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W" algcbras arc considered in their free field representation to show that they are endowed with a Quantum group symmetry 
which is a Zz twist ;11 la Drinfel'd of 'i'Q. (51(n)} x <i'q_ (si (/I», We use the contour picture of quantum groups due to G6mez and 
Sierra. A sample computation for the ~ matrix is also performed. 

1. Introduction 

There are two subjects in the realm of current theoretical physics whose interest is growing very rapidly. One 
of them is the mathematical structure of quantum groups (11. recently found in exactly solvable lattice models 
(see ref. [2] and references therein), factorizable S-matrix models [3] , quantum Liouville theory [4] and 20 
con formal field theory (eFT) [5]. Concerning this last issue G6mez and Sierra have been able to uncover the 
quantum group symmetry behind the c< I rational eFTs, by the use of contour deformation techniques [6] . 
The same procedure has been also successfully applied to WZNW models [7,8] and N = I. 2 superconformal 
fi e ld theories [9] . 

The second subject is that ofW" algebras. First found in 2D eFT [10,11 ] . they also appear in the contexts of 
integrable theories in 1 + I dimensions (KdV type models, Toda theories) , IRF models or random multi-matrix 
models (for a brief review with references see ref. [12] ). 

In this letter we use the G6mez-Sierra (GS) contour techniques [6 J in the context of the free field realization 
of W" algebras [10.11] to show that here the underlying quantum group symmetry is related via a twist a la 
Drinfel'd [13] to a quantum algebra 'Wq ... (sl(n) )®<itq_(sl(n». We also compute as an example the £it matrix 
in the fundamental representation of the W) algebra and find agreement with the standard at matrix in the 
fundamental representation for 'Wq ... (sl( 3». This 9t matrix computation should not be confused with the braid­
ing matrices for chiral vertcx operators which are worked o ut in ref. [ 141 also by means of contour manipulation 
techniqucs (with a different choice of contours, though). 

2. Free field realization of W" algebras 

In this section we fix the notation and normalization to be used in the rest of the letter. 
The free field (or Feigin-Fuchs) const ructio n of the W" algebras [10, 11] uses n-I bosonic fields 

4'(z)::::: (4'1 (z) , .... 4J"_1 (z» [remember sl(n) has n- I simple roots] 

< ~,(z)~j(w»=-2oij ln( z-w) (I) 
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(we shall always restrict to the holomorphic sector) and a background charge at infinity. We shall take all the 
simple roots {ei }1- 1 ofsl(n) to have squared length equal to 2. The Cartan matrix. elements then read 

(2 ) 

We will also introduce the n-I fundamental weights {wa }1- 1 such that 

(3) 

with tJ the inverse of the Cartan matrix .:K. The stress tensor reads 

W"'(z) = T(z)= -ja!>(z) '8!>(z) + ;aop,a'!>(z ) , (4 ) 

p is taken to be equal to half the sum of the positive roots of si (n) and so p= I :: I co". One can construct 
W(i<) (z) fields of spins k=3, 4, ... , n and show that their modes indeed close what is called a W" algebra, that 
includes Yirasoro as a subalbegra [10,11] . One can also construct vertex operators 

(5 ) 

with confonnal weight Ll/F= fJ· (fJ-2a.rJJ). fJ is a vector whose components are n- I constant coefficients. With 
these vertices we can construct screening operators in the spirit of the Feigin-Fuchs construction of Dotsenko­
Fatcev [151. Seeking the conformal weight to have value + I we find two families of solutions 

r;(z)== :exp[ia.:t e,,';(z)]:, Q= I • ... , n-J (6 ) 

with 

(7) 

Their having weight + 1 makes the screening charges 

QJ =f dz Jii ( z ) (8 ) 
c 

well defined objects whose commutators with any of the generators of the W" algebra give boundary terms 
[10, 11]. If the contours C do not cross branch cuts, the boundary terms vanish so that the Q! commute with 
all the generators of the W" symmetry. If there exist branch cuts we will integrate along the GS contours [6] and 
keep track of the appearing boundary terms. 

