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Abstract   
 
This paper presents a step-by-step tutorial to estimate causal effects in PISA 2012 by means of a 
nonparametric Bayesian modeling approach known as Bayesian Additive Regression Trees 
(BART), with an illustration of the causal impact of ICT on Spanish students' performance. The 
R code is explained in a way that can be easily applied to other similar studies. The application 
shows that, compared to more traditional methodologies, the BART approach is particularly 
useful when a high-dimensional set of confounding variables is considered as its results are not 
based on a sampling hypothesis. BART allows for the estimation of different interactive effects 
between the treatment variable and other covariates. BART models do not require the analyst to 
make explicit subjective decisions in which covariates must be included in the final models. This 
makes it an easy procedure to guide policy makers' decisions in different contexts. 
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Abstract

This paper presents a step-by-step tutorial to estimate causal effects in PISA 2012 by

means of a nonparametric Bayesian modeling approach known as Bayesian Additive

Regression Trees (BART), with an illustration of the causal impact of ICT on Spanish

students’ performance. The R code is explained in a way that can be easily applied to

other similar studies. The application shows that, compared to more traditional

methodologies, the BART approach is particularly useful when a high-dimensional set of

confounding variables is considered as its results are not based on a sampling hypothesis.

BART allows for the estimation of different interactive effects between the treatment

variable and other covariates. BART models do not require the analyst to make explicit

subjective decisions in which covariates must be included in the final models. This makes

it an easy procedure to guide policy makers’ decisions in different contexts.
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A Bayesian model to estimate causality in PISA scores: a

tutorial with application to ICT

Introduction

The evaluation of the causal impact of discrete decisions on students’ performance is

an issue of obvious interest for a variety of stakeholders, such as researchers, school

managers and/or politicians. However, developing an experimental design for this task is

not always possible due to a potential range of ethical and economic considerations.

Therefore, the use of observational studies may be regarded as an easy alternative for the

estimation of causal effects in education.

The Program for International Student Assessment (PISA) provides comprehensive

and internationally comparable information on students’ performance, as well as on family

and institutional factors. For this reason, it may be considered a fertile field in which to

analyze the causal effects of different educational variables in a non-experimental setting.

Nevertheless, this task necessarily requires the consideration of a large number of

confounding variables to render the treated and the control samples comparable. This is a

potential problem when considering traditional matching estimation techniques, such as

propensity score, given that the two samples cannot be observed for the same values of

confounding variables.

This paper presents a step-by-step tutorial to estimate causal effects in PISA 2012

by means of a nonparametric Bayesian modeling approach known as Bayesian Additive

Regression Trees (BART). Originally developed in Chipman et al. (2010), is a very flexible

nonparametric model also used in Leonti et al. (2010) for a similar causal analysis. This

method, which addresses mainly the optimal estimation of response surface, i.e. the PISA

score, allows for causal estimation in non-experimental works without being obliged to
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estimate two models, one to capture the potential endogeneity of the treatment variable

and another to specify students’ performance. Moreover, this flexible approach allows for

both the inclusion of a large number of covariates, as it does not require a sampling

hypothesis, and the estimation of a large number of interactive effects between the

treatment and other variables in the analysis. The fact that it does not require any

subjective decision by the analysist, except for deciding the response and the treated

variable, makes it an easy procedure for decision makers to implement in different contexts.

We illustrate the use of BART models for causal analysis with an application to the

estimation of the causal effect of information and communication technologies (ICT) on

performance of Spanish students in mathematics as measured in PISA 2012. This tutorial

extends from the collection of the database to the comparison of the estimated causal

effect obtained with BART models and those obtained with other more traditional

approaches, such as linear regression and matching.

The remainder of this paper is structured as follows. We explain the insight of

causal estimation with non-experimental data in Section 2. Sections 3 and 4 briefly

describe the estimation of causal effects using some traditional methodologies and the

BART approach, respectively. We present the PISA database and provide some guidelines

about how to download it in Section 5. Sections 6 and 7 show how to perform causal

analysis with some traditional methodologies and with the BART approach in R, with an

illustration of the estimated causal impact of ICT on Spanish students’ performance in

mathematics. We draw some conclusions in Section 8.

The causal estimation problem in brief

Assume that N individuals participate in the PISA test. For the ith individual,

i = 1, . . . , N , let Yi be the score in the PISA test or a proxy value for this, as for example

a draw from the posterior distribution of the PISA test (OECD, 2009). Let z be a dummy
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variable that indicates the state of use of computers at school, the treatment variable

where z = 1 if a tabletop, laptop or fixed computer exists and is used in the school and

z = 0 otherwise. In order to compute the causal effect of z on the response variable Y , we

should know, in principle, the potential results of the value of the test for the same

individual under the use, Yi(1), and not under the use of computers, Yi(0). However, this

is impossible because only one of these can be observed, while the other is unobservable

and it is designated as the counterfactual result that has to be estimated with a regression

model like the BART model described below. Such a model is used mainly in the

estimation of response surfaces which is the main problem in the estimation of causal

effects. In this case, it is the response Y to a hypothetical treatment z. Once the potential

outcomes have been estimated the average total effect is defined as

ATE = E(Y (1)− Y (0)), where the expected value is computed with respect to the

probability distribution of Y for all the individuals, observed and potential outcomes. The

causal effect for each individual is of no interest. Instead we are interested on the causal

effect for a given set of individuals; for example those who have received the treatment

E(Y (1)− Y (0)|z = 1), that is, the set of individuals who have used a computer in the

school. In this case, the expected value is estimated with respect to the conditional

distribution of Y |z = 1. Even more generally, if we have a set of covariates X, we can

estimate the causal effect conditional on them, that is on X = x. In observational studies,

such as the PISA test, potential results are not typically independent of the treatment.

