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Abstract This note adds one celebrated coalition formation game due to
Gamson (Am Soc Rev 26:373–382 1961a, Am Soc Rev 26:565–573, 1961b) in the
list of applications of the theory of hedonic games explored by Banerjee et al.
(Soc Choice Welf 18:135–153, 2001) and Bogomolnaia and Jackson (Games
Econ Behav 38: 204–230, 2002). We apply their results to study the original
Gamson game and offer extensions both to a multi-dimensional characteristics
space and to an infinite number of players.

1 Motivation

In his seminal work Gamson (1961a) examined a coalition formation game
where each player in the “winning” coalition receives a share of the total coali-
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tion resources proportional to her own contribution. This celebrated coalition
formation game, often referred as the Gamson’s game or Gamson’s law,1 has
generated a tremendous interest in various areas of social sciences. Gamson’s
research was motivated by early work of Mills (1953) and Caplow (1956) who
analyzed the structure of coalitions formed in three-person families and pointed
out the presence of the weakest player in the equilibrium coalition. These
theoretical considerations have produced an important volume of research in
social psychology, which made coalitional experiments2 an important part of
the research in this field (Bonacich et al. 1985; Chertkoff 1967, 1971; Gamson
1964). A great deal has been learned about choices of coalition partners and
the way a division of coalition winnings is affected by variations in game rules
and players’ attributes.

As noted and illustrated by Caplow (1968), a theory of coalitions in triads
could be used to analyze conflict and cooperation in many social and political
environments, including international relations. Hsiung (1987) offers coalition-
al analysis of the strategic triangle of the United States, China and the Soviet
Union during the Cold War era of 1950–1985. Along similar lines, Caplow (1989)
discusses the failure of peace planning in 1815, 1919 and 1945, while Zagare
(1984) examines the outcome of the Geneva conference on Vietnam in 1954.

Together with the minimal size principle introduced by Riker (1962),
Gamson’s law is also among the most popular hypothesis in political science
and is one of the prominent landmarks in empirical models of the allocation
of cabinet portfolios in coalition governments.3 Laver (1998) points out that
“Gamson’s law boasts one of the highest non-trivial R-squared figures in polit-
ical science”. One of the great appeals of Gamson’s law is its intuitive nature
and the parsimony it offers, being independent of the game form underlying
the legislative bargaining process. The latter feature of Gamson’s law continues
to generate an interest in political science as evidenced by recent contributions
of Carroll et al. (2004) and Fréchette et al. (2004).

The purpose of this brief note is to place the game-theoretical interpretation
of Gamson’s law in the context of hedonic games developed by Banerjee et al.
(2001) (BKS – henceforth) (see also Bogomolnaia and Jackson 2002). In this
framework the payoff of every player payoff depends only on the composition
of the coalition she belongs to. BKS show that if players share common pref-
erences over possible coalitions, there is a stable partition of all players into
disjoint coalitions. This so-called “top-coalition property” allows us to guar-
antee the existence and to characterize the equilibria of the Gamson’s game.
We then generalize the original Gamson’s game and examine the case where

1 The terminology “Gamson’s law” is somewhat inaccurate as there is no stylized and universal
prediction (coalitional pattern) associated with the Gamson’s game. It is however kept here to
maintain the link with the existing literature. We are grateful to the referee for calling our attention
on that point.
2 Gamson (1961b) describes the results of an experiment designed to test his theory.
3 See Brown and Franklin (1973), Brown and Frendreis (1980), Warwick and Druckman (2001),
Acemoglu et al. (2006) on modified versions of Gamson’s law in this context.
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each player is characterized by a multiple array of characteristics. We consider
two different types of a generalized Gamson’s game and show that under the
single division method, the BKS weak top-coalition property still applies, thus,
yielding the existence of a stable coalition. However, under the double division
method, a stable coalition may fail to exist. Incidentally, we offer a concept
of “congruent” game and demonstrate that a game admits a stable coalition
if and only if it is congruent.4 Finally, we consider the Gamson’s game with a
continuum of players and derive a necessary and sufficient condition for the
existence of a stable coalition.

