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Fairness-Adaptive Goodput-Based Resource
Allocation in OFDMA Downlink with ARQ

José Joaquín Escudero-Garzás, Member, IEEE, Bertrand Devillers, and Ana García-Armada, Senior Member, IEEE

Abstract—We present a cross-layer resource-allocation (RA)
scheme for the downlink in orthogonal frequency-division
multiple-access (OFDMA) systems with fairness control among
the users, where the resources to be allocated are power, bits
per symbol, and subchannels. The use of subchannels, which are
defined as group of subcarriers, leads to reducing the complexity
of the bandwidth allocation compared with the commonly adopted
subcarrier allocation. A goodput-based optimization function,
which is derived by combining automatic repeat request (ARQ)
and physical (PHY)-layer parameters, is used to perform RA for
applications that demand error-free transmissions. Two transmis-
sion strategies are considered, with and without concatenation of
subchannels, for which two different RA methods are developed,
respectively. We also propose an algorithm that improves the com-
plexity associated to both concatenation and nonconcatenation
schemes, without appreciable performance loss.

Index Terms—Automatic repeat request (ARQ), cross-layer
resource allocation (RA), fairness, goodput, multiuser orthogonal
frequency-division multiplexing (OFDM), subchannel.

I. INTRODUCTION

THE orthogonal frequency-division multiple-access
(OFDMA) technique plays a key role in current wireless

systems due to its resistance to multipath fading and high
spectral efficiency. Many research efforts have been devoted
to the crucial task of resource allocation (RA) in OFDMA
to reach the maximum data rate, where the optimal solution
may be achieved by exhaustive search over users, subcarriers,
modulation and coding schemes (MCSs), and power levels.
In particular, a widely adopted criterion in this type of RA
schemes is the maximization of the sum throughput [1]–[7].
However, some high-bit-rate applications and services, such

as broadcast and video streaming, demand error-free trans-
missions, and only error-free frames are kept by the receiver,
whereas for the others, retransmission is required. In this case,
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a tradeoff between the bit rate achieved by the physical (PHY)
layer and the error rate achieved by link-layer error-correcting
schemes is desired, which is not realized by approaches based
on throughput. Instead, goodput, which is defined as the number
of error-free bits transmitted per unit of time, can be a very
suitable metric, motivating a growing interest in the design of
schemes for optimizing goodput-based functions, e.g., in [8]–
[12]. On the other hand, a link-layer retransmission scheme is
mandatory. Among the retransmission schemes, the automatic
repeat request (ARQ) protocol has the advantage of being
already present in existing OFDMA systems [13], [14] and is
therefore extensively applied (see, e.g., [15]).
For the particular case of RA in goodput-oriented OFDMA

systems, although the single-layer approach can be adopted
[16], [17], cross-layer schemes are preferred as they enable
global system performance optimization [18]–[25]. In their
works, Aggarwal et al. [18]–[20] have proposed several meth-
ods for allocating subcarriers, power, and MCSs to maxi-
mize the expected-sum-goodput-based utility. In [18], they
exploit the use of acknowledgment/negative acknowledgment
(ACK/NAK) feedback. In [19], imperfect channel state in-
formation (CSI) at the transmitter (CSIT) is assumed, where
Aggarwal et al. study the continuous (a single resource shared
by several users) and discrete cases and show that the continu-
ous case solves the discrete case in some situations, providing
a bound for the others. The work in [19] is extended in [20]
to the case when ACK/NAK feedback is utilized. Given that
the optimal solution is a partially observable Markov decision
process, which is impractical for implementation purposes,
Aggarwal et al. propose a two-step approach that uses first a
greedy resource allocation and afterward updates the subcarrier
gain probability. Another related set of works has been pub-
lished by Lau et al. [21]–[24], where they provide schemes and
algorithms for OFDMA networks with imperfect CSIT. In [21],
it is discussed the optimal RA in time-division duplex–OFDMA
systems by exploiting the 1-bit limited feedback, showing that
optimal rate, power, and user allocations that maximize the
conditional average system goodput converge if the number
of packets per slot is sufficiently large. In [22], Lau et al.
present subband, power, rate, and user allocation for systems
with delayed CSIT for maximizing the average total goodput.
In [23] and [24], Hui and Lau propose, respectively, cen-
tralized and decentralized delay-sensitive cross-layer schemes
to allocate power, rate, and subcarriers, where the CSIT is
assumed to be outdated; both approaches use the average total
goodput as an optimization function. A dual-decomposition-
based solution to the problem of maximizing the average
weighted sum goodput for OFDMA relay networks with



imperfect CSIT is presented in [25]. The problem is formulated
in terms of rate, power, and subcarrier allocation policies, and
it is shown how the system performance scales with the number
of users and relays. However, the aforementioned schemes may
lead to unfair RAwhen users with very good channel conditions
are allocated the resources.
It is well known that OFDMARA problems are computation-

ally demanding; for example, OFDMA-based access networks
are characterized by exploiting a large number of subcarriers
(e.g., up to 2048 subcarriers in IEEE 802.16 standard-based
systems [13], [14]) and render RA intractable from a computa-
tional viewpoint. The utilization of subchannels (also known in
the literature as chunks [26] or bins [27]), which are defined as
groups of subcarriers [13], [14], can alleviate the computational
load associated with the RA [26]–[28].
Although some works claim that the transmitted frame is

error free when a base station (BS) has perfect CSIT, powerful
error-correcting coding (e.g., low-density parity-check or turbo
codes) and sufficiently long frames are required in slow-fading
channels [21], [23]. Moreover, in practical systems, even with
perfect CSIT, the use of practical modulation schemes such as
M -ary quadrature amplitude modulation (MQAM) inherently
introduces penalization in the achievable bit rate, and the frame
is not error free due to the bit error rate (BER) associated to a
given modulation scheme. Throughout this paper, perfect CSIT
is assumed, and MQAM modulation and convolutional coding
are used.
In this paper, we address the optimization of the sum goodput

transmitted by a BS in OFDMA networks. We propose a cross-
layer RA scheme that combines PHY-layer parameters with
the ARQ protocol to derive the goodput transmitted per frame
expression and incorporates adaptive fairness and subchannel
concatenation in the scheme. These aspects have been contem-
plated in a very preliminary form in an earlier conference paper
[29]. Our proposal brings the following advantages.

1) Encoding frames are formed by using two possible strate-
gies, i.e., with and without concatenation of subchannels,
as in current OFDMA-based standards [14]. We show in
Section VII the different results according to the selected
concatenation strategy.

2) The use of subchannel allocation instead of subcarrier
allocation reduces the complexity associated to the RA
problem, which is here formulated as a subchannel, bit,
and power allocation (SBPA) problem. As power and bits
per symbol are allocated with subcarrier granularity, not
at a subchannel level, the advantages of bit and power
allocation are preserved.

3) The use of ARQ improves the performance of the sys-
tem [30] and provides a connection among PHY-layer
parameters (BER, power, and bits per symbol), link-layer
parameters [frame success rate (FSR)], and goodput.

4) A fairness mechanism is included in the RA formulation.
Fairness has been well addressed in the related literature,
mainly in the form of proportional fairness (see, e.g.,
[31]). In this paper, fairness is incorporated in the theo-
retical framework such that the degree of fairness can be
adapted by means of the α-proportionally fair rule [32].

