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1. Introduction

In this paper, we study a multistage game of competition among auctioneers. In 
the first stage auctioneers compete for a common pool of bidders by means of 
credible announcements of the minimum price accepted in a second price auction. In 
the second stage each bidder chooses an auction, if any, in which to participate. 
Finally, in the last stage each of the announced auctions takes place. This time 
structure was originally suggested by McAfee [3] in his pioneering work on 
competition among auctioneers.

We show that for any finite auctioneers’ strategy space, if the number of
auctioneers1 is sufficiently large, and the set of production costs lies in the set of
reserve prices, auctioneers announce a reserve price equal to their respective
production costs in the unique symmetric equilibrium. Thus, our result supports the
idea that optimal auctions may be easy to implement even when the seller has
uncertainty about the market. In this case, we show that the optimal reserve price in
a second price auction does not need to be fine-tuned to the auctioneer’s beliefs
about the market. Indeed, the optimal reserve price is quite simple, it equals the
production cost.

Related results have been proven in previous papers under the assumption that the 
number of agents is infinite and with a continuous strategy space, for example by 
McAfee2 [3], Peters [4], and Peters and Severinov [8]. The intuition that underlines 
these papers is that bidders’ expected utility is always determined by the market, and 
hence, invariant to changes in one single auction if there is an infinite number of 
agents. Given that the bidders’ expected utility is taken as given by the auctioneer, 
his best strategy is to announce a mechanism that creates the maximum surplus. For 
instance, if the auctioneer only chooses the reserve price of a second price auction, 
this means to fix the reserve price equal to the production cost.

However, the simplicity of this optimal rule seems to hinge on the assumption that
the number of auctioneers is infinite. Even if the number of agents is large, changes in
one single auction have an effect, albeit small, on the bidders’ expected utility. Thus,
auctioneers could profit by reducing the bidders’ expected utility with a deviation
from the mechanism that maximises the surplus. In fact, for the case in which all the
auctioneers have the same production cost, we could show that the strategy reserve

price equal to production cost is not an equilibrium when the number of auctioneers is
finite. Actually, it is not even clear that the equilibrium of the finite game is close in
any sense to the equilibrium of the limit game.

In general, we would expect that the auctioneers’ equilibrium behaviour is more
complex. For instance, each auctioneer in equilibrium may need to adjust his reserve

1We keep the proportion of bidders to auctioneers fix, hence the number of bidders grows at the same

rate as the number of auctioneers.
2McAfee [3] does not exactly assume that the numbers of auctioneers and bidders are infinite. Instead, 

McAfee assumes that an auctioneer does not take into account that when he changes his mechanism, the 
expected utility that bidders can get in other auction mechanisms changes. McAfee justifies this 
assumption conjecturing that it should be true in the limit when the number of auctioneers and bidders 
tends to infinity.
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price to his beliefs about the demand and supply primitives and possibly to his beliefs
about the behaviour of the other auctioneers.

Our work shows that the intuition suggested in the last two paragraphs is
somewhat misleading. The reason for the break down of the result when the number
of auctioneers is finite is that by assuming that the strategy space is continuous we
allow arbitrary small deviations. If we assume more realistically that the number of
strategies is finite, then deviations from the surplus maximising strategy have losses
bounded away from zero. Moreover, gains due to decreases in bidders’ expected
utility tend to zero as the number of auctioneers tends to infinity. Hence, the limit
result price equal to production cost will also be an equilibrium for a large enough
number of auctioneers.

Our work fills the gap in the literature that exists between the limit models with an 
infinite number of auctioneers and the models with only two auctioneers. The papers 
we mention above, [3,4,8], belong to the former group and an example of the latter is 
the paper by Burguet and Sá kovics [2]. We also prove that there is a unique 
symmetric equilibrium, whereas the above papers only provide existence results. One 
exception is the paper by Peters and Severinov [8]. They prove uniqueness of 
equilibria for the case in which all the auctioneers have the same production cost. 
Our uniqueness result differs in that we look at the case in which auctioneers may 
have different production costs.

The problem of competition among auctioneers under limit assumptions about the 
number of auctioneers has also been studied by Peters [5,7] in other frameworks. For 
instance, the first paper deals with the private value model under the assumption of 
correlated types, and the second with the common value model. We restrict to the 
private value model with independent types.

Our model also relates to the model of price competition by Peters [6]. He studies 
the convergence of the exact equilibrium with a finite number of sellers to the 
equilibrium defined under different infinite number of sellers’ assumptions. Our 
model differs in two aspects. First, we study a model of competition in auctions, not 
in prices. Second, we do not look to equilibria of limit games or approximate 
equilibria, but rather consider exact equilibria of large finite games.

The structure of the paper is as follows. We start with a description of the model in
Section 2. Section 3 includes the main result of the paper. Section 4 concludes. We
also include an Appendix with most of the proofs.

2. The model

We assume that there are JAN auctioneers and kJAN bidders. We shall later
consider the limit J-N: When doing this, we shall keep the ratio k40 of bidders to
auctioneers fixed.

Each auctioneer has the ability to produce a single indivisible unit of output at a
private cost w: We allow w to differ across the auctioneers, although we assume that
each auctioneer’s private cost is common knowledge. This last assumption is done to
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keep coherency with the literature (e.g. [6]). The model could be extended with 
similar results to the case in which the production cost is private information.

We also take a given distribution H with support PW and assume that for each J

the number of auctioneers with production cost less or equal than w equals the
maximum integer j for which j=JpHðwÞ: Note that as J tends to infinity, the
distribution of production costs converges point-wise, and thus weakly, to H:

Each bidder wishes to purchase exactly one unit of the commodity. Its value for
each bidder, x; is privately observed before the beginning of the game. All other
players only know that these values are independently drawn from the set ½0; 1�
according to the same distribution function F with a density f and support3 ½0; 1�:

If an auctioneer with production cost w trades with a bidder with type x at a price
p; they are assumed to obtain a von Neumann Morgenstern utility of p � w and of
x � p; respectively. In the case that there is no trade, both the auctioneer and the
bidder get a von Neumann Morgenstern utility of 0: Notice that this assumption
implies that the production occurs, and production costs are incurred, only once a
trade has been agreed. The production cost could also be seen as an opportunity cost.

We consider a three stage game. In the first stage auctioneers simultaneously
announce their reserve prices. In the second stage, the entry game, each bidder upon
observing the auctioneers’ announcements can either pick one and only one auction4

in which she wants to participate, or she can choose to participate in no auction. In
the final stage those bidders who have chosen to participate in some particular
auction make their bids in their corresponding auctions. For the sake of simplicity,
we shall only consider second price auctions with no entry fee.5

We shall assume that the auctioneers choose their reserve prices from a finite6 set
P � fr1; r2;y; rRgC½0; 1Þ; where r j4rl if j4l: To allow for the possibility of the

strategy reserve price equal to production cost we shall assume that the support of
the production costs also lie in P; i.e. PWCP: We shall call a pure strategy for the
auctioneers a map from PW to P that gives the auctioneer’s reserve price as a
function of his production cost.

