Evolution of Tags in Classifier Systems
Araceli Sanchis,” José M. Molina, Pedro Isasi,* Javier Segovia'®

Sca-Lab. Departamento de Informatica, Universidad Carlos 11l de Madrid,
Spain, Avda. Universidad 30, 2891 |-Leganés (Madrid); ' Departamento de
Lenguajes, Sistemas e Ingenieria del Software, Facultad de Informdtica,
UPM, Campus de Montegancedo, Boadilla del Monte (Madrid)

ABSTRACT

One of the major problems related to Classifier Systems is the loss of rules.
This loss is caused by the Genetic Algorithm being applied on the entire
population of rules jointly. Obviously, the genetic operators discriminate rules
by the strength value, such that evolution favors the generation of the stronger
rules. When the learning process presents individual cases and allows the system
to leamn gradually from these cases, each learning interval with a set of
individual cases can lead the strength to be distributed in favor of a given type
of rules that would, in tumn, be favored by the Genetic Algorithm. Basically, the
idea is to divide rules into groups such that they are forced to remain in the
system. This contribution is a method of leaming that allows similar knowledge
to be grouped. A field in which knowledge-based systems researchers have done
a lot of work is concept classification and the relationships that are established
between these concepts in the stage of knowledge conceptualization for later
formalization. This job of classifying and searching relationships is performed
in the proposed Classifier Systems by means of a mechanism, Tags, that allows
the classification and the relationships to be discovered without the need for
expert knowledge.

Reprint requests to: Dr. José M. Molina, Sca-Lab. Departamento de Informatica.
Universidad Carlos 111 de Madrid, Spain. Avda. Universidad 30, 2891 1-Lepanés
{Madrid). e-mail: mulina@iauc}m.cs

‘masma@)inf.uc3m es.; “isasi@iauc3m.es. *fsegovia@fi.upm.es

Lol 11, No. 5. 2001 Evolution of Tags in Classifier Systems
KEY WORDS

evolutionary computation, learning classifier systems, rule based systems,

knowledge acquisition, knowledge classification, internal tags

I. INTRODUCTION

Classifier Systems (Holland, 1992, 1980, 1985, 1986a, 1986b, 1995) (Lanzi,
et al, 2000), the subject of this paper, are studied from the viewpoint of
behavior, an approach that considers exclusively the change in system behavior
and is defended, among others, by Narendra, Thathachar, and Simon (Thatha-
char & Narendra, 1989).

Classifier Systems (CS) combine the advantages of rule-based systems
with the possibility of applying a domain-independent learning system, such
as Genetic Algorithms. The relative value of the different rules is one of the
key information items to be learned in a CS. To promote this learning, CS
oblige the rules to coexist in what is called an information-based economy
service. Rules are made to compete, where the right to respond to the activation
flows from the highest bidders, which will pay the value of their bids to the
rules that are responsible for their activation. A chain of intermediaries is
formed along this path, ranging from manufacturers (detectors) to consumers
(actions to the environment). The competitiveness of the economy assures
that the good (beneficial) rules survive and the bad ones disappear. There is a
high level of relation and communication between the different levels of a CS
(Golberg, 1989).

The conditions and messages of a CS form a system of rules, making
them a special class of production system. One of the main problems raised
by production systems is the complexity of rule syntax. CS find a way around
this problem by restricting each rule to a fixed-length representation. This
constraint has two benefits: first, all the rules, within a permitted alphabet, are
syntactically meaningful and, second, a representation using fixed-length
strings allows the application of genetic-type string operators. This opens the
door to search of the space of permitted rules using Genetic Algorithms
(Dumitrescu et al., 2000).

il4

A Sanchis, J M. Molina, Jowrnal of Intelligent Sysiems
P lIsasi J. Segovia

As discussed above, traditional Classifier Systems combine rule-based
knowledge representation with genetic learning. There is an obvious difference
between systems that use Genetic Algorithms for learning and Classifier
Systems. In the former, the solution to the problem is fully encoded in the
binary representation used by the Genetic Algorithm, that is, the evaluation of
one individual is tantamount to the evaluation of the whole solution (Mitchel,
1996). In Classifier Systems, however, the evaluation of an output is
equivalent to the evaluation of a rule that partly contributes to solving the
problem. This evaluation is distributed across all those rules that contribute to
the activation of the end rule, using the credit reassignment algorithm
(Golberg, 1989). In no case, however, is it an evaluation of the system
composed of all the rules, This is the approach proposed by the University of
Michigan (Holland, 1986b). New rules or sets of rules are generated from
these evaluations. So, any rules that have been activated and provide a
satisfactory solution to part of the problem will be the source of new rules.
The way in which Classifier Systems operate has some drawbacks, of which
the following deserve a special mention:

o With regard to the system's ability to learn chains of rules that, moreover,
do not break from one learning instant to another; the loss of a rule from
the chain can lead to a loss of all the knowledge due to the interrelations
between rules. The rules make sense not individually but only as groups
that are unknown a priori.

e With regard to the need to apply the discovery algorithm to generate
increasingly better classifiers and, finally,

e With regard to the sequencing of the cases put to the system to guide
learning towards an improvement in overall system behavior.

The problem addressed in this paper is in particular how to combat the
problem of the loss of rules and the need to ‘maintain acquired knowledge’.
Both problems are due to the application of Genetic Algorithms in CS, which
leads the mechanisms of the CS to fail when forming and maintaining
associations among rules, The Genetic Algorithm acts on the set of classifiers
that have just been executed in such a manner that the new rules are generated
from the best rules before discovery level action. This operation can lead to
the loss of rules that are necessary for solving certain points of the problem

315

Vol. 11, No. 5, 200 Evolution of Tags in Classifier Systems

and that appeared at the start of the learning period but failed to do so later
on. This means that rules that were very good at the start of the execution can
be considered by the GA as less valuable. because other rules are stronger,
“Internal Tags™ (IT), proposed by Holland (Holland, 1995) and others for
application to Genetic Algorithms, were introduced for this purpose, giving
rse to a new class of CS, Classifier Systems with Tags (TCS). Besides from
preventing the loss of rules, different rules must be made to coexist at all
times, thus stopping the rules becoming uniform, leading to a loss of variety
in the rule population,

Classifier System performance is described in Sec. 2 and the related works
that address the problem of loss of rules in CS. Section 3 contains the proposed
system, the TCS, In Sec. 4, the experimental environment is presented. Results
and comparison between CS and TCS are shown in Sec. 5. Learned rules of
TCS are analyzed in Sec. 6. Final ly, some conclusions are included.

