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Preface

My interest in derivatives and risk management has its origins in the graduate
classes taught by Manuel Moreno and Juan Ignacio Peña at Universidad
Complutense and Universidad Carlos III de Madrid. Some time after that,
this thesis started to take shape during the course of a dinner and different
conversations that took place in Castellón during the productive dead times
of the Spanish Finance Forum. By then, we had already envisioned an
analysis of commodity markets from a financial perspective, taking into
account their stylized characteristics, as an interesting area of research.

Since the mid-2000s, many investors have entered into commodity mar-
kets; investment banks, hedge funds, and other portfolio managers increas-
ingly view commodities as an alternative asset class. Furthermore, commodity
futures indexes, exchange traded funds, and different forms of commodity
derivatives have become mainstream. The large variability of commodity
prices also has increased economic and political interest in these markets.

For that reason, a better understanding of the behavior of commodity
prices from a multivariate and univariate perspective, especially when ex-
treme events occur, is of paramount importance for accurate asset valuation,
risk management, and portfolio decisions. This thesis tries to contribute in
this respect.

Our study is divided into two parts. The first part (Chapter 2 and Chapter
3) analyzes the multivariate distribution of commodity returns and its impact
on portfolio selection and tail risk measures. Chapter 2 solves the portfo-
lio selection problem of an investor with three-moment preferences when
commodity futures are part of the investment opportunity set, providing a
conditional copula model for the joint distribution of returns that allows
for time-varying moments and state-dependent tail behavior. Chapter 3
approximates the exposure of physical and financial players to energy price
risk using linear combinations of energy futures; it also analyzes the tail

xiii



xiv Preface

behavior of energy price risk using a dynamic multivariate model, in which
the vector of innovations is generated by different generalized hyperbolic
distributions.

The second part (Chapter 4 and Chapter 5) considers the valuation
of real assets and commodity derivatives in the presence of non-Gaussian
shocks in a continuous time framework. Specifically, Chapter 4 employs a
jump diffusion model for the price differentials and proposes a valuation
tool for the connection between two electricity markets. Chapter 5 proposes
a reduced-form model for the data generating process of commodity prices
together with a more flexible change of measure, capable of changing the
mean-reversion rate of Gaussian and jump processes under the risk-adjusted
probability measure.

Some parts of this thesis have been presented in different seminars,
workshops, and conferences. Chapter 2 was presented at the 2011 INFINITI
Conference on International Finance (Trinity College, Dublin), the 2011
Conference of the Multinational Finance Society (LUISS, Rome), the 2012
International Conference of the Financial Engineering and Banking Soci-
ety (ESCP, London), the 2012 International Finance and Banking Society
Conference (Valencia), the 2012 Meetings of the European Financial Man-
agement Association (University of Barcelona), and Universidad Autónoma
de Madrid. A previous version of Chapter 3 was presented at the 2010
AEEE Conference on Energy Economics (University of Vigo). Chapter 4
was presented at the 2010 Finance Forum (CEU, Elche), the 2011 AEEE
Conference on Energy Economics (University of Barcelona), University of
Duisburg-Essen, and Birkbeck-University of London. Previous drafts of Chap-
ter 5 were presented at the 2009 Conference on Energy Finance (Universities
of Oslo and Agder), the 2010 Industrial-Academic Forum on Commodities,
Energy Markets, and Emissions Trading (Fields Institute, Toronto), and the
2011 Energy and Finance (Erasmus School of Economics).
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1
Introduction

SOME HISTORICAL STUDIES offers examples of commodity futures trading in
India at about 2000 B.C., as well as the origins of modern organized markets
in Europe and Japan in the 17th and 18th centuries. Primitive futures
contracts written on rice were traded in Osaka in the mid-18th century
(Duffie, 1989). In their modern version, commodity futures contracts were
first traded in the middle of 19th century in the corn and wheat markets of
Chicago. Despite these long traditions, commodities are a lesser known asset
class compared with other, more traditional assets such as bonds and stocks,
and they have been relatively ignored by the investment community until
recently.

Since the beginning of the 2000s though, commodities have become
increasingly popular for many traditional investors, as part of their long-
term diversification strategies. Prior to the financial meltdown of 2008-2009,
financial analysts recommended long-only investments in commodities as
an alternative asset class, to decrease expected portfolio risk, increase ex-
pected portfolio returns, and hedge macroeconomic risk (Goldman Sachs,
2004). During that period, commodity prices and volatility increased sig-
nificantly, as we can see in Figure 1.1. In addition to futures and options
contracts, other financial products that allowed investors to gain exposure
to commodities –such as commodity index funds, over-the-counter (OTC)
swap agreements, and exchange traded funds– were also widely popularized.
According to some estimates, index investment in commodities increased
from around $15 billion at the end of 2003 to more than $200 billion in
2008, just prior to the financial crisis. The notional amounts outstanding
in OTC markets and the open interest of futures contracts (see Exhibits
1 and 2 of Figure 1.2, respectively) experienced rapid growth in the last
decade. Furthermore, players other than traditional producers and retailers

1
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Figure 1.1. Relative price and moving volatility of the CRB index
This figure plots (solid line) the monthly relative price of the Commodities Bureau
Research (CRB) Index from 1998 to the end of 2012, together with the moving
monthly volatility (dotted line) of the CRB Index calculated using the previous 36
observations. Source: Reuters.

started to trade physical assets. For example, some investment banks owned
power plants and pipelines and purchased other commodity assets to use as
hedging tools (Carmona and Ludkovski, 2006).

The recent volatility of commodity prices and the rise in commodity
investing also renewed academic interest in the behavior of commodity
markets. In this opening chapter, we describe commodity markets, paying
special attention to energy commodities. We also introduce the salient
features of the univariate and multivariate behavior of commodity price
dynamics, along with some of the models and estimation methodologies
employed in this thesis.

1.1 Commodity markets

In a financial context, the term “commodity” refers to a relatively homoge-
neous consumption good (Geman, 2005). Commodities differ from stocks
and bonds, in that they do not generate a stream of future cash flows. Grains,
livestock, energy, metals, foodstuffs, and textiles are traditional examples
of commodity classes. Weather, carbon dioxide emission allowances, and
computing resources are examples of new commodity markets.

There is considerable diversity among commodities. Most are storable at
some cost, but some, such as electricity are impossible or very costly to store.
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Exhibit 1: Notional amounts in OTC derivatives
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Figure 1.2. Notional amounts and open interest
Exhibit 1 plots the notional amounts (in billions of USD) outstanding at the end
of each semester from 1998 to 2012 of OTC derivatives (forwards and swaps, and
options) traded globally. Exhibit 2 plots the total open interest in oil and gold
futures contracts traded on the New York Mercantile Exchange (NYMEX) and the
Commodity Exchange Inc. (COMEX), respectively. Sources: Bank of International
Settlements and U.S. Commodity Futures Trading Commission.
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Supply and demand patterns also establish differences among commodities.
Some commodities exhibit substantial seasonality in demand (e.g., natural
gas, electricity) but are produced continuously, whereas other commodities
are produced periodically (e.g., grains). Thus, storability, demand, and
supply characteristics determine the different behavior of commodity prices
and present a challenge to modelers (Pirrong, 2012).

Buyers and sellers can trade commodities in spot markets, where delivery
is immediate or following a very small lag; or they can trade them using
forward agreements with a given future delivery date, either in organized
futures exchanges or OTC markets. Commodity forward contracts allow
firms to obtain insurance for the future value of their outputs or inputs,
whereas investors in these contracts receive compensation for bearing the
risk of short-term commodity price fluctuations (Gorton and Rouwenhorst,
2006).

There are many active and liquid commodity futures markets, including
crude oil, heating oil, natural gas, gold, silver, copper, and aluminum futures
traded in the New York Mercantile Exchange (NYMEX); corn, soybean, and
wheat futures traded in the Chicago Board of Trade (CBOT); non-ferrous
metals in the London Metal Exchange (LME); and oil, natural gas, electricity,
freight, and agriculturals in the Intercontinental Exchange (ICE) in London.
Other commodity exchanges in emerging markets have gained importance
in recent years, especially the Dalian Commodity Exchange and the Shanghai
Futures Exchange for agriculturals and non-precious metals trading.

1.2 Energy spot and futures markets

The market for energy is huge. The world’s population consumes about
15,000 gigawatts of power (1 gigawatt is the capacity of the largest coal-fired
power station). That means a business of $6 trillion a year, one-tenth of the
world’s economic output (The Economist, 2008). Energy markets have been
liberalized in the the recent years and are still developing. The crude oil
market is the most liquid and global commodity market. Other important
energy markets are power, natural gas, and coal. Natural gas is used for
heating purposes and as an input for power generation. In Western Europe
and the United States, coal is mainly used for power generation.

Since the end of last century, there has been a continuous process of
liberalization and deregulation of energy markets. These developments
have resulted in the separation of services into generation, transmission,
distribution, and retail, with the goal of creating more competition and
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liquidity. They also have created new market risk exposures, which must be
managed at every interface of the formerly integrated chain. The players
in this growing risk management market consist of two major categories:
physical and financial players. The first are engaged in the energy markets
due to their physical exposure, such as utilities and oil and gas producers.
Most actively engage in hedging and trading activities, both physically and
financially. The second group comprises by investment banks, hedge funds,
and trading houses, which act as risk managers and intermediaries or trade
in their own accounts. As mentioned previously, some financial players
introduce physical assets into their operations, but most of them remain
focused only on financial aspects.

Energy markets exhibit some special features that differentiate them
from other commodity markets. Natural gas or power markets have a great
variety of traded contracts, including forwards with multiple maturities and
different delivery periods and short-term contracts, such as weekly, day-ahead,
and real-time prices. Electricity cannot be stored, and natural gas storage is
costly and inflexible. Therefore, there is no clear price convergence among
the different contracts. Location is also very important in these markets,
because each gas or power hub has a different price every day and hour.

When modeling the evolution of gas and power prices, we also must
consider the presence of extreme price spikes, seasonality, and mean rever-
sion. Furthermore, energy markets are closely intertwined by substitution,
complementary, and production relationships that complicate the modeling
of the dependence among these commodities (Casassus, Liu, and Tang,
2013).

Chapters 3, 4, and 5 considers European and U.S. energy markets in their
empirical applications. More specifically, Chapter 3 analyzes portfolios of
U.S. energy futures composed of crude oil, natural gas, coal, and electricity;
Chapter 4 studies the spread between five European power markets; and
Chapter 5 uses U.K. natural gas and electricity spot and futures data.

Some commodity derivatives and physical assets that are operated in
these markets have complex payoffs. Asian, spread, and swing options are
examples of exotic options that provide a hedge against price and volume
risks. Such options also appear in the real option approach to the valuation
of physical assets and contracts, such as power plants, interconnections,
or gas storage. Chapter 4 considers an application of real options to the
valuation of interconnectors between different European electricity markets.
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1.3 Multivariate behavior of commodity returns

Recently, some studies have focused in the multivariate behavior of commodi-
ties and their diversification benefits when they are included in a traditional
portfolio. With a mean-variance framework, Erb and Harvey (2006) and Gor-
ton and Rouwenhorst (2006) study the performance of an equally weighted
portfolio of commodity futures using data series that end in 2004-2005. They
find that their portfolio was zero or negatively correlated with stocks and
bonds and, in some cases, had statistically significant returns, close to those
of equity. Their analysis thus showed that the commodity futures distribution
exhibited positive skewness, whereas stocks revealed negative skewness. Both
distributions were fat tailed with respect to the normal distribution, but
equities exhibited more downside risk than commodities. Kat and Oomen
(2007a,b) also study the individual and multivariate return properties of
some groups of commodities, paying special attention to correlation and
tail-dependence from the investor’s point of view. They find that no evidence
of abnormal tail behavior in the relationship among commodity futures,
bonds and equity returns. However, since 2004, the flow of index investment
into commodity markets could have increased the integration with stock
and bond markets, as well as the price co-movements between different
commodities (Tang and Xiong, 2012). Furthermore, Büyükşahin, Haigh,
and Robe (2010) identify substantial variations over time in the potential
diversification benefits that commodities could bring to equity investors,
especially during periods of financial market stress.

Since correlation seems to vary with the business cycle, commodities do
not diversify risk equally at all times. Thus, a purely passive investment in
commodities may not be optimal, and it seems reasonable to extend the
portfolio selection to a conditional and non-linear framework. In Chapter 2,
we propose a conditional, non-Gaussian model for the joint distribution of
commodity futures returns and analyze its effect on portfolio selection.

1.4 Pricing and estimation methodologies

Because of the special characteristics of commodities, pure unconditional
Gaussian models are not the most suitable framework to describe the mul-
tivariate and univariate behavior of these assets. Consequently, traditional
approaches to deal with commodity market risk and price commodity deriva-
tives have to be reconsidered. Furthermore, in this context of nonnormality,
nonlinear econometric techniques would be required to estimate realistic
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commodity pricing models. Some of the most promising distributions for
modeling heavy-tailed and asymmetric returns are those belonging to the
generalized hyperbolic (GH) class (McNeil, Frey, and Embrechts, 2005).
The GH distributions exhibit some attractive properties: They are closed
under affine transformations, can display different tail behavior, and can be
both symmetric and skewed. Chapter 3 develops a multivariate model for
energy returns based on GH distributions.

When the joint distribution of returns is nonelliptical, the linear cor-
relation is no longer sufficient to describe the dependence structure, and
nonlinear dependence functions can be more informative (see Patton, 2004).
Copula theory allows us to obtain the dependence function, or copula, of
a n-dimensional joint distribution, and use it to model the dependence
between n arbitrary univariate densities. For example, using a skewed t
copula, we can distinguish between the tails of the marginal distributions
and the presence of dependence in the tails, as well as between asymmetry
in the distribution of individual returns and asymmetry in their dependence
structure. This approach is employed in Chapter 2.

From a continuous time perspective, we also consider the presence of
heavy tails and skewness in the dynamics of commodity prices. A no-arbitrage
spot price model, especially for energy commodities, should capture: large
price spikes or jumps, strong mean reversion of large deviations, and the
presence of a seasonal component. For that purpose, and following the
no-arbitrage models of Schwartz and Smith (2000) and Casassus and Collin-
Dufresne (2005), we can add mean-reverting jump-diffusion factors to the
space of state variables. The presence of jumps in the dynamics of prices
prevents us from estimating the model parameters using techniques based
on Gaussian hypothesis. Other approaches such as non-parametric jump
filters (see Chapter 4) or Markov chain Monte Carlo (MCMC) methods (see
Chapter 5) have to be employed.

Because of the presence of discontinuous processes, establishing a link
between the data generating measure and the risk-neutral measure is more
difficult than in traditional pure Gaussian cases. A natural way to price deriva-
tive contracts consists of employing Fourier transforms and the characteristic
function of the process for the spot price (Chapter 4).

Furthermore, when analyzing the behavior of commodity forward con-
tracts, some questions arise. For example, how are the data generating
and risk-adjusted measures related? Spot price dynamics are much easier
to model than dynamics under the risk-adjusted measure, because the for-
mer are observed, whereas the latter can only be inferred from the price
dynamics of instruments written on the spot commodity, such as forward
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contracts. Defining new changes of measure, we can model the possibility
that participants in energy markets price contracts under the risk-adjusted
measure by varying how long deviations from the seasonal component last.
In this context, Chapter 5 tries to establish a new link between the data
generating measure and the risk-adjusted measure in commodity pricing.

1.5 Organization of the thesis

The remainder of this thesis is organized as follows. Chapter 2 investigates
the portfolio selection problem of an investor with three-moment prefer-
ences, taking positions in commodity futures. To model the asset returns,
we propose a conditional asymmetric t copula with skewed and fat-tailed
marginal distributions, such that we can capture the impact on optimal
portfolios of time-varying moments, state-dependent correlations, and tail
and asymmetric dependence. In the empirical application with oil, gold, and
equity data from 1990 to 2010, the portfolios corresponding to conditional t
copulas achieve better performance than those based on more conventional
strategies. The specification of higher moments in the marginal distribu-
tions and the type of tail dependence in the copula also have significant
implications for the out-of-sample portfolio performance.

Chapter 3 analyzes the tail behavior of energy price risk using a multivari-
ate approach, in which exposure to energy markets is given by a portfolio of
oil, gas, coal, and electricity. To accommodate various dependence and tail
decay patterns, this study models energy returns using different generalized
hyperbolic conditional distributions and the time-varying conditional mean
and covariance. Employing daily energy futures data from August 2005
to March 2012, we recursively estimate the models and evaluate tail risk
measures for the portfolio’s profit-and-loss distribution for long and short
positions at various horizons and confidence levels. Both in-sample and
out-of-sample analysis applied to different energy portfolios show the im-
portance of heavy tails and positive asymmetry in the distribution of energy
risk factors. We find that models with exponential tail decay yield inferior
tail estimates for short positions compared with models with polynomial tail
decay, especially for the far tail of utility portfolios.

In Chapter 4, we focus on the value of interconnecting electricity markets.
An interconnector is an asset that gives the owner the option to transmit
electricity between two locations. In financial terms, the value of an intercon-
nector is the same as a strip of real options written on the spread between
power prices in two markets. We model the spread based on a seasonal
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trend, a mean-reverting Gaussian process, together with a mean-reverting
jump process, and express the value of these real options in closed-form.
The valuation tool is applied to five pairs of European neighboring markets
to value a hypothetical one-year lease of the interconnector, using different
assumptions about the seasonal component of the spread and different
liquidity caps to proxy for the depth of the interconnected power markets.
We derive no-arbitrage lower bounds for the value of the interconnector
in terms of electricity futures contracts and find that, depending on the
depth of the market, the jumps in the spread can account for between 1%
and 40% of the total value of the interconnector. The two markets where
an interconnector would be most (least) valuable are Germany and the
Netherlands (France and Germany). Finally, we provide rules of thumb to
interpret the differences in the interconnector values.

In Chapter 5, we analyze risk premia in commodity markets. We propose
a new change of measure that allows changes in the speed of mean-reversion
under the risk-adjusted probability. The stylized facts of the behavior of
commodity spot prices have been extensively studied. The main two features,
as we mentioned already, are the presence of a deterministic trend and
the mean reversion of deviations from this trend. But what are the stylized
facts under the risk-neutral measure? We set out to answer this question
by analyzing how risk-averse investors adjust the statistical measure of price
dynamics when pricing risky securities written on commodities. We model
the market price of risk so that market participants bearing spot commodity
risk are compensated for jump-arrival risk, jump-size risk, and speed of mean
reversion risk of both diffusion and jumps. Our approach can also be viewed
as a special case of stochastic discount factors that not only affect the mean
of the process but also its variance through the persistence of shocks to
the economy. We consider an arithmetic model that includes positive and
negative jumps in the prices of commodities. When pricing under the risk-
adjusted measure, agents change the time it takes to return to the seasonal
trend, alter the mean of the process, and change the intensity of the jumps
and their average size.
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A multivariate approach





2
Portfolio selection with

commodities under conditional
copulas and skew preferences

FINANCIAL INVESTORS MAINLY take positions in commodity futures contracts
as a natural way to gain exposure to commodity risk without owning the
physical asset. Erb and Harvey (2006) and Gorton and Rouwenhorst (2006)
find that historically, commodity futures exhibited little co-movements, zero
or even negative correlations with stock returns, and Sharpe ratios fairly
close to those of equities. Therefore, according to traditional portfolio
theory, commodities should increase diversification when included in equity
portfolios and may help enhance the portfolio’s risk-return profile. Possibly
boosted by the potential for such diversification benefits, investments in
commodity futures indexes and related instruments grew quickly after the
early 2000s1 (see Büyükşahin and Robe (2010), Etula (2013), Hong and
Yogo (2012), and Tang and Xiong (2012) for some analysis about this recent
boom).

