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Abstract

The present paper �rst considers two �rms in an homogeneous market
competing in a two-stage game. Using a particular strategy, it shows that
�rms may be able to set prices above the marginal costs and thus get positive
pro�ts. This remarkable result is robust to the number of �rms and to cost
asymmetries.

Furthermore and more importantly, when �rms�costs are di¤erent, all
�rms obtain positive pro�ts even though they set prices at the highest mar-
ginal cost.

Keywords: Pro�t sharing, Oligopoly, Bertrand paradox, Competition.
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"There is more happiness in giving than there is in receiving"
New Testament

1 Introduction

The Bertrand (1883) paradox has always fascinated and still fascinate
economists. Some have strongly criticized it pointing out its lack of realism.
For instance, they think that it could be improved by relaxing some of its
crucial assumptions like the timing of the game or the perfect substitutability
of products. Others have attempted to �nd out a solution to it. For exam-
ple, Edgeworth (1897) solved it by introducing the elegant idea of capacity
constraints, by which �rms cannot sell more than they are able to produce.
Since then, a vast economic literature on those Bertrand-Edgeworth models
has been applied to a wide range of economic issues such as industrial organi-
sation, macroecomics and international trade (see, e.g., Sogard 1996; Staiger
and Wolak 1992; Iwand and Rosembaum 1991; Bjorsten 1994; Deneckere and
Kovenock 1992).
However, most of those Bertrand-Edgeworth models failed to prove the

general existence of a pure strategy equilibrium. They thus turn to the mixed
strategy solution to avoid the non-existence problem. Nevertheless, mixed
strategies are not uniformly accepted as a satisfactory explanation of pricing
behavior by oligopoly �rms (see, e.g. Friedman 1988; Dixon 1987; Levitan
and Shubik 1980), although, in a large market and under some conditions, the
mixed strategy outcome is not bothersome (see, Borgers 1992; Dixon 1987;
Allen and Hellwig 1986a&b; Vives 1986). Of course, in a small industry for
which the mixed strategy equilibrium does not tend to the competitive equi-
librium at all, very interesting results have been found with models assuming
sequential timing of �rms moves (see, Shubik and Levitan 1980; Deneckere
and Kovenock 1992; Canoy 1996). More recently, Díaz and Kujal (2002)
introduces some grains of sand into those well-known models by imposing
ex-ante the roles of Stackelberg leader-follower and by providing an alter-
native to the sequential timing hypothesis1. They show for a general class
of rationing rules there exists a sub-game perfect equilibrium involving both
�rms playing pure strategies. Still, all those models did not succeed to go
beyond the idea of capacity constraints elegantly introduced by Edgeworth
(1897) more than a century ago.
The present paper, by contrast, shows that �rms may be able to set prices

above the marginal costs and thus get positive pro�ts. This remarkable result
is robust to the number of �rms and to cost asymmetries.

1The term "grains of sand" is borrowed from Benabou-Tirole (2001).
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Furthermore and more importantly, when �rms�costs are di¤erent, all
�rms are awarded positive pro�ts even though they set price at the highest
marginal cost.
Contrary to the present literature, it gets rid of the common problem

of capacity constraints. It neither considers any list pricing stage nor any
subsequent price discounting stage nor any sequential timing of �rms moves.
It simply applies an innovative strategy where �rms compete in a oligopoly
market using a two-stage game. The key idea of this new way of competing is
that each �rm decides unilaterally to give away voluntarily a part of its pro�t
to its rival2. Hence, each �rm �rst (in the �rst-stage) chooses simultaneously
the optimal part of its pro�t to give up to its rival and then (in the second-
stage) determines consequently the equilibrium price.
The article proceeds as follows. Section 2 presents the model where �rms

have equal marginal costs. It �rst centers on the second-stage of the game and
shows that there exists a multiplicity of NEa. It then turns to the �rst-stage
of the game and demonstrates the existence of a multiplicity of SPNEa. It
�nally points out that �rms may set prices above the marginal costs. Section
3 modi�es the model by allowing �rms to have di¤erent marginal costs. As in
the previous section, solving �rst the second-stage and, then the �rst-stage,
it highlights that �rms�pro�ts are also positive even though they set prices
at the highest marginal cost. Section 4 and section 5 generalise the previous
models to n �rms respectively with equal and di¤erent marginal costs and
thus shed light that our remarkable result is robust to the number of �rms
and to cost asymmetries. Section 6 concludes with suggestions for future
research.

2 The model

We �rst consider two �rms 1 and 2 in a homogeneous market3. We
suppose that each �rm incurs a cost c per unit of production4. The market
demand function is q = D(p) = 1 � p. We assume that �rms do not have
capacity constraints and always supply the demand they face. Therefore, the
pro�t function of �rm i is:

2The rationale behind the "unilateral-decision" assumption is to support the legality
of this strategy. Consequently, our �rms should not be treated as a cartel or as colluding
�rms or as joint ventures.

3In section 4 and section 5, we will relax this assumption by generalising the model to
n �rms.

4In section 3 and section 5, we will relax this assumption by allowing �rms to have
di¤erent marginal costs.
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�i =

8<:
(pi � c)qi if pi < pj
1
2
(pi � c)qi if pi = pj
0 otherwise

i = 1; 2 (i 6= j)

where qi is the quantity demanded faced by �rm i.
Now, let us introduce a grain of novelty in the basic Bertrand model. Let

�1 (resp. �2) denote the part of the pro�t that �rm 1 (resp. �rm 2) wants to
share with �rm 2 (resp. �rm 1). We suppose that �i 2 ]0; 1[. Consequently,
we can write the new pro�t function Pi(pi(�i; �j); pj(�i; �j)) (hereafter Pi)
of each �rm as:

Pi = (1� �i)�i(pi(�i; �j); pj(�i; �j)) + �j�j(pi(�i; �j); pj(�i; �j))

We consider a two-stage game whose sequences are thus de�ned. In the
�rst stage of the game, �rms chooses �i. In the second stage of the game,
�rms select pi.

In the �rst stage of the game, for �1 and �2 �rms simultaneously solve:

Max�1 P1 = (1� �1)�1 + �2�2

Max�2 P2 = (1� �2)�2 + �1�1

In the second stage of game, for p1 and p2 �rms simultaneously solve:

Maxp1 P1 = (1� �1)�1 + �2�2

Maxp2 P2 = (1� �2)�2 + �1�1

2.1 Solving the second-stage of the game

To �nd the subgame perfect Nash equilibrium (SPNE), we begin by solving
subgames in the second-stage. Recall that, in the second stage, �rms are
looking for prices that maximize their pro�ts.

Proposition 1 If �1 + �2 = 1, then any prices (p1, p2) such that c � p1 =
p2 � pm are NEa in the second stage of the game
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Proof. (p1, p2) such that c � p1 = p2 � pm are NEa if and only if no
�rm wants to deviate from those prices by �xing a price p0i above or below.
In fact:

c � p1 = p2 = p � pm ) �1 = �2 � 0

�1 =
1
2
(p1 � c) (1� p1) = 1

2
(p� c) (1� p)

�2 =
1
2
(p2 � c) (1� p2) = 1

2
(p� c) (1� p)

P1 = (1� �1)�1+�2�2 = (1� �1) 12 (p� c) (1� p) +�2
1
2
(p� c) (1� p)

P1 =
1
2
(1� �1 + �2) (p� c) (1� p)

P2 =
1
2
(1� �2 + �1) (p� c) (1� p)

Suppose that:

i) p1 = p2 � " (c < p1 < p2)() �1 = (1� p1) (p1 � c) > 0 and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c)

If p1 � pm(monopolistic price), then p1 = p� ".

For " very small5, P 01 ' (1� �1) (1� p) (p� c) � P1 ,

(1� �1) �
1

2
(1� �1 + �2) or �1 + �2 � 1 (1)

ii) p1 = p2 + " (p1 > p2 > c)() �2 = (1� p2) (p2 � c) > 0 and �1 = 0

P 001 = �2�2 = �2 (1� p2) (p2 � c) = �2 (1� p) (p� c) � P1 ,

�2 �
1

2
(1� �1 + �2) or �1 + �2 � 1 (2)

Equations (1) and (2) represent the non-deviation conditions and are both
satis�ed when �1 + �2 = 1

Conclusion: if �1 + �2 = 1, (p1, p2) such that c � p1 = p2 � pm are NEa
in the second-stage of the game.

