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a b s t r a c t

GARCH volatilities depend on the unconditional variance, which is a non-linear function of the
parameters. Consequently, they can have larger biases than estimated parameters. Using robust methods
to estimate both parameters and volatilities is shown to outperform Maximum Likelihood procedures.
1. Introduction

When GARCH models are fitted to real data, the residuals
often have excess kurtosis which could be explained, among other
reasons, by the presence of outliers; see Baillie and Bollerslev
(1989). Many authors argue that extreme observations are not
outliers and they should be incorporated into the model; see
Eraker et al. (2003). However, since in practice, GARCH models
are often fitted without taking into account whether there are
observations generated by a different stochastic mechanism, we
find it interesting to analyze how such observations affect the
estimation of the volatility.

To deal with outliers, one could identify and correct them
before estimating the GARCH parameters; see Grané and Veiga
(2010) and Gregory and Reeves (2010). However, all proposed
detection methods suffer from a number of potential problems.
Another alternative is using robust methods. Maximizing the like-
lihood based on a heavy tailed distribution protects against out-
liers when estimating the GARCH parameters; see Sakata and
White (1998), Karanasos and Kim (2006) and Carnero et al. (2007).
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Bollerslev (1987) proposed a Quasi Maximum Likelihood esti-
mator, denoted by QML-t , based on maximizing the Student-t
log-likelihood function. Alternatively, Muler and Yohai (2008) pro-
posed the Bounded-M (BM) estimator, which is defined by the
maximization of a conveniently modified likelihood and changes
the specification of the conditional variance to bound the propaga-
tion of the outlier effect.

Previous research has focused on the effects of outliers on
the Gaussian Maximum Likelihood (ML) estimator of GARCH
parameters; see Sakata and White (1998), Carnero et al. (2007)
and Muler and Yohai (2008). However, the main interest of
practitioners is the estimation of the underlying volatilities. Our
objective is to study the effects of outliers on the estimated GARCH
volatilities computed by usingML estimates of the parameters and
compare the performance of robust estimators.

2. Effects of outliers on ML volatility estimates

Consider a GARCH(1, 1) series contaminated by k consecutive
outliers of size ω at times τ , . . . , τ + k − 1:

yt = y∗

t + sign(y∗

t )ωIt (1)

with

y∗

t = εtσt
1
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Table 1
Monte Carlo means and standard deviations of GARCH estimates when α0 = 0.1, α1 = 0.1, β = 0.8 and the outlier size is ω = 10.

A single outlier Two consecutive outliers
ML QML-t BQML-t BM ML QML-t BQML-t BM

T = 500
α0 0.4193 (0.3509) 0.3657 (0.2971) 0.1907 (0.1962) 0.2631 (0.2763) 0.5930 (0.3823) 0.5138 (0.2848) 0.5063 (0.2999) 0.2832 (0.2975)
α1 0.1480 (0.1396) 0.1047 (0.0538) 0.1216 (0.0536) 0.1125 (0.0542) 0.2159 (0.1157) 0.1730 (0.0545) 0.1695 (0.0546) 0.1060 (0.0555)
β 0.5196 (0.3157) 0.6523 (0.2624) 0.7143 (0.2014) 0.6151 (0.2906) 0.3309 (0.3060) 0.3716 (0.2653) 0.3788 (0.2866) 0.5998 (0.3095)

T = 1000
α0 0.2528 (0.2412) 0.2164 (0.1847) 0.1317 (0.0889) 0.1581 (0.1682) 0.3499 (0.2670) 0.2919 (0.1850) 0.2874 (0.1896) 0.1697 (0.1833)
α1 0.1163 (0.0692) 0.1070 (0.0386) 0.1148 (0.0354) 0.1075 (0.0356) 0.1610 (0.0611) 0.1436 (0.0348) 0.1427 (0.0359) 0.1070 (0.0348)
β 0.6600 (0.2378) 0.6854 (0.1868) 0.7680 (0.1031) 0.7321 (0.1840) 0.5331 (0.2590) 0.5804 (0.1905) 0.5859 (0.2010) 0.7196 (0.2006)