Despite the growing interest in commodities as investment vehicles, few
studies have analyzed the optimal portfolio allocation taking into account
the stylized features of commodity futures. A standard mean-variance fra-
mework might not be appropriate for portfolios that contain commodity
futures due to their returns’ specific distributional characteristics, such as
the presence of serial correlation, heavy tails, and skewness (Daskalaki and

1Investments in commodity index funds increased from around $50 billion, at
the end of 2004 to a peak of $200 billion in 2008; after a drop during the recession,
they increased again to a second peak of around $300 billion at the end of the third
quarter of 2010. See Irwin and Sanders (2011).

13
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Skiadopoulos (2011); Gorton and Rouwenhorst (2006); Kat and Oomen
(2007b); Börger, Cartea, Kiesel, and Schindlmayr (2009)). Instead, we
propose a more flexible model to be used in the portfolio selection problem
of an equity investor when cash-collateralized commodity futures are part of
the investment opportunity set. Our approach combines a three-moment
preferences specification with time-varying multivariate density models that
describe the statistical properties of commodities and equity returns, as well
as their interactions.

With respect to the investor’s preferences, we consider an allocation
problem in which the investor’s objective function is determined by the
mean, variance, and skewness of portfolio returns (similarly to Guidolin
and Timmermann (2008); Harvey, Liechty, Liechty, and Müller (2010); and
Jondeau and Rockinger (2012)). With fairly general assumptions, investors
show a preference for positive skewness in return distributions and aversion
to downside risk (negative skewness). That is, in our proposed three-moment
preferences specification, the investor is eager to decrease the chance of
large negative deviations, which could reduce the final value of the portfolio.
Expanding the standard mean-variance set-up by including the third moment
of the portfolio returns has been investigated for traditional assets, such as
stocks.2 As far as we know, however, this approach has not yet been analyzed
for a portfolio choice problem with commodities, for which skewness seems
likely to play a role due to the specific features of commodity assets. For
instance, the possibility of shortages in supply may produce jumps in prices,
leading to skewness in the returns of futures contracts.

Regarding the multivariate density model, we offer a flexible approach
to specify the joint distribution of returns using conditional copula mod-
els. Copula functions help disentangle the particular characteristics of the
univariate distributions of equity and commodity returns from their depen-
dence structure. We combine conditional copula theory, as presented in
Patton (2006a,b), with the implicit copula functions of multivariate normal
mixtures defined by Demarta and McNeil (2005) and Embrechts, Lindskog,
and McNeil (2003). As our most general model, we propose a conditional
skewed t copula with generalized Student’s t marginal distributions. Al-
though the skewed t copula has very interesting properties, it has not been

2Some early works on how skewness affects portfolio selection include Samuelson
(1970) and Kraus and Litzenberger (1976). Harvey and Siddique (2000) build on
these ideas to provide an empirical test of the effect of co-skewness on asset prices.
Barberis and Huang (2008) and Mitton and Vorkink (2007) also suggest, from
different perspectives, that the skewness of individual assets may also influence
investors’ portfolio decisions.
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previously used in this context. This copula model allows for asymmetric
and tail dependence in a multivariate framework, and includes symmetric
and linear dependence as special cases. Furthermore, the conditional set-up
enable us to capture time-varying investment opportunities through time-
varying moments and changes in the dependence parameters. These copula
models are particularly easy to sample from, and therefore, we opt for solving
numerically the optimization problem using Monte Carlo simulations.

We apply our theoretical approach to weekly data of crude oil and
gold futures and the S&P 500 equity index, for the period from June 1990
to September 2010, reserving the observations from September 2006 to
September 2010 for an out-of-sample performance evaluation. We examine
four primary issues:

(1) Is there asymmetric and tail dependence among commodities and
equity returns?

(2) Are there discrepancies in the optimal portfolio allocations between
our conditional copula approach and other more traditional bench-
marks, such as the equally weighted or Gaussian strategies?

(3) Do these discrepancies translate into economically relevant perfor-
mance differences among methods?

(4) Is there a single key factor explaining these discrepancies?

First, our preliminary statistics and in-sample and out-of-sample results
show evidence in favor of heavy tails and skewness in the univariate behavior
and extreme and asymmetric dependence among oil, gold, and equity.
Second, we also uncover substantial discrepancies between portfolio optimal
weights of conditional t copulas and the portfolio weights provided by more
conventional alternatives, especially for more aggressive investors and when
there are no restrictions on short selling positions in equity. Third, in most
cases, the discrepancies in portfolio weights translate into economically
more profitable investment ratios and better relative performance measures
with respect to the alternative procedures. Depending on the investor’s
preferences specification, the gains of considering the conditional copula
model with tail and asymmetric dependence instead of the equally weighted
portfolio represent up to 86 basis points per year for the period 2006-2010.
When variance and loss aversion increase, portfolio strategies based on more
flexible copulas are less likely to produce large performance differences.
Fourth, no single factor offers a sufficient explanation of these differences.
Rather, we find various explanatory elements, including, the specification of
the univariate processes, in terms of conditional volatility, skewness, and fat
tails; and the presence of tail and asymmetric dependence.
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The remainder of this chapter is organized as follows: Section 2.1 for-
mulates the investor’s objective function and the portfolio choice problem.
In Section 2.2, we describe the multivariate conditional copula model, the
estimation methodology, and the numerical implementation. Section 2.3
presents the empirical application: the data description and preliminary
statistics, the in-sample estimations, and the out-of-sample portfolio alloca-
tion results. We conclude in Section 2.4.

2.1 Portfolio choice with commodity futures and skewness

In this section, we present the portfolio selection problem of an investor
with mean-variance-skewness preferences that takes positions in commodity
futures and other risky spot contracts, such as stocks.

No money changes hands when futures are sold or bought; just a margin
is posted to settle gains and losses. Without any upfront payment, it is
not clear how to define the rate of return (Dusak (1973)). Following the
common approach in the literature to analyze commodity futures as an
asset class (Gorton and Rouwenhorst (2006); Hong and Yogo (2012)), we
assume that long and short positions are fully collateralized. That is, the
initial margin deposit corresponds with the overall notional value of the
futures contract and indicates the initial capital investment related to that
position (long or short). In this way, we control for the leverage involved in
futures positions, and we can make fair comparisons with spot contracts.3

Therefore, taking collateral in futures contracts into account would affect
the computation of their rates of return and the budget constraint of the
investor’s problem, as we will see.

Formally, our portfolio choice problem can be formulated in terms of an
investor who maximizes expected utility at period t+ 1 by building at time
t a portfolio that includes two group of assets: a group with n commodity
futures contracts, and another group with N − n spot contracts, such as
stocks. Taking the collateral into account, the gross return of a position in
the commodity futures contract i at time t+ 1 is given by

(1 +Ri,t+1) = Si,t+1
Si,t

(1 +Rft+1) , i = N − n+ 1, . . . , N , (2.1)

where Si,t and Si,t+h are the futures settlement prices at times t and t+ 1,
respectively, and (1 +Rft+1) is the gross return on cash over the period, or

3This assumption can also be relaxed, and smaller fractions of the nominal value
can be considered in the problem set-up.
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the interest earned on the initial margin deposit (Hong and Yogo (2012)).
For this set of N investment opportunities, the wealth at time t+ 1 equals
the gross return of the portfolio over the period, 1 +Rt+1(ωt), defined as

1 +Rt+1(ωt) = 1 +
N∑
j=1

ωjt (exp(rj,t+1)− 1) , (2.2)

where ωt = (ω1
t , . . . , ω

N−n
t , ωN−n+1

t , . . . , ωNt )′ is the vector of portfolio wei-
ghts (for spot and futures contracts), chosen at time t, and rj,t+1 = log(1 +
Rj,t+1) is the continuously compounded return of asset j over the period.

As is well known, returns on financial assets generally deviate from the
Gaussian distribution, displaying heavy tails and skewness. This departure
from normality is even greater in the case of commodities, magnified by
the well-documented presence of positive and negative spikes in the data-
generating process of commodity returns (see for example Cartea and Figue-
roa (2005) and Casassus and Collin-Dufresne (2005), among others). The
fundamentals underlying commodity price formation are key determinants
of these statistical properties. Accordingly, the presence of jumps can be
explained by the convex relation between commodity prices and the balance
among supply, inventories, and demand (see Routledge, Seppi, and Spatt
(2000)). Thus, adding commodity assets to traditional portfolios will consti-
tute a significant source of skewness for the portfolio’s returns, increasing
the importance of considering the third moment in the portfolio selection
problem.

For that reason, in our approach, the investor’s objective consists of
choosing a wealth allocation ωt = (ω1

t , . . . , ω
N
t ) that maximizes the expected

portfolio return penalized for the variance and negative skewness of the
portfolio returns. That is, for each time t, the optimal weights are given by

ω∗t = arg max
ωt∈D

(
IEt[Rt+1(ωt)]− ϕV Vart[Rt+1(ωt)] + ϕS Skewt[Rt+1(ωt)]

)
,

(2.3)
where IEt(·), Vart(·), and Skewt(·) are the first three moments of the portfo-
lio returns conditioned on the information set Ft available at time t. The
parameters ϕV > 0 and ϕS > 0 determine the impact of variance (tradi-
tional risk aversion) and skewness (loss aversion) on the investor’s utility. By
adding aversion to negative skewness, we acknowledge the possibility that an
investor might accept a lower expected return if there is a chance of high
positive skewness, such as in the form of a large probability of positive jumps.

As in Harvey, Liechty, Liechty, and Müller (2010), the parameters ϕV
and ϕS in the objective function of equation (2.3) can take arbitrary values to
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describe particular investor’s preferences. Alternatively, following Guidolin
and Timmermann (2008) and Jondeau and Rockinger (2012), among oth-
ers, the three-moment preferences assumption could be interpreted as the
expected value of the third order Taylor series expansion of a power utility
function with coefficient of risk aversion A. That is,

IE[U(1 +Rt+1(ωt))] ≈ IE(Rt+1(ωt))−
A
2 IE(Rt+1(ωt)2)

+ A(A+ 1)
6 IE(Rt+1(ωt)3). (2.4)

where U(W ) = W 1−A

1−A forA > 1 and U(W ) = log(W ) forA = 1. In this case,
the impact of variance and skewness in the investor’s decision rule would be
a function of the coefficient of risk aversion A (ϕV = A

2 and ϕS = A(A+1)
6 ).

Finally, in equation (2.3), the domain D ⊂ IRN represents the budget
constraint defined by

D =
{

(ω1
t , . . . , ω

N
t ) :

N−n∑
j=1

ωjt +
N∑

i=N−n+1

∣∣∣ωit∣∣∣ = 1
}
. (2.5)

Because both long and short positions in commodity futures contracts re-
quire the same initial collateral, we have to take the absolute value of the
futures weights (ωN−n+1

t , . . . , ωNt ), such that short positions in futures con-
tracts cannot be used to increase holdings of other assets. Furthermore, if
the investor is short-sales constrained, the weights of spot contracts must
satisfy that (ω1

t , . . . , ω
N−n
t ) ∈ [0, 1]N−n.

Once we have the set-up of the investor’s problem, we need to define
density forecasts of the returns joint distribution in order to compute the
optimal portfolio weights. In the next section, we describe our multivariate
density model.

2.2 Multivariate conditional copula with asymmetry

We employ multivariate conditional copulas to obtain a flexible model for
the multivariate distribution of assets’ log-returns rt+1 = (r1,t+1, . . . , rd,t+1),
where d 6 N is the number of risky assets. Every d-variate distribution
consists of d marginal distribution functions or margins that describe each
univariate behavior, as well as a joint dependence function that defines
the relations among individual processes. Unlike traditional multivariate
distributions, such as the Gaussian and Student’s t distributions, copula
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models support the construction of multivariate distributions with arbitrary
univariate processes and dependence.

Formally, a d-variate copula is a d-dimensional distribution function on
the unit interval [0, 1]d, that is, a joint distribution with d uniform marginal
distributions. Consider a multivariate conditional distribution Ft(r1,t+1, . . .,
rd,t+1) formed by d univariate conditional distributions Fi,t(ri,t+1), where
the subscript t denotes that joint and marginal distributions are conditioned
on the information setFt available at time t. Following Patton (2006b), there
must exist a function Ct that maps the domain [0, 1]d toward the interval
[0, 1], called the conditional copula, such that

Ft(r1,t+1, . . . , rd,t+1) = Ct (F1,t(r1,t+1), . . . , Fd,t(rd,t+1)) . (2.6)

This expression constitutes a d-dimensional extension of Sklar’s (1959)
theorem for conditional copulas.4

Using the expression in equation (2.6), any copula Ct can be employed
to define a joint distribution Ft(rt+1) with the arbitrary marginal distri-
butions F1,t, . . . , Fd,t. Thus, using a bottom-up approach, we model the
marginal distributions of asset returns, followed by the conditional copula
function that describes their dependence structure.

2.2.1 Modeling univariate processes

We first specify the univariate distribution functions of the asset returns
rt+1. Our multivariate copula model supports the use of various marginal
distributions. Thus we can attend to the particular characteristics of each
asset return, which is an useful feature when different types of assets appear
in the portfolio, such as commodities and stocks. We present a marginal
distribution model that captures individual skewness and heavy tails, as well
as time-varying moments. We build on the autoregressive conditional density
models of Hansen (1994), Harvey and Siddique (1999), and Jondeau and
Rockinger (2003), and we propose a generalized Student’s t distribution
with possibly time-varying parameters. Thus, the univariate process for each

4This generalization of Sklar’s theorem is a direct application of the concept of
a conditional copula (Patton (2006b), Theorem 1) to a multivariate case (Nelsen
(2006), Theorem 2.10.9), and requires simply that conditioning variables be the
same for all marginal distributions and the copula. If margins are continuous, this
copula is unique.
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asset returns ri,t+1 (i = 1, . . . , d) can be expressed as follows:

ri,t+1 = µi,t+1 +
√
σ2
i,t+1 zi,t+1 , (2.7)

µi,t+1 ≡ IEt (ri,t+1) = µ0,i + β′iXt +
p∑
j=1

Φi,jri,t+1−j , (2.8)

σ2
i,t+1 ≡ Vart (ri,t+1)

= α0,i + α+
1,i σ

2
i,tz

2
i,t 1l{zi,t>0} + α−1,i σ

2
i,tz

2
i,t 1l{zi,t<0} + α2,i σ

2
i,t , (2.9)

zi,t+1 ∼ gi,t(zi,t+1 ; νi,t+1 , λi,t+1) , (2.10)

where µi,t+1 and σ2
i,t+1 are the mean and variance conditioned on Ft for the

i-th asset returns, and zi,t+1 is the corresponding residual.

The conditional mean, defined in equation (2.8), is a linear function of
p lagged returns, ri,t+1−j (j = 1, . . . , p), and m further explanatory variables
Xt, with the coefficients Φi,j and βi, respectively, and the drift parameter
µ0,i. This specification can capture the possible presence of autocorrelation
and predictability in asset returns. As the exogenous regressors Xt, we
consider explanatory variables employed in previous literature (Hong and
Yogo (2012)) to predict variation in stocks and commodity futures returns,
including the short rate, default spread, momentum, basis, and growth in
open interest (see Appendix A.2 for a detailed definition of the explanatory
variables).

As we describe in equation (2.9), we employ an asymmetric or leveraged
GARCH dynamic for the conditional variance. This specification is designed
to account for volatility clustering and leverage effects, such as possible asym-
metric responses to positive and negative shocks that have occurred in the
previous period (Campbell and Hentschel (1992)).5 equation (2.10) then
denotes that the univariate innovations zi,t+1 are drawn from a generalized
Student’s t distribution, gi,t, which can capture heavy tails and individual
skewness through the degrees of freedom νi and asymmetry parameter λi
(Hansen (1994)).6

Finally, our specification of the marginal distributions addresses the

5To guarantee positive and stationary volatility, the parameters of the vari-
ance dynamics in equation (2.9) must satisfy the following constraints: α0,i >
0; α+

1,i, α
−
1,i, α2,i > 0; and α2,i + (α+

1,i + α−1,i)/2 < 1 .
6The technical details of this univariate distribution can also be found in Jondeau

and Rockinger (2003). We summarize them briefly in Appendix A.1.
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possibility of time-varying higher moments as follows:

νi,t+1 = Λ(2,∞)
(
δ0,i + δ+

1,i zi,t 1l{zi,t>0} + δ−1,i zi,t 1l{zi,t<0}

+ δ2,iΛ−1
(2,∞)(νi,t)

)
, (2.11)

λi,t+1 = Λ(−1,1)
(
ζ0,i + ζ+

1,i zi,t 1l{zi,t>0} + ζ−1,i zi,t 1l{zi,t<0}

+ ζ2,iΛ−1
(−1,1)(λi,t)

)
, (2.12)

where δ0,i, δ
+
1,i, δ

−
1,i, δ2,i, ζ0,i, ζ

+
1,i, ζ

−
1,i and ζ2,i are constant parameters, and y

≡ Λ(l,u)(x) = (u+ lex)/(1 + ex) denotes the modified logistic map designed
to keep the transformed variable y in the domain (l, u) for all x ∈ IR. Thus,
shape parameters νi,t+1 and λi,t+1 may depend on their lagged values and
react differently to positive and negative shocks. This general specification
also includes some well-known univariate distributions as particular cases.
For instance, if the asymmetry parameter goes to 0, we obtain the symmetric
Student’s t distribution; as degrees of freedom tend to infinity, we would
converge to a Gaussian distribution.

2.2.2 Modeling copula functions

In this section, we present the copula functions that determine the de-
pendence structure of our model. Following Sklar’s theorem in equation
(2.6), the copula function acts like a joint distribution of the probabil-
ity transformed vector (F1,t(r1,t+1), . . . , Fd,t(rd,t+1)′, where Fi,t(ri,t+1) are
the marginal distribution functions of asset returns ri,t+1, as described in
equations (2.7)-(2.10). In particular, we employ three multivariate copula
functions: two well-known elliptical copulas, the Gaussian and the t copula
(Embrechts, Lindskog, and McNeil (2003)), and an asymmetric multivariate
dependence, the so-called skewed t copula (Demarta and McNeil (2005)).
They are all implicit dependence functions of various multivariate normal
mixtures. More specifically, they are the parametric copula functions con-
tained in the multivariate Gaussian, Student’s t, and generalized hyperbolic
skewed t distributions, respectively.

Through a direct application of Sklar’s theorem, we can obtain these
implicit copulas by evaluating a given multivariate distribution (e.g., gener-
alized hyperbolic skewed t) at the quantile functions of its corresponding
marginal distributions. For instance, the skewed t copula is given by:

CSK(u1, . . . , ud ;P , ν,γ ) = H
(
H−1

1 (u1 ; ν, γ1), . . . ,
H−1
d (ud ; ν, γd) ;P , ν,γ

)
, (2.13)
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where H(· ;P , ν,γ) is the generalized hyperbolic skewed t distribution with
d× d correlation matrix P , degrees of freedom ν, and d-dimensional asym-
metry parameter vector γ = (γ1, . . . , γd). TheHi(· ; ν, γi) are the d univariate
skewed t distributions, the H−1

i are the corresponding quantile functions,
and (u1, . . . , ud)′ is the probability-transformed vector. Similarly, we can ex-
tract the Gaussian and t copulas, CG(u1, . . . ud ;P ) and CT(u1, . . . ud ; P , ν),
from their respective multivariate distributions.