The screening operators enable us to construct null vectors [10,11 ], The completely degenerate representa­
tions are those in which there exist enough of them to completely determine the correlation functions. They are 
those whose highest weight Vp has fJ given by [ 10, I1 ] 

"-. p= I wa[(I-na)a. ... +(l-ma),c]. (9 ) ._. 
These are the ones we shall be dealing with in the sequel. We end up this section by recalling the basic braiding 
relations among vertex operators, which will be needed below. They are ( 10, 11 J 

(10 ) 
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3. The representation space 

We are going to build a representation space for the Quantum group symmetry out ofthe elements seen in the 
previous section, namely vertex. operators and screening charges. 

Take a vertex. V,(z) with P satisfying (9) for some set of integers {n", m,,~ I}:::. We associate to it the 
representation space ..yfl consisting of the following vectors: 

ef; .I ;- (z)= S dtp J ,:; (tp) ... f dt, J,~ .. (t l ) f dt ~Ji;(t~) .. ·S dt',Jif (t'd V,8(z) , ( 1 1 ) 
Cp c , ~ C', 

where I: ~ {i:, ... , it}, I ; ;::;; { i ; , ... , i l }, and {it H, {ii'}1 can take any of the values I to n-l. We will call 
r~ the number of times the screening J.;t appears in (11 ). The contours of integration are those ofGS [61 and 
the order in which we have written the J: 's with respect to the J ; 's differs from other possibilities [due to 
( 10)] by signs which will be unimportant to us. One can check for different ex.amples that the dimension of this 
space is finite; for instance, if we take for W J 

(12 ) 

one can see that this space consists of only three vectors, 

eo(z);::;; V,8(z), el (z) = S dt Jt(l) V,8(z), e21 (z) E f dl duJt (I)Jt(U) V,8(z) , (13) 

by passing to the path-ordered representation of GS. Since we are going to identify the Quantum group genera­
tors with contour creation and destruction operators acting on til, the complete proof of the soundness of our 
definition of representation space will rely on the fulfilment ofthe q-deformed Serre relations for such generators 
(see fefs. [7, 161 and references therein). Then let us first define 

( 14) 

Note that F ~ increases the number of contours along which the screeningJ! (z) is integrated by one (contour 
creation operators), On the other hand we apply to the vector (11) a Virasoro operator L" to get 

where 

1; _1 ={i;, .. " i/H , it._1> .. " it }, 1;_ 1 ;::;; { i ;, ... , i ;;+ I, ii'_ I • .. " i l } , 

B ::' == q ~f.,.i'" .f;:',! [ I _ exp (4nia + P't'i+ )q2+r{,;~ ,.r,,-,.; 1 
, ' 

B;;' ;::;; ( - I ) r f., ,,, , .";:", q::"",HI .)(",,;;. [I -exp( 4nic:c P-t/I; )q :r~-.'L .:1·,,/;' 1 

with q ± ;::;; exp(2n:iai ), Now, if we define 

(15) 

(16 ) 

we are left with the definition of the action of the contour destroying operators on our representation space: 
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(18) 

with 1; _ I , I~ I as in (16) , A ± are simply normalization constants. Now we can prove the Serre relations. The 
procedure is exactly as in Ter. [8] , so that here we will just quote the result. It is 

IrJi.b ( _ I) k {l-~b} (F "f )I -JiJ- kF "! (F f )k=O 
k _ Q k q i 

(19 ) 

(a ¥- b) , and an analogous one for the {E;:} (just replace in (19) F's by E s] . We use the definitions 

{a} {al, ' 
b , ~ {bl, !{a b}, ! 

(20) 

4. The quantum group 

We just need one funher definition concerning the operators in the Cartan subalgebra. Given a screened 
vertex operator such as (It) redefine coefficients so that fJ= -2 2:=; : w"U: a ... + j; a _ ), Then introduce the 
following operators: 

(21 ) 

so that 

(22) 

Now it is an easy task to compute the commutation relations of the Quantum group operators {F i", E;, K; == 
q ; HI} on our representation space, with the following result: 

F:Fb =(-I )f""F b F: , E:Eb =(-I) .x4bE ; E: . Ei F [ =(-I)XiuJ FIEi> 

E~ F ; - q1;iob F l E~ =oQ!>A i J [1- (Ki )2] , [Ki , K l ] = [Ki, Kt ) =0 , 

Ki F l =q{oJb F 1 Kf, Kf Ef= q ;. f""E f Ki, [K';. F I J=[K:. E l l = O. 