5There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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Proposition 2 If �1 + �2 > 1, then any prices (pi, pj) such that c � pi =
pm < pj are NEa in the second stage of the game

Proof. (p1, p2) s. t. c � p2 = pm < p1 are NEa if and only if no �rm has
interest to deviate from those prices by �xing a price p0i above or below.

c � p2 = pm < p1 ) �1 = 0 and �2 = (p2 � c) (1� p2) > 0

P1 = �2�2 = �2 (p2 � c) (1� p2)

P2 = (1� �2)�2 = (1� �2) (p2 � c) (1� p2)

Since prices p1 and p2 are di¤erent, we have to study separately the
deviation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (c < p1 < p2)() �1 = (1� p1) (p1 � c) and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p2 + ") (p2 � "� c)

For " very small, P 01 ' (1� �1) (1� p2) (p2 � c) < P1 ,

(1� �1) < �2 or �1 + �2 > 1 (3)

ii) p1 = p2 + " (p1 > p2 > c)() �2 = (1� p2) (p2 � c) > 0 and �1 = 0

P 01 = �2�2 = �2 (1� p2) (p2 � c) = P1;8�2 (4)

Equations (3) and (4) represent the non-deviation conditions for �rm 1
and are both satis�ed when �1 + �2 > 1

Now, let us check for �rm 2. Suppose that6:

i) p02 = p2 + " (p
0
2 = pm & p

0
2 < p1), �1 = 0 and �2 > 0

P 02 = (1� �2) (1� p2 � ") (p2 � "� c)

For " very small, P 02 ' P2 and �rm 2 has no interest to deviate

Conclusion: if �1 + �2 > 1, (pi, pj) such that c � pi = pm < pj are NEa
in the second-stage of the game.

6We do not need to suppose that p02 = p2 � ". Firm 2, being alone and therefore
controlling the entire market, has no interest to decrease its price even slightly. However,
it could always try to increase its price just a little bit to get more pro�t.
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Proposition 3 If �1+�2 < 1, then any prices (p1, p2) such that p1 = p2 = c
is NE in the second stage of the game

Proof. (p1, p2) s.t. p1 = p2 = c is NE if and only if no �rm has interest
to deviate from those prices to �x a price p0i above or below. Furthermore,
there does not exist any other equilibrium prices. First, let us show that
(p1, p2) s.t. p1 = p2 = c is a NE.

p2 = p2 = c) �1 = 0 and �2 = 0

P1 = (1� �1)�1 + �2�2 = 0

P2 = (1� �2)�2 + �1�1 = 0

Suppose that:

i) p1 = p2 � " (p1 < p2 and p1 < c) ) �1 = (1� p1) (p1 � c) < 0 and
�2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c) < 0

P 01 = (1� �1) (1� p1) (p1 � c) < P1 = 0 )Firm 1 has no interest by
�xing a price below p2

ii) p1 = p2 + " (p1 > p2 = c) () �2 = (1� p2) (p2 � c) = 0 and �1 = 0
(�rm 1 does not produce)

P 001 = �2�2 = �2 (1� p2) (p2 � c) = P1 = 0 )Firm 1 has no interest by
�xing a price above p2

Conclusion: if �1 + �2 < 1, (p1, p2) s.t. p1 = p2 = c constitute a NE in
the second-stage of the game.

Now, let us show that there does not exist other prices equilibria for
�1 + �2 < 1. Let us consider di¤erent other prices scenarios. Suppose that:
c < p1 = p2 = p < pm

c < p1 = p2 = p < pm ) �1 =
1
2
(p� c) (1� p) = �2

P1 = (1� �1)�1+�2�2 = (1� �1) 12 (p� c) (1� p) +�2
1
2
(p� c) (1� p)

or

P1 =
1
2
(1� �1 + �2) (1� p) (p� c)
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We know that: �1 + �2 < 1 ) 1 � �1 + �2 > 2�2 ) 9 R > 0 :
1��1+�2 = 2�2+R or 1��1 = �2+R or R = 1��1��2 or �2 = 1��1�R

) P1 =
�
�2 +

1
2
R
�
(1� p) (p� c)

Can (p1, p2) s.t. c < p1 = p2 = p < pm be NE? Suppose that:

i) p1 = p2 � " (c < p1 < p2) ) �1 = (1� p1) (p1 � c) > 0 and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c) or

P 01 = (1� �1) (1� p2 + ") (p2 � c� ")

For " very small, P 01 ' (1� �1) (1� p) (p� c) = (�2 +R) (1� p) (p� c)

) P 01 > P1, 8 R > 0. Thus, �rm 1 has interest to deviate from c < p1 =
p2 = p < pm

Consequently, if �1 + �2 < 1, (p1, p2) s.t. c < p1 = p2 = p < pm is not a
NE in the second-stage of the game.

Using the same reasoning as before, we can show that if �1 + �2 < 1,
then (p1, p2) s.t. c < p1 = p2 = p > pm is not a NE in the second-stage of
the game.

Likewise, it is easy to show that if �1 + �2 < 1, then any other prices
scenarios di¤erent from p1 = p2 = c are not NEa. One can check that
any prices (p1, p2) such that c < p1 < p2 < pm or c < p1 < p2 = pm or
c < p1 < p2 > pm are not NEa since one �rm has always interest to deviate.
For example, suppose that: c < p1 < p2 < pm

c < p2 < p1 < pm ) �2 = (p2 � c) (1� p2) > 0 and �1 = 0

P1 = �2�2 = �2 (1� p2) (p2 � c)

P2 = (1� �2)�2 = (1� �2) (1� p2) (p2 � c)

Can (p1, p2) s.t. c < p2 < p1 < pm be NE? Suppose that:

i) p1 = p2 � " (c < p1 < p2) ) �1 = (1� p1) (p1 � c) > 0 and �1 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p1) (p1 � c)

P 01 = (1� �1) (1� p2 + ") (p2 � c� ")
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For " very small, P 01 ' (1� �1) (1� p2) (p2 � c) = (�2 +R) (1� p2) (p2 � c)

) P 01 > P1 since R > 0. Firm 1 thus has interest to deviate from
c < p1 < p2 < pm

Consequently, if �1 + �2 < 1, (p1, p2) s.t. c < p2 < p1 < pm is not a NE
in the second-stage of the game.

Using the same reasoning as before, we can show that if �1+�2 < 1, then
(p1, p2) s.t. c < p1 < p2 > pm is not a NE in the second-stage of the game.

Conclusion: if �1 + �2 < 1, (p1, p2) s.t.p1 = p2 = c is a NE in the
second-stage of the game.

The second-stage being entirely solved and NEa being found, we can thus
move to the �rst-stage of the game in order to �nd SPNEa

2.2 Solving the �rst-stage of the game

In the �rst-stage of the game, �rms choose the �i optimal maximizing
their pro�t to share with their rival.
Solving backwards, we have solved the second-stage of the game in the

previous section and have found NEa in prices summarized below:

i) (p1; p2) : p1 = p2 = c if �1 + �2 < 1 with:�
P1 = 0
P2 = 0

ii) (p1; p2) : c � p1 = p2 = p � pm if �1 + �2 = 1 with:�
P1 =

1
2
(1� �1 + �2) (p� c) (1� p) = �2 (p� c) (1� p)

P2 =
1
2
(1� �2 + �1) (p� c) (1� p) = �1 (p� c) (1� p)

iii) (p1; p2) : c � pi = pm < pj if �1 + �2 > 1 with:�
P1 = �2 (pm � c) (1� pm)
P2 = (1� �2) (pm � c) (1� pm)

Now, in the current section, we draw our attention to the �rst-stage of
the game searching for SPNEa in �i.
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Proposition 4 The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t.:
i) �i 2 ]0; 1[ & �1 + �2 = 1

ii)

8<:
p�1 = p

�
2 = c if �1 + �2 < 1

p�1 = p
�
2 = pm if �1 + �2 = 1

c � pi = pm < pj if �1 + �2 > 1
are SPNEa of the game. Furthermore, if �j > 0, then �rm i�s pro�ts in

the SNPEa are �j (pm � c) (1� pm) higher than in the case where �1 = �2 =
0.

Proof. Let us show the �rst part of the proposition.

The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t. i) and ii) are satis�ed,
are SPNEa if and only if no �rm has interest to deviate from those prices
by choosing a �0i above or below. Furthermore, there does not exist any
other SPNE in �rst-stage of the game. Because of the multiplicity of �i, we
investigate separately the deviation for each �rm.