2. CLASSIFIER SYSTEMS AND RELATED PROBLEMS

A Classifier System is composed of three main components, which can
be considered as activity levels. The first level (Performance Level) is
responsible for giving responses (satisfactory or otherwise) to solve the
problem proposed. At this level, there are system rules, encoded by means of
restricted alphabet character strings. When this level is executed, a response
IS given to a particular situation. The fitness of the response to the problem
that is to be solved is measured by means of the reward received by the above
rule from the environment. The second level (Credit Assignment) evaluates
the results obtained at the lower level, distributing the rewards received by the
rules that provide the output among all those that contributed to activating
each of the latter rules. As this is a reinforced learning method, this evaluation
can be adjusted by applying a reward or payment by the environment, whose
value will be high if the solution is satisfactory and low if it is not.
Reassignment can be carried out by means of different algorithms (Holland,
1986a) (Liepins et al., 1991), of which the Bucket Brigade (Holland, 1985) is
-the most commonly used and the one employed in this paper. At this level, it
IS not possible to modify system behavior by changing its rules; however, it is

1214

A. Sanchis, J M. Molina, Journal of Intelligent Systems
P. Isast. J. Segovia

possible to adjust their values and establish some sort of hierarchy of good
and bad rules. The mission of the third level (Discovery) is to find new means
for the system to discover new solutions, for which purpose a Genetic
Algorithm (GA) is used.

Basically, the problem with discovery level action is that all the rules are
considered to be equal. This idea, logical in other Evolutionary Computation
techniques, where cach individual is a solution to the problem, and they,
therefore, all have to compete with each other, is not directly extendible to CS.
This is because no one rule is capable of solving the problem on its own in
many cases, which means that not all the rules are equal. A rule that is fired in a
particular situation and whose action solves the problem is not the same as a set
of rules that must be fired in order to address a different situation, Here, the
strength of the first rule is likely to grow much more than the strength of all the
rules chained in the second case. Furthermore, the distribution of the payment
among members of one family means that the knowledge acquired earlier is not
so quickly forgotten, as a rule that attains a given strength value continues to
receive strength as a result of the execution of rules belonging to its family, The
loss of rules is especially critical when the problem that is to be solved requires
complex rule chaining, as the loss of a rule in the chain at the discovery level
can mean that all the chaining is overlooked and the chain is entirely forgotten,
which will mean that it will have to be learned again later.

2.1 Ad-hoc Internal CS Hierarchies

The problems. of rule loss are addressed from various viewpoints in the
literature with a view, in all cases, to improving CS. Shu and colleagues (Shu &
Schaffer, 1991) consider introducing hierarchies into CS, that is, groups of rules
that have to be maintained throughout the learning process. The rule groups are
formed a priori and are given by the expert problem-solver. This is an attempt
to solve the problem that Delong (Booker et al., 1989) solved by means of
crowding in the field of Genetic Algorithms. So, on the one hand, they establish
rule groups (families) and, on the other, they propose genetic operators that act
intrafamily and interfamily. The payment system is also modified, and when a
rule from one group wins, all the other rules in its group also partake of that

prize.

Vol. 11, No. 5. 200! Evolution of Tags in Classifier Systems

2.2 Hierarchically Organized Independent CS

In 1995, Dorigo (1995) presented the results of solutions designed to
make Classifier Systems learn faster. The tools he used are parallelism, a
distributed architecture, and training. With respect to parallelism and the
parallel architecture, he proposes a parallel version of ICS (Dorigo &
Schnepf, 1993), and designed a parallel Classifier System, called Alecsys,
applied to what is termed the ‘animat problem’ (Wilson, 1985). This problem
is addressed from the viewpoint of dividing the problem into smaller parts,
based on a hierarchical architecture in which a series of ICS leamn to
cooperate in solving the learning problem. The different ICS levels are
executed in parallel on different machines, and, moreover, different ICS,
responsible for different tasks, are also executed in parallel. The author
(Dorigo, 1995) takes up Brooks' (1991) idea of ‘reactivity’, that is, the
existence of a set of behaviors, each of which is implemented by means of an
ICS and which are independent of each other and produce an output for each
input. The whole system is composed of three systems: an ICS to overcome
obstacles, another to attain a goal and, finally, a system that decides which of
the two possible outputs is the output of the combined system. The author
proposes that internal conditions be included to achieve rule chaining (which
is equivalent to behavior chaining in this case). This allows messages from
the environment to be distinguished from messages from earlier cycles.
Dorigo’s study centers on the usefulness of the internal conditions without
clearly explaining how they are used internally by the CS. The results of this
part of the paper show that the size of these internal conditions, as applied in
this case, is not very relevant for learning,

2.3 Limitations of CS Hierarchies

Shu (Shu & Schaffer, 1991) proposes dividing the CS rule set into subsets,
each of which has rules specialized in a particular point of the problem, in
such a manner as to make the members of the same family of rules compete.
Dorigo’s paper (1995) proposes a sort of hierarchy, since the final CS is
composed of three CS: two basic CS and another that decides which CS is
appropriate for each situation. In each case, rules are evolved independently,