In Appendix A.3, we derive explicitly the density functions of these three
copulas. For illustrative purposes, in Figure 2.1, we present the contour plots
and probability density functions of these copulas for a two-dimensional
case. Although the examples in Figure 2.1 are for a bivariate case, a useful
property of all three copulas considered is that they can be employed directly
to specify the dependence structure of an arbitrary number of risky assets.

As Figure 2.1 reveals, using these three copulas, we can model three
different types of dependence. The Gaussian copula, CG(· ;P ), defines
linear, symmetric dependence, completely determined by the correlation
matrix P . Thus it is unable to capture tail dependence or asymmetries.
The t copula, CT(· ;P , ν), is also elliptically symmetric but allows for tail
dependence through the degrees-of-freedom parameter, ν. The plots in
Figure 2.1 show that the t copula assigns more probability to the extremes
than does the Gaussian copula. The greater the degrees of freedom, the
smaller the level of tail dependence, converging in the limit ν →∞ to the
Gaussian copula. Finally, the skewed t copula, CSK(· ;P , ν,γ), can capture
extreme and asymmetric dependence of the asset returns. Through the
d-dimensional vector of asymmetry parameters γ, the skewed t copula can
assign more weight to one tail than the other. For example, in Figure 2.1, all
elements of the asymmetry vector are negative, and therefore, the density
contour is clustered in the negative-negative quadrant. Eventually, if γ → 0,
asymmetric dependence goes to 0, and we recover the symmetric t copula.

Once we have defined the functional forms of the three implicit copulas,
we can build the multivariate distribution model for our vector of asset re-
turns. This multivariate distribution forms from the marginal distributions
of the previous section and one of the implicit copulas we described previ-
ously. In addition, following pioneering works by Patton (2006a,b), we can
parametrize time variation in the conditional copula function of our multi-
variate model. For that purpose, and in the spirit of Engle’s (2002) dynamic
conditional correlation model, we extend the notion to other types of depen-
dence beyond the Gaussian one and allow that the dependence matrix Pt of
our conditional copula may evolve over time, according to some GARCH-
type process. In the most general case, the vector of return innovations,
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zt+1 = (z1,t+1, . . . , zd,t+1)′, follows the distribution specification:

zt+1 ∼ CSK
t

(
g1,t(z1,t+1 ; ν1,t+1, λ1,t+1), . . . ,
gd,t(zd,t+1 ; νd,t+1, λd,t+1) ; Pt+1, ν,γ

)
, (2.14)

where the gi,t(zi,t+1 ; νi,t+1, λi,t+1) are the conditional univariate distribu-
tions in equation (2.10), and the evolution equation for Pt+1 is given by:

Pt+1 = Λ(−1,1)
(
ω0Pc + ω1

1
M

M∑
m=1

xt+1−m x
′
t+1−m + ω2Pt

)
. (2.15)

In this case, xt is the vector of transformed variables, (H−1(u1,t; ν, γ1), . . . ,
H−1(ud,t; ν, γd) )′; Pc is the constant correlation matrix; ω0, ω1 and ω2 are
constant parameters; andM is the number of lags we consider. The modified
logistic function Λ(−1,1)(·) ensures that the elements of Pt+1 remain in the
domain (−1, 1).

2.2.3 Model estimation and portfolio optimization

Our model structure, formed by the marginal distributions and the copula,
allows for a two-step estimation procedure, similar to the conditional setups
of Jondeau and Rockinger (2006) and Patton (2006a). In the first step, we
obtain the maximum likelihood (ML) estimates of the individual processes;
then, we determine the parameter estimates of the copula function.7 From
this ML approach, we can compute the asymptotic and robust standard
errors for the estimates.

Formally, this procedure can be expressed as follows: Let r̄T = {r1,
. . . , rT } be the sample of returns of length T , where rt = (r1,t, . . . , rd,t) for
i = 1, . . . , T . We want to find the set of parameter estimates θ̂ that maximizes
the log-likelihood function L, that is,

θ̂ ≡ arg max
θ∈Θ

L(θ ; r̄T ) = arg max
θ∈Θ

T∑
t=1

log ft(rt+1;θ) , (2.16)

where ft(rt+1;θ) is the probability density function of the multivariate model
conditioned by the information set Ft and parameterized by θ ∈ Θ.

7This procedure is also known as the inference functions for margins method. A
similar two-stage approach is used to estimate some multivariate GARCH models,
such as the constant (CCC) and dynamic (DCC) conditional correlation models
(see Engle and Sheppard (2001)).
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From the assumptions of Sklar’s theorem in equation (2.6), we can
decompose the log-likelihood function L in equation (2.16) into two parts,
the margins and the copula (see the details in Appendix A.4):

L(θM ,θC ; r̄T ) =
d∑
i=1
Li(θi,M ; r̄T ) + LC(θC ;θM , r̄T )

=
d∑
i=1

T∑
t=1

log fi,t(ri,t+1 θi,M )

+
T∑
t=1

log ct(u1,t+1, . . . , ud,t+1 ;θC). (2.17)

where Li and LC are the log-likelihood functions for the i-th marginal
process and the copula, θM denotes the set of parameters corresponding
to the d marginal distributions, (θ1,M , . . . , θd,M )′, and θC denotes the pa-
rameters of the copula function. The ui,t+1 are the marginal distributions,
Fi,t(ri,t+1 ;θi,M ), with corresponding marginal density functions fi,t(ri,t+1;
θi,M ); and ct(· ;θC) is the copula density function.

Once we have estimated the model density function, we use this informa-
tion to obtain the optimal portfolio. For our parametric density models, the
integrals defining the portfolio return moments involved in the investor’s
optimization problem of equation (2.3) do not have a closed-form solution.
Using Monte Carlo simulations to estimate the value of these integrals, we
can solve numerically the optimization problem. In this respect, an advan-
tage of our implicit copulas is that it is easy to sample from them, as long as
we are able to sample from the normal mixture distribution from which they
are extracted. The following procedure outlines the implementation of the
model estimation and the portfolio optimization:

1. Following equation (2.17), estimate sequentially the d marginal distri-
butions models and the copula function:8

θ̂i,M = arg max Li(θi,M ; r̄T ) , for i = 1, . . . , d , and

θ̂C = arg max LC(θC ; θ̂M , r̄T ) .

Some remarks should be considered though. First, the quality of the
copula estimation depends strongly on the goodness of fit of the para-
metric functions we use for the marginal distribution models. Second,

8Patton (2006a) shows that one-step maximum likelihood estimators and two-
stage estimators are equally asymptotically efficient.
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t copulas require the estimation of shape parameters ν and γ, apart
from the correlation matrix P ; in these cases, because the objective
function often falls in local maximums, convergence difficulties may
arise when maximizing the log-likelihood function LC directly. To
overcome this problem, we perform the estimation of the t copulas
using an iterative procedure: An inner function computes P maximiz-
ing the likelihood given the values of the shape parameters; then, this
function is maximized with respect to the shape parameters.9

2. Use the parameter estimates θ̂ = (θ̂M , θ̂C)′ and the dynamics of
the return vector rt+1, defined in equations (2.7)-(2.10) and (2.14),
to obtain the forecast density for the next period; then, generate
Q=10,000 independent draws {rqt }

Q
q=1 sampling from that density:

(i) Generate Q random vectors {uqt+1}
Q
q=1 from the implicit copulas.

For example, for the skewed t copula: uqt+1 = (H1(xq1; ν̂, γ̂1),
. . . , Hd(xqd; ν̂, γ̂d)), where the (xq1, . . . , x

q
d) are random vectors

from the multivariate distribution H(0, P̂ , ν̂, γ̂) generated using
equation (A.8).10 Similarly, we can sample from the Gaussian
and t copulas.

(ii) Use the inverse functions of the conditional marginal distri-
butions to obtain Q draws of the innovations {zqt }

Q
q=1, where

zqt+1 = (g−1
1,t (u

q
1,t+1 ; ν̂1, λ̂1), . . . , g−1

d,t (u
q
d,t+1 ; ν̂d, λ̂d)); then em-

ploy the forecast conditional mean and variance to generate
{rqt }

Q
q=1.

3. To obtain the optimal portfolio weights ω∗t , maximize the investor’s
objective function in equation (2.3) subject to the non-linear bud-
get constraint of equation (2.5) using the generated simulations to
estimate the moments of the portfolio return.

9Furthermore, we employ a global optimization approach, consisting of simu-
lated annealing (Goffe, Ferrier, and Rogers (1994)), to check the validity of the
local optimization results.

10Note that, for the estimation and simulation of the skewed t copula, to improve
the feasibility of the computations related to the cumulative density and inverse
functions of the univariate generalized hyperbolic skewed t distribution, Hi and
H−1
i , we approximate its density function hi using cubic splines.
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2.3 Empirical application

In this section, we first present the data and their main univariate and
multivariate statistical properties. Then, we estimate the conditional copula
models and analyze their in-sample fitting performance. Finally, we solve
the portfolio problem for the copula models numerically and obtain the
optimal weights, investment ratios, and relative performance measures over
the out-of-sample period.

2.3.1 Data and preliminary analysis

Our empirical application relies on three risky assets: two commodity futures,
oil and gold, and the S&P 500 equity index. The oil futures correspond to
West Texas Intermediate (WTI) crude oil from the New York Mercantile
Exchange (NYMEX). The gold futures correspond to the gold bar, with a
minimum of 0.995 fineness, from the New York Commodities Exchange
(COMEX). These futures are two of the most actively traded commodity
contracts in the world, and they do not have tight restrictions on the size of
daily price movements.11In both cases, we employ the most liquid futures
contracts, measured by daily trading volume, of all maturities available. The
risk-free rate is computed from the three-month U.S. Treasury bills provided
by the Federal Reserve System. All data are in U.S. dollars and came from
Thomson-Reuters Datastream. The sample period considered ranges from
June 20, 1990 to September 8, 2010, for a total of 1056 weekly observations.
We divided the sample in two subperiods, such that the period from June 20,
1990 to June 20, 2006 (836 observations) supported the in-sample estimation
analyses of the models, and the remaining 220 observations from June 20,
2006 to September 8, 2010 were reserved for the out-of-sample portfolio
performance exercise.

Univariate analysis

We first analyze the univariate behavior of the three asset returns. In the
online Appendix, we report the summary statistics for the weekly returns of
the gold and oil futures and the equity index for the sample periods, as well

11At the end of 2011, gold and crude oil futures represented 30% of the Dow
Jones-UBS Commodity Index and 38% of the S&P-Goldman Sachs Commodity
Index.
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as, plots of the relative price moves of each asset over the full-sample period.
Here, we summarize the main findings.

Table 2.1 reports summary statistics for the weekly returns of the gold
and oil futures and the equity index for the sample periods. With Exhibit
1 of Figure 2.2, we display the relative price moves of each asset over the
full-sample period.

We observe substantial changes in the sample moments of returns over
time. The mean returns are all positive, except for equity during the out-
of-sample period (Jun. 2006 – Sep. 2010). Returns volatilities per week for
oil, gold, and equity increased from 4.4%, 1.9%, and 2.1% in the in-sample
period to 5.4%, 3.2%, and 3.0% during the out-of-sample period. Looking
at the ratio of the mean over the volatility (Sharpe’s ratio), we find that for
the in-sample observations, equity (0.07) performs better than oil (0.04)
and gold (0.03). This pattern changed during the 2006-2010 period, during
which ratios of oil (0.01) and equity (-0.02) were below their historical
average, whereas gold’s ratio (0.11) moved significantly above its historical
average. According to the Ljung-Box (LB) and Lagrange multiplier (LM)
statistics, reported in Table 2.1, there is evidence of serial correlation in the
returns and squared returns for all time series (except for oil returns over
the in-sample period).

Assets returns are non-normal, skewed, and heavy tailed. According
to the Jarque-Bera (JB) and Kolmogorov-Smirnov (KS) tests, normality in
the returns’ unconditional distribution is strongly rejected for all samples.
Skewness and kurtosis of returns differs across assets and sample periods.
From the in-sample to the out-of-sample period, the equity returns’ skewness
grew much more negative, while gold returns changed from positive to
negative skewness, and oil returns from negative to positive. During 2006-
2010, the oil and gold returns’ kurtosis decreased with respect to the previous
period, but equity returns’ kurtosis strongly increased, as expected.

Multivariate analysis

It is also important to describe the interactions observed in the sample
among the oil, gold, and equity index returns. In Table 2.2, we report
some multivariate statistics and preliminary tests for the three-dimensional
vector of asset returns. We first focus on the characteristics of the linear
dependence; then we turn to analyzing non linear features observed in the
vector of returns. Technical details of the multivariate statistics and tests for
the three-dimensional vector of asset returns are reported in Appendix A.5.
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Exhibit 1: Relative price movements
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Exhibit 2: qq-plot to test ellipticity
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Exhibit 3: qq-plot to test multivariate normality
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Figure 2.2. Descriptive statistics: relative price performace and qq-plots
Exhibit 1 plots the relative price movement of each asset to compare their per-
formance over the full-sample period. Exhibit 2 compares the qq-plot of sample
against the beta distribution, where d = 3 is the dimension of the vector of returns,
and k is chosen to be roughly equal to d − k (see McNeil, Frey, and Embrechts
(2005)). The empirical observations are denoted by the solid line; the theoretical
quantiles are represented by the dashed line. Exhibit 3 shows the qq-plot associated
with Mardia’s (1970) test of multivariate normality.
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Panel A of Table 2.2 reports unconditional correlation coefficients. We
find a large increase in linear dependence for the 2006-2010 period with
respect to historical values. The sample correlation between oil and gold
returns rises from 0.21 to 0.39. Furthermore, equity index returns, which
were negatively correlated with oil (-0.06) and gold (-0.08) in 1990-2006,
became positively correlated with both of these commodity returns over
the 2006-2010 period, with coefficients equal to 0.39 and 0.17, respectively.
These findings suggest that dependence between commodities and equity
is no longer constant and evolves with time. To check this assumption, we
carry out Engle and Sheppard’s (2001) test for constant correlation. The
probabilities of constant correlation (test p-values) reported in Panel B of
Table 2.2) are less than 0.05 in all cases; therefore, we reject the hypothesis
of constant dependence.

Panel C of Table 2.2 reports the tri-variate measures of skewness and
kurtosis proposed by Mardia (1970) to test multivariate normality. The
corresponding statistics suggest that the hypothesis of multivariate normality
should be rejected for the three sample periods considered. In addition,
following McNeil, Frey, and Embrechts (2005), we test whether the stan-
dardized vector of returns is consistent with a spherical distribution. The
corresponding KS test statistics reject the ellipticity hypothesis for all samples.
Visually, their associated quantile-quantile plots, in Exhibits 2 and 3 of Figure
2.2), reveal that multivariate normality and elliptical symmetry are strongly
rejected for our sample.

Finally, to check for the presence of asymmetric dependence between
asset returns in our sample, we analyzed the exceedance correlation and tail
dependence. For each pair of asset returns, Figure 2.3 plots the exceedance
correlation function proposed in Ang and Chen (2002) and Longin and
Solnik (2001), which depicts the correlation between returns above or below
a given quantile. In the case of symmetric dependence, the correlation for
both extremes should be similar and equal to zero for Gaussian dependence.
According to these plots, any assumptions of normality or symmetry seem
unrealistic for our sample. Oil and gold do not display the same level of
diversification for bear and bull markets, and correlation between oil and
equity is highly positive for large negative returns but smaller for large posi-
tive returns. The correlation between gold and equity is close to 0 for large
negative returns and significantly positive for very large positive returns.
Although oil and gold are very positively correlated for large negative re-
turns, are not or even are negatively correlated for large positive returns.
Büyükşahin, Haigh, and Robe (2010) also find patterns of extreme and
asymmetric dependence between commodity indexes and equity.
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Exhibit 1: Oil-gold exceedance correlation
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Exhibit 2: Oil-equity exceedance correlation
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Exhibit 3: Gold-equity exceedance correlation
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Figure 2.3. Descriptive statistics: exceedance correlations
Exhibits 1, 2, and 3 present the exceedance correlations for each pair of returns
(see Longin and Solnik (2001) and Ang and Chen (2002)). The line with squares
represent the actual exceedence correlation, whereas the dotted line represents the
theoretical correlation between simulated normal return exceedances, assuming
a Gaussian return distribution with parameters equal to the sample means and
covariance matrix of the weekly returns (see Table 2.1). The x-axis shows the cutoff
quantile, and the y-axis presents the correlation between the two returns, given that
both exceed that particular quantile.
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Furthermore, when we estimate the tail dependence of each pair of
returns in our sample, we also observe an asymmetric pattern. For illus-
trative purposes, Panel D of Table 2.2 reports the fitted upper and lower
tail dependence parameters, τU and τD, corresponding to the symmetrized
Joe-Clayton (SJC) copula, defined by Patton (2006b). We observe that tail
dependence increases over the 2006-2010 period, and lower tail dependence
estimates are generally larger than the upper ones, especially in the last
sample period.

In summary, both univariate and multivariate analyses suggest that the
assumptions of normality and symmetry for the individual processes and
dependence functions are very restrictive and probably should be rejected.
A flexible model that captures all the features analyzed in the data thus is
required. In the next section, we estimate the conditional copula model
proposed in Section 2.2 for our vector of oil, gold, and equity returns.
Subsequently, we investigate whether capturing these features (e.g., non-
normality of the individual processes, time-varying moments, asymmetric
dependence) using the more flexible model leads to economically better
portfolio decisions.

2.3.2 Estimation of the conditional copula model

In this section, we estimate the conditional copula model using the multi-
stage maximum likelihood procedure explained in Section 2.2.3. We first
present the in-sample estimation and goodness-of-fit test results for the mar-
ginal distribution models. In a second stage, we analyze the results for the
copula model.

In-sample results for the marginal distributions

Table 2.3 presents maximum likelihood estimates of the parameters of the
marginal distributions for oil, gold, and equity index returns. We compute
robust standard errors of these estimates and report their corresponding
p-values in parentheses. These estimates correspond to the generalized t
marginal distribution function with time-varying moments, described in
equations (2.7)-(2.12) of Section 2.2.1.