In general, goodput has been considered in its average form
in the related literature [18]–[24]. Alternatively, we propose an
approach based on the optimization of the sum of users’ good-
put achieved per frame [25], [33], or goodput per transmitted
frame, since the problem constraints are per frame as far as the
optimization problem is concerned. The goodput transmitted
per frame expression is based on the FSR, which is a function of
the BER per user and per subcarrier, providing a more accurate
value of the FSR than if only the SNR distribution is known
[18]. A related formulation is the outage probability per user
per subcarrier and per packet used (see, e.g., [23]).
In this paper, we propose the use of two different encoding

frame strategies based on whether the subchannels are concate-
nated (CS) or not concatenated (NCS). If CS is used, the prob-
lem (referred to as CS-RA) can be optimally solved by standard
methods but at a high computational cost. We propose a two-
step method, i.e., SBPA, based on decomposition theory that
solves the CS-RA problem and notably reduces the computa-
tional complexity. For the NCS strategy, the NCS-RA problem
is much less complex than the CS-RA problem and can be
solved by adopting the SBPA method. To further reduce the
computational cost associated to the NCS-RA problem, we
propose a rounding linear programming (RLP) algorithm as
an alternative to the usual integer constraint relaxation since
this relaxation provides a noninteger solution that is not imple-
mentable in practice. The use of the RLP algorithm is extended
to the CS case with the same advantages as for the NCS
case. We also discuss whether a centralized or semidistributed
approach is more adequate, depending on the encoding frame
strategy.
The remainder of this paper is structured as follows. In

Section II, we describe the system model. The optimization
problem for CSs is formulated in Section III. The description of
the two-step SBPA method for RA forms Section IV. Section V
is devoted to the NCS scheme and the algorithm proposed for
this case, including the concatenated case when the RLP algo-
rithm is used. In Section VI, the suitability of the centralized
and semidistributed schemes for implementation is discussed.
The performance of the algorithms is presented in Section VII.
Finally, in Section VIII, we extract some conclusions.

II. SYSTEM MODEL

We consider a downlink single-hop OFDMA system with a
BS and K active users that employ Q subcarriers. PHY- and
data link (DL)-layer techniques are combined to optimize the
goodput transmitted by the BS. At the PHY layer, adaptive
modulation (comprising bit and power loading) and subchannel
allocation determine the transmission scheme between the BS
and the users. A forward error-correcting (FEC) scheme is also
considered. At the DL layer, an ARQ protocol is applied to the
frames exchanged between the BS and the users. A signaling
scheme conveys information between the BS and the users to
manage the adaptive transmission. The system is endowed with
a feedback channel to generate CSIT, and efficient schemes to
compress feedback information can be used to minimize the
feedback rate [34]; this feedback channel is assumed to be error
free. We assume that users have been previously scheduled



Fig. 1. Frame structure of the two encoding strategies. Example with two users and three subchannels. User 1 is assigned subchannels 1 and 2 and user 2 is
assigned subchannel 3. (a) Concatenated frames. (b) Nonconcatenated frames.

within the actual frame. As multiuser diversity is exploited by
optimizing the subchannel assignment to the scheduled users,
a simple scheduling scheme, e.g., a round-robin (RR) method,
can be used to avoid outage, although its design is outside the
scope of this paper.

A. Frame Structure: Concatenation of Subchannels

Based on the channel coding theorem [35], the concatenation
of subchannels enables transmission of large encoding frames
(or blocks) at rate R to achieve an error rate as low as possible.
In current standards such as IEEE 802.16e [13], there are
several possibilities for the number of subchannels per frame,
i.e., the number of subchannels that are encoded with the same
encoder. The possibilities range from one to many. In this
paper, we have selected the two extreme possibilities, namely,
only one encoder or as many encoders as the subchannels, and
the effect of subchannel concatenation is analyzed using the
following two extreme strategies.

1) CS strategy. All the subchannels allocated to a given
user are concatenated, and this constitutes one encoding
frame; therefore, the user receives only one frame per
time period of Ns OFDM symbols.

2) NCS strategy. Each subchannel is independently encoded
so that one encoding frame comprises only one subchan-
nel per Ns OFDM symbols.1 Hence, each user receives
as many frames as assigned subchannels.

Note that the actual implementation choice and, thus, the
achieved performance will lie in between of the results here
presented for the CS and NCS strategies. The selection of

1Ns is in general a function of the user and the allocated subchannels.

the configuration to be used is understood to be made by the
network operator. Moreover, the results of this paper, among
other system-level considerations, may be used to evaluate the
alternatives considering that there exists a tradeoff between
complexity and performance, given that the NCS approach is
much less computationally complex at the expense of a higher
error probability as the frames are in general shorter than in the
CS case, and resulting in a lower received goodput.
The following example with two users and three subchannels

shown in Fig. 1(a) and (b) illustrates the differences between
both schemes where the frames are transmitted in one OFDM
symbol, i.e., Ns = 1. For the concatenated case [see Fig. 1(a)],
the bits to be transmitted to a given user are encoded in only
one frame, and this frame is accommodated into the assigned
subchannels. In our example, user 1 is assigned subchannels
s#1 and s#2, and user 2 is assigned subchannel s#3. For the
nonconcatenated case [see Fig. 1(b)], the bits are encoded in as
many frames as subchannels that have been assigned to the user.
As user 1 has been assigned s#1 and s#2, the information bits
are split into two frames, F1-1 and F1-2, and these frames are
independently transmitted in s#1 and s#2, respectively. Note
that the number of bits to be transmitted to each user,K andM
in our example, is a decision made once the RA problem has
been solved.
In summary, for the concatenated case, we have as many

frames as users and only one encoder, and for the noncon-
catenated case, we have as many frames as encoders and
subchannels.

B. Physical Layer and Channel Model

Subchannel, bit and power allocation (SBPA) is performed at
the PHY level, with MQAM per subcarrier. The Q subcarriers



are evenly grouped into subchannels; rather than allocating
subcarriers, the BS performs subchannel allocation to each
user’s downlink. The BS hasN = Q/J subchannels to allocate,
with J subcarriers per subchannel. Notice that, although the
bandwidth is assigned to users at a subchannel level, bit and
power allocation is done with subcarrier granularity, preserving
the benefits of bit allocation and simultaneously simplifying the
allocation process.
The distribution of subcarriers among the subchannels may

also be part of the system design. However, we assume a pre-
determined subcarrier arrangement, which reduces the system
model complexity since it is kept fixed over time. Moreover,
subchannel allocation to the best user for goodput optimization
endows the system with multiuser diversity. One possibility
is to arrange contiguous subcarriers into one subchannel [36].
Alternatively, optimal subcarrier allocation to subchannels may
be done at the expense of the complexity (see, for instance,
[37]), although this is out of the scope of this paper. For
evaluation purposes, in this paper, a random distribution of the
subcarriers over the subchannels is assumed as it can provide
some frequency diversity.
We assume a multipath block fading channel, where Hknj

denotes the channel gain associated with subcarrier j of sub-
channel n assigned to user k, in short notation (k, n, j), and it
is modeled as a complex zero-mean Gaussian random variable
invariant over at least one frame period of Ns OFDM symbols.
We denote by pknj andmknj the power and the number of bits
per symbol allocated to (k, n, j), which are constant over a
frame. The noise samples are assumed to be complex Gaussian
random variables of zero mean and variance σ2. The maximum
transmit power of the BS is PT , and it is distributed among the
Q subcarriers.