Let us check �rst for �rm 1. Suppose that:

i) �01 < �1 ) �01 + �2 < 1 (�1 + �2 = 1))

P 01 = 0 < P1 = �2 (pm � c) (1� pm) (5)

ii) �01 > �1 ) �01 + �2 > 1 (�1 + �2 = 1))

P 001 = �2 (pm � c) (1� pm) = P1 = �2 (pm � c) (1� pm) (6)

(5) and (6) show that �rm 1 has no interest to deviate.

Now, let us check for �rm 2. Suppose that:

i) �02 < �2 ) �01 + �2 < 1 (�1 + �2 = 1))

P 02 = 0 < P2 = (1� �2) (pm � c) (1� pm) (7)

ii) �02 > �2 ) �02 + �1 > 1 (�1 + �2 = 1))

P 002 = (1� �02) (pm � c) (1� pm) < P2 = �1 (pm � c) (1� pm) (8)

(7) and (8) show that �rm 2 has no interest to deviate.

Conclusion: The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t. i) and
ii) are satisti�ed, are SPNEa

9



Now, the question that remains is whether there exists other NEa di¤erent
from those above. A good candidate would be the strategies (�1; p1 (�1; �2)),
(�1; p1 (�1; �2)) s.t.:
i) �i 2 ]0; 1[ & �1 + �2 = 1

ii)

8<:
p�1 = p

�
2 = c if �1 + �2 < 1

p�1 = p
�
2 � pm if �1 + �2 = 1

c � pi = pm < pj if �1 + �2 > 1
since we have found that, if �1+�2 = 1 then (p1; p2) s.t. c � p�1 = p�2 � pm

were NEa in the second-stage of the game. Note that �1 + �2 = 1 with
c � p�1 = p�2 = p � pm ) P1 = �2 (p� c) (1� p) and P2 = �1 (p� c) (1� p).

Let us show that (�1, �2) : �i 2 ]0; 1[ & �1 + �2 = 1; (p1, p2) : p�1 =
p�2 = c if �1 + �2 < 1 & p

�
1 = p

�
2 � pm if �1 + �2 = 1 & c � pi = pm < pj if

�1 + �2 > 1 could not be SPNEa. For that, it su¢ ces to prove that one �rm
has interest to deviate. Suppose that:

i) �01 < �1 ) �01 + �2 < 1 (�1 + �2 = 1))

P 01 = 0 < P1 = �2 (p� c) (1� p)

ii) �01 > �1 ) �01 + �2 > 1 (�1 + �2 = 1))

P 001 = �2 (pm � c) (1� pm) > P1 = �2 (p� c) (1� p) (9)

Equation (9) says that �rm 1 would deviate and therefore, (�1, �2) : �i 2
]0; 1[ & �1 + �2 = 1; (p1, p2) : p�1 = p

�
2 = c if �1 + �2 < 1 & p

�
1 = p

�
2 � pm if

�1 + �2 = 1 & c � pi = pm < pj if �1 + �2 > 1 cannot be SPNEa

Likewise, we can show that any other pair (�1, �2) : �1 + �2 6= 1 cannot
be SPNEa. The intuition behind is simple. No �rm is interested in the case
where �1 + �2 < 1 since it leads to P1 = P2 = 0 as we have seen before in
the beginning of this section.

Now, the last case that remains, is when �1 + �2 > 1. Recall that in this
case, we have found prices equilibria (p1; p2) : c � pi = pm < pj with P1 =
�2 (pm � c) (1� pm) and P2 = (1� �2) (pm � c) (1� pm). Therefore, this
situation is tempting for �rm 1 since it would get P1 = �2 (pm � c) (1� pm)
even though it gives nothing. However, this case is detrimental to �rm 2 since
it is left with P2 = (1� �2) (pm � c) (1� pm). Thus, �rm 2 would like �2
as small as possible. However, it cannot decrease �2 too much for fear that
�1+�2 < 1. Otherwise, it would get zero pro�ts (P2 = 0). Its only favorable
situation is when �1 + �2 = 1. So, any pair (�1, �2) such that �1 + �2 > 1
cannot be NEa.
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Finally, we conclude that The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2))
s.t. i) and ii) are satis�ed, are SPNEa

The second part of the proposition is straightforward. We all know the
common result of the Bertrand paradox where both prices

�
pbi
�
are equal to

marginal costs and pro�ts
�
P bi
�
are zero7. Hence, the di¤erence between the

both pro�ts is:

Pi � P bi = �j (pm � c) (1� pm)� 0 = �j (pm � c) (1� pm)

Conclusion: If �j > 0, then �rm i�s pro�ts in the SPNEa are �j (pm � c) (1� pm)
higher than in the case where �1 = �2 = 0.

3 The modi�ed model

We consider the same model as before except that we allow �rms to have
di¤erent marginal costs. We still consider two �rms 1 and 2 in a homogeneous
market. Now, we suppose that each �rm incurs a cost ci (c1 < c2) per unit
of production. Therefore, the pro�t function of �rm i becomes:

�i =

8<:
(p� ci)qi if pi < pj
1
2
(p� ci)qi if pi = pj
0 otherwise

i = 1; 2 (i 6= j)

where qi is the quantity demanded faced by �rm i.
Now, let us introduce a grain of novelty in the basic Bertrand model. Let

�1 (resp. �2) denote the part of the pro�t that �rm 1 (resp. �rm 2) wants to
share with �rm 2 (resp. �rm 1). We suppose that �i 2 ]0; 1[. Consequently,
we can write the new pro�t function Pi(pi(�i; �j); pj(�i; �j)) (hereafter Pi)
of each �rm as:

Pi = (1� �i)�i(pi(�i; �j); pj(�i; �j) + �j�j(pi(�i; �j); pj(�i; �j))

We consider a two-stage game whose sequences are thus de�ned. In the
�rst stage of the game, �rms chooses �i. In the second stage of the game,
�rms select pi.

In the �rst stage of the game, for �1 and �2 �rms simultaneously solve:

7To avoid confusion with our model, we denote by pbi (resp. P
b
i ) the prices (resp. the

pro�ts) in the basic Betrand model.
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Maxa1 P1 = (1� �1)�1 + �2�2

Max�2 P2 = (1� �2)�2 + �1�1

In the second stage of game, for p1 and p2 �rms simultaneously solve:

Maxp1 P1 = (1� �1)�1 + �2�2

Maxp2 P2 = (1� �2)�2 + �1�1

3.1 Solving the second-stage of the game

To �nd the subgame perfect Nash equilibrium (SPNE), we begin by
solving subgames in the second-stage. Recall that, in the second stage, �rms
are looking for prices that maximize their pro�ts.

Proposition 5 If �1 + �2 = 1, then any prices (p1, p2) such that c2 � p1 =
p2 � p2m (�rm 2�s monopolistic price) are NEa in the second stage of the
game

Proof. (p1, p2) such that c2 � p1 = p2 � pm are NEa if and only if no
�rm wants to deviate from those prices by �xing a price p0i above or below.
In fact:

c2 � p1 = p2 = p � pm ) �1;�2 � 0

�1 =
1
2
(p1 � c1) (1� p1) = 1

2
(p� c1) (1� p)

�2 =
1
2
(p2 � c2) (1� p2) = 1

2
(p� c2) (1� p)

P1 = (1� �1)�1+�2�2 = (1� �1) 12 (p� c1) (1� p)+�2
1
2
(p� c2) (1� p)

P1 =
1
2
(1� p) [(1� �1) (p� c1) + �2 (p� c2)]

P2 =
1
2
(1� p) [(1� �2) (p� c2) + �1 (p� c1)]

Since prices p1 and p2 are di¤erent, we have to study separately the
deviation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (" > 0)() �1 = (1� p1) (p1 � c1) > 0 and �2 = 0

12



P 01 = (1� �1)�1 = (1� �1) (1� p+ ") (p� c1 � ")

For " very small8, P 01 ' (1� �1) (1� p) (p� c1) � P1 ,

(1� �1) (p� c1) � 1
2
[(1� �1) (p� c1) + �2 (p� c2)] or

1� �1
�2

� p� c2
p� c1

(10)

ii) p1 = p2 + " (" > 0)() �2 = (1� p2) (p2 � c2) > 0 and �1 = 0

P 001 = �2�2 = �2 (1� p2) (p2 � c2) = �2 (1� p) (p� c2) � P1 ,

�2 (p� c2) � 1
2
[(1� �1) (p� c1) + �2 (p� c2)] or

p� c2
p� c1

� 1� �1
�2

(11)

Equations (10) and (11) represent the non-deviation conditions for �rm
1 and are both satis�ed when p�c2

p�c1 =
1��1
�2

Now, let us check for �rm 2. Suppose that:

i) p2 = p1 � " (" > 0)() �2 = (1� p2) (p2 � c2) > 0 and �1 = 0

P 02 = (1� �2)�2 = (1� �2) (1� p+ ") (p� c2 � ")

For " very small9, P 02 ' (1� �2) (1� p) (p� c2) � P2 ,

(1� �2) (p� c2) � 1
2
[(1� �2) (p� c2) + �1 (p� c1)] or

p� c2
p� c1

� �1
1� �2

(12)

ii) p2 = p1 + " (" > 0)() �1 = (1� p1) (p1 � c1) > 0 and �2 = 0

P 002 = �1�1 = �1 (1� p1) (p1 � c1) = �1 (1� p) (p� c1) � P2 ,

�1 (p� c1) � 1
2
[(1� �2) (p� c2) + �1 (p� c1)] or

�1
1� �2

� p� c2
p� c1

(13)

8There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.