We also add two assumptions more. The first one is that the minimum reserve
price equals the minimum production cost, i.e. minP ¼ minPW : The second one is
that auctioneers’ production costs are not too high in some sense. More precisely, that

3The assumption that the support of F equals ½0; 1� implies that we do not consider situations in which

the production cost of an auctioneer is below the minimum valuation of the bidders. The same arguments

provided by Peters [4] also imply here that this assumption is crucial for our results.
4We believe that our results could be easily extended to the case in which bidders can participate in more

than one auction under the following additional assumptions. Each bidder has a constant marginal utility

for a finite number of units and zero for additional units. The number of units from which the bidder

obtains strictly positive utility is a finite number greater than the maximum number of auctions that the

bidder can enter. Under these assumptions it is still true that it is weakly dominant for the bidder to bid her

true value of the good. If these assumptions are not met then there is no straightforward solution for the

bidding game, and hence, we cannot extend easily our analysis.
5We show in the working paper version that the optimality of the policy reserve price equal to

production cost also holds when first price auctions are allowed. The reason is that it can be shown that

first price and second price auctions with the same reserve price are revenue equivalent.
6See the discussion in the Conclusions about the role of the discretisation.
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the unique solution of the system of equations of Lemma 3 for G ¼ H is such that
each reserve price in the support of H has an associated solution (we shall call it limit
cut-off) less than one. We explain the role of these two assumptions after Lemma 5.

3. The main result

We start with the main result of the paper and prove it in the rest of the section.

Proposition 1. There exists a threshold %J such that if JX %J; there is a unique symmetric

Nash equilibrium in which auctioneers use pure strategies. In this equilibrium, each

auctioneer announces a reserve price equal to his production cost.

We prove this result using backward induction. We start noting that standard
arguments show that the last stage, the bidding game, has a unique symmetric
equilibrium strategy, to bid the true value. We continue with the study of the second
stage, the entry game, assuming that bidders will bid in the third stage according to
the former strategy.

We can describe an entry game with an increasing function GJ : R-fiAN : ipJg;
with jump points in P; and where GJðxÞ specifies the number of auctioneers that
have announced a reserve price less or equal than x: We shall refer to the family of
such functions as GJ : One interesting feature that shall be used in our analysis is that
GJ=J is a probability distribution function with support in P:

To describe the equilibrium of the entry game we introduce what we call cut-off

strategies. These are mixed strategies that can be characterised by a vector of cut-offs
~yy and that have the following features: (i) each reserve price rj in the support of GJ=J

has an associated cut-off yjA½0; 1�; (ii) if rjXrl ; then yjXyl ; (iii) the bidder enters an
auction with reserve price rj with positive probability if and only if her type is weakly

higher than yj; and (iv), the bidder randomises uniformly among all the auctions

which she enters with positive probability.
For notational convenience we assume in the statement and proof of the following

lemma that GJ=J has support P:

Lemma 1. There exists a unique symmetric equilibrium of the entry game. In this

equilibrium bidders use a cut-off strategy characterised by the unique vector of cut-offs

that solves the following conditions:

(i) y1 ¼ r1;
(ii) for ja1; Cðyj;~yy;GJÞ ¼ rj; if yjo1;

(iii) for ja1; Cðyj;~yy;GJÞprj; if yj ¼ 1;

where for any xAðyj�1; yj�;

Cðx;~yy;GJÞ �
Z x

yj�1

x̃
dzðx̃;~yy;GJÞkJ�1

zðx;~yy;GJÞkJ�1
þ rj�1

zðyj�1;~yy;GJÞ
zðx;~yy;GJÞ

� �kJ�1

;
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and,

zðx;~yy;GJÞ � 1� FðyjÞ � FðxÞ
GJðrj�1Þ

�
XR

q¼j

Fðyqþ1Þ � FðyqÞ
GJðrqÞ

;

with yRþ1 � 1:

Proof in the appendix.
Condition (i) has an obvious interpretation. To understand the other conditions of

the lemma, note first that the function zðx;~yy;GJÞ is the probability7 that a bidder i

that follows a cut-off strategy ~yy either has a type below x or she does not bid in a
given auction with a reserve price rj�1:

Then, the function Cðx;~yy;GJÞ equals the expected price that a bidder i with
type xAðyj�1; yj� pays conditional on winning in an auction with reserve price rj�1

when all the other bidders follow the same cut-off strategy defined by ~yy: To see

why note the following. The probability that bidder i wins equals zðx;~yy;GJÞkJ�1:
This implies that for x̃Aðyj�1; x� the probability that the price is below x̃ given that

bidder i wins equals zðx̃;~yy;GJÞkJ�1=zðx;~yy;GJÞkJ�1: It also implies that the
probability that no other bidder enters this auction conditional on bidder i winning

equals zðyj�1;~yy;GJÞkJ�1=zðx;~yy;GJÞkJ�1: In this last case bidder i pays the reserve

price rj�1:

Note also that a bidder i with type yj pays the reserve price rj if she wins when all

the other bidders follow the same cut-off strategy defined by ~yy: This is because
bidder i only wins when no other bidder enters the same auction.

Consequently, conditions (ii) and (iii) compare the expected price paid by a 
bidder with a type equal to an arbitrary cut-off yj conditional on winning an 
auction with reserve price rj with the same conditional expected price in an 
auction with the reserve price immediately lower, this is rj�1: When bidders use 
cut-off strategies, the probability of winning is the same in both auctions. 
Consequently, our conditions compare the expected utility of entering both 
auctions for bidders with cut-off values. These conditions are similar to 
the equilibrium conditions proposed by Peters and Severinov [8, Theorem 6,
p. 173]. The contribution of Lemma 1 is to show that these conditions have a unique
solution.

Our uniqueness proof uses the fact that conditions (i)–(ii) (condition (iii) is a
boundary condition) define a map from equilibrium cut-offs to reserve prices. Then,
our proof is based on the fact that conditions (i)–(iii) satisfies some continuity
and monotonic properties that assure that this map is globally invertible. This
also explains our convergence results, see Lemmas 3 and 4, and the comments in
between.

7Note that the formula that we give has on the right-hand side one minus the probability of the

complementary event to the one described in the text.
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Lemma 2. The expected payoffs of an auctioneer with production cost wAPW that sets

reserve price rjAP equal:

Fðrj;w; G̃J�1Þ �
Z 1

y�
j
ðGJ Þ

Cðx;~yy�ðGJÞ;GJÞ � wð Þ dzðx;~yy�ðGJÞ;GJÞkJ ; ð1Þ

where G̃J�1AGJ�1 describes the other auctioneers’ reserve prices, GJ the distribution of

reserve prices induced by G̃J�1 and rj ; and ~yy�ðGJÞ ¼ ðy�
1ðGJÞ; y�

2ðGJÞ;y; y�
RðGJÞÞ

denotes the unique symmetric equilibrium of the entry game induced by GJ (see

Lemma 1).