III. PROBLEM STATEMENT FOR

CONCATENATED SUBCHANNELS

Here, we analyze the case of CSs, where each user receives
one frame consisting of the concatenated signal of the assigned
subchannels.
The multicarrier channel is viewed by each user as a channel

whose error probability is the average BER over the user’s
transmission subcarriers. We define the set NL as the L =
2N − 1 possible combinations of subchannels, i.e., the elements
of NL are groups of subchannels to be assigned to users per
frame, andNl represents the lth element ofNL with cardinality
Nl. For example, if N = 2 subchannels, we have L = 3, being
NL = {N1,N2,N3} = {{1}, {2}, {1, 2}}, andN1 = N2 = 1,
N2 = 2. The error-correcting mechanism is implemented by a
frame-based convolutional coding of rate r with hard-decision
Viterbi decoding. For a given frame, if εav(k, l) denotes the av-
erage BER associated to user k when assigned the subchannels
of Nl ∈ NL, it can be expressed as

εav(k, l) =
1∑

n∈Nl

∑J
j=1 mknj

∑
n∈Nl

J∑
j=1

mknjεknj (1)

where εknj , which is the uncoded BER associated to the hard
decision-making on the framed bits on (k, n, j) for MQAM

with Gray mapping, is approximated by [38]

εknj = 0.2 exp

(
1.6|Hknj |2pknj
(2mknj − 1)σ2

)
. (2)

The frame received by user k spreads over Ns(k, l) OFDM
symbols, where l denotes that user k is allocated the sub-
channels of Nl, and mknj is invariant over Ns(k, l) OFDM
symbols.

A. Goodput Formulation

We recall that the goodput is defined as the number of
error-free information bits transmitted per unit of time. In this
paper, we deal with the goodput obtained per transmitted frame,
which is formulated as a function of the FSR. The FSR is
defined as the probability that a frame is correctly received after
Viterbi decoding. For each user, the transmission is organized
in frames of Nf information bits, where one or more frames
are received according to one of the strategies defined in
Section II-A. The FSR expression can be approximated as a
function of εav by [39]

FSR (εav(k, l))

= d exp
(− (

cτε
τ
av + cτ−1ε

τ−1
av + · · ·+ c1εav

))
(3)

where parameters τ , d, and c1, . . . , cτ are adjusted so that the
approximated FSR fits the true FSR curve. These parameters
depend on the convolutional code used and the frame length.
At the link layer, an ARQ protocol performs the retrans-

mission of the frames that are incorrectly received by the
user. Expressions of the goodput for different ARQ protocols
have been obtained for point-to-point OFDM links in [40].
Without loss of generality, we adopt a selective-repeat ARQ
(SR-ARQ) protocol as it is straightforward to modify the for-
mulas for other ARQ protocols taking the given expressions.
The received goodput χkl associated with the allocation of the
subset of subchannels Nl to user k is then expressed for the
SR-ARQ as

χkl = r

⎛
⎝∑

n∈Nl

J∑
j=1

mknj

⎞
⎠ FSR (εav(k, l)) . (4)

In view of (4), adaptive coding may be also jointly used with
adaptive SBPA for each transmitted frame according to (3).
However, adaptive coding is useful when the bit allocation
remains fixed for the whole frame [41], whereas our scheme
enables adaptive bit allocation within the frame. Then, although
adaptive coding may be explored in this context, r remains
unchanged for all the transmissions and subchannels.
In summary, we have formulated the individual goodput χkl

when an ARQ is used by relating the BER averaged over the
subcarriers of a set of subchannels εav(k, l) with the FSR.

B. Utility Function and Subchannel Assignment Variables

The utility function U to be maximized may be defined as
the sum of the goodput obtained by each user, but this may



lead to unfair situations in which some users are penalized. To
avoid this situation, we introduce fairness by using, for each
user, utility function uk [42] as follows:

uk =
χk[m]

χ̄k[m]
(5)

where χk[m] is the goodput achieved in framem by user k, and
χ̄k[m] is the average goodput of user k over a past window of
length W , which is calculated as [43]

χ̄k[m] =

(
1− 1

W

)
χ̄k[m− 1] +

1
W

χk[m− 1]. (6)

This class of utility function is shown to be equivalent to the
proportional fair scheduling proposed in [43] for large values
of W . We now introduce fairness control by means of the
real-valued parameter α [32], and the BS utility is formu-
lated as

U [m] =

K∑
k=1

χk[m]

χ̄
(1−α)
k [m]

(7)

where parameter α can be tuned to determine the degree of
fairness. If α = 0, the users are expected to receive the goodput
approximating proportional fairness allocation. At the other
extreme, α = 1 is expected to approximate maximum goodput
allocation policy. In the sequel, the temporal dependence with
m is removed from the given expressions to alleviate the
notation once it is established that the problem is solved at each
frame m.
The assignment of subchannels to users is made using the

binary variables πkl, which indicate whether a group of sub-
channels Nl is assigned to user k or not, i.e.,

πkl=

{
1, if set of subchannels Nl is allocated to user k
0, otherwise.

(8)

It must be guaranteed that only one set of subchannels Nl is
assigned to each user within the current frame. Thus, only one
of the values of πkl is equal to 1 for user k, and

∑L
l=1 πkl = 1

must hold for each user k. We also define the binary variables
βkn to indicate if subchannel n is assigned to user k, i.e.,

βkn =

{
1, if subchannel n is allocated to user k
0, otherwise.

(9)

As subchannel n must be assigned to one and only one user,∑K
k=1 βkn = 1 must hold ∀n.
These two groups of variables are related by B = ΩΠ,

where B is a KN column vector with the βkn variables,
Π is a KL column vector with the πkl variables, and Ω is
a KN ×KL matrix that makes the mapping of a group of
subchannels onto the corresponding subchannels per user. This
relationship makes it possible to solve the problem only in
the πkn variables since each constraint

∑K
k=1 βkn = 1 can be

written as fn(Π) =
∑K

k=1 βkn = 1, where if βkn occupies the

r position in vectorB, then βkn = ωrΠ, with ωr being the rth
row of Ω.2

C. Problem Formulation

The optimization problem consists in maximizing the BS
utility (7) finding the optimal bit, power level, and subchannel
allocations (i.e., mknj , pknj and πkl, respectively), and two
necessary constraints are added: 1) The BS has the total power
PT to allocate among the subcarriers; and 2) each user k must
receive a minimum required goodput denoted by χkmin. The
resulting problem is

max
πkl,pklj ,mklj

U =

K∑
k=1

χk

χ̄
(1−α)
k

subject to
K∑

k=1

N∑
n=1

J∑
j=1

pklj ≤ PT

L∑
l=1

πklχkl ≥ χkmin, k = 1, . . . ,K

L∑
l=1

πkl = 1, k = 1, . . . ,K

fn(Π) = 1, n = 1, . . . , N

πkl = {0, 1}, k = 1, . . . ,K, l = 1, . . . , L.