This is known in the literature as the endogeneity problem. In the case of the PISA test,

it is more likely that a student is assigned to a school with computers when his/her family

has a high socioeconomic status, and, therefore, it is the family environment (and not the

use of computers) that determines a favorable score on the PISA test compared to

students with low socioeconomic status. In order to assume that there exists independence

in the treatment, it is necessary to include in the analysis all the possible confounding
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factors represented, in this case, by X. More specifically, the strong ignorability

hypothesis regarding the allocation of treatment states that Y is conditionally

independent of z given X and that the probability of treatment allocation is always

positive regardless of the specific value of X. In order to achieve this, it is necessary to

include in X all the potential confounding factors; because of that, matrix X typically has

a very high dimensionality and is formed from different types of covariates: qualitative,

quantitative and sortable variables. This situation complicates the analysis, as it requires

the use of sophisticated regression models in the estimation of Y . Furthermore,

considering many covariates makes it impossible for some classical approaches, such as,

the propensity score, to be immediately applied because treated and not-treated

individuals cannot all be observed for the same value of X = x, and, thus, the estimation

of the score assigned to each individual becomes difficult. This fact obliges the analyst to

consider a set of variables of lower dimension, in many cases putting the strong

ignorability assumption in doubt. Finally, it is well known that the specification of

regression models with many variables makes it impossible to search for all the possible

models with all types of interactions. Again, this forces the analyst to consider only

interactive effects among first- or second-order covariates or to use algorithms such as the

forward or backward variable selection which may provide only locally optimal models.

Unfortunately, there are no any theoretical ways to assess whether a local or global

optimum has been reached, unless all possible models are fitted.

Due to these drawbacks in the use of classical devices as well as others that will be

explained later, BART models not only free us from model specification, because they are

nonparametric models estimated by observations, but also allow us to estimate the

response and, thus, the counterfactual result with satisfactory precision. This model

belongs to the class of nonparametric Bayesian models that allow us to perform

conditional inference from the observed data about the causal effect, without considering
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resampling arguments that are necessary to interpret classical inference.

Traditional approaches for estimating causal effects.

Although a detailed discussion of the different methodologies to estimate causal

effects is beyond the scope of this paper, linear regression models are, perhaps, the

simplest and most common method of evaluating alternative explanations for a given

outcome of interest. If we are interested in the estimation of causal effects, the basic

strategy should be to avoid the potential omitted variable bias by including all the

possible confounding factors that could affect both the probability of treatment and the

response variable. The standard linear regression model takes the following form:

Y = α+ δz + βX + ε, (1)

where X is the design matrix of confounding factors supposed to render z uncorrelated

with the error term ε.

Given that in the PISA database, individuals are weighted according to their

importance in the sample and under the key assumption that covariates X in (1) contains

all the relevant information to explain z and Y , we can consider the weighted least squares

estimate of δ as an unbiased estimated of ATE.

However, the regression approach can be subject to at least two important pitfalls;

see Morgan & Winship (2014). First, it rests on the assumption that the causal effect is

weighted over students according to the PISA weights. In this case, the estimated causal

effect represents a conditional variance weighted estimate of causal effects of individuals,

and the causal estimation is unbiased and consistent only with this particularly weighted

average that is not usually the parameter of interest. The second problem with the linear

regression approach is that the strong ignorability condition does not necessarily imply

that treatment is uncorrelated with the error term net of adjustment for X, as this error

term depends on the specification of covariates in X. Therefore, in order to interpret the
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estimation of a regression strategy as an actual causal effect, we require the full inclusion

in X of all covariates.

In contrast to this approach, matching estimation is a method of strategic

subsampling across treated and control cases in such a way that the researcher selects a

nontreated control case for each treated case based on the set of covariates X and

nonmatched control cases are discarded. For this comparison, an estimation of the

probability of treatment it is typically needed, i.e. propensity score. Subsequently, the

average differences in the observed responses for the treated and matched cases are

considered as the treatment effect estimate for individuals given the treatment. Matching

estimators can be seen in many cases as weighted regressions, where the weights are

functions of the estimated propensity scores (PS); see Imbens (2004).

Here, some of the most common problems with PS will be considered along with

recent improvements that partially mitigate them. Such problems are absent in the BART

model approach, beginning with the unconditional interpretation of the results; that is, we

do not need to resort to hypothetical resampling schemes in order to interpret the

significance of the estimated ATE effect. The next section contains a description of this

approach.

The BART model: likelihood and priors

Let D be the available data that is, the set y,z and X observed for the N students

and π(·|·) be the probability distribution of the left argument conditional on the right one.

The aim of the analysis is to estimate the posterior probability distribution of the causal

effect, π(ATE|D), or even more some conditional distribution to a suitable set of

covariates, π(ATE|D, X = x). In order to do this, we use a nonparametric regression

model. The novelty in this type of causal inference analysis is the use of a Bayesian

regression model known as BART. As in all Bayesian models, we need a likelihood
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function defined for a set of parameters, θ ∈ Θ /∈ <, and a prior distribution π(θ), θ ∈ Θ.