318

A. Sanchis, J. M. Molina, Journal of Intelligent Systems
F. Isasi, J. Segovia

in such a manner that each behavior evolves separately. The problem with this
hierarchical approach as compared with Shu's proposal is that it is impossible
to perform genetic operations that allow holistic evolution, as each Classifier
System is evolved independently and is unrelated to the others. That is, no
relationships can evolve between behaviors such that a rule from one
classifier can activate a rule from another. The question is whether the
separation of the Classifier System into several Classifier Systems raises
system effectiveness in particular situations. In any case, it prevents the
generalization of learning,

Automatic category generation within a CS has not been addressed in any
paper to date. The idea can perhaps be borrowed from nature: some species
use ‘tags’ to limit a ‘call or warning' to a set of individuals, discriminating a
subset among the total set. In the same manner, parts can be included in rules
that allow some to be discriminated from others. What we will call /nternal
Tags (IT) can be defined in an ad hoc manner by creating a given string of
calls (Shu & Schaffer, 1991) or can be defined in such a manner that the ITs
themselves evolve, determining what groups are necessary. In short, each rule
can be provided with a field that will evolve genetically and that identifies
that the rule in question is a member of a group, similarly to the tags proposed
by Holland (1995),

3. EVOLUTION OF TAGS IN A CS: THE TCS

As discussed in the preceding section, any solution that seeks to prevent
the loss of rules necessarily involves creating subsets within the set of
classifiers of which the CS is composed. In this work, the proposed solution
must, therefore, combine the ability to learn without a priori knowledge and
the capability of generating some kind of internal subdivision within the CS to
allow categories of rules to exist. A CS, called TCS, has been designed that
allows groups to evolve automatically. For this solution to be implemented,
the encoding of the classifiers will have to be modified to include a field that
represents the type or group to which each classifier belongs (see Fig. 1).

319

Vol |1, No. 5. 2001 Evolution of Tags in Classifier Systems
Classifier | Rule Messagr | Classifier Rule
[T [A | +bit field [[LILDS
00 | mn 1o establish the [[TIES T
Tiol 1 ool cluses mahing [I[IES T
T o wihe CS 7 Wi |
T T1at 1T IS
0| (1110 —_ LS oo

Classifier Rule
LT [
i 11w
LALES [
e o |
11 o 1]
LT [

Fig. 1: Example of Tags in a Classifier System.

In Fig. 1 can be seen that a |-bit field can be reserved to establish the
classes making up the CS. This field can be used to subdivide the CS into
several groups of classifiers, each of which contains the classifiers that have the
same value in the new field. This field can be said to establish the classifier type
or group. According to the definition of the value of the field that establishes the
classes, there are 2 classes: one defined by classifiers whose value is |
(classifiers |, 2 and 3) and the other by those whose value is 0 (classifiers, 4, 5
and 6). Note that the definition of a class is determined by the value of the above
field in the condition part of the rule, that is, rules that must have the same value
in the field for activation are members of the same group. This field, which
appears in the encoding, evolves in the same manner as the other fields, which
means that the number and size of each class in the CS hierarchy is variable and
must be leammed. Wide ranging groups can be established, and all the classifiers
could actually have the same value, in which case the system would operate like
a classical CS. Apart from establishing the classifier type according to the value
of the condition part, as it is included in the message part that evolves similarly,
not only are the rule groups evolving, so is the form of intergroup activation. In
this case, the group | classifiers activate group O classifiers and vice versa.
Obviously, the CS must leam this type of activation and there are a lot of

possible configurations.

320

A. Sanchis, J.M. Molina, Journal of Intelligent Systems
P. Isasi, J. Segovia

Finally, it is important to take into account that the inclusion of a field in
the classifiers means that a value must also be entered in the input message in
the above position. This value is not determined by the environment: it is
defined a priori by means of a value encoding the fact that the message in
question is the environmental message. In this manner, the CS will have 1o
learn which rule group having the same group definition field value is to be
activated in response to the environmental message.

The appearance of hierarchies in the CS is subject to the information
about the category to which the rule belongs being maintained in each rule.
This information must evolve genetically; obviously, if the information about
the category in each rule is capable of representing “n" different categories,
the solution to the problem could be composed of m (m<n) categories and the
remaining categories would be irrelevant. If this information is represented in
each rule and it is allowed to evolve, the number of rules associated with a
particular category is also variable; in this respect, the genetic evolution of the
categories will not only allow the categories required to evolve but also for
each one to have the size required to solve the problem.

The mechanism of including Internal Tags (IT) in rules is beneficial for
evolving complex solutions within a CS. As the TCS is executed in parallel
and all the rules are activated at the same time, a range of complex strategies
are generated in the messages list by chaining rules from different groups.
These strategies are maintained during the internal CS execution cycles and
the best are learned by means of credit reassignment and discovery processes.

Apart from having to differentiate the encoding for different groups,
another two levels of the CS will have to be adjusted: the credit reassignment
algorithm (BBA) and the discovery algorithm (GA). This is due to the need
for each rule group or hierarchy to gradually evolve in parallel. On the one
hand, the credit earned by one rule needs to be distributed among all the rules
of its group in order for these rules to beat other groups, in such a manner that
the strength of each group can be considered as a factor to be taken into
account when performing intergroup genetic operations. In this case, it is not
only an individual that evolves; evolution is focused on the generation of
compact groups, which are widely used and should, therefore, have a better
rule set, without overlooking the need for groups whose elements, though

321

Vol, 11, No. 5, 2001 Evolution of Tags in Classifier Systems

perhaps fewer, are essential for developing the final strategy. Note that if the
strength of all the rules of a group increases when one of the rules of the
group is assessed as positive by the BBA, the strength of those groups of rules
that are chained with this group will also be increased, as the percentage
strength awarded for activation will be calculated on larger sums.

4. TSC EVALUATION IN THE GAME OF DRAUGHTS

In this paper, we seek to get a measure of the contribution of Internal
Tags (IT) to the learning process in a Classifier System. A clear evaluation of
the contribution of 1Ts in the encoding calls for a problem that is solved in a
perfectly defined environment. The environment chosen in this case was the
learning of draughts end games, that is, draughts matches where only a few
pieces remain on the board at an advanced stage of the game.