9There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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Equations (12) and (13) represent the non-deviation conditions for �rm
2 and are both satis�ed when p�c2

p�c1 =
�1
1��2

Equations (10)�(13) represent the non-deviation conditions for both �rm
and are both satis�ed when 1��1

�2
= �1

1��2 , that is, �1 + �2 = 1

Conclusion: if �1+�2 = 1, (p1, p2) such that c2 � p1 = p2 � pm are NEa
in the second-stage of the game.

Proposition 6 If �1 + �2 > 1, then any prices (pi, pj) such that c2 � pi =
p2m < pj are NEa in the second stage of the game.

Proof. (p1, p2) s. t. c2 � p2 = p2m < p1 are NEa if and only if no �rm
has interest to deviate from those prices by �xing a price p0i above or below.

c � p2 = p2m < p1 ) �1 = 0 and �2 = (p2 � c2) (1� p2) > 0

P1 = �2�2 = �2 (p2 � c2) (1� p2)

P2 = (1� �2)�2 = (1� �2) (p2 � c2) (1� p2)

Since prices p1 and p2 are di¤erent, we have to study separately the
deviation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p1 = p2 � " (" > 0)() �1 = (1� p1) (p1 � c1) and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p2 + ") (p2 � "� c1)

For " very small, P 01 ' (1� �1) (1� p2) (p2 � c1) < P1 ,

(1� �1) (1� p2) (p2 � c1) < �2 (p2 � c2) (1� p2) or

1� �1
�2

<
p2 � c2
p2 � c1

(14)

Let us check now for �rm 2. Suppose that:

i) p2 = p1 � " (" > 0)() �1 = (1� p1) (p1 � c1) and �2 = 0

P 02 = �1�1 = �1 (1� p2 + ") (p2 � "� c1)

For " very small, P 02 ' �1 (1� p2) (p2 � c1) < P2 ,
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�1 (1� p2) (p2 � c1) < (1� �2) (p2 � c2) (1� p2) or

p2 � c2
p2 � c1

<
�1

1� �2
(15)

Equations (14) and (15) represent the non-deviation conditions for �rm 1
and �rm 2 and are both satis�ed when 1��1

�2
< p2�c2

p2�c1 <
�1
1��2 or

1��1
�2

< �1
1��2

or �1 + �2 > 1

Conclusion: if �1+�2 > 1, (pi, pj) such that c2 � pi = p2m < pj constitute
a NEa in the second-stage of the game.

Proposition 7 If �1+�2 < 1, then any prices (p1, p2) such that p1 = c2�"
(" > 0) and p2 = c2 are NE in the second stage of the game.

Proof. (p1, p2) s.t. p1 = c2 � " (" > 0) and p2 = c2 are NE if and only
if no �rm has interest to deviate from those prices to �x a price p0i above or
below.

p1 = c2 � " and p2 = c2 ) �1 = (p1 � c1) (1� p1) > 0 and �2 = 0

P1 = (1� �1)�1 = (1� �1) (p1 � c1) (1� p1)

P2 = �1�1 = �1 (p1 � c1) (1� p1)

Since costs c1 and c2 are di¤erent, we have to study separately the devi-
ation for both �rms. Let us check �rst for �rm 1. Suppose that:

i) p01 < p1 ) �1 = (1� p01) (p01 � c1) > 0 and �2 = 0

P 01 = (1� �1)�1 = (1� �1) (1� p01) (p01 � c1) > 0

P 01 = (1� �1) (1� p01) (p01 � c1) � P1 )Firm 1 has no interest by �xing
a price below p2

ii) p001 = c2 > p1 ) �1 =
1
2
(1� p001) (p001 � c1) = 0 and �2 = 0

P 001 < P1 )Firm 1 has no interest by �xing a price above p1

Now, let us check for �rm 2. Suppose that:

i) p02 < p1 ) �2 < 0 and �1 = 0 (�rm 1 out of the market)
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P 02 = (1� �2)�2 < 0 < P2 )Firm 1 has no interest by �xing a price
below p2

ii) p002 > p1 ) �2 = 0 and �1 = (1� p1) (p1 � c1) > 0

P 002 = �1�1 = �1 (1� p1) (p1 � c1) = P2 )Firm 1 has no interest by
�xing a price above p2

Conclusion: if �1 + �2 < 1, (p1, p2) s.t. p1 = c2 � " (" > 0) and p2 = c2
are NE in the second-stage of the game.

Note that, in the last NE �rms�pro�ts are positive even though they set
price at the highest marginal cost.

The second-stage being entirely solved and NEa being found, we can thus
move to the �rst-stage of the game in order to �nd SPNEa

3.2 Solving the �rst-stage of the game

In the �rst-stage of the game, �rms choose the �i optimal maximizing
their pro�ts to share with their rivals.
Solving backwards, we have solved the second-stage of the game in the

previous section and have found NEa in prices summarized below:

i) (p1; p2) : p1 = c2 � " (" > 0) and p2 = c2 if �1 + �2 < 1 with:�
P1 = (1� �1) (p1 � c1) (1� p1)
P2 = �1 (p1 � c1) (1� p1)

ii) (p1; p2) : c2 � p1 = p2 = p � p2m if �1 + �2 = 1 with:�
P1 =

1
2
(1� p) [(1� �1) (p� c1) + �2 (p� c2)] t �2 (p� c2) (1� p)

P2 =
1
2
(1� p) [(1� �2) (p� c2) + �1 (p� c1)] t �1 (p� c2) (1� p)

iii) (p1; p2) : c2 � pi = p2m < pj if �1 + �2 > 1 with:�
P1 = �2 (p

2
m � c2) (1� p2m)

P2 = (1� �2) (p2m � c2) (1� p2m)

Note that in every NE, �rms are awarded positive pro�ts. This is the main
di¤erence with the previous model where �rms have equal marginal costs.

Now, in the current section, we draw our attention to the �rst-stage of
the game searching for SPNEa in �i.

16



Proposition 8 The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t.:
i) �i 2 ]0; 1[ & �1 + �2 = 1

ii)

8<:
p1 = c2 � " (" > 0) & p2 = c2 if �1 + �2 < 1

p�1 = p
�
2 = p

2
m if �1 + �2 = 1

c2 � pi = p2m < pj if �1 + �2 > 1
are SPNEa of the game. Furthermore, if �j > 0, then �rm i�s pro�ts in

the SNPE are �j (p2m � c2) (1� p2m) higher than in the case where �1 = �2 =
0.

Proof. Let us show the �rst part of the proposition.

The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t. i) and ii) are satis�ed,
are SPNEa if and only if no �rm has interest to deviate from those prices by
choosing a �0i above or below. Because of the multiplicity of �i, we investigate
separately the deviation for each �rm.

Let us check �rst for �rm 1. Suppose that:

i) �01 < �1 ) �01 + �2 < 1 (�1 + �2 = 1))

P 01 = (1� �1) (p1 � c1) (1� p1) < P1 = �2
�
p2m � c2

� �
1� p2m

�
(16)

ii) �01 > �1 ) �01 + �2 > 1 (�1 + �2 = 1))

P 001 = �2
�
p2m � c2

� �
1� p2m

�
= P1 = �2

�
p2m � c2

� �
1� p2m

�
(17)

(16) and (17) show that �rm 1 has no interest to deviate.

Now, let us check for �rm 2. Suppose that:

i) �02 < �2 ) �1 + �
0
2 < 1 (�1 + �2 = 1))

P 02 = �1 (p1 � c1) (1� p1) < P2 = �1
�
p2m � c2

� �
1� p2m

�
(18)

ii) �02 > �2 ) �02 + �1 > 1 (�1 + �2 = 1))

P 002 = (1� �02)
�
p2m � c2

� �
1� p2m

�
< P2 = �1

�
p2m � c2

� �
1� p2m

�
(19)

(18) and (19) show that �rm 2 has no interest to deviate.