The likelihood function, L(y;X, z, θ), is obtained from the following additive regression

model, where the conditional mean of Y is determined from the sum of estimated models

for the response variable:

Y =
m∑

[j=1]

g(x, z;Tj ,Mj) + ε, ε ∼ Normal(0, σ2), (2)

where g(x, z;Tj ,Mj) is a regression binary tree (or classification tree if Y is a

categorical variable) with its splitting variables and splitting points represented by Tj and

their terminal nodes denoted by Mj and computed with respect to the values X, z that

belong to the individual whose response is Y . Essentially, g is a function that gives to

each individual i its expected value in the jth tree, µij ∈Mj . The final score estimated for

the ith individual would correspond to the average of the m scores. It is well known that,

in order to minimize the forecast error, classification trees tend to grow disproportionately

until generating overfitting in the response and that in general, an estimator obtained from

many simple trees is more efficient than one obtained from a single big tree. Examples of

these types of models are Boosting (Friedman, 2001) and Random Forest (Breiman, 2001).

In order to achieve this, it is necessary to use a regularization prior on the size of the tree

π(T,M) specified in Chipman et al. (2010). This regularization prior precludes trees from

growing too much and makes each of the µij contribute in a marginal way to the

estimation of the response function. The posterior distribution of θ is estimated in a

computationally feasible way by considering a conjugate prior on σ2, that is, an

inverse-gamma that induces a conditional distribution of σ2, π(σ2|T1, . . . , Tm,M1, . . . ,Mm)

that can be expressed in an analytical form, which is again an inverse-gamma. As

Chipman et al. (2010) shows, the hyper parameters of all prior distributions are specified

in relation to the observed sample. It produces priors that are dependent on the sample.

This procedure, which is not very orthodox from a Bayesian point of view, is part of the
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approaches known as empirical Bayes methods, which are very popular and have been

enhanced from a theoretical point of view (Petrone et al., 2014). As explained in Hill

(2011), results for this type of analysis are robust with respect to prior modifications.

Using the priors specified above it is possible to simulate samples of the posterior

distribution with a non-excessive computational effort using Markov Chain Monte Carlo

(MCMC) and more specifically, using Metropolis Hastings within Gibbs. This means that

the simulation algorithm alternate Gibbs steps (like the one that is necessary to simulate

σ2) and Metropolis Hastings steps when the conditional distributions for the remaining

parameters are not available in a closed form expression. In particular, the distribution

used to update the values of Tj and Mj consists of adding/dropping a terminal node and

changing a split variable or a split point with some probabilities specified in Chipman et

al. (2010). Once the posterior distribution of θ = (T1, . . . , Tm,M1, . . . ,Mm, σ
2) has been

obtained, the predictive distribution for an individual score in PISA test is:

m(Yi|xi, zi) =

∫
θ∈Θ

L(Yi; θ)dπ(θ|D) (3)

which is practically estimated generating values of Yi, using the normal distribution

with the mean and variance for each value in the chain MCMC and the regression tress

computed in xi and zi. In particular, we use m = 500 trees and 10000 MCMC steps after

an initial burn-in of 1000 steps. In this way, the distribution for each individual and his

corresponding counterfactual response can be estimated simply by estimating the response

in zi = 1 if the student does not have a computer in his/her school and in zi = 0

otherwise. Once we obtain the predictive posterior distributions, we consider the

difference between the factual and counterfactual responses to obtain the distribution of

the individual causal effect. Finally, we estimate π(ATE|D) from the set of the differences

for all the individuals. Then, the estimation of the conditional causal effect is required,

which is obtained simply by considering the difference for the individuals that fulfill the
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condition X = x.

In what follows, we illustrate how to estimate the causal effect of ICT on the

performance of Spanish students in mathematics using the PISA database. We compare

this procedure to other traditional alternative procedures used to perform causal analysis,

such as the linear regression and propensity score models.

The PISA database

The PISA database contains information on the knowledge and abilities of students

who are close to the end of their compulsory education. It is used mainly to determine

how well these students are prepared for life after compulsory education instead of

focusing on the evaluation of their curricular knowledge. The PISA surveys take place

every three years. The last one took place in 2012, and the database can be downloaded

from the webpage http://pisa2012.acer.edu.au/downloads.php. Here, we focus on

the performance of Spanish students in mathematics. Observations must be taken as an

outcome from a weighted survey from the total population of students in such a way that

each observation has a relative weight according to its importance in the total population.

This weight is included in the analysis that follows.

In this section, we provide a guide to creating a R dataframe to be used for our

analysis. Raw data were first transformed into SPSS format files, as explained in

http://edutechwiki.unige.ch/en/PISA#Setting_up_SPSS_files, and then read in R

by means of read.spss(). The final dat dataframe contains:

Y the response variable, in this case is the first plausible value for math score PV1MATH.

Note that Sample variance is equal to 7697.9 while imputation variance is 0.11,

which indicates, in line with previous works, that most of the uncertainty in the

population estimation corresponds to sample variability rather than the fact of

considering only one of the five plausible values. Since estimated results are almost

http://pisa2012.acer.edu.au/downloads.php
http://edutechwiki.unige.ch/en/PISA#Setting_up_SPSS_files
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identical, regardless of the plausible variable considered, all results shown in the

remainder of this work are based only on the first plausible value.

z the treatment variable, in this case, the set IC02Q01, IC02Q02, IC02Q03 is used to

define the use of IT at schools, which is a one-dimensional variable, as explained

below;

X possible covariates that act as confoudings factors for students v.student.conf and

their schools v.school.conf. In this analysis, we included:

• Home information: ESCS: index of economic, social and cultural status;

FAMSTRUC: family structure; HEDRES: educational resources at home; HISCED:

educational level of parents; HISEI: highest occupational level of parents;

HOMEPOS: possessions at home; IMMIG: immigrant status; WEALTH: wealth;

TIMEINT: total time using computers (in minutes).