The objective of applying the TCS to learning the game of draughts is
not to obtain a CS that plays draughts; it is to apply Classifier Systems in a
clear and defined environment that allows traditional Classifier Systems to be
compared with the modification proposed in this paper, including IT.
Obviously, there are a lot of systems that play draughts, some very
successfully (Schaeffer, 1997). However, for the purposes of this study and
comparison, a player following a random strategy will be used, and
measurements will be taken of the games each type of CS (classical/with IT)
wins. against the random player using different configurations. In this paper,
the opening boards are not used, as we work only with end games, where the
maximum number of pieces is 5. These can be pieces of any kind and be
situated in any valid position on the board.

Figure 2 shows the possible moves of a piece and a king on the board.
The kings are crowned when a piece reaches opposite end of the board. The
edges of the board are the limits of the moves. The edges of the board are not
continuous, In this paper, the directions of the moves are considered absolute,
as shown in Fig. 2.

When an opponent's piece is positioned in any of the directions in which a
player's piece can be moved, the latter will take the piece that is in its path, by

2

A. Sanchis, J M. Maolina, Journal of Intelligent Systems
P. Isasi, J. Segovia

direction direction
0 1
& frect
3 2
Y

Fig. 2: Possible moves of pieces and kings on # bourd und definition of the directions

of moves.

jumping over it onto the next vacant square in that direction. The piece
captured will be removed from the board. This process will be repeated as
many times as possible before the opponent player can take its tumn. When
either player has made a move or taken a piece (and cannot capture another
piece), it will be the opponent’s tum. The game will end when only one
player's pieces remain on the board or there is a draw. There is a draw when
the player whose turn it is cannot make any move.

4.1 Information Encoding

This involves analyzing how and what information about the board, the
pieces, players, turns, moves, etc., can be supplied to the CS as an input
message. The encoding chosen for the game of draughts is such that an outﬁm
from the CS is always interpreted as a move. This means that the CS
decisions are interpreted depending on the system status. Obviously, the
system must be able to play with both black and white pieces, so an encoding
was chosen that does not take into account ‘the color’ of the piece.
Additionally, the directions of the moves have been taken to be absolute as
explained above.

323

Vol 11, No. 8, 2001 Evolution of Tags in Classifier Systems A. Sanchis, J M _Moﬁna, Journal of Inteiligent Systems
P. Isasi, J. Segovia
4.1.1 Input message. The information that is available on the board and < -
that can be entered into the system is as follows: § a ,‘:
¢ the number picces on the board, g =
e the color of each piece, A8 = [—
(=]
* coordinates (x.y) of each piece, taken as shown in Fig. 2, ?.5 = o tad
» piece type (piece or king), S5& E alo p
s directions in which it can move or take and g E % é
* how far it can move or take in each direction. 2 e) =<l "é
g _ o a s Ui g
The input messages include the status of the board at any one time: total =Be 8 % b3 = §
number of pieces, number of pieces belonging to the CS player, color, whose g 2. g , E nl ;
turn it is, how many kings there are, etc. This information will be encoded in " " -é ; - [£
a 57-bit length input message for the traditional CS. The number of bits will 5 2 g E E‘ o = g
be 61 for a classifier with [T, as 4 bits are entered to represent the [Ts. = g i} @ o] 2
The first position of the input message encodes the information about the E aa E é *-r] g
possibility of taking (with a 1) or only moving (with a 0). The next 4 positions 3 L &' - L ?
contain information about the total number of pieces there are on the board, % P g 'E b B f
and the next 12 on the pieces that belong to the plaver whose tumn it is, how i 3 8 2 [—] E
many of these are kings and the number of the opponent's kings, all encoded ca« 3 g s :_:5
using 4 bits in each case, considering the percentage represented. Then, the) & ol | é
information regarding the position of these pieces is recorded, by 5 é b =
transforming this decimal number into a binary number of up to 8 bits, L g e § :3 !é
Finally, if the total number of pieces is under 5’, the remainder of the message O ~«8 E fle g
is filled in with “#" symbols. The following are the steps (which are % 2 o : 2
summarized in Fig. 2) taken for encoding an example set out in Fig. 3. 2 2B = 3
Figure 3 shows how the environmental data are transformed for entry into PC ~n € 2 3 hal 5
the CS input message. This conforms with the situation shown in Fig. 3, :"—; = ?ﬁ; : g‘-
where the aim is to decide the move to be made by the white pieces. @C n =3 %J | . *-2
1.9 ¢ ik
4.1.2 Output message. The output message has the same length as the - neS '2; g En E
input message, 61 or 57 bits, depending on whether or not the ITs are taken % i E g
into account. Only the last 16 bits of the entire message sent through the el il) “‘5 b
output interface of the CS after having performed the chaining process for . g;, -4 &
several internal cycles are used as an output. A possible specimen output -E E (4
message is shown in Fig. 5. z D %
325
324

Vol. 11, No. 5, 2001 Evolution of Tags in Classifier Systems A. Sanchis, J M. Malina,

Jowrnal of Intelligent
P. Isasi. J Segovia of Intelligent Systems

With regard to the output messages, the respective positions will be taken
and the decoding process will be performed. For ease of understanding. the
specimen board shown in Fig. 3 will be detailed using the output message
shown in Fig. 5.

1. Calculation of the piece to be moved/captured:

e The bits in positions 45 to 52 will be used to calculate which piece is o
be moved/captured. In the example shown in Fig. 5, this is the binary
number 000000100, which is equivalent to the decimal number 4.

e To decide to which piece it corresponds, the above decimal number is

counted on the pieces actually on the board, and if they run out before
reaching the above number, counting starts again from piece 0 to 4, — o
inclusive: in the example, this would be 0,1,0,1,0, which means that the g.6: Board in Figure 4 after having made the moves suggested by the TCS.

chosen piece would be 0, whose coordinates are (4,0).