Conclusion: The strategies (�1; p1 (�1; �2)), (�1; p1 (�1; �2)) s.t. i) and
ii) are satis�ed, are SPNEa of the game.

17



The second part of the proposition is straightforward. We all know the
common result of the Bertrand paradox where both prices

�
pbi
�
are equal to

marginal costs and pro�ts
�
P bi
�
are zero10. Hence, the di¤erence between the

both pro�ts is:

Pi � P bi = �j (p2m � c2) (1� p2m)� 0 = �j (p2m � c2) (1� p2m)

Conclusion: If �j > 0, then �rm i�s pro�ts in the SPNE are �j (p2m � c2) (1� p2m)
higher than in the case where �1 = �2 = 0.

4 The general model

We consider n �rms indexed by i = 1; 2; :::n in a homogeneous market.
We suppose that each �rm incurs a cost c per unit of production11. The mar-
ket demand function is q = D(p) = 1� p. We assume that �rms do not have
capacity constraints and always supply the demand they face. Therefore, the
pro�t function of �rm i is:

�i =

8<:
(pi � c)qi if pi < pj
1
n
(pi � c)qi if pi = pj
0 otherwise

i = 1; :::n (i 6= j)

where qi is the quantity demanded faced by �rm i.
Now, let us introduce a grain of novelty in the basic Bertrand model.

Let �i1; �i2; ::�i i�1; �i i+1; ::�in (resp. �j1; �j2; ::�j j�1; �j j+1; ::�jn) denote
the part of the pro�t that �rm i (resp. �rm j) wants to share with �rms j =
1; 2; :::n (j 6= i) (resp. �rms i = 1; 2; :::n (i 6= j)). We suppose that �ij; �ji 2
]0; 1[. Consequently, we can write the new pro�t function Pi(pi(::; ::); pj(::; ::))
of each �rm as:

Pi = (1�
P

j 6=i �ij)�i(pi(::; ::); pj(::; ::) +
P

j 6=j �ji�j(pi(::; ::); pj(::; ::))

We consider a two-stage game whose sequences are thus de�ned. In the
�rst stage of the game, �rm i chooses �i1; �i2; ::�i i�1; �i i+1; ::�in. In the
second stage of the game, �rm i select pi.

10To avoid confusion with our model, we denote by pbi (resp. P
b
i ) the prices (resp. the

pro�ts) in the basic Betrand model.
11In the next section, we will relax this assumption by allowing �rms to have di¤erent

marginal costs.
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In the �rst stage of the game, for A and B �rms simultaneously solve12:

MaxA Pi = (1�
P

j 6=i �ij)�i +
P

j 6=i �ji�j

MaxB Pj = (1�
P

i6=j �ji)�j +
P

i6=j �ij�i

In the second stage of game, for pi and pj �rms simultaneously solve:

Maxpi Pi = (1�
P

j 6=i �ij)�i +
P

j 6=i �ji�j

Maxpj Pj = (1�
P

i6=j �ji)�j +
P

i6=j �ij�i

4.1 Solving the second-stage of the game

To �nd the subgame perfect Nash equilibrium (SPNE), we begin by
solving subgames in the second-stage. Recall that, in the second stage, �rms
are looking for prices that maximize their pro�ts.

Proposition 9 If
P

j 6=i �ij+
1
n�1

P
j 6=i �ji) = 1, then any prices (p1; p2; :::pn)

such that c � p1 = p2 = :::pn � pm are NEa in the second stage of the game

Proof. (p1; p2; :::pn) such that c � p1 = p2 = :::pn � pm are NEa if and
only if no �rm wants to deviate from those prices by �xing a price p0i above
or below. In fact:

c � p1 = p2 = :::pn � pm ) �i = �j > 0

�i =
1
n
(pi � c) (1� pi) = 1

n
(p� c) (1� p)

�j =
1
n
(pj � c) (1� pj) = 1

n
(p� c) (1� p)

Pi =
1
n

�
1�

P
j 6=i �ij

�
�i +

P
j 6=i �ji�j

Pi =
1
n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
(p� c) (1� p)

12For writing simplication reasons, we denote A = �i1; �i2; ::�i i�1; �i i+1; ::�in and
B = �j1; �j2; ::�j j�1; �j j+1; ::�jn
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Pj =
1
n

�
1�

P
i6=j �ji +

P
i6=j �ij

�
(p� c) (1� p)

Suppose that:

i) 9! i : pi = p and 8 j 6= i pj > p (pi = pj � "; " > 0)()

�i = (1� pi) (pi � c) > 0 and �j = 0

P 0i =
�
1�

P
j 6=i �ij

�
�i =

�
1�

P
j 6=i �ij

�
(1� pi) (pi � c)

If pi � pm(monopolistic price), then pi = p� ".

For " very small13, P 0i '
�
1�

P
j 6=i �ij

�
(1� p) (p� c) � Pi ,�

1�
P

j 6=i �ij

�
� 1

n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
or

(n� 1)
X
j 6=i

�ij +
X
j 6=i

�ji � n� 1 (20)

ii) 9! i : pi = p and 8 j 6= i pj < p() �j =
1
n�1 (1� pj) (pj � c) > 0 &

�i = 0

P 00i =
P

j 6=i �ji�j =
1
n�1

P
j 6=i �ji (1� pj) (pj � c)

P 00i =
1
n�1

P
j 6=i �ji (1� p) (p� c) � Pi ,

1
n�1

P
j 6=i �ji � 1

n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
or

(n� 1)
X
j 6=i

�ij +
X
j 6=i

�ji � n� 1 (21)

Equations (20) and (21) represent the non-deviation conditions and are
both satis�ed when

P
j 6=i �ij +

1
n�1

P
j 6=i �ji = 1

Conclusion: if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji = 1, any prices (p1; p2; :::pn) such

that c � p1 = p2 = :::pn � pm are NEa in the second-stage of the game.

13There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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Proposition 10 If
P

j 6=i �ij+
1
n�1

P
j 6=i �ji > 1, then any prices (p1; p2; :::pn)

such that pj = pm 8j 6= i and pi > pm for some i, are NEa in the second
stage of the game

Proof. (p1; p2; :::pn) such that pj = pm 8j 6= i and pi > pm for some i,
are NEa if and only if no �rm has interest to deviate from those prices by
�xing a price p0i above or below.

9! i : pi > pm & 8 j 6= i pj = pm ) �i = 0 & �j =
1
n�1 (pj � c) (1� pj) >

0

Pi =
P

j 6=i �ji�j =
1
n�1

P
j 6=i �ji (pj � c) (1� pj)

Pj =
�
1�

P
i6=j �ji

�
�j =

1
n�1

�
1�

P
i6=j �ji

�
(pj � c) (1� pj)

Suppose that:

i) 9! i : pi < pm & 8 j 6= i pj = pm () �i = (1� pi) (pi � c) & �j = 0

P 0i =
�
1�

P
j 6=i �ij

�
�i =

�
1�

P
j 6=i �ij

�
(1� pj + ") (pj � "� c)

For " very small, P 0i '
�
1�

P
j 6=i �ij

�
(1� pj) (pj � c) < Pi ,�

1�
P

j 6=i �ij

�
< 1

n�1
P

j 6=i �ji orX
j 6=i

�ij +
1

n� 1
X
j 6=i

�ji > 1 (22)

Equation (22) represents the non-deviation condition for �rm i.

Conclusion: if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji > 1, any prices (p1; p2; :::pn) such

that pj = pm 8j 6= i and pi > pm for some i, are NEa in the second-stage of
the game.