Proof in the appendix.
We shall concentrate on the analysis of the game that the auctioneers play when

the number of auctioneers is large but finite. To do so we shall follow an indirect
approach. We shall approximate the payoffs in the finite game with the limit payoffs
when the number of auctioneers tends to infinity. The advantage of this approach is
that the limit payoffs are more tractable than the finite version.

The first step to compute the limit payoffs is to compute the limit of the
equilibrium cut-offs. We start providing some conditions that we shall show are the
limit of conditions (i)–(iii). To introduce these conditions we also use some functions
that are limit versions of the functions z and C:

We shall denote by G the family of probability distribution functions that has
support in P: Then:

Lemma 3. For any given distribution function GAG; there exists a unique vector of cut-

offs ~yy ¼ ðy1; y2;y; yRÞ that satisfies the following conditions:

(i0) for jp
%
jðGÞ; yj ¼ rj :

(ii0) for j4
%
jðGÞ; %Cðyj ; ~yy;GÞ ¼ rj; if yjo1;

(iii0) for j4
%
jðGÞ; %Cðyj ;~yy;GÞprj ; if yj ¼ 1;

where
%
jðGÞ is such that r

%
jðGÞ is the minimum reserve price in the support of G; and where

for any x4y
%
jðGÞ and xAðyj�1; yj�;

%Cðx;~yy;GÞ �
Z x

yj�1

x̃
d %zðx̃;~yy;GÞ
%zðx;~yy;GÞ þ rj�1

%zðyj�1;~yy;GÞ
%zðx;~yy;GÞ

and

%zðx;~yy;GÞ � e
�k

FðyjÞ�FðxÞ
Gðrj�1Þ þ

PR
l¼j

Fðylþ1Þ�FðylÞ
GðrlÞ

� �
;

with yRþ1 � 1:

Proof in the appendix.
Once again, the uniqueness proof is implicitly based on the fact that conditions

(i0)–(ii0) (condition (iii0) is a boundary condition) have some continuity and
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monotonicity properties that assure that these conditions define a globally invertible
map from equilibrium cut-offs to reserve prices. Global invertibility under the same
properties of continuity and monotonicity also explains that the equilibrium cut-offs
converge to the limit cut-offs when the functions in conditions (i)–(iii) converge to
the functions in conditions (i0)–(iii0). This is the core of the proof of the following
lemma that states the limit of the auctioneer’s payoffs:

Lemma 4. Consider an infinite sequence fG̃J�1gJ ðG̃J�1AGJ�1Þ such that G̃J�1=ðJ � 1Þ
converges weakly8 to GAG when J tends to infinity. Then, for any wAPW and for any

rjAP;

Fðrj;w; G̃J�1Þ ��!J-N
%Fðrj;w;GÞ;

where, %Fðrj;w;GÞ is defined for rjor
%
jðGÞ;Z 1

r
%
jðGÞ

ð %Cðx;~yy�ðGÞ;GÞ � wÞ d %zðx;~yy�ðGÞ;GÞ þ ðr
%
jðGÞ � wÞ%zðr

%
jðGÞ;~yy

�ðGÞ;GÞ

and for rjXr
%
jðGÞ;Z 1

y�
j
ðGÞ

ð %Cðx;~yy�ðGÞ;GÞ � wÞ d %zðx;~yy�ðGÞ;GÞ;

where ~yy�ðGÞ denotes the unique vector of cut-offs that solves conditions (i0)–(iii0), see

Lemma 3.

Proof in the appendix.
We next show that for the limit payoffs it is weakly dominant to set the reserve

price equal to the production cost. To state this result we denote by r%jðGÞ the

minimum reserve price with an associated cut-off equal to one. Note that auctioneers
with a reserve price rjXr%jðGÞ obtain limit payoffs equal to zero.

Lemma 5. For any GAG; wAPW ; and rjAP\w:

(A) If r
%
jðGÞowor%jðGÞ; then %Fðw;w;GÞ4 %Fðrj ;w;GÞ:

(B) If wpr
%
jðGÞ; then

%Fðw;w;GÞ4 %Fðrj ;w;GÞ for rjXr
%
jðGÞ;

%Fðw;w;GÞ ¼ %Fðrj;w;GÞ otherwise:

(

(C) If wXr%jðGÞ; then
%Fðw;w;GÞ4 %Fðrj;w;GÞ for rjor%jðGÞ;
%Fðw;w;GÞ ¼ %Fðrj ;w;GÞ otherwise:

�

Proof. Condition (ii) and the fact that %Cðx;~yy;GÞ strictly increases in x imply that
rj ¼ w weakly maximises the auctioneer’s expected profits. It is a bit tedious, but

mechanical, to check when the maximum is strict. &

8Since the elements of the sequence fGJ=JgJ has support included in the finite set P weak convergence,

point-wise convergence and Euclidean convergence coincide.
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We finish the proof of Proposition 1 in the appendix. Basically, we use the fact that
the strict payoff comparisons in Lemma 5 should also hold for J sufficiently large.
These conditions are sufficient to prove that reserve price equal to production cost is
the unique equilibrium if J is large enough. However, it is important to note how this
method depends on two assumptions that we have made and that get around two
additional difficulties.

First, the limit payoff function becomes flat for reserve prices below r
%
jðGÞ; and thus

the limit payoffs do not provide strict comparisons for deviations below r
%
jðGÞ; see

Lemma 5(B). Our assumption that the auctioneers cannot announce reserve prices 
below the minimum production cost avoids this problem. Note that lower reserve 
prices are difficult to believe as they mean losses ex post for any auctioneer. This 
assumption was also implicity done by Peters and Severinov [8].

Second, if the auctioneers have production costs too high, it can be the case that
the policy reserve price equal to production cost has an associated limit cut-off equal
to one, i.e. there exists wAPW such that wXr%jðGÞ: Intuitively, this means that fixing a

reserve price equal to production cost attracts no bidder almost surely in the limit.9

Thus, the auctioneer gets zero limit payoffs. Exactly the same as with any other
reserve price above r%jðGÞ; see Lemma 5(C). As a consequence, auctioneers may be

indifferent between fixing a reserve price equal to production cost and another
reserve price above r%jðGÞ: This can cause multiplicity of equilibria. To avoid it, we

have assumed that any reserve price in the support of H has an associated limit
equilibrium cut-off less than one, when the limit distribution of reserve prices equals
the distribution of production costs, i.e. wor%jðHÞ for any wAPW :

4. Conclusions

As we have argued in the Introduction, the analysis of the game with a continuous
strategy space suggests that the auctioneer’s optimal reserve price may depend on the
auctioneer’s beliefs about the market in a complex way. Our equilibrium analysis
shows that this is not the case when the strategy space is finite. The optimal reserve
price is quite simple and independent of the market characteristics whenever the
number of auctioneers is sufficiently large.

