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F and G follow as in Phillips [6] and Hannan [4]. This is due to the fact that
the matrix polynomial I — Fz and I + Gz have a greatest left divisor which
is the identity matrix. Since the null spaces of F and G have a null intersec-
tion, Hannan’s [4] theorem can now be invoked guaranteeing the identifi-
ability of the matrices. We like to add that the question of left coprimeness
of (I — Fz, I + Gz) is related to the dependence of F and G on the param-
eters 6 and p. Notice also that the condition that (F, G) has full rank is re-
lated to the dependence on the parameters. It could be that, for example, the
rows of (F,G) are linearly independent for all feasible values of § and p.
Thus, for an actual analysis of identifiability the properties of the parame-
terization of (F, G) are of central importance.
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89.1.2. Optimal Instrumental Variable Estimator of the AR Parameter of
an ARMA(1.1)—Solution, proposed by Juan J. Dolado. The model can be
written as

Ye=ay,y + Uy u, =e, + fe;_y; Euu’ = g*Q

with |8] < 1, |a| < 1, ¢, ~ i.i.d.(0,0?), and E(e}) = no*.

The matrix Q is tridiagonal with 1 + 62 on the leading diagonal, except the
first element which is equal to 1, and 6 on the off-diagonals. Since plim n~!
Ly, u; #0, an IVE (&, = Ly, ¥,—n/Ey._1Y:—1n) has to be used.

1. plim (&; — a) =plim n~! Ty,_,u,/plim n~'Ty2 | = 8a*/y, @)

where v, = 0%(1 + 208 + 62)/(1 — «?), which is the variance of an

ARMAC(1.1) process. Therefore, &, is consistent iff 6 = 0.
2. For h =2,

plim(&;, — a) = plim n™'Zy,_,u,/plim n™'Ly,_,¥,_,

plim n ! Ty,_,u, =0 for h =2
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plim n7'Zy, .y, = a2y, forh =2
Y1 =0%(a + 8)(1 + ab)/l — a2, )

in order to achieve consistency, the second plim has to be different from zero
(Slutsky’s theorem). Hence, a needs to differ from zero, except when 8 # 0 and
h = 2 where the plim of the denominator in (2) corresponds to the first-order
covariance of an MA(1) process (= §02).
3. nV%(&, —a) =n""? Ly, pu,/n"' Ly,_, ¥,_;. Under the assumptions
(i) E(y,_s u,) = 0 (verified for h = 2)
(i) plim n~" Ty, py, 1 < o
(iii) Ee} < oo
(iv) N =lim n~! E(Ey,_,u,)* exists and is positive.
Hansen [1] proves a CLT by which n~“2Zy,_,u, converges in distribution to
N(O,\). Thus,

n"2(&y, — ) ~ N{0,(plim n™" £y, )7\, Q)
where
N=lm n~ 'E(Ey,_pu)? = 0?1 + 02) [yo + 20v,/1 +6%), Vh=2

and

plim n7! Ty,_,y,_; = «" 2y, Vh = 2.
Since the numerator of the variance in the limiting distribution is constant for
all 4 = 2 and the denominator is «#~2vy,, where |a| < 1, # = 2 gives the mini-
mum variance.
4. If « =0, plim n'Ly,_,y,-, = 0 for A = 3, since the covariances of an MA(1)
process are zero from the second order onward. Hence, by Slutsky’s theorem,
&, is not consistent for a. However, if A = 2, the previous plim is #o2 and the
numerator in (2) tends to zero, thus &, is consistent. To compute the asympto-
tic distribution of &, when « = 0, we use (3) obtaining
242 2
n1/2&2~N[0,(1—+'00)T+£]- @
When o = 0 = 0, it is clear from (4) that the limiting distribution for &, does
not have moments. In fact, & = n~?Lee,_,/n~""*Le,_e,_, which tends
asymptotically to the ratio of two independent N(0,1) variates. Therefore, the
asymptotic distribution is Cauchy (see exercise 6.24 in Brockwell and Davies [2]).
5. Within the general class of ARMA(p, q) processes, the results can be general-
ized as follows:

The set (¥—g_1,. - - »Vi—q-p) is the optimal instrument set within the class of
instruments where its number is equal to the number of to regressors (p). For
a number of instruments larger than p, Sargan’s [3] optimal GIVE method ap-
plies.
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NOTE
A very good solution has been proposed by Sastri G. Pentula, the poser of the problem. For
the generalization of the result, he has suggested the following paper

Stoica, P., T. Soderstrom, & B. Friedlander. Optimal instrumental variable estimates of the AR
parameters of an ARMA process. IEEE Transactions on Automatic Control, AC-30 11 (1985):
1066-1074

and the references contained therein.
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89.1.3. The Singular-Value Decomposition of the First-Order Difference
Matrix— Solution, proposed by N.G. Shepard. The singular-value decompo-
sition (c.f. theorem 16, chapter 1 of Magnus and Neudecker [2]) implies
D’ = TAV2S, where 'S=1, , and T'T=1,.,.

Therefore

A =DD’ = SAS’

B =D'D =TAT’

where A is an (n# — 1)th order positive diagonal matrix. Sisann X (n — 1)

matrix of eigenvectors of A4 corresponding to the (7 — 1) nonzero eigenval-
ues. It is given by (c.f. Von Neumann [3] or Anderson [1, pp. 285-288])

r i
co X cos 2_7r cos M
S 2n 2n 2n
Cos 3—15 cos ———3'27r cos ———-—3("_ D
S= 2, 2n 2n 2n
n
n-= 2n—1)2x Rn—1)(n-D~r
cos cos <.+ COS
2n 2n 2n