2 Model

Let us now introduce the Gamson’s game. Consider a finite set of players
N = {1, . . . , n}, where each player i ∈ N is described by a positive parameter
θi, interpreted as her endowment. Without loss of generality, we assume that
the players are ordered according to the value of this parameter, i.e., θ1 ≥
θ2 ≥ · · · ≥ θn. For every S ⊂ N denote by

�(S) =
∑

i∈S

θi

the total endowment of coalition S and put �(N) = 1.
A coalition S ⊂ N is winning if the total endowment of S exceeds the total

endowment of its complement N\S. We denote by W the set of winning coali-
tions, i.e.,

W =
{

S ⊂ N|�(S) >
1
2

}
.

If a winning coalition S forms, every member of S derives the payoff Ui(S),
which is a share of her endowment in S. A coalition which is not winning, has
nothing to offer to its members. That is, for every i ∈ S

Ui(S) =
{

θi
�(S)

if S ∈ W
0 otherwise.

The Gamson’s game is hedonic in the sense that each player’s strategic consid-
erations take into account the payoff distribution after the coalition she belongs
is formed, and thus, the payoff is the function of the composition of the formed
coalition only. We now turn to the notion of stability:

4 We also point out that the notions of congruency and top-coalition property in general do not
coincide.
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Definition A partition of the set N in two coalitions S and N\S is called stable
if there is no coalition T such that

Ui(T) > Ui(S) for all i∈T ∩ S and Ui(T)>Ui(N\S) for all i∈T ∩ (N\S) .

Obviously, if a partition is stable, one of its two elements, say S, is a winning
coalition. For the above inequality to hold true, it must be the case that T is
winning. Therefore, we deduce that T ∩ S �= ∅ and that the second part part
of the test can be deleted. Thus, a partition is stable if and only if there is no
winning coalition T with Ui(T) > Ui(S) for all i ∈ T ∩ S. We have the following
observation:

Result 2.1 A winning coalition S is stable if and only if it is weakest (in terms
of endowment) among all winning coalitions:

�(S) = min
T∈W

�(T).

A simple direct proof of this result can be provided. However, it immediately
follows from Corollary 2 in BKS.

It is worth pointing out that the hedonic framework of BKS allows for an
extension of the Gamson’s game. Consider a positive-valued function H : �+ ×
�+ × 2N → �++, which is increasing in the first argument and is decreasing in
the second. Put, for all i ∈ S

Ui(S) =
{

H(θi, �(S), S) if S ∈ W
0 otherwise

Since this generalized game satisfies the weak top-coalition property, the main
theorem in BKS yields the existence of a stable coalition.5 In the case of a triad,
an equilibrium coalition contains the weakest player:

Result 2.2 Let n = 3 and
1
2

> θ1 > θ2 > θ3, i.e., no singleton is a winning

coalition. Then, the unique stable coalition is {2, 3}.
However, if n ≥ 4, the stable coalition does not necessarily contain the

weakest player. Consider the following example:

Example 2.3 Let n = 4 and θ1 = 0.40, θ2 = 0.27, θ3 = 0.25 and θ4 = 0.08. Then
the unique stable coalition is {2, 3}, which does not contain player 4.

Finally, one can raise the question whether stable coalitions are connected
or consecutive (Greenberg and Weber 1986), where, to recall, a coalition S is
connected if for every three different players, i < j < k, i, k ∈ S implies that j

5 Note, however, that this formulation allows for increasing returns to scale in terms of coalition
size. Thus, a stable winning coalition is not necessarily minimal. Note that this framework covers the
case where coalitions are not necessarily either winning or losing. In the case where a surplus is also
distributed among small coalitions, a core stable partition may contain more than two elements.
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belongs to S as well. Assume now that the game is strict, i.e., there is no coalition
S with �(S) = 1

2 .We have

Result 2.4 Let n = 4 and
1
2

> θ1 > θ2 > θ3 > θ4. If a stable coalition S does

not contain the weakest player, it is connected.