Proposition 11 If
P

j 6=i �ij+
1
n�1

P
j 6=i �ji < 1, then any prices (p1; ::pi; ::pn)

such that p1 = ::: = pi = :::pn = c are NEa in the second stage of the game
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Proof. (p1; ::pi; ::pn) such that p1 = ::: = pi = :::pn = c are NEa if and
only if no �rm has interest to deviate from those prices to �x a price p0i above
or below.

p1 = ::: = pi = :::pn = c) �i = 0 and �j = 0

Pi =
�
1�

P
j 6=i �ij

�
�i +

P
j 6=i �ji�j = 0

Pj =
�
1�

P
i6=j �ji

�
�j +

P
i6=j �ij�i = 0

Suppose that:

i) 9! i : pi = p and 8 j 6= i pj > p (pi < pj) ) �i = (1� pi) (pi � c) < 0
and �j = 0

P 0i =
�
1�

P
j 6=i �ij

�
�i < 0

P 0i < Pi = 0)Firm i has no interest by �xing a price below pj

ii) 9! i : pi = p and 8 j 6= i pj < p (pi > pj)() �j = (1� pj) (pj � c) = 0
and �i = 0 (�rm i does not produce)

P 00i =
P

j 6=i �ji�j = P1 = 0 )Firm i has no interest by �xing a price
above pj

Conclusion: if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji < 1, any prices (p1; ::pi; ::pn) such

that p1 = ::: = pi = :::pn = c are NEa in the second-stage of the game.

The second-stage being entirely solved and NE being found, we can thus
move to the �rst-stage of the game in order to �nd SPNE

4.2 Solving the �rst-stage of the game

In the �rst-stage of the game, �rms choose the �ij or �ji optimal maxi-
mizing their pro�ts to share with their rivals.
Solving backwards, we have solved the second-stage of the game in the

previous section and have found NEa in prices summarized below14:

14One can easily check that, if
P

j 6=i �ij +
1

n�1
P

j 6=i �ji = 1 and
P

i 6=j �ji +

1
n�1

P
i 6=j �ij < 1, then 1

n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
= 1

n�1
P

j 6=i �ji and

1
n

�
1�

P
i 6=j �ji +

P
i 6=j �ij

�
= 1

n�1
P

i 6=j �ij
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i) (p1; ::pi; ::pn) : p1 = ::: = pi = :::pn = c if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji < 1

with:�
Pi = 0
Pj = 0

ii) (p1; ::pi; ::pn) : c � p1 = ::: = pi = :::pn � pm if
P

j 6=i �ij+
1
n�1

P
j 6=i �ji =

1 with:�
Pi =

1
n�1

P
j 6=i �ji (p� c) (1� p)

Pj =
1
n�1

P
i6=j �ij (p� c) (1� p)

iii) (p1; ::pi; ::pn) : 9! i : pi > pm & 8 j 6= i pj = pm if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji > 1 with:(
Pi =

1
n�1

P
j 6=i �ji (pm � c) (1� pm)

Pj =
1
n�1

�
1�

P
j 6=i �ji

�
(pm � c) (1� pm)

Now, in the current section, we draw our attention to the �rst-stage of
the game searching for SPNE in �ij and �ji.

Proposition 12 The strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
; :::::;�

�n1; ::; �nj(j 6=n); ::�n1; pn
�
::; �nj; ::;::; �jn; ::

��
s.t.:

i) �ij; �ji 2 ]0; 1[ &
P

j 6=i �ij +
1
n�1

P
j 6=i �ji = 1

ii)

8<:
p1 = ::: = pi = :::pn = c if

P
j 6=i �ij +

1
n�1

P
j 6=i �ji < 1

p1 = ::: = pi = :::pn = pm if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji = 1

9!i : pi > pm & 8j 6= i pj = pm if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji > 1

are SPNEa of the game.
Furthermore, if �ji > 0, then �rm i�s pro�ts in the SNPEa are
1
n�1

P
j 6=i �ji (pm � c) (1� pm) higher than in the case where �1 = �2 = 0.

Proof. Let us show the �rst part of the proposition

The strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
; :::::;�

�n1; ::; �nj(j 6=n); ::�n1; pn
�
::; �nj; ::;::; �jn; ::

��
s.t. i) and ii) are satis�ed,

are SPNEa if and only if no �rm has interest to deviate from those prices by
choosing a �0ij or �

0
ji above or below. Because of the multiplicity of �

0
ij and

�0ji, we investigate separately the deviation for each �rm.

Let us check �rst for �rm i. Suppose that:
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i) �0ij < �ij )
P

j 6=i �
0
ij +

1
n�1

P
j 6=i �ji < 1)

P 0i = 0 < Pi =
1

n� 1
P
j 6=i
�ji (pm � c) (1� pm) (23)

ii) �0ij > �ij )
P

j 6=i �
0
ij +

1
n�1

P
j 6=i �ji > 1)

P 00i =
1

n� 1
P
j 6=i
�ji (pm � c) (1� pm) = Pi (24)

(23) and (24) show that �rm i has no interest to deviate.

Now, let us check for �rm j. Suppose that:

i) �0ji < �ji )
P

j 6=i �ij +
1
n�1

P
j 6=i �

0
ji < 1)

P 0j = 0 < Pj =
1

n� 1
P
j 6=i
�ij (pm � c) (1� pm) (25)

ii) �0ji > �ji )
P

j 6=i �ij +
1
n�1

P
j 6=i �

0
ji > 1)

P 00j =
1

n� 1

 
1�

P
j 6=i
�ji

!
(pm � c) (1� pm) < Pj (26)

(25) and (26) show that �rm j has no interest to deviate.

Finally, we conclude that the strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
;

:::::;
�
�n1; ::; �nj(j 6=n); ::�n1; pn

�
::; �nj; ::;::; �jn; ::

��
s.t. i) and ii) are satis-

�ed, are SPNEa of the game.

The second part of the proposition is straightforward. We all know the
common result of the Bertrand paradox where both prices

�
pbi
�
are equal to

marginal costs and pro�ts
�
P bi
�
are zero15. Hence, the di¤erence between the

both pro�ts is:

Pi�P bi = 1
n�1

P
j 6=i �ji (pm � c) (1� pm)�0 = 1

n�1
P

j 6=i �ji (pm � c) (1� pm)

Conclusion: If �j > 0, then �rm i�s pro�ts in the SPNEa are
1
n�1

P
j 6=i �ji (pm � c) (1� pm) higher than in the case where �1 = �2 = 0.

15To avoid confusion with our model, we denote by pbi (resp. P
b
i ) the prices (resp. the

pro�ts) in the basic Betrand model.
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5 The general model modi�ed

We consider the same model as before except that we allow �rms to have
di¤erent marginal costs. We still consider n �rms indexed by i = 1; 2; :::n
in a homogeneous market. Here, we suppose that each �rm incurs a cost ci
(c1 < c2 < ::: < cn) per unit of production. Therefore, the pro�t function of
�rm i becomes:

�i =

8<:
(pi � ci)qi if pi < pj
1
n
(pi � ci)qi if pi = pj
0 otherwise

i = 1; :::n (i 6= j)

where qi is the quantity demanded faced by �rm i.
Now, let us introduce a grain of novelty in the basic Bertrand model.

Let �i1; �i2; ::�i i�1; �i i+1; ::�in (resp. �j1; �j2; ::�j j�1; �j j+1; ::�jn) denote
the part of the pro�t that �rm i (resp. �rm j) wants to share with �rms j =
1; 2; :::n (j 6= i) (resp. �rms i = 1; 2; :::n (i 6= j)). We suppose that �ij; �ji 2
]0; 1[. Consequently, we can write the new pro�t function Pi(pi(::; ::); pj(::; ::))
(hereafter Pi) of each �rm as:

Pi = (1�
P

j 6=i �ij)�i(pi(::; ::); pj(::; ::) +
P

j 6=j �ji�j(pi(::; ::); pj(::; ::))

We consider a two-stage game whose sequences are thus de�ned. In the
�rst stage of the game, �rm i chooses �i1; �i2; ::�i i�1; �i i+1; ::�in. In the
second stage of the game, �rm i selects pi.

In the �rst stage of the game, for A and B �rms simultaneously solve16:

MaxA Pi = (1�
P

j 6=i �ij)�i +
P

j 6=i �ji�j

MaxB Pj = (1�
P

i6=j �ji)�j +
P

i6=j �ij�i

In the second stage of game, for pi and pj �rms simultaneously solve:

Maxpi Pi = (1�
P

j 6=i �ij)�i +
P

j 6=i �ji�j

Maxpj Pj = (1�
P

i6=j �ji)�j +
P

i6=j �ij�i

16For writing simplication reasons, we denote A = �i1; �i2; ::�i i�1; �i i+1; ::�in and
B = �j1; �j2; ::�j j�1; �j j+1; ::�jn
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5.1 Solving the second-stage of the game

To �nd the subgame perfect Nash equilibrium (SPNE), we begin by
solving subgames in the second-stage. Recall that, in the second stage, �rms
are looking for prices that maximize their pro�ts.