• School information: CLSIZE: size of the class; SCMATEDU: quality of the

educational resources in the school; STRATIO: students-teachers ratio; SMRATIO:

math students-teachers ratio; SCHLTYPE: indicator of school ownership;

RATCMP15: the index of computer availability.

More information about the different variables can be obtained from the PISA

codebooks at http://pisa2012.acer.edu.au/downloads.php.

> rm(list=ls())

> #############################

> # Name of variables to be extracted

> v.resp=c("PV1MATH") # Response Variable

> v.treat=c("IC02Q01","IC02Q02","IC02Q03") # Treatment variable(s)

> # Student Confoundings

http://pisa2012.acer.edu.au/downloads.php
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> v.student.conf=c("IMMIG", "HEDRES", "WEALTH", "ESCS","FAMSTRUC",

+ "HISCED","HISEI","HOMEPOS", "TIMEINT")

> # School Confoundings

> v.school.conf=c("CLSIZE","SCMATEDU","STRATIO",

+ "SMRATIO","SCHLTYPE","RATCMP15")

Here, we read the SPSS files, created according to

http://edutechwiki.unige.ch/en/PISA#Setting_up_SPSS_files and merge

everything into one unique data frame dat:

> library(intsvy)

> dat <- pisa.select.merge(folder="mySAVfolder/",

+ school.file="INT_SCQ12_DEC03.SAV",

+ student.file="INT_STU12_DEC03.SAV",

+ parent.file="INT_PAQ12_DEC03.SAV",

+ student= c(v.resp,v.treat,v.student.conf),

+ parent =c(),

+ school = v.school.conf,

+ countries = "ESP")

> dim(dat)

[1] 25313 155

We have 25313 students and 155 variables, which is not a random sample but,

rather, a weighted sample with weights in the w vector:

> w=dat$W_FSTUWT

Such a vector enters in the computation of all regressions needed for classical

approaches and in approximating the posterior distribution of the causal effect.

http://edutechwiki.unige.ch/en/PISA#Setting_up_SPSS_files
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Consider the database with only the variables that we need and a subset of only

complete cases that can be used to build the prediction model for the response. We end

up with 16869 students and 19 variables:

> dat=dat[c(v.resp,v.treat,v.student.conf,v.school.conf)]

> names(dat)[names(dat)==v.resp]="y"

> w=w[complete.cases(dat)]

> w=w/sum(w)

> nw=function(w) w/sum(w)

> dat=dat[complete.cases(dat),] # Remove NAs

> dim(dat)

[1] 16869 19

Let’s define the treatment status as treated if one of the following is used at school:

desktop, laptop computer or tablet,

> z=factor(0+apply(dat[v.treat],1,function(xx) any(xx=="Yes, and I use it")))

> dat$z=z

> dat=dat[!(names(dat)%in%v.treat)]

> table(z)

z

0 1

4505 12364

Therefore, 12364 out of the 16869 students used ITC. This is a quiet unbalanced

sample that poses problems in classical approaches.

Once we collected the database, we were able to obtain some descriptive statistics of

the variables under analysis by the following command:
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> by(dat, dat$z,summary)

dat$z: 0

y IMMIG HEDRES

Min. :186.4 Native :4089 Min. :-3.93000

1st Qu.:442.8 Second-Generation: 44 1st Qu.:-0.69000

Median :503.6 First-Generation : 372 Median : 0.04000

Mean :502.5 Mean : 0.02507

3rd Qu.:565.0 3rd Qu.: 1.12000

Max. :794.7 Max. : 1.12000

WEALTH ESCS

Min. :-2.890000 Min. :-2.88000

1st Qu.:-0.590000 1st Qu.:-0.82000

Median :-0.110000 Median :-0.07000

Mean : 0.004444 Mean :-0.05014

3rd Qu.: 0.450000 3rd Qu.: 0.81000

Max. : 2.910000 Max. : 2.55000

FAMSTRUC HISCED

Single parent (natural or otherwise): 466 None : 32

Two parents (natural or otherwise) :4013 ISCED 1 : 215

Other : 26 ISCED 2 : 650

ISCED 3B, C : 71

ISCED 3A, ISCED 4:1039

ISCED 5B : 666

ISCED 5A, 6 :1832
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HISEI HOMEPOS TIMEINT CLSIZE