Proof Suppose there is a stable coalition S that does not contain player 4 and
is not connected. Then S = {1, 3}. Since S is stable and the game is strict,

θ2 + θ3 <
1
2

. But this implies that θ1 + θ4 >
1
2

and {1, 4} is a stable coalition, a

contradiction. �	
However, Result 2.4 cannot be extended to a larger number of players:

Example 2.5 Let n = 5 and θ1 = 0.40, θ2 = 0.30, θ3 = 0.12, θ4 = 0.11 and
θ5 = 0.07. Then the unique stable coalition is {1, 4}.

We leave open the interesting problem of the characterization of vectors
θ ≡ (θ1, θ2, . . . , θn) for which stable coalitions exhibit connectedness or include
the weakest player.

In the next section we examine a multi-dimensional variant of the Gamson’s
game, where each player is characterized by a multiple array of characteristics.

3 Multi-characteristic extension

Note that Gamson’s law has been formulated for the weighted majority games
and we could conceivably consider an extension to the case where, unlike in
the previous section, each player i ∈ N is identified by K > 1 characteristics,
specifically, by the vector θi = (

θ1
i , θ2

i , . . . , θK
i

) ∈ �K+. A winning coalition S must
satisfy

�k(S) =
∑

i∈S

θk
i >

�k(N)

2
for every k = 1, 2, . . . , K.

This extension of weighted majority games is relevant to describe various voting
environments. An important illustration is provided by the qualified majority
provisions in the treaty of Nice for which K = 3 and every country i is described
by the vector �i = (1, θ2

i , θ3
i ), where θ2

i is the country i’s population, and θ3
i

is an assigned voting weight. Thus, in forming a winning coalition one takes
into account the number of countries it contains as well as their total popula-
tion and aggregated voting weight (Felsenthal and Machover 2001). The more
recent qualified majority decision rules for the Council of Ministers of the EU
that were included in the draft European Constitution proposed by the 2003
European Convention reduced the number of parameters to K = 2 (Felsenthal
and Machover 2004). Another example is provided by the amendment of Can-
ada’s Constitution Act of 1982 (Kilgour 1983).
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There are several ways to extend the division of surplus in the Gamson’s
game. Let α = (

α1, α2, . . . , αK
)
, be the vector of positive weights assigned to

each of K characteristics. Assume that
∑k=K

k=1 αk = 1.
First, consider a single division method, where the payoff Ui(S) of every mem-

ber i of the winning coalition S is the share of her “weighted” endowment in S.
As before, a coalition which is not winning, has nothing to offer to its members.
Thus, for every i ∈ S we have

Ui(S) =
⎧
⎨

⎩

∑k=K
k=1 αkθk

i∑k=K
k=1 αk�k(S)

if S ∈ W
0 otherwise.

The extension of Result 2.1 to this setting is straightforward.

Result 3.1 Under the single division method, a winning coalition S is stable if
it has the smallest total endowment among all winning coalitions:

�(S) = min
T∈W

k=K∑

k=1

αk�k(S).

The situation is quite different if instead of weighting the different charac-
teristics, the pie is divided according to the double division method. Namely,
for each characteristic k the share of each player is determined according to the
unidimensional Gamson rule. The total share is then calculated as a weighted
average by utilizing the weights αk for each characteristic k. Thus, if a winning
coalition S forms, every member i of S derives the payoff Vi(S), defined as
follows:

Vi(S) =
{∑k=K

k=1 αk θk
i

�k(S)
if S ∈ W

0 otherwise.

Interestingly enough, this game does not always admit an equilibrium.

Result 3.2 Under the double division method, a stable coalition may fail to
exist.