Proposition 13 If
P

j 6=i �ij +
P

j 6=i �ji) = 1, then any prices (p1; p2; :::pn)
such that cn � p1 = p2 = :::pn � pnm (�rm n monopolistic price) are NEa in
the second stage of the game

Proof. (p1; p2; :::pn) such that cn � p1 = p2 = :::pn � pnm are NEa if and
only if no �rm wants to deviate from those prices by �xing a price p0i above
or below. In fact:

cn � p1 = p2 = :::pn � pm ) �i = �j > 0

�i =
1
n
(pi � ci) (1� pi) = 1

n
(p� ci) (1� p)

�j =
1
n
(pj � cj) (1� pj) = 1

n
(p� cj) (1� p)

Pi =
1
n

�
1�

P
j 6=i �ij

�
�i +

P
j 6=i �ji�j

Pi =
1
n
(1� p)

h�
1�

P
j 6=i �ij

�
(p� ci) +

P
j 6=i �ji (p� cj)

i
Pj =

1
n
(1� p)

h�
1�

P
i6=j �ji

�
(p� cj) +

P
i6=j �ij (p� ci)

i
Since �rms are di¤erent, we shall study separately the deviation. Let us

check �rst for �rm i. Suppose that:

i) 9! i : pi = p & 8 j 6= i; pj > p (pi = pj � "; " > 0) () �i =
(1� pi) (pi � ci) > 0 and �j = 0

P 0i =
�
1�

P
j 6=i �ij

�
�i =

�
1�

P
j 6=i �ij

�
(1� pi) (pi � ci)

If pi � pm(monopolistic price), then pi = p� ".

For " very small17, P 0i '
�
1�

P
j 6=i �ij

�
(1� p) (p� ci) � Pi ,

17There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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�
1�

P
j 6=i �ij

�
(p� ci) � 1

n

h�
1�

P
j 6=i �ij

�
(p� ci) +

P
j 6=i �ji (p� cj)

i
or

(n� 1)
1�

P
j 6=i �ijP

j 6=i �ji
� p� cj
p� ci

(27)

ii) 9! i : pi = p & 8 j 6= i, pj < p (pi > pj)()

�j =
1
n�1 (1� pj) (pj � cj) > 0 & �i = 0

P 00i =
P

j 6=i �ji�j =
1
n�1

P
j 6=i �ji (1� pj) (pj � cj)

P 00i =
1
n�1

P
j 6=i �ji (1� p) (p� cj) � Pi ,

1
n�1

P
j 6=i �ji � 1

n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
or

p� cj
p� ci

� (n� 1)
1�

P
j 6=i �ijP

j 6=i �ji
(28)

Equations (27) and (28) represent the non-deviation conditions and are

both satis�ed when (n� 1) 1�
P

j 6=i �ijP
j 6=i �ji

=
p�cj
p�ci

Let us check now for �rm j. Suppose that:

i) 8 j, 9!i : pi = p and 8 j 6= i, pj < p (pi = pj � "; " > 0) () �j =
1
n�1 (1� pj) (pj � cj) > 0 and �j = 0

P 0j =
�
1�

P
j 6=i �ji

�
�j =

1
n�1

�
1�

P
j 6=i �ji

�
(1� pj) (pj � cj)

If pj � pm(monopolistic price), then pj = p� ".

For " very small18, P 0j ' 1
n�1

�
1�

P
j 6=i �ji

�
(1� p) (p� cj) � Pj ,

1
n�1

�
1�

P
i6=j �ji

�
(p� cj) � 1

n

h�
1�

P
i6=j �ji

�
(p� cj) +

P
i6=j �ij (p� ci)

i
or

p� cj
p� ci

� (n� 1)
P

i6=j �ij

1�
P

i6=j �ji
(29)

ii) 8 j, 9!i : pi = p & 8 j 6= i, pj > p () �i = (1� pi) (pi � ci) > 0 &
�i = 0

18There is no reason for not to suppose that " is very small. For instance, �rms need to
decrease or increase just slightly to get or to lose the entire market.
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P 00j =
P

i6=j �ij�i =
P

i6=j �ij (1� pi) (pi � ci) '
P

i6=j �ij (1� p) (p� ci) �
Pi ,P

i6=j �ij (p� ci) � 1
n

h�
1�

P
i6=j �ji

�
(p� cj) +

P
i6=j �ij (p� ci)

i
or

(n� 1)
P

i6=j �ij

1�
P

i6=j �ji
� p� cj
p� ci

(30)

Equations (29) and (30) represent the non-deviation conditions for �rm

j and are both satis�ed when (n� 1)
P

i6=j �ij

1�
P

i6=j �ji
=

p�cj
p�ci

Equations (27) � (30) represent the non-deviation conditions for both
�rms and are all satis�ed when

P
j 6=i �ij +

P
j 6=i �ji = 1

Conclusion: if
P

j 6=i �ij +
P

j 6=i �ji = 1, any prices (p1; p2; :::pn) such that
cn � p1 = p2 = :::pn � pm are NE in the second-stage of the game.

Proposition 14 If
P

j 6=i �ij +
P

j 6=i �ji > 1, then any prices (p1; p2; :::pn)
such that pj = pnm 8j 6= i and pi > pnm for some i, are NEa in the second
stage of the game

Proof. (p1; p2; :::pn) such that pj = pm 8j 6= i and pi > pm for some i,
are NEa if and only if no �rm has interest to deviate from those prices by
�xing a price p0i above or below.

9! i : pi > pm and 8 j 6= i pj = pm ) �i = 0 & �j =
1
n�1 (pj � cj) (1� pj) >

0

Pi =
P

j 6=i �ji�j =
1
n�1

P
j 6=i �ji (pj � cj) (1� pj)

Pj =
�
1�

P
j 6=i �ji

�
�j =

1
n�1

�
1�

P
j 6=i �ji

�
(pj � cj) (1� pj)

Since �rms are di¤erent, we shall study separately the deviation. Let us
check �rst for �rm i. Suppose that:

i) 9! i : pi < pm and 8 j 6= i pj = pm () �i = (1� pi) (pi � ci) and
�j = 0

P 0i =
�
1�

P
j 6=i �ij

�
�i =

�
1�

P
j 6=i �ij

�
(1� pj + ") (pj � ci � ")
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For " very small, P 0i '
�
1�

P
j 6=i �ij

�
(1� pj) (pj � ci) < Pi ,�

1�
P

j 6=i �ij

�
(pj � ci) < 1

n�1
P

j 6=i �ji (pj � cj) or

(n� 1)
1�

P
j 6=i �ijP

j 6=i �ji
� pj � cj
pj � ci

(31)

Equation (31) represent the non-deviation condition for �rm i.

Let us check now for �rm j. Suppose that:

ii) 8 j, 9!i : pi = p and 8 j 6= i, pj > p() �i = (1� pi) (pi � ci) > 0 &
�j = 0

P 00j =
P

j 6=i �ij�i =
P

j 6=i �ij (1� pi + ") (pi � ci � ")

P 00j '
P

j 6=i �ij (1� pj) (pj � ci) � Pj ,P
j 6=i �ij (p� ci) � 1

n�1

�
1�

P
j 6=i �ji

�
(pj � cj) or

(n� 1)
P

j 6=i �ij

1�
P

j 6=i �ji
� p� cj
p� ci

(32)

Equation (32) represent the non-deviation condition for �rm i.

Conclusion: if
P

j 6=i �ij +
P

j 6=i �ji > 1, any prices (p1; p2; :::pn) such that
pj = pm 8j 6= i and pi > pm for some i, are NEa in the second-stage of the
game.