(10)

This and the forthcoming optimization problems are defined
and solved on a per-frame basis.
Problem (10) is a nonlinear mixed integer programming

(MIP) problem since pknj and mknj are real valued, πkl is an
integer, and the objective function is nonlinear. Nonlinear MIP
problems with a large number of integer variables are charac-
terized as NP-complete, and exact methods, such as branch-
and-bound, do not solve the problem efficiently [44]. Therefore,
we propose a different approximation to the problem, as we
describe in the following.
An analysis of our problem determines that the condition

complicating the problem most is the total power constraint∑K
k=1

∑N
n=1

∑J
j=1 pklj ≤ PT as this condition couples the

power variables of (10) {pklj}. This type of constraint is
referred to as “complicating constraints” [45] since, if this
constraint were absent, the problem would be decoupled into
K subproblems given that the objective function U is separable
as it is the sum of the K per-user utility functions uk and

2For instance, if K = 2, N = 2, and for the definition of NL given in
Section III, we have⎛

⎝β11

β12

β21

β22

⎞
⎠ =

⎛
⎝ 1 0 1 0 0 0

0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1

⎞
⎠

︸ ︷︷ ︸
Ω

⎛
⎜⎜⎝

π11

π12

π13

π21

π22

π23

⎞
⎟⎟⎠

with f1 = β11 + β21 = π11 + π13 + π21 + π23, and f2 = β12 + β22 =
π12 + π13 + π22 + π23.



the other constraints are not coupling constraints among the
users in {pklj}. The conventional approach to this type of RA
problems is the decomposition theory (see, for instance, [46]).
The basis of decomposition is to decompose the original large
problem into distributively solvable subproblems, which are
then coordinated by a high-level master problem using some
kind of signaling.
A first step toward achieving solvable subproblems is to use

constant power allocation. Constant power allocation implies
negligible throughput loss if the power is only allocated to
channels with good channel gains [38], [47]. Given that, with
multiuser adaptive RA, as it is our case, the channels are
usually allocated to the users with favorable channel conditions,
then power constant allocation has a negligible impact in the
performance compared with the optimum [48], [49]. This is
valid for throughput and is reasonably expected to fulfill also for
the case of goodput optimization. Therefore, following [27], we
relax the power constraint, assuming that PT is equally divided
among the N subchannels. The resulting total power allocated
to group l formed by Nl subchannels is Pl = Nl(PT /N),
and Constraint 1 becomes

∑K
k=1

∑J
j=1 pklj ≤ Pl, giving the

following RA problem:

max
πkl,pklj ,mklj

U =

K∑
k=1

χk

χ̄
(1−α)
k

subject to
K∑

k=1

NlJ∑
j=1

pklj ≤ PT l = 1 . . . , L

L∑
l=1

πklχkl ≥ χkmin

L∑
l=1

πkl = 1, k = 1, . . . ,K

fn(Π) = 1, n = 1, . . . , N

πkl = {0, 1}, k = 1, . . . ,K, l = 1 . . . , L

(11)

where χk denotes the goodput received by user k and is calcu-
lated as χk =

∑L
l=1 πklχkl, with χkl being the goodput given

by (4). Even with the power constraint relaxation, (11) is still a
nonlinear MIP problem with similar complexity compared with
(10). In the following, we present a method that reduces this
high complexity.

IV. SUBCHANNEL, BIT, AND POWER ALLOCATION

FOR CONCATENATED SUBCHANNELS

We assume a centralized configuration given that the com-
putational capacity associated to user devices is usually the
limiting factor. Nevertheless, in Section VI, we discuss whether
other configurations than the centralized scheme can be more
suitable.
As pointed out earlier, the idea behind our approach is to

decompose the original problem into several tractable subprob-

lems that can be then coordinated through a master problem.
However, decomposition theory has been mainly used for
continuous RA, and it cannot be in general straightforwardly
employed for MIP problems. We propose the following two-
step centralized scheme that first decouples the original prob-
lem (11) into KL subproblems (L possible combinations of
subchannels times the number of users K). The result of the
first step is a matrix whose elements are the goodput per user
and per group of subchannels. This matrix is used in the second
step (master problem) to perform subchannel allocation. This
scheme works as follows.
1) Each user performs channel estimation and provides CSI

to the BS using the feedback channel.
2) The BS performs power and bit allocation for all users

and every possible combination of subchannels, and
it calculates the corresponding goodput vector xk for
each user k. These goodput vectors form the goodput
matrixX.

3) The BS runs the subchannel allocation algorithm and
sends the obtained SBPA to users in the forward channel.

4) The BS transmits the information to users according to
the resulting allocation.

The two-step method, which is referred to as concatenated
SBPA (C-SBPA), reduces the complexity of the original prob-
lem (11). The first step, which is detailed in Section IV-A and
named the goodput matrix calculation (GMC), provides the
power and bit allocation and goodput matrixX by decomposing
(11) into independent subproblems that can be computed in par-
allel. This first step corresponds to 2) in the previous enumerate.
The second step is the subchannel allocation problem (SAP)
and acts as the master problem, corresponding to 3).

Remark 1: Decomposition theory is based on finding alter-
native problem formulations that may reveal hidden decompos-
able structures, although representing the problem in a different
way does not alter the optimal solution. In our proposed decom-
position, the GMC subproblems provide the optimal solution,
and the master problem (SAP) uses these solutions to optimally
assign the subchannels. Hence, there is no loss of optimality
due to this decomposition.

Remark 2: In general, decomposition-based algorithms iter-
ate between the master problem (SAP) and the subproblems
(GMC subproblems) until they converge. In our proposed
method, such iterations are not necessary since there is no
coupling variable between the SAP and GMC subproblems.

A. Goodput Matrix Calculation

The goal of this step is to decouple (11) in separable
subproblems. This would be accomplished if the constraints∑K

k=1

∑NlJ
j=1 pklj ≤ Nl(PT /N) are considered separately for

user k = {1, . . . ,K} and group of subchannels l = {1, . . . , L};
therefore, we solve the KL subproblems as follows:

max
pklj ,mklj

χkl

s.t.
K∑

k=1

NlJ∑
j=1

pklj ≤ Nl
PT

N
(12)



where the klth GMC-C subproblem (12) has the goal of maxi-
mizing the goodput χkl received by user k when it is allocated
the lth group of subchannels given by (4), and the power
constraint is for a given group of subchannels l formed by Nl

subchannels. Therefore, each subproblem provides an L× 1
column goodput vector xk = [χk1, . . . , χkL]

T and the corre-
sponding power and bit allocation, being the K × L goodput
matrixX = [x1, . . . ,xK ]T .
For maximizing χkl, we rely on the bit and power allocation

algorithm EBPA described in [40]. This algorithm optimizes the
goodput over a given set of subcarriers for the point-to-point
OFDM downlink single-user case. We adapt this algorithm
to perform the bit and power allocation within each group
of subchannels for the OFDM downlink multiuser case. The
modified algorithm, which is named the modified bit and power
allocation algorithm (MBPA), is summarized in the following
three steps.

1) For a group of subchannels l and user k, sort the subcar-
riers such that |Hkl1|2 � · · · � |HklJ ′ |2, with J ′ = NlJ .
Set j∗ = J ′.