This difference seems to suggest that the assumption that the strategy space is
continuous may be somewhat misleading. We could reconcile the results of both
models if we showed that the equilibrium strategy in the continuous strategy space
model converge in some sense to reserve price equal to reserve price when the
number of auctioneers tends to infinity. This seems a very difficult task. The payoff
functions are so complex that a direct analysis of the finite game seems unfeasible.

The way we got around these difficulties in our model was by approximating the
auctioneer’s payoff function by its more tractable point-wise limit when the number

9The probability that no bidder enters an auction with reserve price rj in equilibrium equals

zðy�j ðGJÞ;~yy�ðGJÞ;GJÞkJ : Lemma A.7(b) implies that if y�j ðGJÞ tends to one, this probability tends to one.
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of auctioneers tends to infinity. This approach works in our model because finiteness 
assures that for a sufficiently large number of auctioneers the exact payoff function 
can be arbitrary close to its point-wise limit not only for a proposed strategy but also 
for any possible deviation.10 This is not the case when the strategy space is 
continuous. Then, the above result requires some kind of uniform convergence11 of 
payoffs and this may be difficult to prove if not impossible. The reason is that 
uniform convergence of payoffs preserves continuity, see [10, Theorem 7.12, p. 150], 
and this is a contradiction with the fact that the auctioneers’ payoff functions are 
continuous in the finite game whereas the limit payoffs are discontinuous.12

Moreover, uniform convergence with respect to the auctioneer’s type and strategy
may not be sufficient. It guarantees that in large markets the auctioneer’s best
response is close to the strategy reserve price equal to production cost when the other
auctioneers use this strategy. This implies convergence in terms of e-equilibria but
not in terms of exact equilibria. To show the latter, we need to show that the
auctioneer’s best response is close to reserve price equal to production cost when the
other auctioneers’ strategies are close to reserve price equal to production cost. In
our model, the assumption that the strategy space is discrete avoids this problem
because the only reserve price sufficiently close to the production cost is the
production cost itself.

Appendix

A.1. Proof of Lemma 1

We proceed in two steps.

Step 1: Proof that conditions (i)–(iii) are necessary and sufficient for an equilibrium. 
That the symmetric equilibria of the entry game are in cut-off strategies has been 
proved by Peters and Severinov [8, Theorem 5, p. 172]. They [8, Theorem 6, p. 173] 
also provide a system of equations on the vector of cut-offs whose solutions 
characterise the set of equilibria in cut-off strategies. These equations are basically 
indifference conditions. Each equation says that when all the bidders follow a given 
cut-off strategy, a bidder with value yj must be indifferent between entering an 
auction with reserve price rj and entering an auction with reserve price r1:

As we have argued, our conditions state something similar: when all the bidders
follow a given cut-off strategy, a bidder with value yj must be indifferent between

entering an auction with reserve price rj and an auction with reserve price rj�1: After

some algebra, basically substituting recursively in our conditions (ii), we can easily

10 I thank an anonymous referee for suggesting this point and most of the comments that follow.
11Note that when we allow for general heterogeneity among auctioneers we would require uniform

convergence in two dimensions: strategies and types, i.e. in reserve prices and production costs.
12The continuity of the auctioneer’s payoff function is proved in the working paper version of this

paper, whereas the discontinuity has already been shown by Peters [4] and Peters and Severinov [8].
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show that our conditions generate the same system of equations as the conditions by
Peters and Severinov.

We also include a condition (iii) for the case in which some cut-offs are one, this is 
that some auctions do not attract bidders. This case was not considered by Peters and 
Severinov [8]. However, it is easy to show that condition (iii) must be included when 
we look for necessary and sufficient conditions for an asymmetric equilibrium in 
which some cut-offs equal one.

Step 2: Proof that conditions (i)–(iii) have a unique solution. It is easier to prove this
result and the convergence results in Lemma 3 using this new notation for conditions
(i)–(iii):

(i) y1 ¼ r1:

(ii) LGJ
j ðyj�1; yj;y; yRÞ ¼ 0 if yjo1 ð ja1Þ:

(iii) LGJ
j ðyj�1; yj;y; yRÞp0 if yj ¼ 1 ð ja1Þ:

Where LGJ
j ðyj�1; yj;y; yRÞ �

RþN

�N
x dmj�1ðxj~yy;GJÞ � rj; ð jAf2; 3;y;RgÞ and,

mj�1ðxj~yy;GJÞ �

0 if xAð�N; rj�1Þ;
zðyj�1;~yy;GJ ÞkJ�1

zðyj ;~yy;GJ ÞkJ�1 if xA½rj�1; yj�1Þ;

zðx;~yy;GJ ÞkJ�1

zðyj ;~yy;GJ ÞkJ�1 if xA½ yj�1; yjÞ;

1 if xA½ yj;NÞ:

8>>>>>><
>>>>>>:

ðA:1Þ

Lemma A.1. The function LGJ
j ðyj�1; yj ;y; yRÞ ð jAf2; 3;y;Rg) is continuous, weakly

decreasing in yj�1; strictly increasing in yj and weakly increasing in yjþ1; yjþ2;y; yR:

Proof. Since F is continuous, mj�1ðxj~yy;GJÞ is continuous in~yy for any x: Then for any

sequence f~yyng-~yy; mj�1ðxj~yyn;GJÞ-mj�1ðxj~yy;GJÞ and in particular this is true at each

point of continuity of mj�1ð:j~yy;GJÞ: Thus, mj�1ðxj~yyn;GJÞ converges weakly to

mj�1ðxj~yy;GJÞ by Billingsley [1, Theorem 25.8, p. 335]. Then, by the definition of weak

convergence
RþN

�N
x dmj�1ðxj~yyn;GJÞ-

RþN

�N
x dmj�1ðxj~yy;GJÞ that proves the con-

tinuity of LGJ
j :

It is straightforward from the definition of z that a decrease in yj�1 or an

increase in yj shifts mj�1ðxj~yy;GJÞ in the sense of first order stochastic dominance

downwards. An increase in yl ; lXj decreases the ratio zðx̃;~yy;GJÞ=zðx;~yy;GJÞ; as one
can verify through differentiation, and hence it also shifts downwards the
distribution function mj�1ð:jx;~yy;GJÞ in the sense of first order stochastic dominance

downwards. &

We can now apply an induction argument to conditions (i)–(iii).
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Lemma A.2. For Ra1; there exists a unique function cGJ

R : ½rR�1; 1�-½rR; 1� that

satisfies:

(ii) LGJ

R ðyR�1;c
GJ

R ðyR�1ÞÞ ¼ 0 if cGJ

R ðyR�1Þo1:

(iii) LGJ

R ðyR�1;c
GJ

R ðyR�1ÞÞp0 if cGJ

R ðyR�1Þ ¼ 1:

This function is continuous, weakly increasing and cGJ

R ðyR�1ÞXyR�1:

Proof. Trivially, LGJ

R ðyR�1;maxfrR; yR�1gÞo0: Then, distinguish two cases for any

yR�1A½rR�1; 1�; either: ð�Þ LGJ

R ðyR�1; 1Þ40; or ð��Þ LGJ

R ðyR�1; 1Þp0: In case ð�Þ
condition (iii) is not satisfied, and Lemma A.1 implies that there is a unique value for
yR that solves condition (ii). In case ð��Þ there is no value that solves condition (ii),

but condition (iii) is satisfied. Hence, we have a unique function cGJ

R such that

yR ¼ cGJ

R ðyR�1Þ solves conditions (ii)–(iii) for any given value of yR�1: Finally,

Lemma A.1 implies that cGJ

R is a continuous and weakly increasing function. &

Suppose that there exist some functions fcGJ
i : ½rl�1; 1�-½rl ; 1�gR

l¼jþ1 continuous

and weakly increasing, and cGJ

l ðyl�1ÞXyl�1 for all lAf j þ 1;y;Rg: Let

oGJ

l : ½rj; 1�-½rl ; 1� where oGJ

l ðyjÞ � cGJ

l 3cGJ

l�13?3cGJ

jþ1ðyjÞ for l ¼ j þ 1; j þ 2;y;R

which are obviously continuous and weakly increasing functions.

Lemma A.3. For ja1; there exists a unique function cGJ
j : ½rj�1; 1�-½rj; 1� that

satisfies:

(ii) LGJ

j�1ðyj�1; yj ;o
GJ

jþ1ðyjÞ;y;oGJ

R ðyjÞÞ ¼ 0 if yjo1:

(iii) LGJ

j�1ðyj�1; yj ;o
GJ

jþ1ðyjÞ;y;oGJ

R ðyjÞÞp0 if yj ¼ 1:

This function is continuous, weakly increasing and cGJ
j ðyj�1ÞXyj�1:

Proof. Similar to the proof of Lemma A.2. &

Hence, by induction there exists a unique solution for conditions (i)–(iii) and this is

such that y1 ¼ r1 and yj ¼ cGJ
j 3cGJ

j�13?3cGJ

2 ðr1Þ for jAf2; 3;y;Rg:

A.2. Proof of Lemma 2

One property of the unique equilibrium of the entry game is that bidders pay the
same expected price in every auction they enter with positive probability. This is a
consequence of the indifference condition that must hold in a mixed strategy
equilibrium. Thus, a bidder’s expected payment conditional on winning an auction
with reserve price rj when her type is x (obviously for xXyj) equals Cðx;~yy�ðGJÞ;GJÞ
in equilibrium.
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Then, the expected payoffs of an auctioneer that fixes a reserve price rj equals the

probability of selling times the expected value conditional on selling of the following
difference: the expected price that the winner of the auction pays conditional on
winning minus the auctioneer’s production cost w:

To complete the proof of the lemma note that the probability of selling equals the

probability that at least one bidder enters, this is 1� zðy�
j ðGJÞ;~yy�ðGJÞ;GJÞkJ :

Conditional on the former event, the probability that the bidder that wins has a type

below x; for xA½ y�j ðGJÞ; 1�; equals zðx;~yy�ðGJÞ;GJÞkJ=ð1� zðy�
j ðGJÞ;~yy�ðGJÞ;GJÞkJÞ:

A.3. Proof of Lemma 3

For cut-offs associated to reserve prices less or equal than r
%
jðGÞ the claim is

straightforward. For the other cut-offs, we can apply a similar proof to that of step 2
in Lemma 1.

A.4. Proof of Lemma 4

We divide the proof in three steps. First, we rewrite our equilibrium conditions (i)–
(iii) so that along any sequence of entry games the set of equations and unknowns
remains the same. In the second step, we compute the limit of these new conditions
and we show that the limit of the solutions converge to the solution of the limit
conditions. Finally, we use the former result to compute the convergence of the
auctioneers’ payoff function.

Step 1: Rewriting the equilibrium conditions. From now on, we shall describe a cut-

off strategy with an extended vector of cut-offs, ~yyA½0; 1�R: This differs from the
original vector of cut-offs in that we associate a cut-off value to each reserve price in
P; and not only to reserve prices in the support of GJ=J: Note that applying the
definition of a cut-off strategy, changes in cut-off values associated to reserve prices
that are not announced by any auctioneer do not change the entry strategy of the
bidder.

We next adapt conditions (i)–(iii) and the corresponding functions to the extended
vector of cut-offs. The new conditions, that we refer as the extended conditions (i)–
(iii), are such that the solution cut-offs associated to reserve prices in the support
of GJ=J are also solutions to the original conditions (i)–(iii). Now, we refer to
the minimum reserve price in the support of GJ=J as r

%
jðGJ Þ and to its associated cut-

off as y
%
jðGJ Þ:

We start noting that the original definition of the function z can be directly applied
to the extended vector of cut-offs for xXy

%
jðGJ Þ: Clearly, z keeps the same meaning as

before. Something similar happens with LGJ
j (and mj�1ð:j~yy;GJÞ), for j4

%
jðGJÞ: We

also define LGJ
j ðyj�1; yj;y; yRÞ � yj � rj for jp

%
jðGJÞ: This means that cut-offs equal

reserve prices for those reserve prices weakly below the minimum reserve price
announced by the auctioneers.

13



We redefine the extended conditions (i)–(iii) according to the original conditions
(i)–(iii) but for the extended vector of equilibrium cut-offs and with the new

definition of LGJ
j : Clearly, the new conditions also verify Lemma A.1. Thus, we can

adapt step 2 in the proof of Lemma 1 to prove that there exists a unique extended
vector of cut-offs that satisfies our conditions.

We next show that the cut-offs that solve the extended conditions (i)–(iii) are also
solution to the original conditions (i)–(iii). The proof is direct for the cut-off
associated to the minimum reserve price in the support of GJ=J: Consider next the
extended condition (ii) associated to other reserve prices rj that belong to the support

of GJ=J: If rj�1 also belongs to the support of GJ=J then the extended condition (ii) is

exactly the same as the original condition (ii). Suppose now that rj�1 does not belong

to the support of GJ : The extended condition (ii) for rj can be written as the

following equation:Z yj

yj�1

x̃
dzðx̃;~yy;GJÞkJ�1

zðyj;~yy;GJÞkJ�1
þ rj�1

zðyj�1;~yy;GJÞkJ�1

zðyj;~yy;GJÞkJ�1
¼ rj:

The extended condition (ii) also implies that a similar equation must hold for rj�1:

We can combine both equations substituting rj�1 to get:Z yj

yj�2

x̃
dzðx̃;~yy;GJÞkJ�1

zðyj;~yy;GJÞkJ�1
þ rj�2

zðyj�2;~yy;GJÞkJ�1

zðyj;~yy;GJÞkJ�1
¼ rj:

If rj�2 belongs to the support of GJ=J; the above condition is basically the original

condition (ii) for rj: Otherwise, we can continue substituting recursively until we get a

reserve price in the support of GJ=J:
A similar procedure also works for extended conditions (iii). Hence, any solution

of the extended conditions (i)–(iii) must also be a solution of conditions (i)–(iii).
Step 2: Convergence of the equilibrium cut-offs. We assume along step 2 that there

exists an infinite sequence fGJgJ ; where GJAGJ ; such that GJ converges weakly (and

thus point-wise) to GAG when J tends to infinity. We start by showing the

convergence of the functions LGJ
j :