2. Calculation of the direction of the move:
e The bits in positions 53 to 56 are used to calculate the direction in which * maximum. In the example, 5 was output as the moves to be made and,

the piece is to be moved. In the example, this is the binary number 0110, yet, a move of only one, two or three squares is possible and, therefore,

which corresponds to direction 6. the piece is moved two squares.

e To transform direction 6 into an actual move direction, the actual

decimal direction is counted six times across the possible directions in In short, following the procedure detailed for the example, the strategy
which the piece can move, and when there are no real directions left, suggested by the TCS by means of the output message shown in Fig. S is to
counting starts again from the first actual direction. In the example, picce move the piece with coordinates (4.0) 2 squares in direction 2, which would
0 can move in only two directions, 2 and 3 (see Figure 4) (as it is a king give rise 1o the board shown in Fig. 6.

that is on the edge of the board), which means that by counting from 0 to

6. inclusive, across the two possible directions, we will get 2,3.2,3.2.3.2, 4.3 Payment Function

that is, the chosen direction will be 2.
The objective of the payment function that analyzes the quality of the

3. Calculation of the positions that the piece is 1o be moved in the classifiers is to guide CS learning. The CS will leam depending on the
respective direction: payment function, and this, precisely, is the central objective of the CS
e The bits in positions 57 to 60 are used to calculate the number of squares developer when the CS are applied to a particular problem. For the purposes
to be advanced. In the example, this is the binary number 0101, which of this paper, the CS should be able to beat a random player, that is, a player
corresponds to the decimal number 5. who has no strategy and whose moves are not determined by the situation.
Now the above value has to be transformed into a real amount. For this This objective means that the payment function does not have to be able to

purpose, if the value corresponds to a possible situation, the above value is

R y evaluate different situati 2 istinction i
taken: otherwise, it is transformed into a value between | and the ons and detect the finest distinction in the moves

decided by the CS; on the contrary, the payment function should be simple

= 327(3

Vel 11, No. 5, 2001 Evolution of Tags in Classifier Systems A Sarichis, M. Molina, Journal of Intelligent Systems
P Isasi, J. Segovia

and objectively evaluate the decisions made by the CS, assessing each move
on the basis of *quantitative’ results. In this manner, the CS will be able to
beat a random, though not an experienced, player, and it will be possible to

compare the classic CS and the TCS objectively.

The payment function takes into account the following factors: whether
or not a piece has been captured, whether or not a king has been crowned, and
the number of pieces taken. The payment will be made once the opponent has
made a move. So, the payment function employed is based on the results
achieved by the opponent and the results obtained by the CS move. In this case,
payment can be represented by means of Table |, where ng is the number of
pieces taken by the CS and n,, the pieces captured by the opponent.

—200*n0p 10

-20
-200* Nop

Does not
TAKE
No KING

100*ng;

At the end of the game, the opponent player makes no move on the basis
of which to evaluate the preceding move by the CS, so the result of the game
is evaluated directly:

IF (the game ends in a draw) THEN (the payment is 400)

IF (the game does not end in a draw and the CS wins) THEN (the
payment is 700)

Nop = Ncs : —100%n5,—10

fop < Ncs © 100%nge—10

200‘8(5—10

TAKES ngs

No KING

Nop 2 ncs : —100*ngp
Nop < MNgs :

200*ncs

IF (the game does not end in a draw and the opponent player wins)
THEN (the payment is -700)

The payment developed is totally objective and depends on whether or
not one piece is taken and on whether or not a king is crowned. This means
that no payment is made if the move did not have a quantifiable result,
Indeed, if there is no measurable quantity, the payment is 0. This payment 0
defines situations that will not be evaluated and, therefore, limits Classifier
System learning ability. This limitation rules out any subjectivity coming into
the payment that assesses CS operation, thus distorting the comparison
between the classical CS and the TCS.

TABLE 1
TAKE
KING
-200*ngp
~200 * ngp

20

Does not

CLASSIFIER SYSTEM

nop < ncs : 100*ngp+10 | +10

200*ns+10

ngp < ncs : 100*nge

200%ncs
100*nge+10

TAKES ncs
KING

Payment function for CS and TCS applied to the game of draughts

5. COMPARISON BETWEEN TRADITIONAL CS AND TCS

TAKES ngp | ngp 2 nes : —100*nge
TAKES Nop | Nop 2 Nes & -

No KING

Does not

TAKE

No KING

Qo
g

KING
Does not

The objective of this section is to compare the traditional CS with the TSC., INENOI40
For this purpose, the above systems will be played against a player who makes
random moves, having a variable degree of randomness and starting from
different situations. The two systems commence without any previous knowledge

328 329

Val 11, No, 3, 2001 Evolution of Tags in Classifier Systems
that is, their entire population is randomly generated, which means that their
rules and messages are not adapted to any particular case and their moves
will, in principle, also be random.

The three types of experiments conducted under this point were performed by
gradually increasing their difficulty level to examine the behavior of the two
systems in face of the above changes.

In the first type of experiments, the randomness of the random player is
gradually raised. This means that there are different levels of randomness
within a random player. This level of randomness is entered in the output
message produced by the random player. The output message of the random
player has the same make-up as that of the CS; however, it possesses only the
sixteen characters required by the decoding process for transformation into a
particular move. Randomness is entered in the output message of the random
player depending on the number of characters are generated randomly. This
generation is regulated proportionally, that is, there are random players whose
output message is composed, for example, of 40% random characters.

Three groups of experiments with a different starting situation were
performed for the comparison. The experiments were defined in increasing
order of complexity, depending on the opening board with which each game

that was to be played commenced:

1. First, the opening board will be fixed for all the games, then

2. the positions of the pieces that appear on the board in each game will be
altered, and finally,

3. the opening board will be generated at random for each game.