In the mean equation, we find that the basis (for oil returns) and mo-
mentum and risk-free rate (for gold returns) are significant explanatory
factors. The results for the variance equation further show that volatility is
strongly persistent for all returns. For equity, only negative returns have an
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Table 2.3. In-sample results for the marginal distribution models

This table reports the maximum likelihood parameter estimates of the marginal
distribution model for oil, gold, and equity-index returns with generalized Student’s
t distribution and time-varying moments. Parameters of the mean, variance, degrees
of freedom, and asymmetry are defined in equations (2.7), (2.9), (2.11), and (2.12),
respectively. The results corresponds to the estimation period from June 1990 to
June 2006 (836 observations). The p-values of the estimates appear in parentheses
and are computed using the robust standard errors. The logL is the log-likelihood
of the marginal distribution model. ηc, λc, and logLc are the degrees of freedom,
asymmetry parameter, and log-likelihood of the constant version of the model.

oil gold equity
coeff. (p-val.) coeff. (p-val.) coeff. (p-val.)

mean equation

µ (/100) 0.140 (0.316) 0.474 (0.037) 0.130 (0.037)
basist−1 -0.031 (0.216)
momentumt−1 -0.175 (0.153)
rft−1 -0.111 (0.013)
rt−1 -0.108 (0.002)
rt−2 -0.041 (0.213)
rt−3 0.050 (0.110)
variance equation

α0 (/1000) 0.025 (0.175) 0.013 (0.012) 0.016 (0.022)
α+

1 0.085 (0.001) 0.183 (0.001) 0.000 (0.956)
α−1 0.060 (0.030) 0.029 (0.189) 0.145 (0.000)
α2 0.920 (0.000) 0.870 (0.000) 0.890 (0.000)
degrees-of-freedom equation

δ0 0.100 (0.000) 0.025 (0.042) -0.200 (0.054)
δ+

1 -0.732 (0.576) -3.633 (0.000) 21.138 (0.049)
δ−1 5.514 (0.007) -3.257 (0.002) -2.489 (0.383)
δ2 0.998 (0.000) 1.009 (0.000) 0.966 (0.000)
asymmetry parameter equation

ζ0 (/10) 0.085 (0.177) 0.088 (0.111) -0.250 (0.099)
ζ+

1 -0.357 (0.313) -0.903 (0.041) -0.374 (0.798)
ζ−1 0.218 (0.702) 0.592 (0.222) -2.553 (0.034)
ζ2 0.998 (0.000) 1.001 (0.000) 0.981 (0.000)
logL 1,515.4 2,262.7 2,149.6
ηc 11.24 (0.002) 4.792 (0.000) 12.25 (0.009)
λc -0.093 (0.070) 0.018 (0.577) -0.230 (0.000)
logLc 1,503.2 2,253.0 2,140.5
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effect on subsequent variance. This result is consistent with the leverage
effect studied by Campbell and Hentschel (1992), among others. Yet for
both commodities, especially gold, we observe an inverse leverage effect; that
is, positive shocks have a stronger effect on variance than do negative ones
of the same size.

Regarding the dynamics of the degrees-of-freedom and asymmetry pa-
rameters, we find that both higher moments are rather persistent for all asset
returns over the in-sample period. Large moves in oil returns, especially
negative ones, diminish the posterior degrees of freedom (δ−1 = 5.51 (0.01),
δ+

1 = −0.73 (0.58), with p-values in parentheses), increasing the likelihood
of posterior large shocks. For equity returns, large moves, especially posi-
tive ones, increase the subsequent degrees of freedom (δ−1 = −2.49 (0.38),
δ+

1 = 21.14 (0.05)), so large returns are less likely. For gold returns, extreme
events are generally more likely to cluster in periods of large positive moves:
Positive shocks are followed by a decrease in posterior degrees of freedom
(δ+

1 = −3.63 (0.00)), whereas negative shocks generally are followed by an
increase (δ−1 = −3.26 (0.00)).

In general, lagged values of the asymmetry parameter are more signif-
icant for subsequent parameter values than is the effect of the previous
returns shock. Over our study’s in-sample period, only positive shocks in
gold returns (ζ+

1 = −0.90 (0.04)) and negative shocks in equity returns
(ζ−1 = −2.55 (0.03)) seem to have effects of opposite signs on the posterior
asymmetry parameters. Therefore, for the three assets returns, we find
significant time variation in the moments of the univariate processes. As a
benchmark, Table 2.3 also reports the degrees-of-freedom and asymmetry
parameters, ηc and λc, of the conditional distribution with constant shape
parameters. We find that for the in-sample period, the left tail of the condi-
tional distribution of oil and equity returns is fatter than the right tail, with
parameters ηc and λc equal to 11.24 and -0.09 for oil returns, and 12.25 and
-0.23 for equity returns. In contrast, gold returns have positive (though not
significant) asymmetry parameter (λc=0.02) and heavier tails than oil and
equity returns (ηc =4.79).

A reliable estimation of copula models requires an appropriate specifica-
tion of the univariate density functions (see Patton (2006a,b) and Jondeau
and Rockinger (2006)). Therefore, to avoid misspecified copula models,
we conduct the in-sample goodness-of-fit test suggested by Diebold, Gun-
ther, and Tay (1998) for our estimated marginal distribution models. If
the marginal model is correctly specified, the probability integral transform
should be i.i.d. Uniform(0,1). According to the the LM statistics in Panel
A of Table 2.4, we must reject serial dependence in the first four moments
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of the probability integral transform (all p-values > 0.15). In addition, the
KS statistics suggest that the shape of the conditional distribution model
is correctly specified for the three returns (p-values > 0.90). Visually, the
goodness-of-fit plots in Figure 2.4 also supports these results. Furthermore,
the asymmetric marginal model performs substantially better than the Gaus-
sian and symmetric models, even for constant higher moments.

Finally, using likelihood ratio (LR) tests, we compare our more general
skewed t marginal model against different constrained alternative models.
In Panel B of Table 2.4, we report the LR test statistics for the next four
alternative marginal models: the generalized t distribution with constant
parameters, the standard Student’s t distribution with time-varying and
constant degrees of freedom, and the standard Gaussian distribution. In all
cases, we reject the restricted specification in favor of a more general model,
at least at a 5% significance level (p-values < 0.05).

In-sample results for the copulas

In this second stage, we estimate the dependence function that links the
three marginal distribution models. We analyze the three time-varying or
conditional copula functions described in Section 2.2.2 : the Gaussian, t, and
skewed t copulas. Table 2.5 presents the in-sample ML estimates of the three
conditional copula models, estimated on the transformed residuals of the
generalized t univariate model. This table also reports the estimates p-values,
computed from the asymptotic covariance matrix, and the likelihood values
at the optimum for the conditional and unconditional copulas.12

According to the ML estimates, for all copula models, the dependence
coefficient between oil and gold returns, ρoil, gold, is positive, whereas the
dependence coefficient between gold and equity index returns, ρgold, equity,
is negative, and that between oil and equity, ρoil, equity, is insignificantly
different from 0. Therefore, the estimated dependence coefficients are
consistent with the observed unconditional correlations reported in Table
2.2.

Estimates of the degrees of freedom ν are strongly significant for sym-
metric and skewed t copulas, indicating the presence of a significant level
of dependence in the extremes. Regarding the estimation of the skewed
t copula, we find that all elements of the asymmetry parameters vector

12In this empirical application, the conditional dependence follows the dynamics
in equation (2.15) for M = 4, which are the number of lags consistent with the
autoregressive lags considered in the univariate models.
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(γoil, γgold, γequity) are negative, especially for oil and equity, suggesting more
extreme dependence among returns during extreme depreciations of these
assets compared with during bullish markets.

The parameters ω0, ω1, and ω2, which parametrized the dynamic equa-
tion of dependence, are significant for all conditional copulas, showing
strong evidence of time variation and persistence in the conditional depen-
dence. These results regarding the estimates of the dependence functions
are also consistent with the preliminary multivariate analysis of Section 2.3.1.

According to the LR test statistics reported in Table 2.5, we observe, first,
that conditional copulas are preferred over their corresponding uncondi-
tional versions (p-values 6 0.05 for the three cases). Second, the presence of
tail dependence in the in-sample data is not negligible. The p-values of the
LR test of the conditional and unconditional t copulas with respect to the
more restrictive Gaussian copulas are always less than 0.10. Third, there is
evidence of asymmetry dependence over the in-sample period, captured by
the skewed t copula, but the gains from modeling this asymmetry may not
make up for the penalty associated with the inclusion of more parameters
in the model. These gains seem less significant than those obtained from
modeling time-varying and tail dependence.

Out-of-sample parameters forecasts

To obtain the optimal portfolio decisions based on our copula models over
the out-of-sample period, we need the forecasts of the different parameters at
play over the 2006-2010 period. For that purpose, we recursively reestimate
the marginal and copula models throughout the out-of-sample period (220
weekly observations) using a rolling window scheme that drops distant obser-
vations as more recent ones are added and therefore keeps the size of the
estimation window fixed at 836 observations. Once we re-estimate the model
for each point in the out-of-sample period, we construct the time-series of
one-period-ahead parameter forecasts needed for the allocation stage (see
Section 2.2.3 for the details of the implementation).

Figure 2.5 shows the output of the forecasts of the conditional mean,
volatility, and skewness of each return process throughout the out-of-sample
period. The volatility forecasts of all asset returns are relatively high, espe-
cially around October 2008. Conditional skewness is negative for equity and
oil returns during the 2006-2010 period, but it is positive for gold returns
during that period.
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Figure 2.6 presents the forecasts of the conditional dependence param-
eters. It is worth noting that there is an increase in the fitted correlation
coefficients among oil, gold, and equity from October 2008, especially for
oil and equity returns (see Exhibit 1). In addition, the dependence coeffi-
cients seem to evolve more similarly in the latter part of the sample. The
degrees-of-freedom forecasts decrease after August 2007, indicating rising
tail dependence since then (see Exhibit 2). In addition, the asymmetry
parameter of oil ranges between -0.6 and -0.2, which implies that extreme
dependence seems to be stronger during large depreciations of oil, com-
pared with large drops in gold or equity, whose asymmetry parameters range
between -0.2 and +0.2 (see the forecast of the asymmetry parameter vector
in Exhibit 3).

In general, during our re-estimation of the copula models, we find no
evidence to contradict skewed and fat-tailed marginal distributions and asym-
metric and extreme conditional dependence, but strong evidence indicates
that Gaussian distribution and elliptical dependence are not the best-fitting
models. These results over the allocation period are consistent with the
sample statistics we described previously.

In summary, the skewed t copula provides a more informative measure
of the dependence between commodities and equity-index returns, even
taking into account that part of the tail behavior is captured by the skewed
fat-tailed marginal distribution models. Therefore, possibly univariate tail
behavior and asymmetric dependence are key factors not taken into account
in a standard elliptical, à la Markowitz, approach. The extent to which these
factors have a significant impact on the portfolio choice decision is addressed
in the next section.

2.3.3 Optimal portfolio results

We now investigate the optimal portfolio decisions based on the copula
models we estimated in the previous section, and analyze their performance
over the out-of-sample period. In particular, we compare six model-driven
portfolio strategies that can be analyzed from the perspective of copula
models and therefore estimated using the multistage procedure from Section
2.2.3.

First, we consider the unconditional multivariate Gaussian model (Mar-
kowitz strategy), a constant Gaussian copula with unconditional Gaussian
marginal distributions. Second, we generalize this case byconsidering two
conditional multivariate Gaussian distributions: the constant conditional
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Exhibit 1: Forecasted correlation coefficients
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Exhibit 2: Forecasted degrees of freedom

Jun.06 Jan.07 Aug.07 Mar.08 Oct.08 May.09 Dec.09 Jul.10
12

14

16

18

20

22

24

d
eg

re
es

 o
f 

fr
ee

d
o
m

 

 
ν of skewed t copula

Exhibit 3: Forecasted asymmetry vector
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Figure 2.6. Conditional parameters of the conditional skewed t copula
This figure shows the one-step ahead forecasts over the out-of-sample period for the
correlation coefficients, degrees of freedom, and asymmetry vector components of
the conditional skewed t copula model.
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correlation (CCC) and the dynamic conditional correlation (DCC). Both
CCC and DCC specifications are formed by conditional Gaussian marginal
distributions with conditional means and variances defined in equations
(2.7) and (2.9). Third, we compute portfolio strategies using the condi-
tional copula models introduced in Section 2.2. Thus, we consider the
generalized Student’s t distribution for the marginal models (equations 2.7
-2.10) and three types of conditional dependence functions: the Gaussian,
t, and skewed t copulas (defined in equations 2.14-2.15). With this set of
alternatives, we can compare the gains of including more flexible models
as a means to compute portfolio decisions. In addition, we include in the
analysis the equally weighted portfolio, as a common benchmark used in
prior literature.

We analyze the portfolio allocations for different parameterizations of
the investor’s three-moment preferences, defined by ϕV and ϕS. For that
purpose, we follow two complementary approaches: one where the specifica-
tion of the investor’s preferences is related to the third-order Taylor series
expansion of an utility function with coefficient of relative risk aversion A
(like in Guidolin and Timmermann (2008) and Jondeau and Rockinger
(2012)), and other approach where the different values of ϕV and ϕS ac-
count for different arbitrary impacts of the portfolio variance and skewness
on the investor’s preferences (like in Harvey, Liechty, Liechty, and Müller
(2010)).

Portfolio weights

In this section we analyze the time series of portfolio weights over the out-
of-sample period corresponding to the portfolio allocations obtained from
the six copula models described previously. For that purpose, we report in
Table 2.6 the quantiles of the distribution of optimal weights for oil, gold,
and equity, under various specifications (ϕV and ϕS) of the three-moment
investor’s preferences, characterized, in this case, by different values of the
risk aversion coefficient A. These allocation results are obtained from the
unconstrained and short-sales constrained optimizations.13 In addition, in
Panel A of Figure 2.7 we plot, for two of these preferences specifications, the
time-series of portfolio weights resulting from the portfolio decisions made
using our most general model, the conditional skewed t copula. Panel B
of Figure 2.7 shows the allocation differences between the unconditional

13Note that the short-sales constraint only affects the weights of spot contracts, in
this case, the weights of the equity index.
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Gaussian model and the conditional skewed t model for A = 5 (i.e. for
ϕV=5/2 and ϕS=5).

The results show that the bulk of the difference between portfolios strate-
gies depends largely on the use of different marginal distribution models.
The first significant discrepancies arise when using time-varying Gaussian
marginal distributions (CCC and DCC models) instead of unconditional
Gaussian margins (Uncond. Gaussian model). In particular, the median
position in equity resulting from the CCC model decreases significantly
compared with the median position of the unconditional Gaussian strategy,
especially for the lowest values of A. Accordingly, the median positions in
commodity futures increases when we employ the CCC model. For example,
for A = 2 (ϕV=1 and ϕS=1), the median positions of the CCC strategy are
0.50, 0.22, and -0.22 for oil, gold, and equity, whereas for the unconditional
model the median positions are 0.36, 0.10, and 0.41, respectively. We also
observe relevant differences between using Gaussian (CCC and DCC mod-
els) and generalized Student’s t distributions (conditional copula models)
for modeling the conditional margins. The main effect of introducing fat
tails and asymmetry in the marginal distributions consists in an increase of
long positions in gold and a reduction of long positions in oil. For instance,
comparing the DCC and conditional Gaussian copula strategies for A = 2,
we find that the median positions in oil and gold change from 0.43 and 0.21
to 0.21 and 0.46, respectively.

A second source of allocation differences is driven by the various types of
dependence captured with our copula models. These discrepancies in opti-
mal portfolio weights arise, first, from introducing a time-varying conditional
dependence (e.g., CCC vs. DCC); and second, from considering tail depen-
dence (e.g., t copula vs. Gaussian copula) and asymmetric dependence (e.g.,
skewed t vs. t copula). These allocation differences are significant mainly
for A = 1 (ϕV=1/2 and ϕS=1/3) and A = 2 (ϕV=1 and ϕS=1). Specifically,
when allowing for dynamic dependence, the median positions in the three
assets decrease. For example, for A = 1, the CCC strategy generates median
positions in oil, gold, and equity equal to 0.88, 0.10, and -1.13; whereas for
the DCC model the median weights are 0.74, 0.00, and -1.29, respectively.
When capturing asymmetric dependence using the skewed t copula, we also
observe that median weights diminish with respect to the median positions
corresponding to the symmetric t copula strategy. Thus, for A = 1, the
median weights for the t copula model are 0.39, 0.57, and -0.82; and those
obtained from the skewed t copula are equal to 0.28, 0.44, and -1.02.

Looking in more detail at the quantiles corresponding to our more flexi-
ble model, the conditional skewed t copula, we observe that the dispersion in
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the distribution of weights shrinks when increasing the value ofA (see Figure
2.7). For the highest values of A considered, portfolio weights become less
aggressive and there are less discrepancies among median positions of the
skewed t strategy and those of less flexible models. Changes in the coefficient
A affects to a large extent to the distribution of equity weights. Thus, under
the skewed t model, the median positions in equity for values of coefficient
A equal to 1, 2, 5, and 10 are -1.02, -0.18, 0.26, and 0.38, respectively; and
the 5% percentiles are -5.42, -2.43, -0.62, and -0.11. The median weights
for oil futures range from 0.28 for A = 1 to 0.11 for A = 10; in this case,
the decline in the median is mainly given by a decrease in the presence of
extreme long positions in oil futures (the 95% percentile diminishes from
2.89 to 0.40). In contrast, increasing A generates less extreme long and
short positions in gold, and the median weight varies slightly, from 0.44 for
A = 1 to 0.42 for A = 10.

Panel B of Table 2.6 reports the percentiles of the distribution of portfo-
lio weights when short sales of equity are not allowed. Imposing a short-sales
constraint has a strong impact on the portfolio strategies, especially for the
preference specifications corresponding to values ofA equal to 1 and 2. Only
the portfolio decisions obtained from the unconditional Gaussian model
are not affected by this restriction. The models that yield median positions
of being short in equity under the unconstrained portfolio optimization
generate median positions equal to zero under the restricted allocation. As
a result, the presence of extreme positions in commodity futures is reduced,
especially the long positions in gold futures. For example, for A = 2 the 5%,
50% and 95% percentiles of the commodity positions resulting from the
skewed t copula strategy under the short-sales constraint are -0.09, 0.10, and
1.00 for oil, and -0.50, 0.22, and 1.00 for gold; in contrast to the percentiles
of the unrestricted portfolio decisions, which are -0.15, 0.20, and 1.50 for
oil, and -0.89, 0.45, and 2.89 for gold. Therefore, for the least risk averse
investors under the short-sales restriction, part of the information included
in the more flexible copula models is lost.14

Investment ratios and portfolio performance

We now turn to analyze the moments, investment ratios, and relative perfor-
mance measures of the optimal portfolio returns resulting from the different
copula strategies. Results are reported in Table 2.7 for various specifications
of the three-moment preferences.

14Patton (2004) reaches a similar conclusion for a portfolio selection problem
with two stock indices.
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We compute the Sharpe, Sortino, and Omega investment ratios, given
respectively by

Sharpe = µP−rf
σP

, Sortino = µP−rf√
ql2(rf )

, and Omega = qu1 (rf )
ql1(rf ) ; (2.18)

where µP is the average realized portfolio return, σP is the realized portfolio
volatility, rf is the risk-free rate, and qlm(rf ) and qum(rf ) are the lower and
upper partial moments of order m with target value equal to the risk-free
rate.15 The Sortino ratio modifies the Sharpe ratio by dividing the excess
return of the portfolio by the downside standard deviation or square root
of semi-variance. The Omega ratio can be interpreted as the probability
weighted ratio of gains to losses, relative to the risk-free rate, and it measures
the combined effect of all of returns moments, rather than the individual
effects of any of them. The higher the values of these ratios, the better
portfolio performance.

The Sharpe, Sortino, and Omega ratios of the equally weighted portfolio
are 0.05, 0.07 and 1.14 (see Table 2.7). The poor performance of equity
markets and the boom of gold and oil during the 2006-2010 period reveals
that these portfolios, with constant holdings in oil and gold futures, perform
remarkably well compared with other strategies based on fitted distribution
models. In particular, for almost all three-moment preferences considered,
the investment ratios of the unconditional Gaussian model (Markowitz
model) are substantially smaller than those corresponding to the equally
weighted portfolio.