Lemma A.4. For any jp
%
jðGÞ;

LGJ
j ðyj�1; yj;y; yRÞ ��!J-N %LG

j ðyj�1; yj;y; yRÞ

point-wise, and where %LG
j ðyj�1; yj;y; yRÞ � yj � rj :

Proof. We split the sequence fGJgJ into two: a subsequence that includes

distribution functions such that jp
%
jðGJÞ; and a subsequence that includes the other

distribution functions. For the first subsequence the claim follows by definition of

LGJ
j ; see its definition in step 1. For the second subsequence, note first that Gðrj�1Þ=J

tends to zero for jp
%
jðGÞ as GJ=J converges weakly (and thus point-wise) to G:
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Then, for xA½ yj�1; yjÞ;

0p
zðx;~yy;GJÞ
zðyj;~yy;GJÞ

� �kJ�1

¼ 1� 1

zðyj;~yyÞ
FðyjÞ � FðxÞ

Gðrj�1Þ

� �kJ�1

p 1� FðyjÞ � FðxÞ
Gðrj�1Þ

� �kJ�1

¼ 1�
FðyjÞ�FðxÞ
Gðrj�1Þ=J

J

0
@

1
AkJ�1

��!J-N

0;

where we have used that following mathematical result: for any sequence

aJ ��!J-N þN; and such that aJAð0; JÞ then ð1� aJ=JÞJ ��!J-N

0:

This means that mj�1ð:j~yy;GJÞ converges everywhere to a probability measure with

a single mass point at yj: This implies convergence in all the continuity points and

thus, weak convergence of the probability measures by Billingsley [1, Theorem 25.8,
p. 335]. Then, the lemma follows by definition of weak convergence. &

Lemma A.5. For any j4
%
jðGÞ;

LGJ
j ðyj�1; yj;y; yRÞ ��!J-N %LG

j ðyj�1; yj;y; yRÞ

point-wise, and where %LG
j ðyj�1; yj;y; yRÞ �

RþN

�N
x d %mj�1ðxj~yy;GÞ � rj; with

%mj�1ðxj~yy;GÞ �

0 if xAð�N; rj�1Þ;
%zðyj�1;~yy;GÞ
%zðx;~yy;GÞ if x̃A½rj�1; yj�1Þ;

zðx;~yy;GÞ
%zðyj ;~yy;GÞ if xA½ yj�1; yjÞ;
1 if xA½ yj ;NÞ:

8>>>>><
>>>>>:

ðA:2Þ

Proof. Since GJ=J converges weakly to G (and thus point-wise) y
%
jðGJ Þpy

%
jðGÞ but for

finitely many elements in the sequence fGJgJ : Thus, we can disregard them to

compute the limit. Then for xA½ yj�1; yj�; with yj�1Xy
%
jðGÞ; and so yj�1Xy

%
jðGJ Þ;

zðx;~yy;GJÞkJ�1 ¼ 1�
FðyjÞ�FðxÞ
GJ ðrj�1Þ=J

þ
PR

q¼j

Fðyqþ1Þ�FðyqÞ
GJ ðrqÞ=J

J

0
@

1
AkJ�1

��!J-N

e
�k

FðyjÞ�FðxÞ
Gðrj�1Þ þ

PR
q¼j

Fðyqþ1Þ�FðyqÞ
GðrqÞ

� �
¼ %zðx;~yy;GÞ; ðA:3Þ

where we have used to compute this limit the following mathematical result: for any

sequence aJ ��!J-N

a; it is verified that ð1þ aJ=JÞJ ��!J-N

ea:

As a consequence, mj�1ð:j~yy;GJÞ ��!J-N

%mj�1ð:j~yy;GÞ everywhere. Again, this com-

pletes the proof. &
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Clearly, conditions (i0)–(iii0) can be stated as follows:

(i0) y1 ¼ r1:

(ii0) %LGJ
j ðyj�1; yj;y; yRÞ ¼ 0 if yjo1 ð ja1Þ:

(iii0) %LG
j ðyj�1; yj ;y; yRÞp0 if yj ¼ 1 ð ja1Þ:

We can use the arguments in the proof of Lemma 1 to show that conditions (i0)–

(iii0) define implicitly some functions cG
j : These are such that the jth entry of the R

dimensional solution of conditions (i0)–(iii0) equals cG
j 3c

G
j�13?cG

2 ðr1Þ for all

jAf2; 3;y;Rg: Lemmas A.4 and A.5 shows that the equations in conditions (i)–
(iii) converge point-wise to the equations in conditions (i0)–(iii0). Restrict for simplicity
to the case in which all the equilibrium cut-offs are interior, i.e. strictly less than one.

Then we can apply recursively Lemma A.8 (see at the end of step 3) to show that cGJ
j

converges uniformly to cG
j for any j ¼ 2; 3;y;R: This implies the following lemma.

Lemma A.6. The extended vector of equilibrium cut-offs ~yy�ðGJÞ converges to the limit

vector of equilibrium cut-offs ~yy�ðGÞ when J tends to infinity.

Step 3: Convergence of the auctioneers’ payoff function.

Lemma A.7. Take an infinite sequence of distributions of reserve prices

fGJgJ ðGJAGJÞ such that GJ=J converges weakly to GAG when J tends to infinity.

Then:13

(a) If xA½sup fy�

%
jðGJ ÞgJ ; 1Þ and xay�

j ðGÞ ð jAf1; 2;y;RgÞ; then:

zðx;~yy�ðGJÞ;GJÞkJ ��!J-N
0 if xoy

%
jðGÞ;

%zðx;~yy�ðGÞ;GÞ if x4y
%
jðGÞ;

(

Cðx;~yy�ðGJÞ;GJÞ ��!J-N %Cðx;~yy�ðGÞ;GÞ for x4y
%
jðGÞ:

(b) If jXmax f jðGJÞgJ ; then:

zðy�
j ðGJÞ;~yy�ðGJÞ;GJÞkJ ��!J-N

0 if jo
%
jðGÞ;

%zðy�
j ðGÞ;~yy�ðGÞ;GÞ if jX

%
jðGÞ:

(

(c) If xA½supfy�

%
jðGJ ÞgJ ; y

%
jðGÞÞ; then:

kJ zðx;~yy�ðGJÞ;GJÞkJ�1 ��!J-N

0:

13We restrict x in (a) and (c) to be greater than the supremum of fy�

%
jðGJ ÞgJ and j in (b) to be greater than

the maximum of f jðGJÞgJ as the function z is defined only for x greater or equal than the cut-off

associated to the minimum reserve price announced by at least one auctioneer.
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Proof. It can be deduced from conditions (i0) and (ii0) that y�
j ðGÞoy�

jþ1ðGÞ (where

recall that y�
Rþ1ðGÞ � 1) for all y�

j ðGÞo1: Let j be such that xAðy�
j ðGÞ; y�

jþ1ðGÞÞ:
Lemma A.6 implies that for J sufficiently large xAðy�

l ðGJÞ; y�
lþ1ðGJÞÞ: Next, we can

use an adaptation of the proofs of Lemmas A.4 and A.5 in step 2 together with
Lemma A.6 to prove point (a). Point (b) can also be proved using an adaptation of
the proof of Lemma A.5 in step 2 together with Lemma A.6. In order to prove (c)
note that for xoy

%
jðGÞ the function zðx;~yy�ðGJÞ;GJÞ can be written as 1� aJ=J with

aJ ��!J-N

N because GJðrjÞ=J-0 for rjor
%
jðGÞ: Hence,

0p lim
J-N

kJð1� zðx;~yy�ðGJÞ;GJÞÞzðx;~yy�ðGJÞ;GJÞkJ�1

¼ lim
J-N

kJ
aJ

J
1� aJ

J

� �kJ�1

p lim
J-N

kaJ e�ðkJ�1ÞaJ

J ¼ lim
J-N

kaJ

eaJ ðk�1
J
Þ
¼ 0;

where we have used ð1� aÞpe�a in the third step. &

We can now conclude the proof of the convergence of the auctioneers’ payoffs.

Note that if G̃J�1=ðJ � 1Þ converges weakly to G; then GJ (the distribution of reserve

prices that describes rj and G̃J�1 together) also converges weakly to G: We start with

the case rjXrjðGÞ: Lemmas A.6, A.7(a), and the Lebesgue bounded convergence
%

theorem [9, Theorem 16, p. 91] in the third step below imply that:

lim
J-N

Fðrj;w; G̃J�1Þ ¼ lim
J-N

Z 1

y�
j
ðGJ Þ

ðCðx; ~yy�ðGJÞ;GJÞ � wÞ dzðx;~yy�ðGJÞ;GJÞkJ

( )

¼ lim
J-N

XR

l¼j

Z y�
lþ1

ðGJ Þ

y�
l
ðGJ Þ

ðCðx; ~yy�ðGJÞ;GJÞ � wÞ
(

� zðx; ~yy�ðGJÞ;GJÞkJ�1
k

f ðxÞ
GJðrlÞ=J

dx

)

¼
XR

l¼j

Z y�
lþ1

ðGÞ

y�
l
ðGÞ

ð %Cðx;~yy�ðGÞ;GÞ � wÞ%zðx;~yy�ðGÞ;GÞk f ðxÞ
GðrlÞ

dx

¼
Z 1

y�
j
ðGÞ

ð %Cðx;~yy�ðGÞ;GÞ � wÞ d %zðx;~yy�ðGÞ;GÞ ¼ %Fðrj ;w;GÞ:

Consider now the case rjor
%
jðGÞ; then we split the integral that defines Fðrj;w; G̃J�1Þ

into the following two halves:Z y�

%
jðGÞðGJ Þ

y�
j
ðGJ Þ

ðCðx;~yy�ðGJÞ;GJÞ � wÞ dzðx;~yy�ðGJÞ;GJÞ

þ
Z 1

y�

%
jðGJ Þ

ðGJ Þ
ðCðx;~yy�ðGJÞ;GJÞ � wÞ dzðx;~yy�ðGJÞ;GJÞ;
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where y
%
jðGÞðGJÞ is the equilibrium cut-off associated to the minimum reserve price in

the support of G; when the distribution of reserve prices is GJ :
Note that we can compute the limit of the second part of the above integral

following exactly the same steps as in the case rjXr
%
jðGÞ: For the second part note the

following algebraic transformations:14Z y�
l

y�
j

ðCðxÞ � wÞ dzðxÞkJ

¼
Z y�

l

y�
j

Z x

y�
j

x̃d
zðx̃ÞkJ�1

zðxÞkJ�1
þ rj

zðy�
j Þ

kJ�1

zðxÞkJ�1
� w

!
dzðxÞkJ

¼
Z y�

l

y�
j

x � w � ðy�
j � rjÞ

zðy�
j Þ

kJ�1

zðxÞkJ�1
�
Z x

y�
j

zðx̃ÞkJ�1

zðxÞkJ�1
dx̃

" #
dzðxÞkJ

¼
Z y�

l

y�
j

ðx � wÞ dzðxÞkJ �
Z y�

l

y�
j

kJ ðy�j � rjÞzðy�
j Þ

kJ�1 þ
Z x

y�
j

zðx̃ÞkJ�1
dx̃

" #
dzðxÞ

¼ ðy�
l � wÞzðy�

l Þ
kJ � ðy�

j � wÞzðy�
j Þ

kJ �
Z y�

l

y�
j

zðxÞkJ
dx

� ðy�
j � rjÞ kJ zðy�

j Þ
kJ�1½zðy�

l Þ � zðy�
j Þ�

� kJ

Z y�
l

y�
j

Z y�
l

x

dzðx̃Þ zðxÞkJ�1
dx

¼ ðy�
l � wÞzðy�

l Þ
kJ � ðy�

j � wÞzðy�
j Þ

kJ �
Z y�

l

y�
j

zðxÞkJ
dx

� ðy�
j � rjÞ kJ zðy�

j Þ
kJ�1½zðy�

l Þ � zðy�
j Þ�

�
Z y�

l

y�
j

kJ zðxÞkJ�1½zðy�
l Þ � zðxÞ� dx:

Hence, we can apply Lemma A.8 to prove using the Lebesgue bounded convergence 
theorem [9, Theorem 16, p. 91]:

lim
J-N

Z y�

%
jðGÞðGJ Þ

y�
j
ðGJ Þ

ðCðx;~yy�ðGJÞ;GJÞ � wÞ dzðx;~yy�ðGJÞ;GJÞkJ

¼ ðr
%
jðGÞ � wÞ%zðr

%
jðGÞ;~yy

�ðGJÞ;GÞ:

This last result completes the proof of Lemma 4.