Min. :11.01 Min. :-3.7400 Min. : 0.0 Min. :13.0

1st Qu.:27.91 1st Qu.:-0.3300 1st Qu.: 69.0 1st Qu.:23.0

Median :44.94 Median : 0.1700 Median :122.0 Median :23.0

Mean :49.12 Mean : 0.1333 Mean :175.6 Mean :25.2

3rd Qu.:68.88 3rd Qu.: 0.6200 3rd Qu.:214.0 3rd Qu.:28.0

Max. :88.96 Max. : 3.7600 Max. :823.0 Max. :48.0

SCMATEDU STRATIO SMRATIO

Min. :-3.59200 Min. : 1.111 Min. : 2.0

1st Qu.:-0.52140 1st Qu.: 8.682 1st Qu.: 65.0

Median : 0.01800 Median : 10.785 Median : 85.5

Mean : 0.04361 Mean : 12.034 Mean : 106.0

3rd Qu.: 0.46060 3rd Qu.: 14.681 3rd Qu.: 128.5

Max. : 1.97600 Max. :139.000 Max. :1820.0

SCHLTYPE RATCMP15 z

Private Independent : 272 Min. :0.0000 0:4505

Private government-dependent:1286 1st Qu.:0.3760 1: 0

Public :2947 Median :0.5360

Mean :0.6292

3rd Qu.:0.7890

Max. :6.2860

------------------------------------------------------------

dat$z: 1
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y IMMIG HEDRES WEALTH

Min. :150.6 Native :11255 Min. :-3.9300 Min. :-5.3200

1st Qu.:444.2 Second-Generation: 122 1st Qu.:-0.6900 1st Qu.:-0.5900

Median :504.1 First-Generation : 987 Median : 0.0400 Median :-0.1100

Mean :502.2 Mean : 0.1401 Mean : 0.0296

3rd Qu.:561.8 3rd Qu.: 1.1200 3rd Qu.: 0.4500

Max. :811.8 Max. : 1.1200 Max. : 2.9100

ESCS FAMSTRUC

Min. :-3.1200 Single parent (natural or otherwise): 1152

1st Qu.:-0.8300 Two parents (natural or otherwise) :11134

Median :-0.1400 Other : 78

Mean :-0.1056

3rd Qu.: 0.6900

Max. : 2.6000

HISCED HISEI HOMEPOS TIMEINT

None : 114 Min. :11.01 Min. :-5.3300 Min. : 0.0

ISCED 1 : 586 1st Qu.:27.91 1st Qu.:-0.3300 1st Qu.: 90.0

ISCED 2 :1820 Median :43.33 Median : 0.2000 Median :148.0

ISCED 3B, C : 233 Mean :47.48 Mean : 0.1739 Mean :194.2

ISCED 3A, ISCED 4:3184 3rd Qu.:67.04 3rd Qu.: 0.6200 3rd Qu.:246.0

ISCED 5B :2033 Max. :88.96 Max. : 3.7600 Max. :823.0

ISCED 5A, 6 :4394

CLSIZE SCMATEDU STRATIO SMRATIO

Min. :13.00 Min. :-3.5920 Min. : 1.111 Min. : 2.00
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1st Qu.:23.00 1st Qu.:-0.5214 1st Qu.: 8.250 1st Qu.: 62.57

Median :23.00 Median : 0.0180 Median : 10.538 Median : 83.27

Mean :25.02 Mean : 0.1075 Mean : 11.736 Mean : 105.27

3rd Qu.:28.00 3rd Qu.: 0.7524 3rd Qu.: 14.649 3rd Qu.: 121.78

Max. :48.00 Max. : 1.9760 Max. :139.000 Max. :1820.00

SCHLTYPE RATCMP15 z

Private Independent : 558 Min. :0.0000 0: 0

Private government-dependent:3972 1st Qu.:0.4440 1:12364

Public :7834 Median :0.6000

Mean :0.7451

3rd Qu.:0.9330

Max. :8.0000

A glance at the above statistics makes clear that the two samples are different. For

example, students with z=1 show on average higher values of HEDRES, WEALTH or

HOMEPOS than students with z=0. This suggests the necessity to control for the

influence of all these variables in a causal analysis.

The following histograms illustrate the conditional empirical distribution of the

PISA scores (the first plausible value for math), y, conditionally on z. We can see that,

marginal to all other student characteristics, these conditional distributions are very

similar. However, this is due to the presence of confounding factors that hide the effect of

ICT at school on PISA scores.

> library(ggplot2)
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> library(Hmisc)

> ggplot(dat, aes(y,weights=w,fill=z))+geom_histogram()
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Some standard causal estimators in R

The well-known glm() command can be used to estimate a simple linear regression

or, depending on the nature of the response variable, a logistic regression, just by changing

the family() argument. What matters here is the that sample weights are automatically

included in the calculus using the argument weight, which is general to all regression

approaches, as illustrated below:

> linear.reg=glm(y~.,data=data.frame(y=dat$y,X),weight=w)

> summary(linear.reg)
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Call:

glm(formula = y ~ ., data = data.frame(y = dat$y, X), weights = w)

Deviance Residuals:

Min 1Q Median 3Q Max

-5.6991 -0.2480 0.0316 0.2901 3.7963

Coefficients:

Estimate Std. Error t value

(Intercept) -9.284e+02 4.783e+02 -1.941

IMMIGSecond-Generation -2.239e+01 4.849e+00 -4.616

IMMIGFirst-Generation -3.033e+01 2.191e+00 -13.844

HEDRES -1.194e+01 9.749e-01 -12.245

WEALTH -4.570e+01 1.679e+00 -27.220

ESCS -5.393e+02 1.887e+02 -2.857

FAMSTRUCTwo parents (natural or otherwise) -4.272e-01 1.948e+00 -0.219

FAMSTRUCOther -3.724e+01 8.307e+00 -4.484

HISCEDISCED 1 1.787e+02 5.179e+01 3.450

HISCEDISCED 2 4.052e+02 1.286e+02 3.151

HISCEDISCED 3B, C 5.444e+02 1.800e+02 3.024

HISCEDISCED 3A, ISCED 4 7.109e+02 2.313e+02 3.073

HISCEDISCED 5B 7.727e+02 2.570e+02 3.006

HISCEDISCED 5A, 6 1.044e+03 3.469e+02 3.008

HISEI 1.249e+01 4.145e+00 3.014

HOMEPOS 2.525e+02 6.756e+01 3.738

TIMEINT -4.976e-02 3.821e-03 -13.025
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CLSIZE -1.143e-01 1.099e-01 -1.041