T = 5000
α0 0.1164 (0.0308) 0.1116 (0.0230) 0.1056 (0.0218) 0.1033 (0.0226) 0.1276 (0.0346) 0.1253 (0.0438) 0.1238 (0.0250) 0.1029 (0.0222)
α1 0.1019 (0.0173) 0.1016 (0.0136) 0.1090 (0.0143) 0.1029 (0.0144) 0.1095 (0.0169) 0.1090 (0.0135) 0.1094 (0.0129) 0.1058 (0.0147)
β 0.7851 (0.0405) 0.7886 (0.0316) 0.7916 (0.0301) 0.7949 (0.0316) 0.7673 (0.0433) 0.7683 (0.0415) 0.7694 (0.0324) 0.7944 (0.0316)
where εt is a Gaussian white noise, It takes value 1 when t =

τ , . . . , τ + k − 1 and 0 otherwise, and

σ 2
t = α0 + α1y∗2

t−1 + βσ 2
t−1 (2)

with α0 > 0, α1 ≥ 0, β ≥ 0 and α1 + β < 1.1
Denote by

αML
0 ,αML

1 ,βML

theML estimator of the parameters.

ML estimated volatilities are given byσML
t

2
=αML

0 +αML
1 y2t−1 +βML σML

t−1

2
. (3)

Consider an isolated outlier at t = τ . The error in the estimation
of σ 2

t is given by

ξt =
σML

t

2
− σ 2

t

= (αML
0 − α0) + (αML

1 − α1)y2t−1

+ (βML
− β)σ 2

t−1 +βML
σML

t−1

2
− σ 2

t−1


=

(αML
0 − α0)


1 −

βML
t−1


1 −βML

+ (αML
1 − α1)

t−2−
i=0

βMLi y∗2
t−1−i

+ (βML
− β)

t−2−
i=0

βMLi σ 2
t−1−i

+αML
1

t−2−
i=0

βMLi (y2t−1−i − y∗2
t−1−i)

+
βMLt−1

σML
1

2
− σ 2

1


. (4)

Note that the expected error in the volatility estimation de-
pends on the biases, covariances and expectations of non-linear
functions of the ML estimator. Although the biases of the ML es-
timator due to outliers have been already analyzed, for complete-
ness, we have carried out a Monte Carlo experiment generating
1000 series, of sizes T = 500, 1000 and 5000, by a GARCH(1, 1)
model with parameters α0 = 0.1, α1 = 0.1 and β = 0.8. The
series have been contaminated at τ = T/2 by first an isolated
and second by two consecutive outliers of sizes ω = 0, 5, 10 and
15. As the marginal variance of the uncontaminated series is 1, ω
represents the size of the outlier in terms of the number of stan-
dard deviations. Table 1, which reports theMonte Carlomeans and
standard deviations of the ML estimates when ω = 10, shows
that, if the sample size is T = 1000, the biases of αML

0 and αML
1

are positive and large while βML has a very large negative bias.

1 This specification corresponds to Level Outlier defined byHotta and Tsay (1998)
who also define Volatility Outliers.
The biases are larger when the outliers are consecutive. Further-
more, Fig. 1, which plots kernel densities ofαML

0 ,αML
1 andβML and

of the estimated marginal variance given byαML
0 /(1−αML

1 −βML)
for T = 1000 when there is an isolated outlier, shows that when
ω = 15, bothαML

1 andβML can take any value within the admis-
sible parameter space. Notice also the large bias of the estimated
marginal variance, its density is concentrated so far from the true
value that only the left tail is plotted. Consequently, if

σML
1

2 is
the estimated marginal variance, the volatilities will be positively
biased as illustrated in Fig. 2 where the biases of the Monte Carlo
estimated volatilities are plotted for both single and consecutive
outliers. At t = τ +1, the error is positive because y2τ is large while
σ 2

τ is not affected by the outlier; see (4). Therefore, we expect that
the volatility is overestimatedby a very large amount right after the
outlier appears. Then, at t > τ + 1, the error is increased due to
the termαML