Lemma A.8. Let fYngNn¼1 be a sequence of continuous functions with compact domain

in R2 that converges point-wise to a function Y : Suppose that each of the functions Yn

14To simplify the notation we write CðxÞ; y�
l ; and zðxÞ for Cðx;~yy�ðGJÞ;GJÞ; y�l ðGJÞ; and

zðx;~yy�ðGJÞ;GJÞ; respectively.
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and Y are strictly increasing in the first argument and weakly decreasing in the

second argument, and are such that for any x in the domain, there exists a ỹn such

that Ynðỹn; xÞ ¼ 0 and a ỹ such that Yðỹ; xÞ ¼ 0: Then the sequence of functions yn

defined by YnðynðxÞ; xÞ ¼ 0 converges uniformly to the function y defined by

YðyðxÞ; xÞ ¼ 0:

Proof. We start taking an e40: Note next that the monotonic properties and
continuity of Y imply that y must be continuous. Hence, for each x in the domain of
y; there exists a dðxÞ40 such that if x0Aðx � dðxÞ;x þ dðxÞÞ; then yðx0ÞAðyðxÞ �
e
4
; yðxÞ þ e

4
Þ: We denote by JðxÞ the set of such x0; i.e. JðxÞ � ðx � dðxÞ; x þ dðxÞÞ:

Since by definition Yðyðx0Þ; x0Þ ¼ 0; and yðxÞ � e
2
oyðxÞ � e

4
oyðx0Þ and yðxÞ þ

e
2
4yðxÞ � e

4
4yðx0Þ; the monotonic properties of Y imply that for all x0AJðxÞ;

YðyðxÞ � e
2
; x0Þo0; and YðyðxÞ þ e

2
; x0Þ40:

Point-wise convergence of Yn to Y implies that there exists a n0ðxÞAN such that if
nXn0ðxÞ; then YnðyðxÞ � e

2
; x0Þo0; and YnðyðxÞ þ e

2
; x0Þ40; for all x0AJðxÞ: Hence,

the continuity of Yn implies that for all x0AJðxÞ and nXn0ðxÞ;

ynðx0ÞA yðxÞ � e
2
; yðxÞ þ e

2

� �
Cðyðx0Þ � e; yðx0Þ þ eÞ:

Note that xAJðxÞ; thus the domain of y; say D; is a subset of ,xADJðxÞ: Since D is 
compact, the Heine–Borel theorem [9, Theorem 15, p. 44] implies that there exists a
finite collection of sets in fJðxÞgxAD that covers D; i.e. DC,M

m¼1 JðxmÞ; for M finite.

Take n0 ¼ maxfn0ðx1Þ; n0ðx2Þ;y; n0ðxMÞg; then for all nXn0;

ynðx0ÞAðyðx0Þ � e; yðx0Þ þ eÞ;
for all x0AD; this is, for all x0 in the domain of y: This proves uniform convergence
of yn to y: &

A.5. End of the Proof of Proposition 1

In a symmetric equilibrium in pure strategies all the auctioneers use the same map
from the set of production costs to the set of reserve prices. Since both sets are finite,
the set of auctioneers’ pure strategies, say Y; is finite.

Denote by G̃J�1ð:jy;wÞ the distribution of reserve prices that an auctioneer with
production cost w faces when all the other auctioneers use the pure strategy y in a

game with J auctioneers. Clearly, the sequence G̃J�1ð:jy;wÞ=ðJ � 1Þ converges
weakly to a distribution function with support in P when J tends to infinity. We
denote by Gð:jyÞ this limit distribution.

Let Dðw; rj; yÞ � j %Fðw;w;Gð:jyÞÞ � %Fðrj;w;Gð:jyÞÞj; and
d � minfDðw; rj; yÞ : Dðw; rj; yÞ40; ðw; rj; yÞAPW �P�Yg:

Since the set is finite, then d40: Lemma 4 implies that there exists a %J such

that if JX %J; then j %Fðrj;w;Gð:jyÞÞ � Fðrj ;w; G̃J�1ð:jy;wÞÞjod=2 for all

ðw; rj; yÞAPW �P�Y:

19



Putting together this result and Lemma 5 we can prove the following:

Lemma A.9. For any ðw; rj; yÞAPW �P�Y there exists a %J such that if JX %J; then

for rjaw;

Fðw;w; G̃J�1ð:jy;wÞÞ4Fðrj;w; G̃J�1ð:jy;wÞÞ

in the following cases:

(A) r
%
jðGð:jyÞowor%jðGð:jyÞÞ:

(B) wpr
%
jðGð:jyÞÞ and rjXr

%
jðGð:jyÞÞ:

(C) wXr%jðGð:jyÞÞ and rjor%jðGð:jyÞÞ:

The strategy in which all the auctioneers announce reserve price equal to
production cost is yðwÞ ¼ w for any wAPW ; and clearly, it implies that Gð:jyÞ ¼ H:
Now, recall that by assumption (see the last paragraph in Section 2): r1 ¼ r

%
jðHÞ; and

wor%jðHÞ for any wAPW : Thus, Lemma A.9(A) and (B) imply that for J4 %J

auctioneers do not have incentives to individually deviate from yðwÞ ¼ w; and thus,
that it is an equilibrium strategy.

To prove uniqueness we assume that all the auctioneers use the strategy
yAY: Then we show that if y is an equilibrium strategy, then yðwÞ ¼ w for any
wAPW :

Suppose yðr1Þar1: Clearly, r1pr
%
jðGyÞ and yðr1ÞXr

%
jðGð:jyÞÞ; thus, Lemma A.9(B)

implies that auctioneers with production cost r1 have a profitable deviation which is
a contradiction. Similarly, suppose that yðwÞ ¼ r1 for war1: Clearly, r1or%jðGð:jyÞÞ; so

Lemma A.9(A) and (C) implies that Fðw;w; G̃J�1ð:jy;wÞÞ4Fðr1;w; G̃J�1ð:jy;wÞÞ:
This means that auctioneers with production cost wa1 have a profitable deviation
which is a contradiction.

We now proceed by induction. Suppose that there exists a rjpmaxfPWg such that

yðwÞ ¼ w for worj; and such that yðwÞXrj for wXrj; this is HðxÞ ¼ GðxÞ for all

xorj : Clearly, rj4r
%
jðGð:jyÞÞ; and moreover, the arguments below show that

rjor%jðGð:jyÞÞ: Thus, Lemma A.9(A) imply that if rjAPW then either yðrjÞ ¼ rj or

there is a profitable deviation. Moreover, Lemma A.9(A) and (C) imply that if w4rj ;

then yðwÞ4rj; otherwise there is a profitable deviation.

It only remains to be shown that if rjomaxfPWg and HðxÞ ¼ GðxÞ for all xorj ;

then rjor%jðGÞ: Under our assumption that wor%jðHÞ for any wAPW ; it is sufficient to

show that y�
j ðGÞ ¼ y�

j ðHÞ if HðxÞ ¼ GðxÞ for xorj:

If rjpr
%
jðGÞ the claim is direct from condition (i0). Suppose now that rj4r

%
jðGÞ: Then

condition (ii0), and something similarly could be done for condition (iii0), can be
rewritten as follows:Z yj

yj�1

xk
f ðxÞ

Gðrj�1Þ
e
�k

FðyjÞ�FðxÞ
Gðrj�1Þ dx þ rj�1 e

�k
FðyjÞ�Fðyj�1Þ

Gðrj�1Þ ¼ rj:
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If rj ¼ r
%
jðGÞþ1; then y�

j depends on G only up to the value of Gðr
%
jðGÞÞ: Consequently

the claim follows for this reserve price. Note that in general for rj4r
%
jðGÞ we can apply

recursively the last argument to show that y�
j depends on G only up to the value of

Gðr
%
jðGÞÞ;Gðr

%
jðGÞþ1Þ;y;Gðrj�1Þ: This completes the proof of our claim.
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