SCMATEDU 2.231e+00 6.660e-01 3.351

STRATIO -3.754e-02 7.190e-02 -0.522

SMRATIO 1.853e-02 4.904e-03 3.778

SCHLTYPEPrivate government-dependent -4.062e+00 2.586e+00 -1.571

SCHLTYPEPublic -1.848e+01 2.486e+00 -7.434

RATCMP15 -1.457e+00 1.290e+00 -1.130

z1 3.970e+00 1.305e+00 3.043

Pr(>|t|)

(Intercept) 0.052252 .

IMMIGSecond-Generation 3.94e-06 ***

IMMIGFirst-Generation < 2e-16 ***

HEDRES < 2e-16 ***

WEALTH < 2e-16 ***

ESCS 0.004278 **

FAMSTRUCTwo parents (natural or otherwise) 0.826442

FAMSTRUCOther 7.39e-06 ***

HISCEDISCED 1 0.000563 ***

HISCEDISCED 2 0.001632 **

HISCEDISCED 3B, C 0.002495 **

HISCEDISCED 3A, ISCED 4 0.002120 **

HISCEDISCED 5B 0.002650 **

HISCEDISCED 5A, 6 0.002634 **

HISEI 0.002584 **

HOMEPOS 0.000186 ***

TIMEINT < 2e-16 ***
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CLSIZE 0.298084

SCMATEDU 0.000808 ***

STRATIO 0.601617

SMRATIO 0.000159 ***

SCHLTYPEPrivate government-dependent 0.116285

SCHLTYPEPublic 1.11e-13 ***

RATCMP15 0.258652

z1 0.002350 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for gaussian family taken to be 0.3283823)

Null deviance: 7126.5 on 16868 degrees of freedom

Residual deviance: 5531.3 on 16844 degrees of freedom

AIC: 204115

Number of Fisher Scoring iterations: 2

> par(mfrow=c(2,2))

> plot(linear.reg)

Thus, a simple estimation of the causal effect of z on student performance is given

by the estimated coefficient 3.97, which is significant at some conventional values. The

coefficient of z = 1 could be interpreted as causal effect if all relevant covariates were

introduced in the model with all their interactions. However, this is extremely difficult,
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and, as discussed in Section 3, a matching estimator can be used to overcome this pitfall

of the linear regression technique, when used to conduct a causal analysis.

A typical approach consists of estimating the propensity score using logistic

regression before perfoming the matching. These two steps can be easily run in R by

means of the package Matching. In our example, we could use the commands:

> library(Matching)

> score=glm(z~.,data=X,weight=w,family=quasibinomial())

> summary(score)

Call:

glm(formula = z ~ ., family = quasibinomial(), data = X, weights = w)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.041383 -0.004815 0.002989 0.004998 0.021682

Coefficients:

Estimate Std. Error t value

(Intercept) 1.4242258 14.6649492 0.097

IMMIGSecond-Generation -0.0252920 0.1454695 -0.174

IMMIGFirst-Generation -0.0424445 0.0661806 -0.641

HEDRES 0.2755387 0.0301859 9.128

WEALTH 0.2110849 0.0522649 4.039

ESCS 0.1257630 5.7875723 0.022

FAMSTRUCTwo parents (natural or otherwise) 0.1367852 0.0581225 2.353

FAMSTRUCOther 0.3405603 0.2670018 1.275
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HISCEDISCED 1 -0.7672763 1.5897365 -0.483

HISCEDISCED 2 -0.7125142 3.9435331 -0.181

HISCEDISCED 3B, C -0.5595017 5.5187300 -0.101

HISCEDISCED 3A, ISCED 4 -0.7720550 7.0923226 -0.109

HISCEDISCED 5B -0.7532584 7.8815151 -0.096

HISCEDISCED 5A, 6 -0.9838771 10.6372991 -0.092

HISEI -0.0022556 0.1270942 -0.018

HOMEPOS -0.2817867 2.0717910 -0.136

TIMEINT 0.0011462 0.0001246 9.197

CLSIZE -0.0073291 0.0033697 -2.175

SCMATEDU 0.0313542 0.0205633 1.525

STRATIO -0.0043420 0.0020363 -2.132

SMRATIO 0.0005761 0.0001740 3.310

SCHLTYPEPrivate government-dependent 0.3494151 0.0772320 4.524

SCHLTYPEPublic 0.0846907 0.0729966 1.160

RATCMP15 0.3450919 0.0475195 7.262

Pr(>|t|)

(Intercept) 0.922634

IMMIGSecond-Generation 0.861974

IMMIGFirst-Generation 0.521309

HEDRES < 2e-16 ***

WEALTH 5.40e-05 ***

ESCS 0.982664

FAMSTRUCTwo parents (natural or otherwise) 0.018614 *

FAMSTRUCOther 0.202151

HISCEDISCED 1 0.629355
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HISCEDISCED 2 0.856622