2) Solve

2mklj∗

|Hklj∗ |2
(

J ′∑
i=1

log2

( |Hkli|2
|Hklj∗ |2

)
+mklj∗J

′
)

× (τcτε
τ
av + · · ·+ c1εav)

(
c2Pl ln 2

σ2
n

)

=

(
J ′ 2

mklj∗

|Hklj∗ |2 −
J ′∑
i=1

1
|Hkli|2

)2

(13)

where Pl = Nl(PT /N). If there is no positive solution
formklj∗ , thenmklj∗ = 0, j∗ ← j∗ − 1, and go to Step 2.
Else, go to Step 3.

3) ∀j�j∗ :mklj=log2((2
mklj∗ |Hklj |2)/(|Hklj∗ |2)), pklj =

((2mklj−1σ2
n)/(c2|Hklj |2))Pl/

∑J ′
i=1(((2

mkli−1)σ2
n)/

(c2|Hkli|2)).
The obtained {mklj} and {pklj} guarantee that the goodput

calculated for the set of subchannels Nl is near optimal. Nev-
ertheless, {mklj} are real valued, and for feasible implementa-
tions, the number of bits per symbol must take discrete values
for MQAM modulations. Hence, mklj is obtained by rounding
down the real-valued mklj to the nearest element of the set of
allowed integer values M as the loss in terms of goodput is
almost negligible [40]. By inserting the obtained mklj and pklj
into (1)–(4), we get each χkl of X.

B. Subchannel Allocation Problem

This step consists in finding the optimal vector Π =
[π11, . . . , πKL], and a new optimization problem (14) is derived
from (11) once X is known. To do this, we impose that χkl is
one of the elements of X, instead of considering mklj and pklj
as variables, and the new problem is

max
πkl

U =
K∑

k=1

1

χ̄
(1−α)
k

χk

subject to
L∑

l=1

πklχkl ≥ χkmin, k = 1, . . . ,K

χkl ∈ xT
k , k = 1, . . . ,K

L∑
l=1

πkl = 1, k = 1, . . . ,K.

fn(Π) = 1, n = 1, . . . , N

πkl = {0, 1}, k = 1, . . . ,K, l = 1, . . . , L.

(14)

In the literature, we can find different types of algorithms to
optimally solve the integer programming (IP) problem (14),
yet two of them are mainly used [50]: branch-and-bound al-
gorithms and cutting plane methods. Problem (14) is NP-
hard, none of these approaches solves it polynomially, and
standard branch-and-bound algorithms are commonly preferred
for the sake of simplicity. Still, finding the optimal solution
of (14) implies a high computational cost. In the following,
we introduce the NCS strategy that significantly reduces the
subchannel allocation complexity.

V. SUBCHANNEL, BIT, AND POWER ALLOCATION

FOR NONCONCATENATED SUBCHANNELS

We now consider that the bits corresponding to different sub-
channels are encoded in different frames, i.e., one subchannel
per frame. In other words, the subchannels are encoded inde-
pendently, andNL = {1, . . . , N}. We use the nonconcatenated
SBPA (NC-SBPA) to refer to this approach. Both transmitter
(BS) and receiver (user) process each subchannel separately,
requiring as many encoders and decoders as subchannels, and
the system model is adapted as follows.
The formulation is based on the goodput received by user

k when allocated subchannel n, which is denoted by χkn,
resulting in Ns(k, n) OFDM symbols per frame. This goodput
χkn is calculated as

χkn = r

⎛
⎝ J∑

j=1

mknj

⎞
⎠ FSR(εav, kn) (15)

assumingmknj is constant over the Ns(k, n) OFDM symbols.
Contrary to the CS case, only the subchannel assignment βkn

variables (9) are necessary, and we can ignore the πkn variables,
by calculating the total goodput received by user k as the sum
of goodput per subchannel χk =

∑N
n=1 βknχkn. By properly

modifying (1)–(3), the expressions for the FSR and the average
BER are

εav(k, n)=
1

J∑
j=1

mknj

J∑
j=1

mknj0.2 exp

(
−1.6|Hknj |2pknj

(2mknj − 1)σ2

)

(16)

FSR(εav) = d exp
(− (

cτε
τ
av + cτ−1ε

τ−1
av + · · ·+ c1εav

))
(17)



which results in the utility function U =
∑K

j=1(1/
(χ̄

(1−α)
k ))

∑N
n=1 βknχkn. Assuming again that PT is equally

distributed among the N subchannels, the new problem is

max
βkn,pknj ,mknj

U =
K∑

k=1

1

χ̄
(1−α)
k

N∑
n=1

χknβkn

subject to
K∑

k=1

J∑
j=1

pknj ≤ PT

N
, n = 1, . . . , N

K∑
k=1

βkn = 1 ∀n = 1, . . . , N

N∑
n=1

βknχkn ≥ χkmin ∀k = 1, . . . ,K

βkn = {0, 1}, k = 1, . . . ,K, n = 1, . . . , N

(18)

which is solved by adapting the two-step approach of
Section IV, as we detail in the following.

A. GMC and SAP for NC-SBPA

For the GMC step, (18) is decoupled for user k = {1, . . . ,
K} and subchannel n = {1, . . . , N} into KN separable
subproblems of the form

max
pknj ,mknj

χkn

s.t.
K∑

k=1

J∑
j=1

pknj ≤ PT

N
(19)

where the (k, n)th GMC-NC subproblem (19) has the goal of
maximizing the goodput χkn received by user k when he is
allocated the nth subchannel. Now, the kth row of goodput
matrix X is xT

k = [χk1, . . . , χkN ]; hence, X has K ×N di-
mensionality. Proceeding similarly to Section IV, the bit and
power allocations mknj and pknj , respectively, are found, and
each element ofX is obtained by inserting (16)–(17) into (15).
At the second step (SAP), we assign the subchannels to

users, finding the optimal βkn elements of B, with B being
theK ×N subchannels assignment matrix. Given that L 	 N
and that we avoid the calculation of matrixΠ, this new problem
is much less complex than (14), i.e.,

max
βkn

U =

K∑
k=1

1

χ̄
(1−α)
k

N∑
n=1

χknβkn

subject to
K∑

k=1

βkn = 1 ∀n = 1, . . . , N

N∑
n=1

βknχkn ≥ χkmin ∀k = 1, . . . ,K

βkn = {0, 1}, k = 1, . . . ,K, n = 1, . . . , N

(20)

where χkn are given from X. Two standard approaches can be
applied to solve (20). With the IP solution, for which the same
discussion as in Section IV applies, the subchannels assignment
matrix BIP represents the solution to (20) directly obtained
using branch-and-bound algorithms, and U(BIP) refers to the
corresponding value of the utility function. Nevertheless, this
optimal approach still has a high computational cost. Integer
constraint relaxation, which is widely used for solving binary
integer programming problems, can be applied to obtain a linear
programming (LP) problem, where βkn ∈ [0, 1] substitutes
constraint βkn ∈ {0, 1}. The LP problem solution, which is
denoted by BLP, provides the utility value U(BLP), which is
an upper bound for U(BIP). In the LP literature, primal–dual
interior point algorithms are preferred [51], and among them,
the algorithm of [52] has proved very successful in practice.
However, the solution to the relaxed problem is not valid for
practical purposes: βkn must take real values, and although it
can be interpreted as the time-sharing factor for the kth user
of the nth subchannel, this is not coherent with the original
problem formulation. An integer solution is obtained if these
values are rounded, as is similarly done in [1], but there is no
guarantee about satisfying the problem constraints, particularly
the minimum goodput constraints. Still, this noninteger solution
BLP can be used to generate an integer solution, as we describe
in the following.