Proof Consider the following example with three players and three character-
istics. Let θ1 = (0.40, 0.35, 0.25), θ2 = (0.25, 0.40, 0.35), θ3 = (0.35, 0.25, 0.40)

and α =
(

1
3 , 1

3 , 1
3

)
. The winning coalitions consists of all groups with at least
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two players. Straightforward calculations lead to:

V1({1, 2}) = 1
3

(
40
75

+ 25
65

+ 35
60

)
� 0.500 43 > 0.499 57 � V1({1, 3})

= 1
3

(
40
65

+ 25
60

+ 35
75

)

V2({2, 3}) = 1
3

(
40
75

+ 25
65

+ 35
60

)
� 0.500 43 > 0.499 57 � V2({1, 2})

= 1
3

(
40
65

+ 25
60

+ 35
75

)

V3({1, 3}) = 1
3

(
40
75

+ 25
65

+ 35
60

)
� 0.500 43 > 0.499 57 � V3({2, 3})

= 1
3

(
40
65

+ 25
60

+ 35
75

)

A stable coalition does not exist due to the emergence of the Condorcet cycle
among winning coalitions. �	

The last example suggests that the existence of stable coalitions calls for
some degree of congruence among a subset of players. The following notion of
congruence which applies to any game where the economies of scale are fully
described by a proper6 set of winning coalitions W (i.e. at equilibrium, if any,
a single coalition forms) slightly generalizes the notion of weak-top coalition
property introduced by BKS. In fact, congruence is necessary and sufficient for
stability.

Definition A coalition S ⊆ N is congruent if for all i ∈ S and all T ⊆ N
the inequality Ui(T) > Ui(S) implies that there exists j ∈ T ∩ S such that
Uj(S) ≥ Uj(T). A coalition formation game is called congruent if there exists a
congruent coalition.

Since we consider proper simple games, there is no loss of generality in con-
sidering partitions consisting of two coalitions,7 S and N\S, where one, say S, is
winning. Like for the Gamson’s game, we will refer to such coalition as a stable
coalition. We have the following result:

Result 3.3 Let W be a proper family of winning coalitions. A coalition forma-
tion game is stable (i.e., admits a stable coalition) if and only if it is congruent.

Proof Let the game be congruent. We show that the partition of the set N into
coalitions S and N\S, where S is congruent, is stable. Indeed, if not, then there is

6 A simple game (N, W) is proper if S, T ∈ W implies S ∩ T �= ∅.
7 If the simple game is not proper, then a stable coalition structure may consists of more than two
coalitions. A standard example of such assertion is provided by hedonic matching games when the
population of at least six players is divided into two types.
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a winning coalition T such that Ui(T) > Ui(S) for all i ∈ T ∩ S, a contradiction
to the congruency of S.

Now, let S be a stable coalition. We show that S is congruent. Indeed, let
i ∈ S and T ⊆ N be such that Ui(T) > Ui(S). Since Uj(T) > Uj(N\S) = 0 for
all j ∈ T ∩ (N\S), we deduce that Uj(S) ≥ Uj(T) for some j ∈ T ∩ S. Otherwise,
we would contradict our assumption that S is stable. �	

The notion of congruence generalizes the notion of weak top-coalition prop-
erty in BKS as it does not imply that a congruent coalition S would be ranked
at the top by all members of S. Consider the following example:

Result 3.4 Let n = 4 and

V1({1, 2, 4}) > V1({1, 2, 3}) > V1(T) for every other T that includes 1,

V2({2, 3, 4}) > V2({1, 2, 3}) > V2(T) for every other T that includes 2,

V3({1, 3, 4}) > V3({1, 2, 3}) > V3(T) for every other T that includes 3,

V4({1, 2, 4}) > V4({1, 2, 3}) > V4(T) for every other T that includes 4.

Let W be the set of majority coalitions. It is easy to see that S = {1, 2, 3} is a con-
gruent coalition. However, S does not satisfy the weak top-coalition property,
as it represents only the second best choice for the members of S.

In the next section we discuss an extension of the Gamson’s game to envi-
ronments that consist of infinite number of players.