HISCEDISCED 3B, C 0.919248

HISCEDISCED 3A, ISCED 4 0.913317

HISCEDISCED 5B 0.923861

HISCEDISCED 5A, 6 0.926307

HISEI 0.985840

HOMEPOS 0.891814

TIMEINT < 2e-16 ***

CLSIZE 0.029644 *

SCMATEDU 0.127337

STRATIO 0.032995 *

SMRATIO 0.000934 ***

SCHLTYPEPrivate government-dependent 6.10e-06 ***

SCHLTYPEPublic 0.245984

RATCMP15 3.98e-13 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for quasibinomial family taken to be 5.95755e-05)

Null deviance: 1.1678 on 16868 degrees of freedom

Residual deviance: 1.1438 on 16845 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4
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> #match=Match(Y=dat$y, Tr=dat$z==1, X=score$fitted.values,estimand="ATE",weights=nrow(dat)*w)

> #save(match,file="match.RData")

> load(file="match.RData")

> summary(match)

Estimate... 2.0546

AI SE...... 1.9683

T-stat..... 1.0438

p.val...... 0.29658

Original number of observations.............. 16869

Original number of treated obs (weighted).... 12303.74

Original number of treated obs............... 12364

Matched number of observations............... 16869

Matched number of observations (unweighted). 207697

Before seeing the results, it is interesting to check whether we have achieved a

satisfactory balance between the treatment and control groups. Generally, one requests

balance statistics on an ad-hoc selection of higher order terms and interactions that were

included in the propensity score matching Dehejia & Wahba (1999). However, given the

large number of covariates in our example, we refer to the MatchBalance() function using

as an example the school type variable, which is an important confounding effect that

should be taken into account.

> MatchBalance((z==1)~SCHLTYPE,data=X, match.out=match,

+ nboots=500,weights=nrow(dat)*w)

***** (V1) SCHLTYPEPrivate government-dependent *****

Before Matching After Matching
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mean treatment........ 0.255 0.24135

mean control.......... 0.20446 0.249

std mean diff......... 11.595 -1.7864

mean raw eQQ diff..... 0.035738 0.023804

med raw eQQ diff..... 0 0

max raw eQQ diff..... 1 1

mean eCDF diff........ 0.017897 0.011902

med eCDF diff........ 0.017897 0.011902

max eCDF diff........ 0.035795 0.023804

var ratio (Tr/Co)..... 1.1678 0.97917

T-test p-value........ 1.6525e-12 0.079496

***** (V2) SCHLTYPEPublic *****

Before Matching After Matching

mean treatment........ 0.68136 0.69065

mean control.......... 0.71976 0.6796

std mean diff......... -8.2409 2.3898

mean raw eQQ diff..... 0.020644 0.032316

med raw eQQ diff..... 0 0

max raw eQQ diff..... 1 1
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mean eCDF diff........ 0.010274 0.016158

med eCDF diff........ 0.010274 0.016158

max eCDF diff........ 0.020548 0.032316

var ratio (Tr/Co)..... 1.0762 0.98122

T-test p-value........ 1.0635e-06 0.022685

Before Matching Minimum p.value: 1.6525e-12

Variable Name(s): SCHLTYPEPrivate government-dependent Number(s): 1

After Matching Minimum p.value: 0.022685

Variable Name(s): SCHLTYPEPublic Number(s): 2

The school type is a very important confounding factor, and we can see that it

cannot be matched with this approach, as it is significantly different between the treated

and control groups (p < 0.05).

Recently, however, more sophisticated procedures have been used to find an optimal

balance for the data; see the examples regarding the use of the GenMatch() function in

Sekhon (2008).

> #gmatch=GenMatch(Tr=dat$z==1, X=score$fitted.values,estimand="ATE",weights=nrow(dat)*w)

> #save(gmatch,file="gmatch.Rdata")

> load("gmatch.Rdata")

> match2=Match(Y=dat$y, Tr=dat$z==1, X=score$fitted.values,

+ estimand="ATE",weights=nrow(dat)*w,Weight.matrix=gmatch)

> MatchBalance((z==1)~SCHLTYPE,data=X, match.out=match2,
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+ nboots=500,weights=nrow(dat)*w)

***** (V1) SCHLTYPEPrivate government-dependent *****

Before Matching After Matching

mean treatment........ 0.255 0.24175

mean control.......... 0.20446 0.24836

std mean diff......... 11.595 -1.5428

mean raw eQQ diff..... 0.035738 0.023657

med raw eQQ diff..... 0 0

max raw eQQ diff..... 1 1

mean eCDF diff........ 0.017897 0.011829

med eCDF diff........ 0.017897 0.011829

max eCDF diff........ 0.035795 0.023657

var ratio (Tr/Co)..... 1.1678 0.98196

T-test p-value........ 1.6525e-12 0.12948

***** (V2) SCHLTYPEPublic *****

Before Matching After Matching

mean treatment........ 0.68136 0.69014

mean control.......... 0.71976 0.68037

std mean diff......... -8.2409 2.1133

mean raw eQQ diff..... 0.020644 0.032265
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med raw eQQ diff..... 0 0

max raw eQQ diff..... 1 1

mean eCDF diff........ 0.010274 0.016132

med eCDF diff........ 0.010274 0.016132

max eCDF diff........ 0.020548 0.032265

var ratio (Tr/Co)..... 1.0762 0.98335

T-test p-value........ 1.0635e-06 0.044007

Before Matching Minimum p.value: 1.6525e-12

Variable Name(s): SCHLTYPEPrivate government-dependent Number(s): 1

After Matching Minimum p.value: 0.044007

Variable Name(s): SCHLTYPEPublic Number(s): 2

We can see that the school type is still not matched between cases and controls

(p < 0.05, p = 0.044). If such an important variable is not matched, then the interaction

of this with the parents’ education-level variable HISCED surely is not matched.