B. Rounded Linear Programming Algorithm

Given the complexity of the branch-and-bound approach
and that the relaxed solution is not suitable for practical im-
plementations, we propose an algorithm, which is referred to
as rounded linear programming (RLP), having the following
characteristics:

1) provides a valid integer solution, which is denoted by
BRLP, starting from the BLP solution;

2) fulfills the constraint on the minimum required goodput;
3) achieves a value of utility function U(BRLP) as close as

possible to U(BLP);
4) has the inherent low complexity of the LP approach.

We denote this approach as NC-RLP. Note that simply
rounding BLP does not ensure to always satisfy characteristics
2 and 3. The RLP algorithm is based on the observation that the
allocation variables βkn corresponding toBIP andBLP largely
coincide. We refer here to the element (k, n) ofBLP andBRLP

as βLP(k, n) and βRLP(k, n), respectively.
The pseudocode of the algorithm and its main steps are

provided in the following. The number of elements of set S
is denoted by ‖S‖. We define SK as the set of users and
SN as the set of available subchannels (Step 1). Subchannels
are previously assigned to the user with highest βLP for each
subchannel (Step 2). This may cause that the minimum goodput
constraint is not achieved for some users. Next, subchannels
are only assigned to users who obtain the minimum required
goodput with a single allocated subchannel (Step 3), and these
users form the set S′

K , with S′
N being the set of subchannels

allocated to users of S′
K . We form two more sets (Step 3),

i.e., S′′
K = SK − S′

K and S′′
N = SN − S′

N , that represent,



respectively, the users whose resulting goodput, with single
subchannel allocation, is less than χkmin, and the subchannels
that are still to be assigned. Now, the subchannels of S′′

N have
to be allocated to users of S′′

K . The key for this allocation
is to assign each subchannel n′′ of S′′

N to the user k′′ ∈ S′′
K

obtaining the maximum goodput at n′′, but only considering
the BLP solution (Steps 4–6). Among the users of S′′

K who
share n′′ in theBLP solution (users k′′ such that βLP(k

′′, n′′) �=
0), we select the user k∗ that obtains the largest goodput
from n′′. However, some users may still not achieve χkmin.
We define the set S′′′

K containing those users (Step 7), S′′′
K =

{k ∈ S′′
K | χk < χkmin}, and the solution BRLP is refined in

two phases.
The coarse refinement of the allocation (Steps 8–18) is ful-

filled if the number of subchannels to be reallocated is greater
than one (‖S′′

N‖ > 1). Swapping the subchannels between k ∈
S′′′
K and the remaining users of S′′′

K intends to achieve χk >
χkmin for all users, with a similar criterion of that used in
Steps 4–6. A later fine-tuning (Steps 19–33) may be necessary
if S′′′

K is not empty yet. Swapping the subchannel between pairs
of users is performed, based on ordering the subchannel/user
pairs according to the heuristic parameter υ. This parameter
guarantees a deviation as small as possible from the BLP

solution. Thus, for calculating υ, we retake BLP; all pairs
(k, n), such that round(βLP(k, n)) = 1 in step 1, are now
considered for subchannel reallocation. We define υ for these
pairs (k, n) as υ(k, n) = ((χkn − χkmin)/χ̂k), with χ̂k being
the total goodput obtained by user k after Step 6 (if χ̂k = 0,
υ(k, n) = χkn − χkmin is used), and the first option for user
k1 not achieving χkmin is to swap his subchannel n1 with user
k with maximum υ.

Algorithm 1 RLP

1: Initialize SK={1, . . . ,K}, SN ={1, . . . , N}, and BRLP

as rounded BLP, and do, ∀n,

βRLP(k, n) =

{
1, if k = argmaxk∈SK

βLP(k, n)
0, otherwise.

2: Set A={(k, n) | βRLP(k, n)=1,χkn ≥ χkmin}. Update
the initial assignment as

βRLP(k, n) =

{
1, if (k, n) ∈ A
0, otherwise.

3: Set S′
K = {k ∈ SK : ∃ n ∈ SN | (k, n) ∈ A} and S′′

K =
SK − S′

K . Set also S′
N = {n ∈ SN : ∃ k ∈ SK | (k, n) ∈

A} and S′′
N = SN − S′

N .
4: for each n′′ ∈ S′′

N do
5: βRLP(k

∗, n′′)=1 ⇔ k∗=arg max
k′′∈S′′

K

χk′′n′′ and βLP(k
∗,

n′′) �= 0
6: end for
7: Identify users not receiving χkmin : S′′′

K={k ∈ S′′
K | χk <

χkmin}
8: if ‖S′′

N‖ > 1 then
9: for all k ∈ S′′′

K do
10: Sn

k = S′′
N ∪ {n ∈ SN | βRLP(k, n) = 1}

11: while χk < χkmin and Sn
k �= ∅ do

12: Take n ∈ Sn
k randomly and remove n from Sn

k

13: Find r ∈ {n ∈ SN | βRLP(q, n) = 1, q ∈ S′′′
K},

n∗= argmaxr χkr, k∗=argq{q ∈ S′′′
K | βRLP(q,

n∗)= 1}
14: Swap subchannels n and n∗ between k and k∗:

βRLP(k, n)=0, βRLP(k, n
∗)=1; βRLP(k

∗,
n∗)=0, βRLP(k

∗, n) = 1
15: end while
16: Update S′′′

K

17: end for
18: end if
19: if S′′′

K �= ∅} then
20: for all k1 ∈ S′′′

Kdo
21: find all pairs (k, n), k �= k1, such that rounded

βLP(k, n)=1, and form Sn1

k1
={n ∈ SN | βRLP(k1,

n)=1}
22: Calculate υ for all (k, n) pairs obtained in step 21:

υ(k, n) = ((χkn − χkmin)/χ̂k), with χ̂k being the
total goodput obtained by user k after step 6.

23: Form υT =(υ1, . . . , υj , . . . , υN−‖Sn1
k1

‖), such that

υ1 ≥ · · · ≥ υN−‖Sn1
k1

‖
24: Initialize j = 1. Take n1 as the first element of Sn1

k1

25: while χk1
< χkmin and Sn1

k1
�= ∅ do

26: Swap n1 with the corresponding nj of the jth
element of υT , υj , between k1 and kj

27: if χk < χkmin then
28: Undo swap; j = j + 1
29: end if
30: Take next n1 ∈ Sn1

k1
if j = N − ‖Sn

k ‖+ 1
31: end while
32: end for
33: end if

C. RLP for Concatenated Subchannels

At this point, an interesting question emerges. Can the sub-
channel allocation obtained by the RLP algorithm be used in
CS transmission without significative performance loss with
respect to the optimum allocation of Section IV? This implies
that the number of subproblems to be solved in the GMC
step decreases from KL to K, therefore notably reducing the
processing time and achieving a very good tradeoff between
complexity and performance, as we show in Section VII. We
refer to this suboptimal approach as concatenated RLP (C-RLP)
algorithm.
The algorithm works as follows. First, the RLP algorithm is

used to obtain the subchannel allocation BRLP. Second, the
bit and power allocation {mklj , pklj} is calculated only for
the concatenation of those allocated subchannels resulting from
the RLP algorithm, i.e., considering BRLP, and not for the
total KL possible combinations of subchannels. In this step,
the MBPA in Section IV-A is used to obtain {mklj , pklj}. Note
that l represents the set of subchannels allocated to user k that
are transmitted concatenated; therefore, onlyK allocation pairs
{mklj , pklj} are calculated. Finally, the concatenation strategy
is used to transmit.