The comuhiplication rules can also be computed by contour deformation arguments [6) . One gets 

(23) 

.1(K,; )=K: ® K,;, A(F;- ) =F:- ® 1H K} exp(niH; )®F}, .1(E,; )=E} ®1J+Ki exp(1tiH; )®£,; . 
(24) 

Two comments are in order. First there appear some signs in the relations (23) that prevent us from having a 
properly direct product (as far as the commutation relations are concerned) between the + and the - sets of 
operators. Second, the comultiplication rules (24) also contain some unusual factors that mix the + and -
operators. The first point can be solved through the following redefinitions: 

, - ( + ' ·H + ) F ' rpQ = exp _ I ltI a a , X _ ( - j ·H + )E X f a =exp + 1t1 a " . (25) 

Then one gets the following algebra of operators: 

['';, (I1,f ] = [f}, f l J= [(I1,;t, £t l=O, [K} . rp l J=[K';, f I J=[K}, KIJ=O, [Ki, K1 J=O . (26) 
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(26 cont'd) 

The q j; -<ieformed Serre relations (19) still hold for the operators rp! , ~! . The algebra of operators Q defined by 
(26) is a direct product of two copies (Iabeled + and -) of a same algebra <1Iq(sl(n». As for the comultipli~ 
cation rules one gets 

J(K!) =K~ ®K; , A{rp; )=<p;- ®exp( ± !n:iH; ) + K! exp[n:i( I ±! )H; ]®rp~ , 

J(~; ) =~: ®exp(:;: !n:iH; ) + K! exp[ n:i (I:;: ! )H; ) ®d' . (27) 

It can be checked that these od's provide an algebra homomorphism of (26) ; moreover, if we define the counit f. 

and the antipodal map}' as 

then all the Hopfalgebra axioms arc satisfied for Q, i.e., one has 

(J®id )J(a) = (id®J)J(a) , m(id®y)J(a) = m(y®id )J(a) = ,(a)l, 

(,®id)J(a) = (id®, )J(a) =a 

(28) 

(29) 

for a any ofthe {rpi, f~, K; }. m is the multiplication map in Q. Finally, we still notice that the comultiplication 
rules ofQ contain factors which mix the + and the - pieces of the algebra. We can define a new comultiplication 
Jby means of an element FeQ®Q given by [13 J 

(30) 

A(a)=FJ(a)P - ' (31 ) 

such that the new algebra Q is 'Wq.,- (51 (n »®<fIq_ (51 (n». We can say that Q is a twist ofQ [ 13). The tP operator 
acting on Q®Q®Q and which enters the definition of the twist [ 13) can be shown to be equal to the idcntity, 
so that Q is actually a Hopf algebra, and not quasi-Hopf as would have been the case if i:f; id [13]. 

5. The !JP matrix 

We dose this letter with a sample computation for the 9f matrix in the representation space ( 13) ; for the P in 
(12) (rememberthis was for a W J algebra) and with a basis ordering for our f1I {£>oZ) , £>21 (z), £>1 (z)} it can be 
shown using the techniques devised in rer. [6], that 

em , ( ZI) ®em2(z2) =exp( - I n:ia ;' ) L em i (Z2)0e,,,., (Z,) .'Rm \ m~; m'''' 2 
m \ .mi 

(32) 

with fit the usual !Jt matrix for sl(3)q.- in the fundamental representation (the vectors {e,l are just the path­
ordered version of the {el} in (13) (6]) 
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q. 0 0 0 0 0 0 0 0 
0 0 0 I 0 0 0 0 0 
0 0 0 0 0 0 I 0 0 
0 I 0 q+ _Q ;I 0 0 0 0 0 

iI!~ 0 0 0 0 q. 0 0 0 0 (33) 
0 0 0 0 0 0 0 I 0 
0 0 I 0 0 0 q ... _q ;1 0 0 
0 0 0 0 0 I 0 q+ _q:;1 0 
0 0 0 0 0 0 0 0 q. 

The fact that the [it matrix for W" algcbras has beeD shown in a different context (1 71 not to be the standard 
one (though the same eigenvalues stiJl occur) could be related to the existence ofa different twist of the Hopf 
algebra Q in such realizations of the relevant conformal field theory. 
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