1
∑t−2

i=0

βML
i

(y2t−1−i −y∗2
t−1−i) that takes into account

the difference between the contaminated observations used to es-
timate the variances and the uncontaminated observations that
enter the equation of the true variances. Given that y2τ − y∗2

τ > 0,
there is transmission of the effects of outliers at time τ to estimated
volatilities after τ +1. Then, the errors tend exponentially towards
their previous mean; see Fig. 2. Note that, if ω = 15, ML estimated
volatility overestimates the true volatility bymore than 25% at any
time t and by more than 100% right after the outlier. The pattern is
similar regardless ofwhether the outliers are single or consecutive.

3. Robust estimation of the volatility

Muler and Yohai (2008) propose the following volatility
estimatorσ BM

t

2
= αBM

0 +αBM
1 rc


y2t−1σ BM
t−1

2


×
σ BM

t−1

2
+βBM σ BM

t−1

2
(5)

where rc(x) =


x, |x| < c
c, |x| ≥ c andαBM

0 ,αBM
1 andβBM are given by the

BMestimator.2 Table 1,which reports theirMonte Carlomeans and
standard deviations for the same experiments described above,
shows that the biases, which are similar regardless of whether the
outliers are single or consecutive, are clearly reduced with respect
to ML; see also Fig. 1.

Alternatively, we propose to estimate the volatility in (5)
with

rc(x) =


x, |x| < c
1, |x| ≥ c (6)

2 Muler and Yohai (2008) show that the BM estimator outperforms alternative
robust estimators proposed by Park (2002) and Peng and Yao (2003).
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Fig. 1. Monte Carlo kernel densities of estimated parameters of simulated GARCH(1, 1) series of size T = 1000 contaminated with one outlier.
and the parameters being estimated by the QML-t estimator. Using
(6), large squared observations are set equal to their conditional
expectations, which are given by the conditional variance. We
consider a third robust estimator of the parameters, denoted by
BQML-t , based on combining the maximization of the Student-t
log-likelihood with the bounding mechanism proposed by Muler
and Yohai (2008). The resulting volatility estimates are denoted

by
σQML-t

t

2
and

σ BQML-t
t

2
respectively. Table 1 shows that the

QML-t estimator has smaller bias than ML. However, the biases ofαQML-t
0 and βQML-t are still too large. The results corresponding to

the BQML-t estimator with c = 9, show that the biases ofαBQML-t
0

and βBQML-t are further reduced when there is a single outlier.
However, when there are two consecutive outliers, the biases of
the QML-t and BQML-t estimators are very similar. Fig. 1 shows
thatwhenω = 0, the densities of theML and the robust estimators
are similar. Moreover, in the presence of outliers, βQML-t has a
dispersed density which is reduced by the bounding mechanism
introduced by the BQML-t and BM estimators. However, when
estimating the marginal variance, the BM estimator outperforms
the others and the properties of the QML-t and BQML-t estimators
are similar. Consequently, the BQML-t estimator seems to be better
than QML-t one in estimating each of the parameters individually
but not in estimating the unconditional variance.

Fig. 2 plots the Monte Carlo means of ξt . In this case, the
three robust methods have smaller biases than ML. Furthermore,
the mean errors corresponding to the periods of time around the
outlier appearance are clearly smaller when using rc(x) defined in
(6) instead of (5). Also notice that, although BQML-t is better than
QML-t in estimating the parameters when there is a single outlier,
the reverse is true in estimating the volatilities. One possible
explanation is that the QML-t estimator seems to estimate better
the marginal variance. We tend to think that good parameter
estimates lead to good volatility estimates; see Charles and Darné
(2006). However, this might not be true due to non-linearities.
For example, consider a GARCH(1, 1) model with parameters θ =

(α0, α1, β) = (0.1, 0.1, 0.8) and marginal variance 1. Suppose we
have two parameter estimates: θ̃1 = (0.02, 0.08, 0.9) and θ̃2 =

(0.11, 0.099, 0.85). Clearly, θ̃2 is closer to the true θ . However,
estimates given by θ̃1 are closer to the true marginal variance.
Therefore, it is expected that θ̃1 leads to better volatility estimates
in spite of not being as close to θ as θ̃2.