Algorithm 2 C-RLP

1: Run the RLP algorithm to obtain the subchannel allocation
BRLP.

2: for all k = 1, . . . ,K do
3: Nl = {n : βRLP(k, n) = 1}.
4: Obtain {mklj , pklj} by using the MBPA algorithm

corresponding to the subchannel concatenation of Nl.
5: end for
6: Transmit the bits using concatenation.

VI. IMPLEMENTATION: CENTRALIZED VERSUS

SEMIDISTRIBUTED CONFIGURATION

The methods developed earlier can be implemented in cen-
tralized or distributed mode, both endowed with a feedback
channel. Compared with the centralized approach assumed in
Section IV, in some situations, the distribution of the tasks
among users and the BS can be advantageous. In this case,
a two-step semidistributed approach may be suitable. This
scheme differs from the centralized scheme of Section IV in
the calculation of the goodput vectors {xk} (Step 2). Now,
each user k executes the corresponding GMC stage to obtain
xk. As a result, the K goodput vectors are obtained in parallel.
Each user’s device then sends the necessary information (xk

and bit and power allocation) to the BS through the feedback
channel. Next, the BS runs the subchannel allocation algorithm
and sends the resulting subchannel allocation to users through
the forward channel. Finally, the BS transmits the information
bits in the frames organized accordingly.
It can be verified whether the exchanged information (num-

ber of variables) is lower in the semidistributed or in the central-
ized scheme. The semidistributed configuration [see Fig. 2(a)]
requires for the concatenated scheme Q bit allocation and Q
power allocation variables per group of subchannel and per
user, and the goodput vector xk with L components, for each
user. Having K users and L possible groups of subchannels,
QKL power variables, QKL bit allocation variables, and KL
goodput vector components are received by the BS from the
K users. The BS informs the users their subchannel allocation
βkn, which are used for this KN β variables. This results
in a total of (2Q+ 1)KL+KN variables. Similarly, for the
semidistributed configuration with a nonconcatenated scheme,
2QKN + 2KN variables are required, given that the goodput
vector xk has now N components, and the bit and power
allocation variables are now determined for each of the N
subchannels individually.
For the centralized scheme [see Fig. 2(b)], the same number

of variables is exchanged independently of the selected trans-
mission scheme. The CSI requires QKN parameter values for
the channel gains {Hknj}, and 2QKN bit and power allocation
variables, and KN subchannel variables are required, giving a
total of 3QKN +KN .
The given results are summarized in Table I and then an-

alyzed considering the usual case that Q 	 1. For the con-
catenated case, the difference between the semidistributed and

Fig. 2. Signaling exchange (variables and CSI) between the BS and the
users depending on the configuration. (a) Semidistributed configuration with
a concatenated transmission scheme. For the nonconcatenated scheme, the
exchanged information is the same, replacing mk∗lj and pk∗lj by mk∗nj ,
and pk∗nj , respectively. (b) Centralized configuration with a concatenated or
nonconcatenated transmission scheme.

TABLE I
COMPARATIVE OF THE EXCHANGED NUMBER OF VARIABLES FOR THE

SEMIDISTRIBUTED AND CENTRALIZED CONFIGURATIONS

centralized schemes is (2L− 3N)QK. Recalling that L =
2N − 1, we observe that, in this case, the parallel computation
of power and bit allocation done by each user in the semidis-
tributed configuration likely leads to faster and more robust
systems at the expense of a larger information exchange. On
the other hand, for the nonconcatenated case, the difference
is (1−Q)KN ; therefore, the semidistributed scheme involves
less information exchange and can be preferable. If the feed-
back channel is nonerror free, we can hypothesize that the
centralized configuration would be preferred when the concate-
nation scheme is adopted since the lower number of exchanged
variables the lower number of expected errors are due to feed-
back channel unreliability. Analogously, the semidistributed
configuration would be preferred when the nonconcatenated
scheme is adopted.
Computational capabilities must be also taken into consid-

eration. While BSs are in general computationally powerful,
user’s units may have processing limitations. Therefore, the
semidistributed configuration could be only adopted if certain
computational capacity is guaranteed in the user end.
Note that, with respect to the presented resolution meth-

ods, performance is not altered whether the centralized or



the semidistributed approach is used, provided that feedback
channel is assumed to be error free.

VII. NUMERICAL RESULTS

Simulation results are presented to evaluate and compare the
performance of the algorithms for a fast varying channel, where
the channel gain coefficients Hknj vary randomly and inde-
pendently from one frame to the following frame. Each user
is assumed to experience an independent complex Gaussian
channel gain per subcarrier, and path loss is not considered.
The simulation scenario is based on the 1024 mode defined
in [13], which provides 768 data subcarriers and 48 subcarri-
ers per subchannel (N = 16 subchannels), with a bandwidth
of 10 937.5 Hz per subcarrier and OFDM symbol period of
102.9 μs. Convolutional coding with generator polynomials
[133, 171] is used with a code rate of 1/2, adaptive modula-
tion is performed by 4/16/64QAM (i.e., M = {0, 2, 4, 6}) as
per [13], [14], and the FSR expression, given by (3), is
[40] FSR = 0.879 exp(1166326ε4av − 77313ε3av + 2216ε2av −
28.14εav), for a frame length of 4096 bits. We consider
a noise spectral density of N0 = −80 dBm/Hz, with N0 =
σ2/B and B = 5.6 MHz, and the ratio of maximum re-
ceived power per subchannel to noise spectral density is
40 dB ·Hz. The minimum required goodput per user is 875 kb/s
(90 information bits per OFDM symbol). The average goodput
χ̄k given by (5) is updated at each frame with W = 50. For
all simulations, the results are obtained by averaging over
2000 random channel realizations.
We first assess the validity of the power constraint relaxation

by simulating the optimal solution, which is compared with the
C-SBPA solution. This optimal solution is obtained by solving
the goodput optimization problem when the total power PT is
distributed within all the available subcarriers according to the
MBPA algorithm, and the subcarriers are individually assigned
to the users. Instead of the scenario described earlier, we have
considered a simpler simulation scenario with four users and
48 subcarriers, with eight subcarriers per subchannel. We can
observe in Fig. 3(a) that the loss of C-SBPA with respect to
the optimal (labeled as OPT) is less than 0.5% in terms of
the maximum achievable goodput. In terms of fairness, it is
shown in Fig. 3(b) that, again, the loss of C-SBPA has very
little significance with respect to the optimum. To compare
the computational time, we have considered that the parallel
computation of the K × L problems may become unrealistic;
however, it is very reasonable to assume that K processors (at
either the BS or considering each user) compute sequentially
the corresponding L subproblems. This is labeled as parallel in
the figure, whereas the case that the K × L subproblems are
solved by the same entity is the “sequential” case. The results
presented in Fig. 3(c) reveals that, even in this simple example,
it takes above five times more to compute the optimal solution,
and the C-SBPA sequential case outperforms the optimal case.
Therefore, hereafter, we consider C-SBPA as the upper bound
for our simulation scenario.
Simulations show the difference between the concatenated

and nonconcatenated proposed methods in Figs. 4–6 for the
case of four users and the 1024 mode parameters. We see