Proposition 15 If
P

j 6=i �ij +
P

j 6=i �ji < 1, then any prices (p1; ::pj; ::pn)
such that pj = cn� " (j 6= n, " > 0) and pn = cn are NEa in the second stage
of the game

Proof. pj = cn � " (j 6= n, " > 0) and pn = cn are NEa if and only if no
�rm has interest to deviate from those prices to �x a price p0j above or below.

pj = cn � " (j 6= n, " > 0) and pn = cn ) �j =
1
n�1 (pj � cj) (1� pj) > 0

and �n = 0

Pj =
�
1�

P
i6=j �ji

�
�j =

1
n�1

�
1�

P
i6=j �ji

�
(pj � cj) (1� pj)
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Pn =
P

j 6=n �jn�j =
P

i6=n �ji�j =
P

i6=n �ji (pj � cj) (1� pj)

We will study the deviation for �rm j and �rm n. Let us check �rst for
�rm j. Suppose that:

i) 9! n : pn = cn and 8 j 6= n, p0j < pj ) �j =
1
n�1

�
1� p0j

� �
p0j � cj

�
and

�n = 0

P 0j =
�
1�

P
i6=j �ji

�
�j

P 0j < Pj = 0)Firm j has no interest by �xing a price below pj

ii) 9! n : pn = cn and 8 j 6= n, p00j = cn > pj () �n = 0 and �j =
1
n

�
1� p00j

� �
p00j � cj

�
P 00j =

�
1�

P
i6=j �ji

�
�j < Pj )Firm j has no interest by �xing a price

above pj

Let us check now for �rm n. Suppose that:

i) 9! n : pn < cn and 8 j 6= n, pj > pn ) �n = (1� pn) (pn � cn) < 0 and
�j = 0

P 0n =
�
1�

P
n6=j �nj

�
�n < 0

P 0n < Pn = 0)Firm n has no interest by �xing a price below pn

ii) 9! n : pn > cn and 8 j 6= n, pj < pn () �j =
1
n�1 (pj � cj) (1� pj)

and �n = 0 (�rm n does not produce)

P 00n =
P

j 6=n �jn�j = Pn )Firm n has no interest by �xing a price above
pn

Conclusion: if
P

j 6=i �ij+
P

j 6=i �ji < 1, any prices (p1; ::pj; ::pn) such that
pj = cn � " (j 6= n, " > 0) and pn = cn are NEa in the second-stage of the
game.

Note that, in the last NE �rms�pro�ts are positive even when they set
price at the highest marginal cost.

The second-stage being entirely solved and NEa being found, we can thus
move to the �rst-stage of the game in order to �nd SPNEa
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5.2 Solving the �rst-stage of the game

In the �rst-stage of the game, �rms choose the �i optimal maximizing
their pro�t to share with their rival.
Solving backwards, we have solved the second-stage of the game in the

previous section and have found NEa in prices summarized below19:

i) (p1; ::pi; ::pn) : pi = cn � " (i 6= n, " > 0) and pn = cn if
P

j 6=i �ij +P
j 6=i �ji < 1 with:(

Pi =
1
n

�
1�

P
j 6=i �ij

�
(pi � ci) (1� pi)

Pn =
1
n

P
i6=n �in (pi � ci) (1� pi) :::::::

ii) (p1; ::pi; ::pn) : cn � p1 = ::: = pi = :::pn � pnm if
P

j 6=i �ij+
P

j 6=i �ji = 1
with:�

Pi ' 2
n

P
j 6=i �ji (p� ci) (1� p) or 2

n

P
j 6=i �ji (p� cj) (1� p)

Pj ' 2
n

P
i6=j �ij (p� cj) (1� p) or 2

n

P
i6=j �ij (p� ci) (1� p)

iii) (p1; ::pi; ::pn) : 9! i : pi > pnm & 8 j 6= i pj = pnm if
P

j 6=i �ij+
P

j 6=i �ji >
1 with:8<: Pi =

1
n�1

P
j 6=i �ji (p

n
m � cj) (1� pnm) or 1

n�1

�
1�

P
j 6=i �ij

�
(pnm � ci) (1� pnm)

Pj =
1
n�1

�
1�

P
i6=j �ji

�
(pnm � cj) (1� pnm) or 1

n�1
P

i6=j �ij (p
n
m � ci) (1� pnm)

Note that in every NE, �rms get positive pro�ts and even when they set
price at marginal cost. This is the main di¤erence with the previous general
model where �rms have equal marginal costs.

Now, in the current section, we draw our attention to the �rst-stage of
the game searching for SPNEa in �ij and �ji.

Proposition 16 The strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
; :::::;�

�n1; ::; �nj(j 6=n); ::�n1; pn
�
::; �nj; ::;::; �jn; ::

��
s.t.:

i) �ij; �ji 2 ]0; 1[ &
P

j 6=i �ij +
P

j 6=i �ji = 1

ii)

8<:
(p1; ::pi; ::pn) : pi = cn � " (" > 0) & pn = cn if

P
j 6=i �ij +

P
j 6=i �ji < 1

p1 = ::: = pi = :::pn = p
n
m if

P
j 6=i �ij +

P
j 6=i �ji = 1

9!i : pi > pnm & 8 j 6= i pj = pnm if
P

j 6=i �ij +
1
n�1

P
j 6=i �ji > 1

19One can easily check that, if
P

j 6=i �ij +
P

j 6=i �ji = 1, then
1
n

�
1�

P
j 6=i �ij +

P
j 6=i �ji

�
= 2

n

P
j 6=i �ji and 1

n

�
1�

P
i 6=j �ji +

P
i 6=j �ij

�
=

2
n

P
i 6=j �ij
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are SPNEa of the game.
Furthermore, if �ji > 0, then �rm i�s pro�ts in the SNPEa are
2
n

P
j 6=i �ji (pm � ci) (1� pm) higher than in the case where �1 = �2 = 0.

Proof. Let us show the �rst part of the proposition.

The strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
; :::::;�

�n1; ::; �nj(j 6=n); ::�n1; pn
�
::; �nj; ::;::; �jn; ::

��
s.t. i) and ii) are satis�ed,

are SPNEa if and only if no �rm has interest to deviate from those prices by
choosing a �0ij or �

0
ji above or below. Because of the multiplicity of �

0
ij and

�0ji, we investigate separately the deviation for each �rm.

Let us check �rst for �rm i. Suppose that:

i) �0ij < �ij )
P

j 6=i �
0
ij+
P

j 6=i �ji < 1) P 0i =
1
n

�
1�

P
j 6=i �

0
ij

�
(pi � ci) (1� pi)

P 0i < Pi =
2

n

P
i6=j
�ji (p

n
m � ci) (1� pnm) (33)

ii) �0ij > �ij )
P

j 6=i �
0
ij +

P
j 6=i �ji > 1)

P 00i =
1

n� 1

 
1�

P
j 6=i
�0ij

!
(pnm � ci) (1� pnm) < Pi (34)

(33) and (34) show that �rm i has no interest to deviate.

Now, let us check for �rm n. Suppose that:

i) �0ni < �ni )
P

i6=n �
0
ni+
P

i6=n �in < 1) P 0n =
1
n

P
i6=n �in (pi � ci) (1� pi)

P 0n < Pn =
2

n

P
i6=n
�in (p

n
m � ci) (1� pnm) (35)

ii) �0nj > �nj )
P

i6=n �
0
ni +

P
i6=n �in > 1)

P 00n =
1

n� 1
P
i6=n
�in (pm � ci) (1� pm) < Pn (36)

(35) and (36) show that �rm j has no interest to deviate.

Finally, we conclude that the strategies
�
�12; ::; �1j(j 6=1); ::�1n; p1

�
::; �1j; ::;::; �j1; ::

��
;
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:::::;
�
�n1; ::; �nj(j 6=n); ::�n1; pn

�
::; �nj; ::;::; �jn; ::

��
s.t. i) and ii) are satis-

�ed, are SPNEa of the game.

The second part of the proposition is straightforward. We all know the
common result of the Bertrand paradox where both prices

�
pbi
�
are equal to

marginal costs and pro�ts
�
P bi
�
are zero20. Hence, the di¤erence between the

both pro�ts is:

Pi�P bi = 2
n

P
j 6=i �ji (pm � ci) (1� pm)�0 = 2

n

P
j 6=i �ji (pm � ci) (1� pm)

Conclusion: If �j > 0, then �rm i�s pro�ts in the SPNEa are
2
n

P
j 6=i �ji (pm � ci) (1� pm) higher than in the case where �1 = �2 = 0.

6 Conclusion

This paper has shown, through a particular strategy, that �rms may be able
to set prices above the marginal costs and thus get positive pro�ts. This
remarkable result is robust to the number of �rms and to cost asymmetries.

Furthermore and more importantly, when �rms�costs are di¤erent, �rms
get positive pro�ts even though they set prices at the highest marginal cost.

Shall this new solution hint that competition between �rms should not be
reduced to the models of Bertrand, Cournot, Stackelberg and the like. We
leave that question open for future research.

There are some dimensions along which our simple model can be enriched.
For instance, a natural one is the extension of our analysis to the Cournot
model. Such an extension should be straightforward at least for a linear
function.

An other interesting area of investigation would be to allow �rms to invest
(rather than sharing) a part of their pro�ts to a joint venture. Pro�t Sharing
Between Firms: An Application to Joint Ventures (Waddle 2005c) focuses
on this concern.
20To avoid confusion with our model, we denote by pbi (resp. P

b
i ) the prices (resp. the

pro�ts) in the basic Betrand model.
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