For the preferences considered, we find that, in general, the conditional
copula models with generalized Student’s t marginal distributions have
larger investment ratios than the multivariate conditional Gaussian models
(CCC and DCC). In addition, at least one of the t copula models (symmetric
or skewed) perform better than the Gaussian copula, for most of the cases
analyzed. That is, conditional copulas that capture tail or asymmetric depen-
dence or both achieve higher investment ratios across our allocation sample.
For example, the Sortino and Omega ratios of the conditional skewed t
copula strategy range from 0.10 and 1.19 to 0.14 and 1.28, whereas these
investment ratios for the conditional Gaussian copula model range from
0.07 and 1.15 to 0.12 and 1.23. The DCC model yields Sortino and Omega
ratios varying from 0.03 and 1.06 to 0.11 and 1.20; and the unconditional
Gaussian strategy has ratios ranging from -0.004 and 0.99 to 0.07 and 1.14.

15The lower and upper partial moments of order m for a given target θ are
defined as qlm(θ) =

∫ θ
−∞(θ − r)mfp(r)dr and qum(θ) =

∫∞
θ

(r − θ)mfp(r)dr, where
fp(r) is the probability density function of the portfolio returns.
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We also observe in Table 2.7 that portfolio decisions made using t and
skewed t copulas have generally higher skewness coefficients than do Gaus-
sian models. That is, taking into account tail dependence in the portfolio
decisions could decrease the likelihood of negative portfolio returns.

Now, we compare the six model-driven portfolios in terms of their perfor-
mance with respect to a benchmark strategy: the equally-weighted portfolio.
For that purpose, we employ two relative performance measures: the oppor-
tunity cost or performance fee (Fee) and the Graham-Harvey metric (GH).
The performance fee is the amount that must be added to the return of
the equally-weighted strategy, such that it leaves the investor indifferent to
both portfolio decisions. The Graham and Harvey (1997) measure is the
difference between the alternative portfolio returns on the volatility-matched
benchmark portfolio. That is, to make both portfolios comparable in terms
of volatility, we lever up/down the benchmark to match the alternative port-
folio’s volatility over the evaluation period. Table 2.7 reports both relative
performance measures (in basis points per week) of the realized portfolio
returns over the allocation period (2006-2010).

For all the preferences specifications considered, both relative perfor-
mance measures coincide in indicating the same best performing strategy
(see values in bold in Table 2.7). Results suggest that the investor can obtain
substantial gains using the portfolio rules based on conditional t copulas
with generalized t marginal distributions for most of the preference specifi-
cations we report in Table 2.7. The gains seem to be higher for the skewed t
copula portfolio for the unconstrained investor when A is lower, although
we do not observe the same monotonic relation for the t or Gaussian copula
portfolios or for the short-sales constrained investor. The opportunity costs
of an investor holding the equally weighted portfolio instead of the portfolio
based on the skewed t copula are between 3 and 12 basis points per year,
whereas the opportunity costs for the Gaussian copula strategy range from
-1 to 4 basis points per year. When we use the GH measure to compare
alternative strategies with different levels of risk, we also find that copula
models with tail dependence outperform Gaussian dependence models. In
particular, the GH measure for the skewed t copula portfolios varies between
2 and 30 basis points per year; this measure for Gaussian copula portfolios
ranges from 0 to 19 basis points; and for the DCC strategy, it varies between
-5 and 16 basis points.

These results suggest that the allocation differences found among the
multivariate copulas portfolios imply also economical differences in terms
of investment ratios and performance measures. The univariate higher
moments and the tail and asymmetric dependence seem to be key features
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at this respect, especially for more aggressive investors. Specifically, as
variance and loss aversion increase, skewed t copula strategies are less likely
to produce large performance differences. These differences are also smaller
for the short-sales constrained allocation, where the investor cannot increase
their exposure to commodity futures taking extreme short positions in equity.
These results related to risk aversion and the performance of non-linear
models is consistent with findings previously reported in portfolio choice
literature (e.g., Patton (2004) for the case of asymmetric dependence and
wealth allocation between small and large cap stock indices; and Das and
Uppal (2004) for the case of systemic risk and international portfolio choice).
In the next section, we evaluate the robustness of our results, including in
the analysis other parameterizations of the three-moment preferences.

Robustness analysis

As a first robustness check, we investigate the allocation decisions made
using three-moment preferences specifications with arbitrary impacts of the
portfolio variance and skewness (i.e. with arbitrary values of coefficients ϕV
and ϕS). Since the coefficients ϕV and ϕS may not be necessarily related
with a third-order Taylor expansion of a given utility function, we have
more flexibility to define ad-hoc three-moment investor’s preferences; like
in Harvey, Liechty, Liechty, and Müller (2010). In Table 2.8, we report
the percentiles of the distributions of optimal portfolio weights for some of
these preferences specifications. With respect to the allocation differences
among our copula strategies, the results of this complementary approach
are consistent with our previous findings. Furthermore, using arbitrary
coefficients ϕV and ϕS we can do some sensitivity analysis and investigate the
effect of increasing the impact of portfolio variance (ϕV) or skewness (ϕS)
on the optimal allocation. More specifically, we find that when the impact
of skewness (ϕS) increases, the median positions in equity and oil diminish,
whereas long positions in gold increases.

For example, for ϕV=1/4 and ϕS=0, the skewed t copula model yields
median positions equal to 0.34, 0.59, and -2.83 for oil, gold, and equity;
whereas if ϕS rises to 1/2, the median positions are 0.09, 0.79, and -3.37.
Besides, for ϕV=1/2, increasing ϕS from 1/4 to 1 modifies the median
positions of oil, gold, and equity from 0.28, 0.53, and -1.02 to 0.14, 0.54, and -
1.18, respectively. On the other hand, when increasing the impact of variance
(ϕV), the median and low quantiles of equity weights rise significantly, as
we observed previously in Section 2.3.3. For instance, for ϕS=1/2, when
ϕV=1/4, the skewed t strategy generates median positions equal to 0.09, 0.79,
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Table 2.9. Investment ratios and relative performance measures for different
preference parameterizations

This table reports the investment ratios and relative performance measures (in basis points per week)
of the realized portfolio returns over the allocation period for different preference specifications (ϕV
and ϕS) parameterized according to Harvey, Liechty, Liechty, and Müller (2010). The highest value of
each measure is marked in boldface.

Sharpe Sortino Omega Skw Fee GH

Equally Weighted 0.050 0.071 1.142 -0.240 0.000 0.000
Min. Variance 0.057 0.084 1.161 0.069 0.012 -0.047

ϕV = 1/4 and ϕS = 0
Uncond. Gaussian 0.003 0.004 1.008 -0.089 -0.302 -0.128
TARCH-CCC 0.045 0.071 1.148 0.474 -0.092 0.704
TARCH-DCC 0.045 0.072 1.144 0.585 -0.103 0.715
Gaussian Copula 0.070 0.112 1.235 0.459 0.330 1.044
t Copula 0.063 0.099 1.211 0.387 0.218 0.939
skewed t Copula 0.074 0.119 1.251 0.431 0.407 1.127

ϕV = 1/4 and ϕS = 1/2
Uncond. Gaussian 0,002 0,003 1,006 -0,095 -0,314 -0,134
TARCH-CCC 0,044 0,069 1,147 0,684 -0,141 0,780
TARCH-DCC 0,050 0,080 1,165 0,514 0,001 0,892
Gaussian Copula 0,041 0,065 1,136 0,576 -0,190 0,717
t Copula 0,036 0,056 1,113 0,482 -0,182 0,650
skewed t Copula 0,076 0,133 1,289 1,894 0,614 1,658

ϕV = 1/2 and ϕS = 1/4
Uncond. Gaussian 0.003 0.004 1.007 -0.411 -0.194 -0.137
TARCH-CCC 0.053 0.085 1.169 0.852 0.024 0.392
TARCH-DCC 0.045 0.073 1.141 0.862 -0.053 0.325
Gaussian Copula 0.055 0.087 1.178 0.675 0.044 0.383
t Copula 0.062 0.101 1.208 1.108 0.112 0.460
skewed t Copula 0.079 0.132 1.271 1.096 0.283 0.630

ϕV = 1/2 and ϕS = 1
Uncond. Gaussian 0.022 0.029 1.062 -0.601 -0.087 -0.080
TARCH-CCC 0.059 0.094 1.180 0.615 0.050 0.182
TARCH-DCC 0.053 0.084 1.158 0.620 0.017 0.152
Gaussian Copula 0.049 0.073 1.153 0.082 -0.006 0.118
t Copula 0.061 0.097 1.187 0.828 0.054 0.166
skewed t Copula 0.080 0.129 1.253 0.819 0.153 0.267

ϕV = 1 and ϕS = 1/2
Uncond. Gaussian 0.005 0.007 1.015 -0.415 -0.184 -0.126
TARCH-CCC 0.053 0.085 1.170 0.847 0.023 0.404
TARCH-DCC 0.046 0.074 1.144 0.857 -0.049 0.344
Gaussian Copula 0.006 0.008 1.018 -0.054 -0.069 -0.218
t Copula 0.038 0.059 1.107 -0.019 -0.004 0.302
skewed t Copula 0.044 0.071 1.123 0.702 0.013 0.330
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and -3.37; whereas if ϕV=1, assets median positions are equal to 0.20, 0.45,
and -0.17. In addition, the 5% percentile of equity weights increases from
-10.0 to -2.39, and the 95% percentiles of oil and gold decrease from 5.33
and 11.0 to 1.50 and 2.84, respectively.

We also calculate the investment ratios and relative performance mea-
sures of the realized portfolio returns for these parameterizations of the
three-moment preferences; see Table 2.9. The conditional t copulas out-
performed the multivariate Gaussian models in 4 of the 5 comparisons,
suggesting again the importance of dependence specification for asset allo-
cation with commodity futures. The GH measures (relative to the equally
weighted portfolio) obtained from the skewed t copula model ranges be-
tween 14 and 86 basis points per year, while the DCC model vary between 8
and 46 basis points per year.

Finally, using the reality check test of Hansen (2005), we compare jointly
the out-of-sample performance of the different portfolio strategies. To apply
this superior predictive ability test, we first need to define a metric (loss
function) and then employ this metric to compute the relative performance
of each model with respect to a chosen benchmark model. The null hypoth-
esis is that the benchmark is as good as any alternative model in terms of
portfolio performance. That is, the test answers if any of the models is better
than the given benchmark. The stationary bootstrap of Politis and Romano
(1994) is used to estimate the distribution of the test statistics under the null.
Hansen (2005) proposed three p-values based on the test statistic estimates:
a consistent p-value, as well as upper and lower bounds for the true p-value.

Employing the opportunity cost as our metric function (Patton (2004)),
we conduct the test of superior portfolio performance for different bench-
mark models. The corresponding p-values are reported in Table 2.10.The
null hypothesis is rejected for small p-values. We observe that the probability
of rejecting the null hypothesis for the equally weighted and unconditional
Gaussian portfolios is higher (p-values < 0.10) for unconstrained strategies
and for low values of A, that is, for more aggressive investors. The DCC
model is outperformed by other models, with p-values < 0.15, in six of the
twelve specifications we report. We are able to reject the conditional Gaus-
sian copula model for three cases. In contrast, the conditional t copula
strategy is only rejected twice, and there is little evidence that the conditional
skewed t copula portfolio is outperformed by alternative models. Therefore,
conditional copulas with tail dependence have generally superior out-of-
sample performance for the different specifications considered.
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2.4 Conclusions

This chapter investigates the portfolio selection problem of an investor with
time-varying three-moment preferences when commodity futures are part of
the investment opportunity set. In our specification, the portfolio returns’
skewness provides a measure of the investor’s loss aversion. We model
the joint distribution of asset returns using a flexible multivariate copula
setting that can disentangle the specific properties of each asset process
from its dependence structure. The more general model we posit consists
of a conditional skewed t copula with generalized Student’s t marginal
distributions and time-varying moments. Thus we can capture the specific
distributional characteristics of commodity-futures returns and focus on
their implications for the portfolio selection problem.

The empirical application employs weekly data for oil and gold futures
and for the S&P 500 equity index, from June 1990 to September 2010. Our
preliminary analysis and in-sample estimations suggest the presence of skew-
ness and fat tails in the univariate processes, as well as evidence of both
extreme and asymmetric dependence among oil, gold, and equity. When
computing the optimal portfolio weights, we find substantial discrepancies
between the holdings obtained from our conditional copula models and
those from more traditional Gaussian models. The key factors underlying
these differences are the different specifications of the time-varying marginal
distributions, the presence of dynamic conditional dependence among the
univariate processes, and the modeling of tail and asymmetric dependence.
The univariate higher moments and the type of tail dependence are more
relevant for aggressive investors. These discrepancies translate into economi-
cal differences in terms of better investment ratios and relative performance
measures for the different specifications considered. For instance, depend-
ing on the allocation specification, the gains of using the conditional t
copulas range up to 86 basis points per year for the period 2006-2010. The
performance differences of portfolio strategies based on more flexible cop-
ulas are smaller when variance and loss aversion increase, as well as for
short-sales constrained allocations. Furthermore, we analysis the robustness
of our results, confirming that conditional copulas with tail dependence have
generally superior out-of-sample performance for the different specifications
considered.

Finally, some extensions to our analysis can be considered. For instance,
it would be interesting to study the sensitivity of the investor’s portfolio
decisions to parameter uncertainty. Note that some cautions with the propa-
gation of errors between the marginal distributions and the copula function
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have to be taken into account when implementing this type of analysis. An-
other possibility is to extend our portfolio selection problem with commodity
futures to a dynamic asset allocation context. Thus, we could evaluate the
hedging component of the optimal portfolio weights under the effects of
skewness and asymmetric dependence.



3
Tail risk in energy portfolios

THE GROWTH OF ENERGY MARKETS has been sustained by continued dereg-
ulation processes, which have encouraged the separation of the formerly
integrated value chains. This process has increased market risk exposures at
every stage of the chain, including the purchase and sale of fuels, electricity
generation, and obtaining gas or electricity for retail supply. In addition to
the physical resource holders, financial players, such as banks and hedge
funds, increasingly participate in energy markets to satisfy their customers’
demands to gain or hedge energy risk exposure, as well as to trade on their
own behalf. In this context, energy-related companies and financial players
experience greater exposures to energy price risk, which has particular char-
acteristics that make it different from other market risks and requires clearer
explication.

In this chapter, we therefore analyze the energy price risks from a multi-
variate perspective. In particular, we study the aggregate tail risk of different
linear energy portfolios using an asset-level approach. Accordingly, we can
propose a multivariate model for the vector of energy risk factors; using the
portfolio exposures to each factor, we in turn can calculate the aggregate
tail behavior of the portfolio. Next, we compute the corresponding portfolio
risk measures and evaluate the extent to which the tail pattern of the model
is important in practice.

With this asset-level approach, we can capture the entire structure of
energy risk factors in a portfolio and their interdependence relationships.
This multivariate behavior (univariate and joint structure) of energy risk fac-
tors depends on the special characteristics of energy markets. In particular,
the pricing of energy commodities relies largely on an equilibrium among
supply, demand, and inventories, subject to various operational constraints
(for example, due to infeasible or overly costly storage). These charac-

63
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teristics cause deregulated energy markets to exhibit substantial volatility,
price spikes, time-varying correlation, dependence in the extremes, and
mean-reversion patterns (e.g., Cartea and Figueroa (2005), Benth, Šaltytė
Benth, and Koekebakker (2008), Escribano, Peña, and Villaplana (2011),
Huisman and Mahieu (2003), Pirrong (2012), and Routledge, Seppi, and
Spatt (2001)).

We therefore employ a multivariate density model to depict the energy
risk factors, in which we seek to include all the stylized features of the data
generating process. For this purpose, we consider an econometric specifi-
cation with time-varying conditional means, volatilities, and correlations, in
which the innovation vector follows a multivariate generalized hyperbolic
(GH) distribution. The GH class is a very flexible family of distributions that
accommodates excess kurtosis, skewness, and dependence in the extremes.1

In particular, we consider special cases included in the multivariate GH class,
namely the normal inverse Gaussian (NIG) distribution, the variance-gamma
(VG) distribution, the GH skewed t (skT) distribution, Student’s t (T) dis-
tribution, and the Gaussian (G) distribution. These distributions differ in
their dependence and tail decay patterns. In this way, we extend previous
theoretical and empirical studies that employ some of these distributions
to the risk analysis of energy assets (see Benth and Šaltytė Benth (2004),
Börger, Cartea, Kiesel, and Schindlmayr (2009), Eberlein and Stahl (2003),
Giot and Laurent (2003), and Weron (2006)).

We apply our multivariate GH specification to model the returns vector
formed by the four most important commodities in the U.S. energy market:
crude oil, natural gas, coal, and electricity. These commodities constitute the
elements of our linear energy portfolios, which represent the exposure of any
given energy company or financial player to energy price risk. We use daily
data from August 2005 to March 2012 to estimate the multivariate models
and evaluate the tail risk of the portfolio profit-and-loss (P&L) distribution.
Then using data from March 2010 to March 2012, we conduct out-of-sample
forecast evaluations of the risk measures.

We address the analysis of the aggregate tail risk by calculating two risk
measures, the value at risk (VaR) and the expected shortfall (ES), for long
and short trading positions in the energy portfolios. The VaR corresponds
to the quantile of the portfolio loss distribution for a given probability or
confidence level. The ES is defined as the conditional average loss beyond a

1With different parametrizations, this family of distributions has been applied in
financial modeling of univariate and multivariate problems; see for example Aas
and Haff (2006), Bingham and Kiesel (2002), Hu and Kercheval (2010), McNeil,
Frey, and Embrechts (2005), and Prause (1999).
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given quantile, and it better describes the behavior of the portfolio losses in
the tail. We estimate both measures for different confidence levels, which
define how far out in the tails the risk measures are calculated, as well as for
several day horizons, to obtain a short-term surface of risk. Whereas most
equity risk studies have focused on the left tail of long positions, the presence
of positive jumps in the data generating process of energy commodities,
especially for the natural gas and electricity markets, suggests that the analysis
of the right tail of the possibly asymmetric P&L distribution could be relevant
for traders who are worried about increases in energy prices (i.e., those with
short positions).

Finally, using different backtest procedures, we monitor, for the out-
of-sample period, the performance of the risk measure estimates that cor-
respond to the GH models. In these comparative tests, we also consider
several traditional approaches to calculate risk measures: the unconditional
Gaussian (variance-covariance, VC) approach, the Riskmetrics model (or
exponentially weighted moving average, EWMA), and non-parametric his-
torical simulations. We pay special attention to the backtesting of the ES
estimates, because this measure offers more information about aggregate
tail behavior. Thus, we propose a new backtest procedure that employs the
superior predictive ability (SPA) test of Hansen (2005), along with a metric
function based on the ES backtesting measures of Embrechts, Kaufmann,
and Patie (2005), to compare the performance of the whole set of alternative
models.