Therefore, in general, matching estimation provides a more reliable estimation of

causal effects than simple regression models as the former uses weights that make the

treatment and control groups comparable. However, when there are a large number or

regressors, as in our case, strong hypothesis about the covariates to be included in the

model is required in order to obtain a balance match between the treatment and control

groups. Moreover, consideration of all possible type interactions between the treatment

indicator and other covariates of the model can be impractical in many cases. Again, this
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forces the analyst to consider only interactive effects among first- or second-order

covariates or to use algorithms such as forward or backward variable selection that provide

locally optimal models. Unfortunately, there is no theoretical justification to guide us in

assessing the scope of a local instead of a global optimum.

How to estimate causal effects with BART

In order to estimate the prediction model and the prediction for the counterfactuals

using BART, we start by defining the prediction matrix X with observed z along with that

of counterfactuals Xc. The train data are X and dat$y, while the prediction is made for

Xc, which is the same set of covariates, except for the switched treatment status. We do

not care to define the possible interactions between covariates, as these will be estimated

in the BART model. All BART tuning parameters are left at their default values.

> Xc=X=dat[,-1] # The first column is the response

> Xc$z=factor((1:0)[X$z])

> library(BayesTree)

> # This may take a while ...

> bartFit = bart(X,dat$y,Xc)

> pte=apply(bartFit$yhat.train-bartFit$yhat.test,2,mean)

The posterior distribution of the marginal causal effect on treated (i.e. ATE) is

obtained from the simulated differences between the mean of the posterior predictive

distribution for actual students that used the ITC at school and the mean of the posterior

predictive distribution for the same students, assuming that they do not use ITC at

school. This distribution is reported in the following histogram:

> ss=dat$z==1

> ggplot()+geom_histogram(aes(pte[ss],weights=nw(w[ss])))
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Using the following commands, we can get information about the posterior

probability of a positive effect and its magnitude, respectively:

> weighted.mean(pte[ss]>0,w[ss])

[1] 0.8236357

> weighted.mean(pte[ss],w[ss])

[1] 1.995664

It is also straightforward to obtain credible interval values of the estimated causal

effects:

> wtd.quantile(pte[ss], weights=w[ss], probs=c(0.025, .975),normwt=TRUE)
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2.5% 97.5%

-11.853324 8.648826

> wtd.quantile(pte[ss], weights=w[ss], probs=c(0.05, .95),normwt=TRUE)

5% 95%

-7.834857 7.951276

One important advantage of the BART methodology in this context is that it allows

for the analysis of conditional causal effects. For instance, it is possible to estimate the

ATE on non-native students and compare it with native ones. For non-native the

posterior probability of a positive effect is around 94%, and it reduces to 81% for native

students. We can also compare the estimated ATE for native, first-generation and

second-generation students.

> cond.nn=(dat$z==1)&(dat$IMMIG!="Native")

> weighted.mean(pte[cond.nn]>0,w[cond.nn])

[1] 0.9357242

> cond.n=(dat$z==1)&(dat$IMMIG=="Native")

> weighted.mean(pte[cond.n]>0,w[cond.n])

[1] 0.8121684

> ggplot()+geom_histogram(aes(pte[ss],weights=nw(w[ss]),fill=dat$IMMIG[ss]))
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Another interesting exercise is to analyze the interaction of the three groups of

students with the ratio of computers to students The following graph illustrates the

conditional regression functions, along with the 95% credible intervals for the posterior

distribution of ATE conditional on immigration status and the ratio of computers to

students.

> ggplot(dat[ss,])+geom_smooth(aes(y=pte[ss],x=RATCMP15,fill=IMMIG,weight=w[ss]))
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The picture allows us to identify the optimal number of computers to students for

each group. Thus, an increase in the number of computers is more effective when they are

more scarce for non-native than for native students. However, when there are many

computers per students, i.e., more than 4 every 15 students, increasing the number of

computers does not improve mathematics performance.

Concluding remarks

We have illustrated how to estimate the effect of ICT on the performance of Spanish

students in mathematics by means of the BART model in R, as well as its main

advantages over other more traditional approaches. In particular, we have shown how

difficult is to obtain a balanced sample for the treatment and control groups under
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classical methods even when more sophisticated automated process to search the data for

the best matches, such as GenMatch, are used. In general, this is likely to be a problem

when the number of potential confounding variables is large, as is typically the case with

the PISA database. BART models are a way to circumvent this issue. In addition, BART

models provide a result that it is not based on hypothetical resampling arguments which

are very difficult to justify in causal analysis.

This tutorial also explains how to estimate conditional causal effects for different

types of students and to obtain implications for policy makers as such as finding the

optimal level of ICT investment for a target group of students (e.g., native versus

non-native students). In principle, the fact that it does not require any subjective decision

by the analyst, apart from defining the response and the treated variable, makes it an easy

procedure for decision makers to implement in different contexts.
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