4 Atomless environments

The analysis in previous sections has been conducted under the assumption that
the set of players was finite. Consider instead an environment with a continuum
of players given by the unit interval

[
0, 1

]
and a vector θ = (

θ1, θ2, . . . , θK
)

of K positive random variables, where θ(t) = (
θ1(t), θ2(t), . . . , θK(t)

)
denotes

the characteristics of a player of type t ∈ [
0, 1

]
. Without loss of generality we

assume that
∫ 1

0 θk(t)dt = 1 for all k = 1, . . . , K. Given a small positive number
ε,8 consider a proper simple game Wε defined as follows:

S ∈ Wε if and only if θk(S) =
∫

S

θk(t)dt ≥ 1
2

+ ε for all k = 1, . . . , K.

We assume that the fraction 1
K of the pie is divided among the members of the

coalition on the basis of their kth characteristic by using the double division

8 The existence of a stable coalition is not guaranteed in the case of the classical majority simple
game, as the game is discontinuous at ε = 0.
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method. That is, if a coalition S forms, every player of type t of S derives the
payoff Vt(S), defined as follows:

Vt(S) =
{

1
K

∑k=K
k=1

θk(t)
θk(S)

if S ∈ Wε

0 otherwise.

An obvious sufficient condition for a coalition S to be stable is

θk(S) = 1
2

+ ε (1)

for all k = 1, . . . , K.
In the finite case, condition (1) is not necessary for stability as illustrated by

the following example:

Example 4.1 Let n = 4, K = 2, θ1 = (0.40, 0.32, 0.17, 0.11) and θ2 = (0.17, 0.10,
0.31, 0.42). Then, {1, 4} is the unique stable coalition. However, θ2({1, 4}) =
0.59 > θ2({2, 4}) = 0.52.

The situation is however different when the set of players is atomless:

Result 4.2 There exists a stable coalition. Moreover, S is stable if and only if it
satisfies (1).

Proof The fact that condition (1) is necessary and sufficient condition for
stability is immediate. For the existence of a stable coalition, consider the
K-dimensional valued measure µ defined as follows:

µ(S) =

⎛

⎜⎜⎜⎜⎝

θ1(S)

θ2(S)

. . .

. . .

θK(S)

⎞

⎟⎟⎟⎟⎠

Since µ is atomless, µ(∅) = (0, 0, .., 0) and µ(
[
0, 1

]
) = (1, 1, .., 1). Thus, by the

Lyapunov’s theorem9 that there is S ⊆ [
0, 1

]
such that

µ(S) =
(

1
2

+ ε,
1
2

+ ε, . . . ,
1
2

+ ε

)
.

�	
Result 4.2 indicates that the existence of an equilibrium coalition is a rela-

tively simple question in the case where we have a continuum of players. In fact,

9 This theorem asserts that the range of an atomless vector valued measure is a convex set (see,
for instance, Halmos (1950) for a formal statement).
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the argument above applies to any hedonic game where the payoff of a player
of type t ∈ [

0, 1
]

is defined by

Vt(S) =
{

U(θ1(S), θ2(S), . . . , θK(S)) if S ∈ W
0 otherwise,

where U is a decreasing function and there exist values γ k ∈
(

1
2 , 1

]
, k = 1, . . . , K

such that the set of winning coalitions W is determined by

W = {S ⊂ [0, 1]|θk(S) ≥ γ k for all k = 1, . . . , K}.

5 Concluding remarks

We conclude this note by suggesting yet another extension of the Gamson’s
game which could accommodate a wider spectrum of applications to coalitional
politics. In the model considered in this note, the outcome of the game is deter-
mined by the division of a surplus among a subset of players. As we already
pointed out, in politics it may represent a cabinet portfolio allocation in coalition
governments. However, governments must also choose their policy. Assuming
that the ideological space is represented by a multidimensional Euclidean space
and that each player i, is identified not only by her weight θ i but also by her
ideology, it would be of interest to examine hedonic games where in addition
to a division of the surplus, a winning coalition is described by a specific policy
depending upon the weights and ideologies of its members.10 It seems to offer
a promising avenue for further research.

Acknowledgements We thank an anonymous referee for insightful comments and suggestions on
the previous version of this note.
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