The main empirical results of the chapter are as follows: With respect
to the estimates of the econometric specification, we find evidence of time-
varying evolution in the conditional correlations between energy markets.
In particular, we observe positive asymmetry in the correlation dynamics
between fuels and electricity, which has not been previously documented in
this context. This result makes economic sense, in that fuel prices increase
the generation costs of electricity. Regarding the conditional distribution,
the results for the recursive estimations over the out-of-sample period reveal
the presence of fat tails and positive skewness in the multivariate distribution
of energy risk factors. These results for the estimated densities are consis-
tent with the hypothesis of jump diffusions in the energy data generating
processes. Although the VG and NIG models offer the best in-sample fit
performance for the multivariate distribution of the energy returns, the T
and skT models seem to estimate aggregate tail risk behavior better, espe-
cially in the case of the right tail of the portfolio’s P&L distribution. The
out-of-sample evaluation of the risk measure forecasts favors these findings.
In general, there are more VaR violations across models for short positions
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than for long ones, confirming the positive asymmetry of the P&L distribu-
tion of the energy portfolios. We also observe that the ES exceedances are
quite high for (conditional and unconditional) Gaussian models, especially
for the two utility portfolios. The heavy-tail models behave much better than
alternative versions, with regard to the tail risk of short positions. Finally,
according to the results of the SPA backtest, models with exponential tail
decay (including the VG and NIG) yield inferior tail estimates for short
portfolio positions compared with the T and skT models (with polynomial
tail decay), especially for the far tail (α = 1%) of utility portfolios at short
horizons. Therefore, the extent of the underestimations of the tail risk of
the portfolio loss distribution depends on whether we are analyzing short
or long positions in the energy portfolio, the type of portfolio, the horizon,
and how far out in the tail the risk is being analyzed.

In Section 2, we begin by presenting the linear portfolios of energy
commodities and the portfolio profit-and-losses function. Section 3 intro-
duces the econometric specifications, based on the dynamic multivariate
GH models, for the energy returns vector. With Section 4, we characterize
the conditional risk measures, the VaR and ES, according to the multivariate
models we introduced in Section 2. Next, we provide a description of the
energy futures data that constitute the portfolios and the results from the
empirical estimations, including a description of the tail fit of the GH mod-
els, in Section 5. After we report the results of the risk measures forecast
and analyze their out-of-sample performance, in Section 6, we conclude in
Section 7. A final appendix provides the technical details for the different
portfolios included in the analysis, the multivariate density functions, the
estimation methodologies, and the backtest measures.

3.1 Portfolios of energy commodities

We approximate a given exposure to energy price risk using a corresponding
portfolio of energy futures. Thus, changes in the energy price risk factors
can be mapped linearly to changes in the value of the energy futures port-
folio.2 For example, a linear portfolio could represent directly the energy
futures positions of an institutional investor or the energy price exposure
of an electricity producer with fuel-fired power plants. In this chapter, we
consider four energy commodities: crude oil, natural gas, coal, and electric-

2A portfolio of futures contracts can also be considered a first-order approxi-
mation of more general energy asset portfolios with non-linear payoffs (Tseng and
Barz, 2002; Cartea and González-Pedraz, 2012).
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ity, identified by subscripts i equal to 1, 2, 3, and 4, respectively. These four
commodities substantially represent any general exposure to energy price
risk.3

Let Fi,t denote the settlement price at time t of an energy futures contract
i. We then assume that the valueWt of a given energy portfolio is determined
by a linear combination of futures Fi,t, such that

Wt =
4∑
i=1

qi,tFi,t =
4∑
i=1

wi,t = w′tı4 , (3.1)

where the quantities qi,t define the size and sign of the exposure to the
energy commodity i; wt = (w1,t, . . . , w4,t)′ = (q1,tF1,t, . . . , q4,tF4,t)′ defines
the portfolio weights in dollars of each energy commodity; and ı4 is a 4× 1
vector of ones.

Thus, the h-period return (in dollars) on an energy portfolio at time t is
given by

∆Wt(h) = Wt −Wt−h = Rt(h)Wt−h = w′t−h(exp(rt(h))− ı4) , (3.2)

where Rt(h) is the h-period net return on the portfolio, rt(h) =
∑h−1
k=0 rt−k

is the 4 × 1 vector of h-period log-returns, and rt is the 4 × 1 one-period
log-return vector at time t with the i-th component ri,t = log(Fi,t/Fi,t−1).
The energy log-returns ri,t constitute the vector of risk factors.

According to equation (3.2), the portfolio’s profit-and-loss (P&L) distri-
bution is determined by the multivariate density model of energy risk factors
rt and the positions in the energy commodities wt. The multivariate model
of risk factors describes the joint behavior of the four commodities. The
different positions in energy futures define the size and sign of the exposure
to each energy commodity, mapping the multivariate model onto a specific
P&L distribution. In this chapter, we consider four portfolios: two related to
power utilities and two others more related to financial players.

As representative portfolios of electricity producers, we include the
energy portfolio of a utility with a diversified mix of generation that operates
in the Pennsylvania-Jersey-Maryland (PJM) Interconnection and a linear
portfolio corresponding to a gas-fired power plant. In addition, we account
for two typical portfolios of financial players that seek exposure to energy

3Oil constitutes 33% of the world’s total primary energy supply, followed by coal
with a share of 27% and natural gas with 21%. In addition, coal, natural gas, and
oil represent 41%, 21%, and 5%, respectively, of the world’s electricity generation
(International Energy Agency (2011)).
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commodities: an equally weighted portfolio and the minimum variance
portfolio. In Appendix A.6, we provide more details about the construction
of these portfolios.

3.2 A dynamic multivariate GH model for energy returns

Using rt = (r1,t, . . . , r4,t)′ as the vector of the four energy assets log-returns
at time t, we assume that the data generating process for {rt : t = 1, . . . , T}
is given by

rt = mt + εt , and (3.3)

εt = H
1/2
t xt , (3.4)

where mt and εt are the 4× 1 vectors of conditional means and unexpected
returns;H1/2

t is the 4×4 Cholesky factor of the time-varying 4×4 covariance
matrix Ht, such that Ht = H

1/2
t (H1/2

t )′; and xt is the 4 × 1 vector of
independent innovations, which follows a four-variate generalized hyperbolic
(GH) distribution with zero mean and an identity covariance matrix.

To capture the possible presence of serial correlation in energy returns,
we consider a diagonal vector autoregressive (VAR) process with up to 5 lags
for the vector of returns.4 Thus, the conditional mean vector is given by

mt = IE(rt|Ft−1) = m0 +
5∑
j=1
Φjrt−j , (3.5)

where m0 is a constant 4× 1 vector, Φj are 4× 4 diagonal matrices, and the
expectation is conditional on the history of the process up to time t− 1, that
is, Ft−1 = σ({rs : s ≤ t− 1}).

At the same time, the conditional covariance matrix Ht can be decom-
posed as follows

Ht = Cov(rt|Ft−1) = DtPtDt , (3.6)

where Dt is the 4× 4 diagonal matrix composed by the conditional volatil-
ities of rt, and Pt is the 4 × 4 conditional correlation matrix. We want to
capture possible persistence and asymmetry in conditional variances and cor-
relations. For that purpose, we assume univariate asymmetric GARCH(1,1)

4In a previous empirical analysis, we determine the number of lags in the model,
first, taking into account those lags that are significant and help to reduce the
presence of autocorrelation in the asset returns; then, considering the values of
Bayesian Information Criteria to select among the different alternative models.
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processes for the conditional variances and a modified version of the asym-
metric dynamic conditional correlation (ADCC) model of Cappiello, Engle,
and Sheppard (2006) for the time-varying correlation matrix. That is, the
elements of the diagonal volatility matrix Dt,

√
hi,t , satisfy

hi,t = α0,i + α1,iεi,t−1 + α−1,iεi,t−11l{εi,t−1≤0} + α2,ihi,t−1 , i = 1, . . . , 4 ,
(3.7)

where α0,i > 0, α1,i ≥ 0, α1,i+α−1,i ≥ 0, α2,i > 0, and α1,i+α−1,i/2 +α2,i < 1,
which guarantees that the process is positive and covariance stationary. The
dynamics of the correlation matrix in our version of the ADCC model is
given by

Pt = diag(Qt)−1/2Qt diag(Qt)−1/2 , (3.8)

Qt = [(1− δ1 − δ2)Q̄− δ+
1 N̄ ] + δ1ut−1u

′
t−1 + δ+

1 nt−1n
′
t−1 + δ2Qt−1 ,

(3.9)

where δ1, δ
+
1 , δ2 ≥ 0; ut = D−1

t εt is the 4×1 vector of standardized residuals;
nt = ut1l{ut≥0}; and Q̄ = IE(ut−1u

′
t−1) and N̄ = IE(nt−1n

′
t−1) are the

unconditional covariance matrices of ut and nt. A sufficient condition for
Qt to be positive definite is that δ1 + δ2 + η̄δ+

1 < 1, where η̄ is the maximum
eigenvalue of Q̄−1/2N̄Q̄−1/2. With this specification, we investigate, in the
conditional correlation, the presence of asymmetric responses to positive
shocks.

Motivated by the presence of jumps and spikes in energy prices, we
employ multivariate GH distributions to model the conditional distribution
of the vector of innovations xt. These GH distributions are flexible enough
to accommodate different tail behaviors and types of asymmetry (e.g., thin or
heavy tails, symmetric or positive/negative skewness). The GH family can be
obtained using the following normal mean-variance mixture representation
(see McNeil, Frey, and Embrechts, 2005):

xt
dist.= µ+ ωtγ + ω

1/2
t Azt , zt ∼ N4(0, I4) , (3.10)

where µ and γ are the 4 × 1 location and skewness parameter vectors,
respectively, andΣ = AA′ is the 4×4 dispersion matrix. The random vector
zt follows a four-variate Gaussian distribution with zero mean and identity
covariance, and ωt ≥ 0 is a non-negative random variable independent of zt.
The mixing random variable wt can be understood as a shock that affects
the covariance of energy assets, due to the arrival of new information in the
markets (e.g., shortages in future supply, unexpected increases in demand).5

5Conditioned on ωt, the vector of innovations xt is normally distributed, such
that xt|ωt ∼ N4(µ+ ωtγ, ωtΣ).
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In the case of GH distributions, the mixing random variable ωt follows
a generalized inverse Gaussian (GIG) distribution, ωt ∼ N−(λ, χ, ψ). The
very flexible GIG distribution includes as special boundary cases the gamma
and inverse gamma distributions. Thus, for certain values of the parameters
λ, χ, and ψ and the skewness vector γ, we can obtain different cases of
GH distributions. We consider five particular cases of multivariate GH
distributions: the normal inverse Gaussian (NIG) distribution (i.e., ωt follows
an inverse Gaussian distribution, which corresponds to the case λ = −1/2),
the variance-gamma (VG) distribution (i.e., ωt follows a gamma distribution,
corresponding to the parameters λ > 0 and χ = 0), the skewed t (skT)
distribution (i.e., ωt follows an inverse gamma distribution, corresponding
to the case in which λ < 0, χ = −2λ, and ψ = 0), Student’s t (T) distribution
(with same mixing distribution as the skewed t but with γ = 0), and the
Gaussian (G) distribution (for which γ = 0 and ωt = 1). In Appendix A.7,
we provide more details about the density functions of these distributions.

Using the normal mean-variance specification of equation (3.10), we can
compute the mean and covariance values for the vector of innovations xt
for each GH distribution, provided that the mean and variance of ωt exist
and are finite. If we assume that xt has zero mean and unit covariance,
IE(xt) = 0 and Cov(xt) = I4, then the location vector and dispersion matrix
of the conditional distribution must satisfy the following conditions:

µ = −IE(ωt)γ , and (3.11)

Σ = (I4 −Var(ωt)γγ ′)/IE(ωt) . (3.12)

The proposed GH distributions have the advantages of exhibiting dif-
ferent tail patterns (Bibby and Sørensen (2003)). On the one hand, the
tails of the NIG and VG distributions decay exponentially, such that their
probability density functions behave, when xt → ±∞, proportionally to an
exponential function. This pattern is intermediate between the behavior
of the Gaussian distribution, which decays more rapidly, and other, more
extreme, polynomial decays. For this reason, NIG and VG distributions are
sometimes referred to as semi-heavy tailed. Furthermore, when the i-th
element of the asymmetry vector γ differs from zero (i.e., γi 6= 0), the two
tails of the i-th innovation xi,t behave differently (the right tail is heavier
when γi > 0, whereas the left tail is heavier when γi < 0). The tails of the T
distribution instead are symmetric and behave as polynomials, such that they
decay slower than those of the NIG and VG distributions. Finally, the skT
distribution offers the special property of possessing, for each component of
the vector of innovations, one heavy (polynomial decay) and one semi-heavy
(exponential decay) tail. Thus, when γi > 0, the right tail (xi,t →∞) is the
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heaviest, while the left tail (xi,t → −∞) decays exponentially; these roles
switch for γi < 0.

3.3 Conditional risk measures

Measuring conditional risk is a natural and direct way to analyze the tail
behavior of energy portfolios. In our approach, we study both long and short
positions in the energy portfolios. Thus, we focus on the two tails of the P&L
distribution. For short positions, the portfolio holder loses money when the
portfolio value increases, so we attend to the right side of the distribution.
For long positions, we focus on the left tail.

We consider two measures of risk: the value at risk (VaR) and the ex-
pected shortfall (ES). The VaR is widely used in the financial industry to
monitor risk exposures for regulatory purposes and to establish trading
constraints in investment decisions. In the energy industry, especially for
producers, VaR is becoming more popular, with increasing relevance for
corporate decisions. For example, VaR provides insights to determine hedg-
ing policies or, in the case of utilities, to obtain an optimal selection in the
generation mix. Formally, for a certain horizon h and confidence level α, the
VaR is defined as the α-quantile of the conditional distribution of portfolio
changes ∆Wt(h). That is, the probability of incurring losses greater than a
certain threshold value, called the VaR, is equal to α:

P ( ∆Wt(h) ≤ VaRt(α, h) | Ft−1 ) = α . (3.13)

Despite its widespread use, the VaR also has been subject to substantial
criticism, particularly because diversification does not always reduce risk
when it is measured by VaR. In addition, the VaR ignores important infor-
mation related to the tails of the loss distribution beyond the α-quantile,
disregarding the risk of extreme losses. In contrast, ES measures cope well
with such shortcomings and describe tail risk better (Artzner, Delbaen, Eber,
and Heath (1999)). The ES is defined as the expected loss, conditional on
the loss exceeding the VaR over a certain horizon h,

ESt(α, h) = IE[ (∆Wt(h) |∆Wt(h) ≤ VaRt(α, h)) | Ft−1 ] , (3.14)

that is, the mean portfolio loss in the α% of worst cases.

We describe our approach to compute VaR and ES under the dynamic
econometric models proposed in the previous section for the vector of
energy risk factors rt. Thus, we begin by modeling the joint distribution
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of energy returns rt, then we aggregate these results for each portfolio
according to its exposures to each commodity. That is, we employ an asset-
level approach to measure the tail risk of the energy portfolios.

To aggregate the risk factors, it is convenient to represent the portfolio’s
P&L as a linear function of the individual energy log-returns. We therefore
approximate the changes in the portfolio value defined in equation (3.2) as

∆Wt(h) ≈ w′t−hrt(h) =
4∑
i=1

qi,t−hFi,t−hri,t(h). (3.15)

Because the GH distributions are closed under linear transformations (see
McNeil, Frey, and Embrechts (2005), their Proposition 3.13), when we
aggregate the energy risk factors in a given portfolio, the linearized P&L
distribution still belongs to the same class of GH distributions as does the
vector of risk factors.

For the conditional meanmt and covarianceHt, and taking into account
that the vector of innovations follows a four-variate GH distribution with
mixing variable parameters (λ, χ, ψ) and location, dispersion, and asymmetry
parameters µ, Σ, and γ, the linearized portfolio P&L in equation (3.15)
follows a univariate GH distribution with parameters (λ, χ, ψ) unaltered and
with location, dispersion, and asymmetry parameters given by:

µP = w′t−h(mt +H1/2
t µ) ,

ΣP = w′t−h(H1/2
t Σ(H1/2

t )′ )wt−h , and

γP = w′t−h(H1/2
t γ) .

(3.16)

Thus, we obtain the parametric distribution function for the portfolio P&L.
In turn, we can analyze the tail behavior and term structure of risk directly
for each portfolio P&L distribution.

Finally, we adopt two alternative numerical implementations for calculat-
ing the risk measures. We can compute VaR and ES under the GH model
by solving the integrals implicit in equations (3.13) and (3.14) numerically
for the portfolio P&L distribution. Alternatively, we can apply Monte Carlo
simulations, which are usually more effective and preferred in this context.
The latter procedure to characterize the portfolio risk measures is as follows:

1. Using our dynamic specification, defined by the conditional mean,
variance, and correlation equations (3.5), (3.7), and (3.8), we simulate
the t+ τ vector of returns, given equations (3.3)-(3.4), as

r
(n)
t+τ = µt+τ +H1/2

t+τx
(n)
t+τ , n = 1, . . . , N ,
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where the vector of innovations {x(n)
t+τ}Nn=1 is drawn from the appropri-

ate GH distribution, according to the normal mixture representation
in equation (3.10). ThenN is the number of Monte Carlo simulations,
which we set to 100,000. The h-period returns generated by the n-th
simulation at time t are given by r(n)

t (h) =
∑h
τ=1 r

(n)
t+τ .

2. We build the simulated h-period portfolio P&L, {∆W (n)
t (h)}Nn=1, using

the energy portfolio weights at time t, wt (see equation (3.15)). That
is, ∆W (n)

t (h) ≈ wtr
(n)
t (h). Alternatively, instead of implementing

Steps 1 and 2, we can simulate changes in the value of the energy
portfolios using the parameters of the P&L distribution that result
from equation (3.16).

3. Finally, we calculate the α percentile V̂aRt(α, h) and expected shortfall
ÊSt(α, h) for the simulated distribution of the h-period portfolio value
changes {∆W (n)

t (h)}Nn=1:

1
N

N∑
n=1

Î
(n)
t (α, h) = α 7−→ V̂aRt(α, h) , and

( N∑
n=1

Î
(n)
t (α, h)

)−1
N∑
n=1

Î
(n)
t (α, h)∆W (n)

t (h) 7−→ ÊSt(α, h) ,

where Î(n)
t (α, h) = 1l{∆W (n)

t (h)≤VaRt(α,h)} .

3.4 Data description and model estimation

In this section, we present the data we used to build the energy portfolios,
then report on the parameter estimates of the GH models presented in the
previous sections and some in-sample analyses of the results.

3.4.1 Description of the energy futures data

Our energy portfolios consist of energy commodity futures for crude oil, nat-
ural gas, coal, and electricity. These four commodities effectively represent
a wide range of exposures to energy price risk. In all cases, we employ daily
series of one-month ahead monthly futures contracts traded on the New
York Mercantile Exchange (NYMEX), which are the most liquid contracts for



74 3. Tail risk in energy portfolios

T
ab

le
3.

1.
D

es
cr

ip
ti

ve
st

at
is

ti
cs

fo
r

en
er

gy
re

tu
rn

s

T
h

is
ta

bl
e

re
po

rt
s

sa
m

pl
e

st
at

is
ti

cs
fo

r
th

e
da

ily
re

tu
rn

s
fo

r
cr

ud
e

oi
l,

n
at

ur
al

ga
s,

co
al

,a
n

d
el

ec
tr

ic
it

y
fu

tu
re

s.
T

h
e

fu
ll

sa
m

pl
e

pe
ri

od
ra

n
ge

s
fr

om
A

ug
us

t
20

05
to

M
ar

ch
20

12
an

d
in

cl
ud

es
1,

64
0

ob
se

rv
at

io
n

s.
T

h
e

in
-s

am
pl

e
pe

ri
od

ru
n

s
fr

om
A

ug
us

t
20

05
to

M
ar

ch
20

10
(1

,1
36

ob
se

rv
at

io
n

s)
,a

n
d

th
e

ou
t-o

f-s
am

pl
e

pe
ri

od
fr

om
M

ar
ch

20
10

to
M

ar
ch

20
12

(5
04

ob
se

rv
at

io
n

s)
.