In the first experiment, differing degrees of randomness will be applied
to the opponent player, starting with 0% randomness and increasing this
percentage up to 100% randomness. In the last two experiments, the opponent
will 100% random throughout, and the opening boards will be modified
incrementally, either by changing the position of the pieces or by generating a
new hoard.

The result will show the evolution of the games won and lost by the two
types of Classifier Systems. These results correspond to the average of five
groups of games. In order to analyze the results obtained in more detail, the
percentages of games won at the end of learning for each CS and for each

330

A. Sanchis, J M. Molina, Journal of Imielligent Systems

P Isasi, J Segovia

experiment, and the percentage improvement of the TCS as compared with
the CS are set out in Table 2, Table 3, and Table 4. Analyzing the results, we
find that the contribution of 1Ts to the CS is not relevant in all situations. In
problems where the CS has to leam a very simple sequence of operations,
because the problem to be solved is less complex, the ITs can turn out to be
more of a handicap, as their inclusion means that the system is forced to
"learn” how to chain rules, when such chaining may be unnecessary. As the
problem becomes more complex. the need for rule chaining increases, and the
contribution of the ITs becomes evident, since their existence encourages rule
chaining. So, we find that the results of the TCS in the first experiments
(Table 2) only improve on the CS in the last case. On the other hand, an
improvement is seen in the results obtained with the TSC as compared with
the CS in the subsequent experiments performed (Table 3 and Table 4).

Table 2 shows the results of the experiments in which the opening board
was unchanged. In this case, the problem appears not to require rule chaining
to develop strategies that can be used in unexpected situations, since the
opening board is fixed and there are, therefore, only limited possibilities of
different moves. So, the CS is faced with a player who, for all intents and
purposes, makes a well-defined series of moves whose variability is very
restricted. This is why the TCS results are 14% worse on average than those
obtained by the CS. Considering that this is the simplest possible case. it
appears that is counterproductive to force the CS to employ ITs, as it makes
the TCS play worse than the CS. In the last case, where the systems face
maximum variability, the results are very similar, and those obtained by the
TCS are slightly better, mainly because the need for chained strategies starts
to become evident.

Table 3 shows the results obtained when the opening board is modified
using an incremental degree of randomness. In this case, the TCS performs
10% better on average than the CS; this is because the system has to start to
generate more complex actions to be able to respond to more diverse
situations. It is noteworthy in this case that the two systems obtain poor
results at the maximum level of randomness, compared to the results that they
obtained at lower levels of variability. This is perhaps due to the fact that
these are very indeterminate situations where it is difficult for the system to
be able to extract knowledge.

Vol. 11, No. 5, 2001 Evolution of Tags in Classifier Systems A. Sanchis, JM. Molina, Journal of Intelligent Systems
P. Isasi, J. Segovia

In Table 4, the results obtained show that as the degree of uncertainty in
opponent player performance is increased, a higher percentage of the results
of the TCS are better than those of the CS, in this case 15% on average.
Again, neither of the two CS are able to obtain results of over 60% of games
won with the effect of maximum randomness.

é . ° 7 . In short, we can infer from the results obtained that Classifier Systems
Ll L0 4 L
2lslsla 2 § 5 ?\E 2L | 2 are able to learn in games environments and that when the game is
s - 3 ¢lo i 2R complicated, it requires a complex solution that is not satisfactorily provided
Lol Lol bt °) 4 . % Z 3
O RlIsSls|T 1R = g s E é 2 ‘E % by classical CS and thus requires the inclusion of tags. The results presented
§ 2|els § E 2lelse § 2 e 1 - show how the proposed Classifier Systems are capable of improving on the
2 1Blsls|Y a [B]s|E]S s [B1S[S]=] classical approach of Classifier Systems in cases in which rule chaining is
g 2l |2 & = g' 2 relevant. The importance of this contribution is the discovery of a learning
S(&[=|%= RIS 2 |818|=|E - :
=lolas]|s g; =lc|s|S) g IE slas |8 method that allows similar or related knowledge to be grouped. This property
’E § oo § E é 2l2le § 2] ?\3 of ITs, the automatic grouping of rules that share the same objective, is of
A |8ls|s 5 s|s|® o 8|S |™ special interest, and a study has, therefore, been conducted to analyze what
& § PAEES S Selg - < E (2|8l effect they have and what results are obtained in each of the proposed
“ g BlolslT] wi [RlSlolR Sg Zls|s|= Classifier Systems.
a« 2lole=|E 237 |2 g b [- %o
fg (35| =2 Bl 2@ Els|EE
=] ° L o
£ g;:_ =|& E (8= & E I ENES 6. ANALYSIS OF THE GROUPS OF RULES LEARNED
o olo] e o
w =
Dl 2 lo 5 .
o) e -
§ é 5 g § < S g s 'E :.a ; ; § The encoding used to represent the rules in thf Classifier System used to
% = E 2= " A slolale play draughts employs many symbols. Not only is the number of s?-mbols
2R | |R 2|% S m = (a5 %(&H extensive, the encoding is very complex to ensure that all the outputs given by
E alalas|R E S|S |- [Slsls|? ery P g
E [=7 . - E’ = the Classifier System are valid. The need to generate valid responses at all
- E g E E times means that the meaning of the rule depends on the position of the pieces
=3
-4 5 “ g on the board. The meaning of the rules belonging to one group is, in this case,
E. E" E- a problem for which there is no accurate analysis. Although the study of the
wn 5 & § ;! 8 § ; meaning of the groups appears to be the best means of understanding what the
=l=le - Classifier System has leamned, this is ruled out by the extent and complexity

of the chosen encoding. Therefore, we will study the different situations in
which the inclusion of the IT improves Classifier System learning, How the
groups have evolved and the number of rules belonging to each group in the
learning process is also of special importance.

