commercial CASE tools and

some research prototypes to support maintaining mechanisms to

preserve integrity constraints in the logical models. Nevertheless,

in the context of Relational databases we consider that current

practice is below the needs of the requirements of active technol

ogy. These requirements need to have a verification process which

is considered as important as development.

On the other hand, although the Relational database has been

widely used in the commercial DBMS and the most important

commercial Object Oriented database systems utilize the Rela

tional tables to store objects, we consider that most proposals have

been developed to respond to the needs of Object Oriented dat

abases development.

Therefore, to fill in some of the gaps that the current CASE tools

leave during the development of active Relational Databases, we

present the OCL2Trigger tool as a support to the theoretical ap

proach which follows the phases proposed in the MDA software

development, by completely transforming the OCL constraints into

triggers. These phases are as follows: specifying OCL constraints in

the UML class diagram, transforming the OCL constraints into

SQL:2003 standard triggers, transforming the standard triggers

into target DBMS triggers. In addition, this tool can represent and

verify trigger execution by using UML sequence diagrams. Thus,

this work unites the UML aspects that are widely accepted and is

supported by many CASE tools for aspects of Relational databases

that have wide presence in commercial DBMS.

Our approach has some limitations which are explained as fol

lows: (a) although we believe that applying MDA makes the trans

formation of any type of OCL constraints to triggers easier,

currently the OCL2Trigger tool supports only the OCL invariant

constraints. Specifically, three patters have been proposed: attri

bute value constraints, multiplicity constraints and generalization

constraints. Other types of constraints such as aggregations and

compositions, pre conditions, and post conditions will be included

in future work; (b) Including complex OCL expressions in which

many relations are involved may result a difficult task to generate

triggers. We think that this limitation could be solved by incorpo

rating more patterns to our approach to cover such expressions.

The article presents a first effort to check the viability of this ap

proach through three of the most widely used constraints in the

conceptual model; (c) The triggers execution analysis focuses only

on detecting the non termination problem and the user himself

needs to redefine and reconstruct triggers definition to verify the

termination. We think that this could be a limitation especially

for users without experience in triggers implementation. Thus, a

part of our future work will be apart from detecting the non termi

nation problem trying to provide some alternatives for the solu

tion. (d) The user needs to define the OCL constraints, which can

not be directly specified in the graphical model, manually into

the corresponding class by using the Oclarity editor. This task re

quires experienced users in OCL although the Oclarity editor could

perform syntactic verification. Therefore, we think as future work

incorporating a new module to make easier the transformation of

the CIM (Computation Independent Model) of the constraints spec

ification to PIM.

Our approach makes it easier for the database developer to gen

erate maintaining mechanisms directly from the generation of the

schema in question. Moreover, when the integrity constraints of

this schema are modified, the corresponding triggers are also auto

matically modified. Using this approach, the developers will obtain

both the best system performance because active mechanisms are

implemented as part of the database schema rather than in the

application, as well as the best data independence because the

integrity constraints are also embedded in the database schema

rather than in external applications.

Furthermore, we will design experiments to validate our tool.

These experiments focus on showing the usefulness of using it to

facilitate maintenance and design tasks. Therefore, we propose

two kinds of experiments: the first concerns the usefulness of

checking semantics with triggers. The second is concerned with

the user interface showing triggers and sequence diagrams. We

want to know whether the designer understands the proposed dia

grams and detects what each one does.

15

References

Al-Jumaily, H.T., 2006. Active technology application to control constraints in
database development. Ph.D. Thesis, Carlos III University of Madrid, Spain.

ArgoUML, 2007. <http://argouml.tigris.org/>.
Baralis, E., Widom, J., 2000. An algebraic approach to static analysis of active

database rules. ACM Transactions on Database Systems 25 (3), 269–332.
Baralis, E., Ceri, S., Widom, J., 1993. Better termination analysis for active databases.

In: Proceedings of the First International Workshop on Rules in Database
Systems, Edinburgh, Scotland, pp. 163–179.

Birgit, D., Heinrich, H., 1999. Using OCL constraints for relational database design –
The unified modeling language. In: Proceedings of the Second International
Conference, LNCS 1723. Springer, pp. 598–613.

Budgen, D., Thomson, M., 2003. CASE tool evaluation: experiences from an
empirical study. Journal of systems and software 67 (2), 55–75.

Cabot, J., Teniente, E., 2006. Constraint Support in MDA Tools: A Survey, Model
Driven Architecture – Foundations and Applications, LNCS, pp. 256–267.

Ceri, S., Fraternalli, P., 1997. Designing Database Applications With Objects and
Rules: The IDEA Methodology. Addison-Wesley.

Ceri, S., Widom, J., 1990. Deriving production rules for constraint maintenance. In:
Proceedings of VLDB Conference IBM Almaden Research Center.

Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L., 1994. Automatic generation of
production rules for integrity maintenance. ACM Transaction on Database
Systems 19 (3).

Chen, P., 1976. The entity-relationship model – toward a unified view of data. ACM
Transactions on Database Systems 1 (1).

Cuadra, D., Nieto, C., Castro, E., Martinez, P., Velasco, M., 2003. Preserving
relationship cardinality constraints in relational schemata. Database Integrity:
Challenges and Solutions. Ed: Idea Group Publishing.