Finally, we have repeated the analysis for Volatility Outliers
finding similar results. They are available from the authors upon
request.

4. Empirical application

Daily returns of the S&P 500 observed from January 2, 1987 to
February 19, 2008 are analyzed to illustrate the differences in the
alternative volatility estimates. Fig. 3 plots the returns in which
volatility clustering and outliers seem to be present. Table 2, which
reports ML estimates of the GARCH(1, 1) parameters, shows that
the estimated marginal variance isαML

0 /(1 −αML
1 −βML) = 1.45.

QML-t , BQML-t and BM estimates are also reported in Table 2.
As we can see, according to our simulation results, the estimates of
α0 and α1 are larger while β is smaller when using ML compared
to robust methods. For this particular series, BQML-t and QML-t
give exactly the same values and therefore just one is considered.
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Fig. 2. Monte Carlo means of ξt in the presence of a single and two consecutive outliers in GARCH(1, 1) series of size T = 1000.
Table 2
Estimated parameters of the GARCH(1, 1) model fitted to S&P 500 daily returns together with their asymptotic standard
deviations.

α0 α1 β η

ML 0.0141 (0.001) 0.0856 (0.002) 0.9047 (0.004) –
QML-t 0.0058 (0.002) 0.0540 (0.008) 0.9416 (0.008) 0.1588 (0.003)
BQML-t 0.0058 (0.002) 0.0540 (0.008) 0.9416 (0.008) 0.1588 (0.003)
BM 0.0051 0.0559 0.9345 –
Fig. 3. Daily S&P 500 returns observed from January 2, 1987 to February 19, 2008.

On the other hand, the BM and BQML-t estimates of α1 are similar,
with the BM estimate slightly larger. The estimated persistence is
close to one and similar for all estimators considered. Moreover,
the BQML-t and BM estimates of the marginal variance are 1.32
and 0.53 respectively, smaller than the ML estimate. Finally, the
BQML-t estimated degrees of freedom is 6.30, suggesting a heavy
tailed distribution which can be attributed to the presence of
outliers.

Estimated GARCH volatilities are plotted in Fig. 4. The main
diagonal of the picture contains σ 2

t , computed using ML, BQML-t
and BM estimators. The plots above the diagonal are scatter plots
of the estimated volatilities. For example, the graph in the first row
and third column is the scatter plot of (σML

t )2 against (σ BM
t )2. The

plots below the diagonal contain the difference between estimated
conditional variances. For example, the graph in the second row
and first column plots (σ BQML-t

t )2-(σML
t )2. Clearly, ML tends to

estimate larger volatilities compared to robustmethods. By looking
at the scatter plots in the first row, we can see that most of
the points are above the 45° line, meaning that robust volatility
estimates are smaller than (σML

t )2. The same conclusion can be
obtained by looking at the plots in the first column. Most of the
values are negative, meaning that (σML

t )2 is larger than any of the
two robust estimates, which are both very similar.

The systematic differences observed when estimating the
volatility by ML using expression (3) may have important
implications on real financial applications. For example, when
estimating the VaR, the uncertainty associated with returns will
be larger than that obtained when estimating the volatility by
4



Fig. 4. Estimated volatilities σ̂ 2
t , scatter-plot of different estimated volatilities and difference between estimated volatilities for the S&P 500.
robust methods and, consequently, it will seem that the risk is
larger. Larger risk is associated with larger capital requirements
and, therefore, with a loss of inversion opportunities.

5. Conclusions

When outliers are present, biased estimators of the GARCH
parameters lead to biases in the estimated volatilities in a non-
linear way, so small biases in the estimated parameters do not
guarantee small biases in estimated volatilities. Our results suggest
that using robust procedures is a good strategy and the best
performance is achieved when estimating the parameters by the
BM estimator and filtering the volatilities by substituting large
observations by their conditional standard deviations.
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