332 333

Vol. 11, Ne. 5, 200/ Evolution of Tags in Classifier Systems A. Sanchis, J. M. Molina, Journal of Intelligent Systems
P. Isasi, J. Segovia

To perform the experiments with the TCS, 4 bits were reserved in the
condition part and message of each classifier. Eighty-one groups could be
generated with 4 bits as shown in Table 5, each described by the value of its
tags. .

After analyzing the TCS obtained in the different experiments, we find
that 10 groups are formed, whose tag values are as shown in Table 6. All the

groups are formed using the alphabet {1#}, which allows all the rules 2t —
included in the TCS to be matched with messages that have the values “1111" £ N
in their IT area. This is because all the environmental messages have been %
identified with IT values *1111", and the TCS learns rules that can respond to “ E g E § E g g 8 L=
these situations. However, not all the rules have the value “1111", which 3 — T = e
would mean that they only match with the environmental message, because ; zlzlzlzlglzlelz g —
the TCS leamns the need to generate different groups and chain rules in _g § |5 (= [¥ |5 [§ % E ®
internal cycles, where the environmental message is no longer involved, g % '
E TS E - - —
The chosen encoding means that it is out of the question to interpret the £ g y % _E_ % 15 % 31:. g <!
classifiers obtained. Therefore, we will analyze how the number of rules in > g2 E=S
cach of the groups formed changes as the experiment advances. The most “ E IR ERIEIEIEE e E |
complicated case of those shown was chosen. This corresponds with Table 4, o | & Sis|=l=1SI8 1= = RS Es
that is, based on an opening board generated with 10% to 100% randomness. . % g slelzlglzs |2 |= - "E’ =
It is in this experiment that the inclusion of ITs in the CS improves most on Sl 1 = § RIR|= |5 |% = s =
the results obtained without ITs. % slzlel=lglz 2|z g2 |=
The evolution of the number of rules of the different groups are shown 2 EEIEEIEIEIZ|® B -
from Figure 7 to Figure 14. The figures show that the number of rules g 8l sl 5 1= s |~ 2 -
belonging to each group levels out as of the experiment with 70% randomness 2 § § g g s 13 |=|= s _
(Exp 70) in opening board generation. “1##1" and “###1" are the groups 5 2 2
. 2 = = &= = = | —
whose number of rues increase most. The groups with the most pronounced 2 SEEEIRBIEIEIE ; N
fall in the number of groups are: “111&7, “1#117, “#111" and “####". Although = - [-
they do undergo changes throughout the experiments, the number of rules in SIBIZEIZIRIEIZ | I
the other groups remain within a relatively narrow margin of values. e e e e = =
The evolution of the number of rules of the groups that increase and é 2z § =) E = ==
decrease most is related to the specificity of the IT values. The groups that g8i8lslslsls

decrease are more specific (except the one defined by “###4" which will he
dealt with separately) than those that increase: however. the three specific
groups are included in the more general ones. In this manner, rules that
belonged to the three groups and represented similar situations, even if they

334
335

Vel. 11. No. 5, 2001

Evolution of Tags in Classifier Systems

"1111" GROUP

Ep 0 Expi0 Expa0

Bp W EpS0 Epd Epi0 EmM Sl Expoo
Experimant

Fig. 7: Evolution in the number
generation randomness.

of rules of group “111™ with increased board

"111#" GROUP

Eqpil Epd EBpX

EpH EpS0 Ep®0 Ep70 Epbd Expdd Exp i
Experiment

Fig.8: Evolution in the number
genceration randomness,

of rules of group “11#" with increased board

L —

L

$3F J2

"11#1" GROUP

Eall Ep EpX Epd EoS En® EpT0 Sl EpR E0IK

Experiment

Fig.9: Evolution in the number of rules of group “11#1" with increased board

generation randomness.

336

A. Sanchis, J M. Molina,
P. Isasi. J. Segovia

Journal of Intelligent Systems

237 1?2
a

1

|

"1#11" GROUP

Epil Em@ Epd Epsl Be30 Eo® B0 Emil Ep90 bl

Experiment

Fig. 10: Evolution in the number of rules of group “I#11™ with increased board

generation randomness.

"#111" GROUP

Ru 15
e

Nu = e
mb 10

©p10 Epd0 Ep3 E:pe0 ExpS0 EpS0 ExpT0 ExpB0 EpS0 Expil0

Experiment

Fig. 11: Evolution in the number of rules of group “#111™ with increased board

generation randomness.

"11##" GROUP

Ewpl0 Epd Espd0 Expdd EmpX Ep® B0’ Ep® EwX B0

Exparimant

Fig. 12: Evolution in the number of rules of group “11##" with increased board

generation randomness.

v [assifier Systems
Vol 11, No. 5. 2001 Evolution of Togs in Classifier Sysic

i

| -
et IuE Le® ine bei bW e Enm a0 G 100
Expermmen

Fig. 13: Evolution in the number of rules of group ~1##1" with increased board

generation randomness.

Bt Lkl o=

e Gp® B ine sk oo LW

Exparimant

Fig. 14: Evolution in the number of rules of group “1##4" with increased board

generation randomness.

were in different groups, have been able to migrate to another group that
represents that common situation. As the target group is less specific, the
rules include the response to the IT values of the groups to which they

belonged before they migrated.

With respect to group “HRHH", which is the most general group and
includes all the others, it is found that, first, in no experiment does it have a
very significant number of rules (the maximum value is 7). Apart from not

338

A. Sanchis, J M. Molina, Journal of Inielligent Systems
P Isasi, J Segovia

containing many rules, this group decreases precisely because the generation
of possible strategies does not require rules that are totally general and fail to
discriminate the rules by which they are activated. The final leveling value of
this group is 3.

As we have seen, the only groups formed are those required to solve the
problem, as opposed to all the possible groups. In this case, this finding
appears 1o be influenced by the IT values learned, as, although no more
groups are necessary, these groups did have to act according to a particular
hierarchy. In these experiments, we find that not only is the TCS able to leamn
groups of rules, it is also capable of establishing hierarchies between groups,
using the “#" symbol.