Fig. 3. Comparison between optimal power allocation (no power constraint
relaxation) OPT and C-SBPA. (a) Maximum achievable goodput. (b) Fairness.
(c) Complexity as CPU time.

that, although the C-SBPA algorithm provides slightly better
results, as Figs. 4 and 5 show, this approach is intractable in
practice since the computational time required is much larger
even if it is compared with NC-SBPA, the most complex of
the other algorithms, as Fig. 6 illustrates. Given that C-SBPA
has been shown to be very close to the optimal in Fig. 3(a)
and (b), it is a valid benchmark for the other proposed algo-
rithms. Therefore, we focus on the nonconcatenated approaches



Fig. 4. Maximum averaged sum goodput received by users with C-SBPA,
NC-SBPA, NC-RLP, and C-RLP algorithms, with α ∈ [0, 1], for the case of
four users.

Fig. 5. FI with C-SBPA, NC-SBPA, NC-RLP, and C-RLP algorithms, with
α ∈ [0, 1], for the case of four users.

Fig. 6. Comparison in CPU time for the C-SBPA and NC-SBPA algorithms,
with α ∈ [0, 1], for the case of four users.

Fig. 7. Maximum averaged sum goodput received by users with NC-SBPA,
NC-RLP, and C-RLP algorithms, with α = 0, and BLRR scheduling.

Fig. 8. FI variation with the fairness parameter α for the NC-SBPA. NC-RLP,
C-RLP, and BLRR algorithms.

(NC-SBPA and NC-RLP) and the C-RLP scheme in the remain-
der of this section.
We now compare the algorithms that can be considered

computationally tractable, namely, NC-SBPA, NC-RLP, and
C-RLP through Figs. 7–9. Fig. 7 shows the performance in
terms of maximum average sum goodput transmitted by the BS
per OFDM symbol, which is calculated as the sum of the maxi-
mum goodput that can be received by users per OFDM symbol.
We display the results for α = 0 since we have observed a very
similar behavior for the remaining values of α. For comparison
purposes, results for a RR NCSs scheduling are also depicted.
In this RR scheduling, users in turn are randomly assigned
a subchannel until all subchannels are allocated, and for fair
comparison, the same bit loading algorithm of Section IV-A is
used. We denote it as bit loading RR (BLRR) scheduling. The
performance of the NC-SBPA, NC-RLP, and C-RLP algorithms
are very close, whereas the loss is as much as 8% for BLRR
(12 users). It can be also observed that, due to the exploitation
of multiuser diversity, the average sum goodput rises with the
number of users for the three proposed algorithms, whereas it
keeps approximately constant for BLRR.



Fig. 9. CPU time for the NC-SBPA, NC-RLP, and C-RLP algorithms and
BLRR scheduling, with α = 1.

Fairness control over the goodput achieved per user is as-
sessed in Fig. 8 through the well-known fairness index (FI),
which is defined as [53]

FI =

(∑K
k=1 χk

)2

K
∑K

k=1 χ
2
k

(21)

where χk represents the goodput for user k. The random
sequential variation of the channel coefficients from one frame
to the following frame causes the channels experienced by the
users to behave in a similar way in the long term in average,
and consequently, similar averaged goodput would be expected
without fairness control. For the proposed algorithms, the fair-
ness in the achieved goodput per user is decreasing with α,
where the fairest result corresponds to α = 0 and the lowest is
achieved for α = 1, whereas no fairness degree is accomplished
with RR scheduling, as Fig. 8 reveals for the case of seven users.
We see also that the difference among the proposed algorithms
is small in terms of fairness; in fact, C-RLP and NC-RLP
manifest almost exactly the same values. Similar comparisons
are obtained for different numbers of users.
Finally, the algorithms are compared in terms of computa-

tional complexity, as it is shown in Fig. 9, where the complexity
associated to the algorithms is represented by the average
runtime (CPU time) in a PentiumM 1.6-GHz computer. We
have computed the processing time considering, as previously,
that K processors (at either the BS or each user) compute
sequentially the correspondingN subproblems. The RLP-based
algorithms exhibit practically the same computational com-
plexity, and the difference is negligible with respect to BLRR.
Therefore, C-RLP and NC-RLP achieve higher goodput and
fairness control at the expense of a very small increase in CPU
time with respect to BLRR. The NC-SBPA algorithm shows
by far the worst computational time, which is the price to pay
for achieving the highest sum goodput. Although CPU time is
slightly larger, the C-RLP algorithm has the advantage that the
transmitter–receiver architecture is considerably simpler as less
encoder/decoder pairs are needed [see Fig. 1(a) and (b)].

In light of these results, we can conclude the following. The
SBPA algorithm provides the best results for both the concate-
nated and nonconcatenated strategies. However, the complexity
is significantly high, particularly for the C-SBPA algorithm.
The RLP algorithms provide very good results when compared
with the NC-SBPA algorithm, with much lower complexity
when the number of users is large (K > 7). We see that the
NC-RLP algorithm accomplishes a slightly better performance
than C-RLP in terms of goodput but at the expense of a more
complicated transmitter architecture.

VIII. CONCLUSION

In this paper, we have studied the optimization of the goodput
transmitted by a BS for the downlink in OFDMA systems
considering fairness control. This goodput optimization is for-
mulated as a cross-layer RA problem based on PHY- and
link-layer parameters. Two different transmission strategies are
considered for the encoding frame: CSs and assuming indepen-
dently encoded subchannels. We present a two-step RA method
based on decomposition theory that reduces the complexity of
the allocation problem and can be applied to both transmission
schemes (C-SBPA and NC-SBPA).
Together with the two-step method, our main contribution is

the development of the RLP algorithm. This algorithm provides
an implementable solution for the NC case very close to the
optimal. The RLP algorithm can be also applied to concatenated
transmission (C-RLP), providing a two-fold benefit. First, the
complexity of the algorithm is similar to the complexity of
the corresponding relaxed LP problem, thus much lower than
the complexity of the optimal solution. Second, the subchannel
allocation solution is an integer, which makes its implementa-
tion in real systems possible.
Simulations reveal the difference between the concatenated

and nonconcatenated approaches. We show that the proposed
algorithms largely outperform an improved RR scheduling.
Although not implementable in practice, the SBPA-based
algorithms provide close benchmarking for the RLP-based
algorithms since they constitute an upper bound of the perfor-
mance that can be achieved. Moreover, while the concatenated
approach C-RLP accomplishes a little inferior goodput with the
same computational time than NC-RLP, the transmitter archi-
tecture is simpler as it requires only one encoder. Therefore,
the C-RLP algorithm appears to be the only feasible choice
if we consider the complexity of having as many encoders as
subchannels required for NC-RLP. However, as in Section II,
these two extremes are idealizations of the actual situation
where most likely the number of subchannels per encoder
would be a reduced number, therefore allowing an NC-RLP
strategy to be implemented. Its performance will lie between
the two extremes analyzed in this paper.
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