Decker, H., Martinenghi, D., Christiansen, H., 2006. Integrity checking and
maintenance in relational and deductive databases and beyond. In: Intelligent
Databases: Technologies and Applications, Idea Group, pp. 238–285.

Domínguez, E., Lloret, J., Zapata, M.A., 2002. Integrity constraint enforcement by
means of trigger templates. In: Second International Conference, Advances in
Information Systems, ADVIIS, 2002.

Elmasri, R., Navathe, S., 2000. Fundamentals of Database Systems, Third ed.
Addison-Wesley.

EmPowerTec, 2006. <http://www.empowertec.de/products/rational-rose-ocl.htm/>.
Gogolla, M., Richters, M., 1998. Transformation rules for UML class diagrams. The

Unified Modeling Language, UML’98 – Beyond the Notation. In: First
International Workshop, Mulhouse, France.

Hickey, T., 2000. Constraint-based termination analysis for cyclic active database
rules. In: Proceedings of the Sixth International Conference on Rules and
Objects in Databases, LNAI, vol. 1861. Springer, pp. 1121–1136.

IBM Rational, 2007. XDE Developer. <http://www-306.ibm.com/software/awdtools/
developer/rosexde/>.

ISO/IEC 9075 Standard, 2003. Information Technology – Database Languages –
SQL:2003 International Organization for Standardization.

Kulkarni, K., Mattos, N., Cochrane, R., 1998. Active Database Features in SQL3, Active
Rules in Database Systems. Springer-Verlag, New York. pp. 197–218.

MetaEdit+, 2007. <http://www.metacase.com/>.
Objecteering/UML, 2007. Objecteering/SQL Designer User Guide Version 5.2.2.

<http://depinfo.u-bourgogne.fr/docs/Objecteering522/SQLDesigner.pdf>.
OCL22SQL, 2007. Dresden OCL Toolkit. <http://dresden-ocl.sourceforge.net/>.

Olivé, A., 2003. Integrity constraints definition in object-oriented conceptual
modeling languages. In: Conceptual Modeling – ER 2003, 22nd International
Conference on Conceptual Modeling, Chicago, IL, USA.

OMG, 2007. Object Management Group, Inc. <http://www.omg.org/mda/>.
Oracle, 2007. OracleÒ Database SQL Developer User’s Guide <http://

download.oracle.com/docs/cd/B19306_01/appdev.102/b31695/dialogs.htm#
BACIGFBJ>.

Paton, N., Díaz, O., 1999. Active Database Systems. ACM Computing Surveys 31 (1).
Rational Enterprise Edition, 2003. <www-306.ibm.com/software/rational/>.
Rational Software, 2000. Mapping Object to Data Models with the UML Mapping

Objects to Relational Databases. <http://www.uml.org.cn/oobject/tp185.pdf>.
Teorey, T.J., 1999. Database Modeling and Design, third ed. Morgan Kaufmann Series

in data management systems.
Türker, C., Gertz, M., 2000. Semantic Integrity Support in SQL-99 and Commercial

(Object) Relational Database Management Systems. UC Davis Computer Science
Technical Report CSE-2000-11, University of California.

Verheecke, B., Straeten, R., 2003. Specifying and implementing the operational use
of constraints in object-oriented applications. In: Proceedings of TOOLS PACIFIC
2002, vol. 10, p. 23.

Visual Case Tool, 2007. <http://visualcase.com/index.htm/>.
Wahler, M., Koehler, J., Brucker, A., 2006. Model-Driven Constraint Engineering,

Workshop on OCL for (Meta-)Models in Multiple Application Domains
(OCLApps), Models 2006.

Harith T. Al-Jumaily. Since 1999, he has worked at the Advanced Databases Group

in the Computer Science Department at the Universidad Carlos III of Madrid. In

2006, he obtained a Ph.D. in Information Science from the Universidad Carlos III of

Madrid. He is currently teaching File Structure and Database Design. His research

interests include Advanced Database Technologies, Information Retrieval and

Software Engineering.

Dolores Cuadra received the M.Sc. in Mathematics from the Universidad Com-

plutense of Madrid in 1995. Since 1997, she has worked as assistant lecturer at the

Advanced Database Group in the Computer Science Department of the Carlos III

University of Madrid. In 2003 she obtained a Ph.D. in Computer Science from the

Carlos III University of Madrid. She is currently teaching File Organization, Database

Design and Data Modelling. Her research interests include data models, conceptual

and logical modelling and Advanced Database CASE environments. She has been

working in the Computer Science Department at Purdue University of West

Lafayette (Indiana) for nearly a year, where she has applied her research in Spatio-

Temporal databases.

Paloma Martínez Fernández obtained a degree in Computer Science from the

Universidad Politécnica of Madrid in 1992. Since 1992, she has been working at the

Advanced Databases Group in the Computer Science Department at Universidad

Carlos III of Madrid. In 1998 she obtained a Ph.D. in Computer Science from the

Universidad Politécnica of Madrid. She is currently teaching Database Design and

Advanced Databases in the Computer Science Department at the Universidad Carlos

III de Madrid. She is working in several European and National research projects on

Natural Language Processing, Information Retrieval, Advanced Database Technol-

ogies and Software Engineering.

16