CONCLUSIONS

One of the major problems related to Classifier Systems is the loss of rules.
This loss is caused by the Genetic Algorithm being applied on the entire
population of rules jointly. Obviously, the genetic operators discriminate rules
by the strength value, such that evolution favors the generation of the stronger
rules. When the leamning system works in an environment in which it is possible
to generate a complete training set, the strength of the rules of the CS will reflect
the relative relationship between rules satisfactorily and, therefore, the
application of the Genetic Algorithm will produce the desired effects. However,
when the leaming process presents individual cases and allows the system to
learn gradually from these cases, each leaming interval with a set of individual
cases can lead the strength to be distributed in favor of a given type of rules that
would in turn be favored by the Genetic Algorithm. I this reasoning is extended
to the entire leaming process, genetic diversity, which is so necessary for
leaming, can disappear due to the growth of a given type of rules in the
population. Furthermore, when different rule sets are needed to solve part of the
problem, these may disappear if part of the problem (corresponding to the rules
that can be lost) is not presented in the examples found up to a certain point.
However, the above rules can be very necessary,

This is an especially serious problem when there are very different rule
types in the CS. Basically, the idea is to divide rules into groups such that

339

Vol 11, No 5, 2001 Evolution of Togs in Classifier Systems
they are forced to remain in the system; this allows groups of rules to survive
by modifying the application of the classic genetic operators (mutation and
crossover) at the discovery level and altering the payment function and the
bids between rules of the same group, making the reward obtained by a rule
of the group affect the whole group.

The objective of this paper was to obtain an encoding structure that would
allow the genetic evolution of these groups in such a manner that their number
and relationship would also be learned in the evolution process. For this
purpose, an area that allows the definition of rule groups has been entered into
the condition and message part of the encoded rules. This area will be named
Internal Tags. This term was coined as the system has some similarities with
natural processes that take place in certain animal species, where the existence
of tags allows them to communicate and recognize each other.

This contribution is a method of learning that allows similar knowledge
to be grouped. A field in which knowledge-based systems researchers have
done a lot of work is concept classification and the relationships that are
established between these concepts in the stage of knowledge conceptuali-
zation for later formalization (Gonzalez & Dankel, 1993). This job of classi-
fying and searching relationships is performed in the proposed Classifier
Systems by means of a mechanism that allows the classification and the
relationships to be discovered without the need for expert knowledge.

REFERENCES

Booker, L., Goldberg, D.E. and Holland, J.H. 1989. Classifier systems and
genetic algorithms, Arrificial Intelligence, 457, 235-282.

Brooks, R.A., 1991. Intelligence without representation, Artificial Intelligence,
47, 139-159.

Dorigo, M., 1995. ALECSYS and the autonomouse: learning to control a real
robot by distributed classifier systems, Machine Learning, 19, 209-240.

Dorigo, M. and Schnepf, U. 1993. Genetics-based machine learning and
behavior based robotics: a new synthesis, /EEE Trans. on Systems, Man
and Cybernetics, 23, 141-154.

340

A Sanchis, J M. Molina,
P Isasi. J. Segovia

Journal of Intelligent Systems

Dumitrescu, D.. Lazzerini B., Jain L.C., Dumitrescu A. 2000. Evolutionary
computation, CRC Press Series on Computational Intelligence.

Goldberg, D.E. 1989. Genetic algorithms in search, optimization, and
machine learning, Reading, Massachusetts, USA, Addison Wesley.

Gonzalez. A.J. and Dankel, D.D. 1993. The engineering of knowledge-based
systems, New York, NY, USA, Prentice Hall.

Holland, J.H., 1980. Adaptive algorithms for discovering and using general
patterns in growing knowledge bases, International Journal of Policy
Analysis and Information Systems, 4, 245-268.

Holland, J.H. 1985. Properties of the bucket brigade, in: Proceedings of the
International Conference on Genetic Algorithms and their Applications,
1, 1-7.

Holland, J.H. 1986a. A mathematical framework for studying learning in
classifier systems, Physica D, 22, 307-317.

Holland, J.H. 1986b. Escaping brittleness, the possibilities of general purpose
learning algorithms applied to rule-based systems, in: Machine Learning.
An Artificial Intelligence Approach, edited by Michalski, R.S, Carbonell,
1.G. and Mitchell, T.M., CITY?, Morgan-Kaufman, 593-623.

Holland, 1.H.,1995. Hidden order: how adaptation builds complexity,
Reading, Massachusetts, USA, Addison-Wesley.

Holland, J.H., 1992. Adaptation in natural and artificial systems, Ann Arbor,
Michigan USA, University of Michigan Press (First Edition, 1975).

Lanzi, P.L., Stolzmann, W. and Wilson, S.W. 2000. Learning classifier
systems from foundations to applications, Lecture Notes in Computer
Science, Springer.

Liepins, G.E., Hilliard, M.R., Palmer, M. and Ranjaran, G. 1991. Credit
assignment and discovery in classifier systems, International Journal of
Intelligent Systems, 6, 55-69.

Mitchell. M., 1996. An introduction to genetic algorithms, Cambridge,
Massachusetts, USA, MIT Press.

Schaeffer, J., 1997. One jump ahead, New York, Springer-Verlag.

Shu, L. and Schaeffer, J. 1991. HCS: Adding hierarchies to classifier systems,
in: Proceedings of the 4th International Conference on Genetic Algorithms,
339-345.

Val 11, No. 5, 200/ Evolution of Tags in Classifier Systems

Thathachar, M.A. and Narendra, K. 1989, Learning automata, an introduction,
Englewood Cliffs, New Jersey, USA, Prentice Hall International.

Wilson S. 1985. Knowledge growth in an artificial animal. in- Proceedings of
the First International Conference on- Genetic Algorithms and their
Applications, 16-23.

342

e