T
h

e
M

ea
n,

St
d.

D
ev

.,
M

in
.,

M
ax

.,
Va

R
5%

,
an

d
ES

5%
ar

e
ex

pr
es

se
d

in
da

ily
pe

rc
en

ta
ge

s.
JB

is
th

e
Ja

rq
ue

-
B

er
a

n
or

m
al

it
y

te
st

st
at

is
ti

c.
Q

(m
)

an
d

L
M

(m
)

ar
e

th
e

L
ju

n
g-

B
ox

an
d

th
e

L
ag

ra
n

ge
-M

ul
ti

pl
ie

r
st

at
is

ti
cs

,c
on

du
ct

ed
us

in
g
m

la
gs

to
te

st
fo

r
th

e
pr

es
en

ce
of

se
ri

al
co

rr
el

at
io

n
in

re
tu

rn
s

an
d

sq
ua

re
d

re
tu

rn
s,

re
sp

ec
ti

ve
ly

.T
h

e
p-

va
lu

es
ar

e
re

po
rt

ed
in

pa
re

n
th

es
es

.

10
/0

8/
20

05
-1

3/
03

/2
01

2
10

/0
8/

20
05

-1
5/

03
/2

01
0

15
/0

3/
20

10
-1

3/
03

/2
01

2

O
il

G
as

C
oa

l
E

le
c.

O
il

G
as

C
oa

l
E

le
c.

O
il

G
as

C
oa

l
E

le
c.

M
ea

n
0.

02
4

-0
.0

79
0.

00
1

0.
06

8
0.

02
7

-0
.0

74
0.

01
0

0.
01

6
0.

01
5

-0
.0

90
-0

.0
20

0.
18

4
(0

.6
69

)
(0

.2
97

)
(0

.9
84

)
(0

.6
48

)
(0

.7
04

)
(0

.4
51

)
(0

.8
53

)
(0

.9
24

)
(0

.8
45

)
(0

.4
11

)
(0

.6
77

)
(0

.5
33

)

St
d.

D
ev

.
2.

24
6

3.
06

2
1.

63
2

6.
02

9
2.

43
0

3.
29

5
1.

82
5

5.
73

9
1.

76
4

2.
46

2
1.

07
8

6.
64

2
M

in
.

-1
3.

07
-1

0.
78

-1
0.

77
-3

6.
60

-1
3.

07
-1

0.
78

-1
0.

77
-2

6.
82

-9
.0

38
-8

.0
57

-4
.6

20
-3

6.
60

M
ax

.
13

.3
4

26
.7

7
11

.1
2

47
.6

4
13

.3
4

26
.7

7
11

.1
2

47
.6

4
5.

16
4

16
.6

9
2.

98
4

44
.5

5
Sk

ew
.

-0
.0

13
1.

19
4

-0
.2

21
0.

94
5

0.
08

0
1.

24
1

-0
.2

01
0.

97
5

-0
.5

73
0.

76
6

-0
.4

05
0.

87
2

(0
.8

31
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.2

70
)

(0
.0

00
)

(0
.0

06
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

K
ur

t.
8.

47
9

11
.4

1
12

.6
9

14
.0

4
8.

29
5

11
.2

0
11

.4
8

12
.5

1
5.

22
3

7.
92

0
4.

48
3

15
.3

4
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)

JB
20

52
52

23
64

25
85

76
13

28
34

76
34

11
44

64
13

1.
3

55
8.

6
60

.0
0

32
61

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

(0
.0

01
)

V
aR

3.
42

5
4.

63
8

2.
28

8
8.

03
5

3.
61

9
4.

86
5

2.
51

1
8.

20
4

2.
97

5
4.

08
8

1.
83

6
7.

50
2

E
S

5.
32

3
6.

26
0

4.
11

6
13

.8
4

5.
69

3
6.

66
1

4.
69

7
13

.3
2

4.
41

4
5.

11
4

2.
66

6
14

.9
9

Q
(5

)
4.

08
6

13
.1

4
74

.2
1

18
.8

9
3.

44
7

10
.4

3
48

.7
7

13
.5

8
6.

71
3

3.
91

9
37

.0
4

8.
13

5
(0

.5
37

)
(0

.0
22

)
(0

.0
00

)
(0

.0
02

)
(0

.6
31

)
(0

.0
64

)
(0

.0
00

)
(0

.0
19

)
(0

.2
43

)
(0

.5
61

)
(0

.0
00

)
(0

.1
49

)

L
M

(5
)

28
3.

2
17

.5
2

19
2.

5
14

.6
4

20
4.

8
11

.4
3

12
6.

4
6.

36
1

14
.2

4
3.

62
0

9.
55

5
8.

74
5

(0
.0

00
)

(0
.0

04
)

(0
.0

00
)

(0
.0

12
)

(0
.0

00
)

(0
.0

43
)

(0
.0

00
)

(0
.2

73
)

(0
.0

14
)

(0
.6

05
)

(0
.0

89
)

(0
.1

2)

co
rr

(o
il,

j)
1.

00
0

0.
25

0
0.

32
5

0.
07

6
1.

00
0

0.
28

2
0.

31
7

0.
09

4
1.

00
0

0.
11

9
0.

37
1

0.
03

1
(0

.0
00

)
(0

.0
00

)
(0

.0
02

)
(0

.0
00

)
(0

.0
00

)
(0

.0
01

)
(0

.0
07

)
(0

.0
00

)
(0

.4
87

)

co
rr

(g
as

,j)
1.

00
0

0.
21

1
0.

10
2

1.
00

0
0.

19
3

0.
09

5
1.

00
0

0.
31

0
0.

12
6

(0
.0

00
)

(0
.0

00
)

(0
.0

00
)

(0
.0

01
)

(0
.0

00
)

(0
.0

05
)

co
rr

(c
oa

l,j
)

1.
00

0
0.

03
5

1.
00

0
0.

01
7

1.
00

0
0.

09
9

(0
.1

61
)

(0
.5

61
)

(0
.0

27
)



3.4. Data description and model estimation 75

the four energy commodities analyzed.6 For oil, we consider the light sweet
crude oil futures contract, which is quoted in dollars per U.S. barrel. For
natural gas, we use the futures contract for the delivery location at the Henry
hub in Louisiana, which trades in dollars per million British thermal units
(mmBtu) and represents the benchmark for gas prices in the United States.
For coal, we employ futures written on the Central Appalachian bituminous
coal, quoted in dollars per U.S. tons. Finally, for electricity, we use the PJM
monthly peak electricity futures traded in dollars per MWh.

The full-sample period runs more than six years from August 2005 to
March 2012, and includes 1,640 daily observations. We consider all data
since the launch of the PJM electricity futures in the NYMEX (April 2003)
until the day of the analysis (March 2012), but we drop the first observations
(from April 2003 to August 2005), for which liquidity of electricity and coal
futures was very scarce. To avoid in-sample over-fitting and spurious findings,
we reserve the last two years of data, from March 2010 to March 2012 (504
observations), for the out-of-sample investigation of the tail risk. The data
came from the database of Thomson Reuters Datastream.

Table 3.1 reports some summary statistics of the daily returns for crude
oil, natural gas, coal, and electricity. Figure 3.1 presents the relative prices
and quantile-quantile plots for the four energy commodities from August
2005 to March 2012. The table shows that no energy return shows any
significant trend over either period: The means are small compared with
the standard deviations of each series. Electricity has the highest volatility,
kurtosis, and risk measures over the entire sample. It also shows extreme
positive and negative daily moves, some larger than 30%. Oil, gas, and coal
indicate high risk, though they also experience a decrease in volatility and
tail risk during the 2010-2012 period compared with the 2005-2010 period.

We observe non-negligible skewness across commodity returns. Elec-
tricity and natural gas returns exhibit significantly positive skewness for all
periods, suggesting that positive moves are more frequent than negative
ones in these markets. The qq-plots in Figure 3.1 confirm this evidence. In
contrast, coal returns show negative asymmetry, and oil returns exhibit signif-
icantly negative skewness only for the last period of the sample. Taking into
account these skewness measures, as well as the Jarque-Bera (JB) statistics,
we reject unconditional normality in favor of the presence of heavy tails and
asymmetry. We also test serial correlation in returns and squared returns us-
ing the Ljung-Box (Q) and Lagrange Multiplier (LM) statistics, respectively.

6We have built the time series of the one-month ahead futures rolling over the
front-month contract according to the NYMEX trading termination scheme for
each futures contract (usually, between 8 to 1 business days before delivery).
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Exhibit 1: Relative prices
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Exhibit 2: Quantile-quantile plots
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Figure 3.1. Relative prices and QQ-plots
Exhibit 1 shows the price series of the energy futures from August 2005 to March
2012 (full-sample period). Exhibit 2 presents the sample quantiles of the daily
returns for the four energy commodities. The dashed lines represent the quantiles
of a standard normal distribution.
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The p-values in parentheses indicate that all commodities, except oil, display
autocorrelation in returns, and strong evidence of temporal variation in the
second moment of energy returns.

Looking at the correlation coefficients, we notice that linear dependence
between energy commodities is positive and significant in general, but it
varies among sample periods. The correlation coefficients between fuels
(oil, gas, and coal), which to some extent represent substitute goods, range
from 19% to 32% over the 2005-2010 period. In the 2010-2012 period, the
correlations of oil and gas with coal increase to greater than 31%, whereas
the correlation between oil and gas decreases from 28% to 12%. The
linear dependence between electricity and fuels is less than 10% and only
significant for oil and natural gas during 2005-2010. In the last period,
correlation with coal increases to 10%.7

In addition to testing the univariate normality of energy returns, we
conduct Mardia’s test of multivariate normality (not reported here). This
test is based on multivariate measures of skewness and kurtosis, defined
on the bilinear form Dtt′ = (rt − r̄)′H̄−1(rt′ − r̄), where r̄ and H̄ are the
sample mean and covariance of returns. The large values that we obtain
for the test statistics, corresponding to multivariate skewness and kurtosis
measures, reject the null hypothesis of joint normality of energy returns
(p-values are less than 0.001 for all the sample periods).

3.4.2 Estimation results for the multivariate model

In this section, we present in two stages the estimation results of the multi-
variate GH models for the energy returns. The large dimension of the model
prompts us to use a sequential approach to estimate the set of parameters. In
the first stage, we carry out the quasi-maximum likelihood (QML) estimation
of the dynamic regression model for the conditional mean and covariance,
defined in equations (3.5), (3.7), and (3.8). In the second stage, we obtain
the ML parameter estimates of the different multivariate GH conditional
distributions. This latter estimation can be implemented using a variant of
the expectation-maximization (EM) procedure presented by McNeil, Frey,
and Embrechts (2005), which relies on the normal-mixture representation
for GH distributions from equation (3.10). In Appendix A.8, we describe in
detail the log-likelihood functions that correspond to both stages and the
optimization algorithms.

7The electricity futures are written on peak-load power, such that we should
expect a higher correlation with peak-load fuels, such as natural gas, than with coal,
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Table 3.2. In-sample QML parameter estimates of the conditional model

This table reports QML parameter estimates and residual summary statistics for the
conditional mean and variance equations. The p-values, presented in parentheses,
are computed using robust standard errors. Q(m) and LM(m) are the Ljung-Box and
the Lagrange-Multiplier statistics, conducted using m lags to test for the presence
of serial correlation in residuals and squared residuals.

Panel A: Univariate dynamics, GJR(1,1,1)

Crude oil Natural gas Coal Electricity
Mean equation
m0 ×102 0.060 -0.067 0.008 -0.242

(0.276) (0.420) (0.831) (0.123)

φ1 -0.033 -0.038 0.105 -0.042
(0.285) (0.204) (0.002) (0.457)

φ2 0.092
(0.007)

φ3 -0.077
(0.016)

φ4 -0.064
(0.019)

φ5 -0.073
(0.043)

Variance equation
α0 ×103 0.005 0.008 0.002 1.941

(0.025) (0.060) (0.001) (0.000)

α1 0.027 0.024 0.056 0.394
(0.046) (0.045) (0.000) (0.000)

α−1 0.060 0.076 0.007 0.011
(0.002) (0.022) (0.612) (0.914)

α2 0.933 0.936 0.935 0.092
(0.000) (0.000) (0.000) (0.273)

Statistics for residuals
Q(5) 7.394 1.281 4.024 7.185

(0.193) (0.937) (0.546) (0.207)

LM(5) 14.16 8.596 6.272 2.817
(0.105) (0.126) (0.281) (0.728)

Panel B: Correlation dynamics, ADCC(1,1,1) and DCC(1,1)

Oil-Gas-Coal-Elec Gas-Elec
ADCC DCC ADCC DCC

δ1 0.017 0.020 0.043 0.071
(0.042) (0.022) (0.120) (0.006)

δ+
1 0.008 0.099

(0.387) (0.064)

δ2 0.894 0.893 0.663 0.670
(0.000) (0.000) (0.000) (0.000)
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We perform the first estimation for the period that ranges from August
2005 to March 2010, formed by 1,136 daily observations. In turn, we re-
cursively reestimate the models throughout the out-of-sample period, using
a rolling window of constant size (T=1,136), such that we obtain a full se-
quence of parameter estimates for each point in the out-of-sample period
(504 re-estimations total). For each point in the sequence of parameter
estimates, we can compute the h-period forecast density that we later use to
calculate the tail risk of the energy portfolios.

QML estimates of the conditional moments

To display the outputs of the dynamics specification, in Table 3.2 we present
the QML parameter estimates, robust p-values, and residual summary statis-
tics of the conditional mean and covariance equations for the first estimation
window (August 2005 to March 2010). We include in each mean equation
only those autoregressive lags that have significant coefficients or cause the
presence of autocorrelation to become statistically insignificant in the re-
sulting residuals. The coefficients of lagged returns are negative, except for
coal, which has significantly positive autoregressive parameters. For natural
gas and electricity, some autoregressive lags are also notably significant.

We observe different patterns in the variance equation, especially with
respect to the leverage effect. For crude oil and natural gas, the parameter
α−1 , corresponding to the leverage effect, is positive and significant, which
suggests that negative shocks have a stronger effect on variance than do
positive ones. Coal and electricity do not indicate any such asymmetry in
terms of the response of volatility to negative moves, which suggests that
positive shocks could have more impact on variance. Volatility persistence,
measured as α1 + α−1 /2 + α2, also is very large (>0.95) for fossil fuels but
smaller for electricity variance (around 0.50). According to the Ljung-Box
(Q) and Lagrange multiplier (LM) statistics in Table 3.2, using this mean
and variance specification, we can greatly reduce the presence of temporal
dependence in the residuals and squared residuals.

When we consider the time-varying evolution of the correlation matrix
for the vector of four energy returns, we find that dependence dynamics
are strongly persistent (δ2 = 0.89), the correlation increases when energy
assets are affected by shocks of the same sign (δ1 is small but significantly
positive), and the asymmetry effect in the ADCC model is rather insignificant
(δ+

1 <0.01). However, when we consider the dynamics of the correlation

which is usually a source for generating intermediate- and base-load electricity.
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Exhibit 1: Volatilities
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Exhibit 2: Correlations
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Exhibit 3: Asymmetry parameters
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Figure 3.2. Volatility, correlation, and asymmetry parameter estimates
Exhibits 1 and 2 show the 10-day ahead forecasts of the conditional volatilities
and conditional correlations over the out-of-sample period (March 2010 to March
2012). Exhibit 3 shows the asymmetry parameters vector (γ) for the multivariate VG
distribution for each rolling estimation over the out-of-sample period. We employ
a rolling window of constant size (T=1,136) to obtain the sequence of parameter
estimates (504 re-estimations total).
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between pairs of energy returns, we obtain significant, positive estimates of
the asymmetry parameter δ+

1 . In particular, for natural gas and electricity, we
find that δ+

1 = 0.099 > δ1 = 0.043, suggesting that the correlation between
gas and electricity increases more after a positive co-movement (“co-boom”)
than after equally large negative co-movements. Although not previously
documented in this context, such positive asymmetry in correlation seems
sound from an economic perspective, because an increase in gas prices has
a strong positive impact on the generation costs of peak-load electricity. We
study this relationship between gas and electricity in depth when we analyze
the tail risk of the gas-fired power plant portfolio.

When we update our parameter estimates at each point of the out-of-
sample period, we obtain a time-series of the conditional moments from
March 2010 to March 2012. Thus in Figure 3.2, we plot the 10-day-ahead fore-
casts of the conditional volatilities and correlations over the out-of-sample
period. We observe several interesting features from a risk analysis perspec-
tive. As expected, electricity is highly volatile, with a strong presence of
spikes, some greater than 50%. In addition, electricity volatility peaks revert
to the mean quicker than those of other energy volatilities. Correlations
are not very high during this period, especially between electricity and fuels.
The correlation between oil and gas also decreases substantially, and only
the correlations between coal and oil and between coal and gas exhibit a
significant increase throughout the out-of-sample period.

Multivariate GH conditional distributions

We now fit the various conditional distributions using the vector of inno-
vations obtained from the previous QML estimation. As we did previously,
we repeat the multivariate distribution estimation for each point in the out-
of-sample period. In Table 3.3, we present, for the first estimation period
(August 2005 to March 2010), the ML parameter estimates and bootstrapped
p-values of the various GH distributions. The in-sample results offer strong
evidence against multivariate normality, as we expected.

First, the shape parameter estimates of the mixing distributions (λ, χ, ψ)
point to the presence of fat tails in the different GH models. In particular,
for the T and skT distributions, the small value of parameter χ indicates the
existence of jumps and tail dependence. Similar arguments apply to the VG
and NIG parameter estimates.

Second, the asymmetry parameter estimates γ for the three skewed GH
distributions (skT, VG, and NIG) are positive for all vector components,
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Table 3.3. In-sample parameter estimates of the multivariate distributions

This table presents the parameter estimates for the multivariate conditional dis-
tribution of the vector of innovations. We consider two elliptically symmetric
distributions, the multivariate Gaussian (G) and Student’s t (T) distributions, and
three GH distributions: the multivariate skewed t (skT), variance-gamma (VG), and
normal inverse Gaussian (NIG) distributions. The standard errors of these estimates
are computed using a stationary bootstrap (500 samples), and their corresponding
p-values appear in parentheses. The log-L, AIC, and BIC are the values at the
optimum of the log-likelihood function and the Akaike and Bayesian information
criteria, respectively.

G T skT VG NIG
Parameters of the mixing r.v. W
λ -2.078 -2.084 1.295 -0.500

(0.005) (0.002) (0.000)

χ 4.157 4.168 0.000 0.757
(0.002) (0.001) (0.001)

ψ 0.000 0.000 2.588 0.637
(0.003) (0.000)

Asymmetry vector γ
γ(oil) 0.026 0.102 0.058

(0.117) (0.020) (0.042)

γ(gas) 0.037 0.106 0.078
(0.049) (0.018) (0.021)

γ(coal) 0.018 0.050 0.041
(0.263) (0.034) (0.050)

γ(elec) 0.015 0.078 0.039
(0.332) (0.028) (0.190)

Dispersion matrix Σ
ρ(oil, gas) 0.347 0.367 0.365 0.360 0.364

(0.000) (0.000) (0.000) (0.000) (0.000)

ρ(oil, coal) 0.218 0.245 0.245 0.240 0.243
(0.000) (0.000) (0.000) (0.000) (0.000)

ρ(oil, elec) 0.109 0.118 0.117 0.119 0.118
(0.001) (0.000) (0.001) (0.000) (0.000)

ρ(gas, coal) 0.213 0.247 0.246 0.235 0.244
(0.000) (0.000) (0.000) (0.000) (0.000)

ρ(gas, elec) 0.118 0.222 0.220 0.207 0.219
(0.000) (0.000) (0.000) (0.000) (0.000)

ρ(coal, elec) 0.032 0.064 0.063 0.058 0.063
(0.105) (0.071) (0.077) (0.079) (0.075)

Information Criteria
log-L -5.555 -5.221 -5.220 -5.186 -5.200
AIC 11.134 10.469 10.473 10.406 10.433
BIC 11.196 10.535 10.557 10.491 10.517
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suggesting positive skewness in the multivariate conditional distribution
of daily energy returns. Only the asymmetry parameter for natural gas is
statistically significant for the three GH models, whereas the parameter for
electricity is significant just for the VG case.

Third, looking at the log-likelihood values (log-L), together with the
Akaike and Bayesian information criteria (AIC and BIC in Table 3.3),8 to
compare the accuracy of the alternative conditional distributions, we find
that the VG model is preferable over other GH alternatives for this estimation
window.

We reach similar results when we reestimate the GH conditional distri-
butions throughout the out-of-sample period. Specifically, we use a rolling
window of size T=1,136, for a total of 504 re-estimations. For example,
Exhibit 3 of Figure 3.2 displays the evolution of the asymmetry parameter
estimates (γ) for the VG model from March 2010 to March 2012 (similar
patterns are obtained for other skewed GH distributions). For all assets,
the parameter estimates are always positive. In particular, the asymmetry
parameter of electricity presents large positive spikes that seem to revert
toward a mean value. For gas, we observe a downward trend over the sample.

In Figure 3.3, we also plot the series of shape parameters estimates for
the GH distributions and the BIC values corresponding to the recursive
models’ fit. The sequence of re-estimation results favors the hypothesis of
fat tails and positive skewness for the multivariate distribution of energy
risk factors over the whole out-of-sample period. Even for the most recent
estimations (i.e., the last rolling window ranges from September 2007 to
March 2012), for which electricity and coal futures are less influenced by
the lack of trading volume, the results suggest the presence of extreme
realizations in the conditional distribution.

The front-month futures contracts may exhibit excess volatility near
delivery, precisely, at the time that these contracts are rolled over. To check
if some of the tail risk we find in the estimation results are due to these
rollover effects near maturity, we also estimate our models for the time series
of two-month ahead futures contracts.To build the generic time series of
two-month ahead futures, we roll over the corresponding contract at least 22
business days before delivery. Therefore, using this time series, we limit the
effects of rollover near maturity. The drawback of using two-month ahead

8The selection criteria shown in Table 3.3 are given by the following: log-L
= logL2(θ̂)/T , AIC = −2 log-L + 2k/T , and BIC = −2 log-L + k log(T )/T , where k
is the number of parameters in each model, and T is the number of observations.
Greater log-L, and lower AIC and BIC, values are preferred.
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Figure 3.3. GH distribution parameters and BIC
This figure presents the representative shape parameters of the different GH distri-
butions (χ for T and skewed T, λ for VG, and φ for NIG) over the out-of-sample
period (March 2010 to March 2012). The Bayesian information criteria (BIC) for
the non-Gaussian multivariate distributions (T, skewed T, VG, and NIG) are also
reported in Exhibit 2 for the whole out-of-sample window.

contracts is that these futures are less liquid than the nearest to maturity
contract, specially for coal and electricity.

The results show similar estimates for the asymmetry parameters and for
the parameters of the mixing random variable W , which govern the degree
of tail risk in the multivariate distribution. For example, for the VG model,
the estimates of the parameters λ and ψ are 0.98 and 2.02, and the estimates
of the asymmetry parameters are 0.045, 0.085, 0.055, and 0.067, for the oil,
gas, coal, and electricity returns. All of them are significant at least at the
10% confidence level. Furthermore, the estimates of parameter χ for the T
and skT model are around 4, showing the presence of extreme realizations
in the conditional distribution.9

9We do not report all the estimates in the interest of brevity. They are available
upon request. For the in-sample window, we obtain BIC values equal to 10.90, 9.32,
9.34, 9.43, and 9.35 for the G, T, skT, VG, and NIG models, respectively. Therefore,
in this sample, T and skT models are preferred.
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Left and right tails of the energy portfolios

To analyze the tails of the returns distribution of energy portfolios, we con-
sider the following examples: a utility with different generation units, a
gas-fired power plant, and equally weighted and minimum variance portfo-
lios. Using the multivariate GH models previously estimated and knowing
the portfolio weights, we can obtain a fitted distribution of portfolio returns
for each GH model. Then, we compare the in-sample tail fit of the estimated
models graphically, by plotting the estimated logarithmic density functions
and the empirical log-density function of the portfolio.

The results of the multivariate estimations have shown the presence of
tail asymmetry in the multivariate density functions. Now, looking at the
tails of the different energy portfolios, we can analyze the joint effect of this
asymmetry and the portfolio weights on the aggregate tail behavior (see
equation (3.16)).

To focus on the aggregate tail risk behavior, we display in Figure 3.4 en-
larged sections of the left and right tails of the energy portfolios. The circles
represent the empirical probability density of portfolio return innovations.
The left panel of each exhibit presents the left tail of a long position in the
portfolio, and the right panel is the corresponding right tail. As expected
from previous multivariate results, the distributions of portfolio returns show
positive skewness and fat tails. We find that the Gaussian model (dotted
line) clearly underestimates the extent of both tails, that is, the probability
of extreme realizations.

Although multivariate VG and NIG models have the largest log-likeli-
hood values and the lowest BIC values (see Table 3.3), the T and skT models
better estimate the aggregate tail risk behavior, according to the plots in
Figure 3.4. The slower tail decay of T and skT distributions (solid and dashed
lines, respectively) causes them to outperform the tail fit of the VG and NIG
models (marked with crosses and squares, respectively), especially for the
right tail, which corresponds to losses of a short position in the energy
portfolio.

We also observe slight differences between the tail fits of the T and skT
distributions, partially due to the asymmetric tail behavior of the skT distri-
bution. Exhibits for equally weighted and minimum variance portfolios show
that the left tail of the estimated skT distribution is above the T distribution,
whereas the right tail is below it.

Therefore, the extent of underestimation of the tail risk of the portfolio
loss distribution strongly depends on whether we are analyzing the short or
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long position in the energy portfolio. In the next section, we further consider
the aggregate tail behavior of the energy portfolios’ loss distribution, looking
at the out-of-sample performance of the VaR and ES measures.

3.5 Risk measures and out-of-sample performance

We apply the procedure explained in Section 3.3 to estimate the conditional
risk measures of the energy portfolios for different multivariate GH distri-
butions. See Appendix A.6 for a detailed description of the four energy
portfolios considered in the analysis. We compute VaR and ES over the out-
of-sample period for different horizons and confidence levels, characterizing
the term structure of these risk measures for each GH model. Then, we test
the out-of-sample performance of the forecast risk measures, assessing the
relative ability of the various multivariate models at hand.

3.5.1 Forecast VaR and ES

The multivariate GH models are estimated on the energy returns up to time
t, and then we calculate, for a given confidence level, the out-of-sample
h-horizon VaR and ES forecasts (i.e., the risk measures for the period [t +
1, t+ h]). In addition to our GH models, we also calculate the portfolio risk
measures using several approaches: a traditional variance-covariance method
with multivariate unconditional Gaussian distribution (VC); the Riskmetrics
procedure or exponentially weighted moving average model (EWMA), as
first introduced by J.P. Morgan; the multivariate Gaussian GARCH with
constant conditional correlation (CCC); and the non-parametric historical
simulation method (HS).

Using the various multivariate approaches, we calculate the conditional
risk measures (VaR and ES) of the four energy portfolios for horizons
extending from 1 to 22 days. By way of a sensitivity exercise to the cut-off
point selection, we also consider in our analyses different confidence levels
α: 0.1%, 0.5%, 1%, and 5%. Thus, we can analyze the possible bias in
the risk measure estimates due to the fixing of the confidence level. As an
example, Figure 3.5 shows the average ES of the equally weighted portfolio
for different confidence levels and horizons.

The smallest ES estimates are generally produced by the EWMA or
Gaussian models (CCC and VC are not reported here, in the interest of
clarity). The largest ES estimates among the GH models correspond to the
distributions with polynomial (slower) tail decays, that is, to the T and skT
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distributions. The asymmetric pattern of the skT model produces slightly
larger tail risk estimates than the T model for the long positions of the
energy portfolios, especially for the equally weighted and minimum variance
portfolios. The ordering of the ES estimates across GH methods is invariant
to the forecast horizon. In general, the tail risk estimates of the nonpara-
metric HS are close to those of the T and skT models. The estimation
windows characterized by turbulent periods of fuel returns are responsible
for these large risk measure estimates of the HS approach; as we observe,
only heavy-tailed distributions are able to produce similar tail risk patterns.

In practice, our interest lies in comparing (backtest) the h-horizon risk
measures forecasts for long and short positions with the actual portfolio
losses during the two-year out-of-sample period, from March 2010 to March
2012. As a result of this comparison and following the notation of Section
3.3, we can compute the indicator variables Ît(α, h) = 1l{∆Wt(h)≤V̂aRt(α,h)},

which signal the violations of the risk measure V̂aRt(α, h) (or ÊSt(α, h)) of
the portfolio loss distribution. In the next subsection, we use the processes
It(α, h) to obtain their corresponding failure rates and develop tests of the
out-of-sample performance of the estimated risk measures. In the following
backtest results, we show mainly results for the 1% and 5% cut-off points.
Similar conclusions to those of the 1% confidence level can be inferred for
the 0.5% confidence level. For the 0.1% cut-off and for long horizons, such
as 22-day or 10-day horizons, there are few observations in the tail to infer
strong conclusions.

As an example of the series of forecast risk measures that we obtain, we
present in Figures 3.6 and 3.7 the 1% 1-day VaR and the 5% 10-day VaR
over the out-of-sample period according to three different approaches: the
EWMA, VG, and skT models. In the lower side of the figure, we draw the VaR
violations of each model, corresponding to the long position in the portfolio.
In the upper side, we mark the VaR violations for the short position. In
general, there are more violations across models for short positions than for
long ones, in support of the positive asymmetry of the P&L distribution of the
energy portfolios. We also observe that the VG and skT estimates (grey and
black lines, respectively) respond more quickly to changing volatility than
does the EWMA estimate (dashed line), which tends to be violated several
times in a row during more turbulent periods (violations of the EWMA risk
measure are marked with triangles). In addition, the VaR violations of the
skT estimate (crosses) are fewer than those of the VG estimate (circles),
suggesting again the importance of modeling the presence of heavy tails to
produce conservative tail risk measures.

In the next subsection, we test if these differences are statistically and
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Exhibit 1: Representative Utility
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Exhibit 2: Equally weighted
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Figure 3.6. 1-day risk measures and violations
This figure presents the 1% 1-day VaR for three different approaches over the out-of-
sample period. Their corresponding violations are also reported. Triangles, circles,
and x-marks denote violations of the EWMA, conditional VG, and conditional
skewed T models, respectively.
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Exhibit 1: Gas-fired power plant
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Exhibit 2: Minimum variance
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Figure 3.7. 10-day risk measures and violations
This figure presents the 5% 10-day VaR for three different approaches over the
out-of-sample period. Their corresponding violations are also reported. Trian-
gles, circles, and x-marks denote violations of the EWMA, conditional VG, and
conditional skewed T models, respectively.
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economically significant.

3.5.2 Tests of out-of-sample performance

In the previous subsection, we estimated, from March 2010 to March 2012,
the risk measures at time t for the distribution of losses in the next h-day
period [t + 1, t + h]. Now, we backtest the risk measure estimates of the
different models over time and compare their out-of-sample relative perfor-
mance. Thus we can assess the differences in tail risk patterns, controlling
for over-fitting and other spurious findings. In this subsection, we consider
various backtests for the VaR and ES forecasts. In particular, to monitor
the performance of tail risk estimates, we implement a new backtest that
builds on the reality check tests of Hansen (2005) and White (2000) with a
loss function based on the ES. Further details about the different backtest
procedures are available in Appendix A.9.

Using the indicator variable Ît(α, h), we obtain the number of VaR
violations for a given confidence level α over the tested period, as well as the
proportion of losses beyond that VaR estimate. By definition, the probability
of incurring a VaR violation for a successful model is α. Therefore, the
estimated indicator variable Ît(α, h) should behave similar to realizations of a
Bernoulli random variable with probability α. We first test the unconditional
coverage, to check if the number of violations is correct on average, using
the log-likelihood ratio (LR) statistic proposed by Christoffersen (1998) and
Kupiec (1995) (see Appendix A.9 for a more detailed description).

For the five GH models and the four benchmark approaches, we report
in Table 3.4 the percentage of VaR violations and the unconditional cover-
age LR p-values corresponding to (long and short) 1-day and 10-day VaR
estimates at a 1% confidence level. The results show that the more tradi-
tional parametric approaches, such as VC, EWMA, CCC, and Gaussian-DCC
models, tend to underestimate the VaR, especially for short positions and
for utility portfolios. The non-parametric HS produces better coverage prob-
abilities for these cases. The VaR estimates from the VG and NIG models are
also too low for short positions, particularly at the 1-day horizon, whereas
the T and skT models (i.e., those with polynomial tail decay) are generally
better for these positions. For long positions, especially at the 10-day horizon,
heavy-tailed models have very small and even zero coverage probabilities
(i.e., there are no violations).

To backtest the success of our estimated ES, we follow the methods
proposed by Embrechts, Kaufmann, and Patie (2005) and McNeil and Frey
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(2000). In both approaches, we evaluate the discrepancies between losses
and ES estimates, defined by D̂t(α, h) = ∆Wt(h) − ÊSt(α, h), on those
points at which the VaR estimate is violated, that is, when Ît(α, h) = 1.
Ideally, we would expect that the variable [D̂t(α, h)Ît(α, h)] behaves similar
to realizations of a distribution with mean close to zero.

Thus in Table 3.5, we present, for the 1-day and 10-day 1% ES estimates
of the various multivariate models, the backtest measure V1, defined as
the conditional average of excesses D̂t(α, h) conditioned on the indicator
variable Ît(α, h), and the p-value (MF) corresponding to a bootstrap test
that checks if ES values are systematically underestimated. We observe
that ES exceedances are quite high for (conditional and unconditional)
Gaussian models, especially for the two utility portfolios. Semi-heavy-tailed
models (VG and NIG) behave reasonably well for long positions in the utility
portfolios and for both short and long positions in the equally weighted and
minimum variance portfolios, but they underestimate the 1-day tail risk of
short positions in utility portfolios. The T and skT models produce average
exceedances that are generally positive or at most slightly negative. These
heavy-tailed models behave better than alternative versions with regard to
the tail risk of short positions.

A more appropriate test would compare all models jointly, to determine
whether the differences in the tail patterns are statistically significant. Thus,
we next compare the performance of the tail risk estimates using the superior
predictive ability (SPA) test of Hansen (2005), which requires the stationary
bootstrap of Politis and Romano (1994) to implement. In our application
of the SPA test, we generate B = 10, 000 bootstrap resamples. This test is
designed to assess whether a particular model is significantly outperformed
by others, while also controlling for the set of models being compared. Thus,
over the out-of-sample (validation) period, we evaluate the risk measure
forecasts using a prespecified loss function. The preferred model produces
the smallest expected loss (see Appendix A.10 for more details).

Because the ES measure describes overall tail risk behavior better, we
decide here to focus on an ES-based loss function.10 In particular, we
consider a linear-linear (or “lin-lin”) loss function L(ÊSt(α, h)) that penalizes
events below the ES estimate more than those for which actual losses do not
exceed the ES forecast, such that

L(ÊSt(α, h)) =
(
α− 1l{V1(ÊSt(α,h))<0}

)
V1(ÊSt(α, h)) , (3.17)

10We also take into account other loss functions, based on both VaR and ES
forecasts, but we do not report them here.
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where V1(ÊSt(α, h)) represents the backtesting measure of Embrechts, Ka-
ufmann, and Patie (2005).

Employing the loss function proposed in equation (3.17), we report in
Table 3.6 the consistent p-values corresponding to the SPA tests of the 1%
and 5% ES estimates for 1-day and 10-day (long and short) portfolio losses.
We include in the analysis the GH models and the parametric benchmark
models. Any p-values greater than 0.20 are highlighted in bold, which in-
dicates that the null hypothesis for the corresponding benchmark is not
rejected. According to these results, we reject the claim that the (condi-
tional and unconditional) Gaussian models, such as VC, EWMA, CCC, and
G, perform as well as the best competing alternative model, with the possi-
ble exception of the long portfolio positions at 10-day horizons. The SPA
tests support our previous findings, namely that models with exponential
tail decay (i.e., VG and NIG models) yield inferior tail estimates for short
portfolio positions, especially for the far tail (α = 1%) of utility portfolios
at the 1-day horizon. The p-values of the T and skT models are close to one
for most portfolio positions,11 so we know that the polynomial tail decay is
not outperformed by other tail patterns we have considered. In addition, for
short positions, α = 1%, and a 1-day horizon, these models are the only SPA
benchmarks for which we do not reject the null hypothesis. In particular,
at both confidence levels (α = 5%, 1%), we cannot reject the skT model for
any short or long position.

3.6 Conclusions

In this chapter, we have characterized the tail behavior of energy price
risk using a dynamic multivariate model. We approximated exposure to
energy price risk for physical and financial players using linear combinations
(portfolios) of crude oil, natural gas, coal, and electricity futures. To model
the stylized features of the vector of energy risk factors, we have proposed
a flexible econometric specification with time-varying conditional mean,
variance, and correlation, which accommodate the possible presence of
serial dependence in returns, heteroskedasticity, and leverage effects. With
respect to the conditional distribution, we considered the possibility that
the vector of innovations may be generated by a multivariate GH distribu-
tion, which contains as particular cases some popular distributions, such as
the NIG, the VG, the skewed t, Student’s t, and the Gaussian distribution.

11If the SPA statistic is greater than or equal to zero, there is no evidence against
the null hypothesis, and p-value = 1.00 by convention.
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With these distributions, we can model different dependence patterns (e.g.,
dependence in the extremes, positive or negative skewness) and tail decays
(e.g., exponential vs. polynomial).

Our empirical application featured daily data from August 2005 to March
2012 related to energy futures traded in the NYMEX. We reserved the obser-
vations from March 2010 to March 2012 for our out-of-sample analysis. Thus,
using the recursive estimates of the multivariate GH models, we calculated
the conditional risk measures corresponding to four prespecified energy
portfolios. Then, we evaluated the performance of those sequences of risk
measures forecast over the out-of-sample period. Our in-sample and out-of-
sample results showed the importance of fat tails and positive skewness in the
multivariate distribution of energy risk factors. We also proposed comparing
the tail risk estimates corresponding to the GH models and other more
traditional procedures, by applying a test of superior predictive ability (SPA).
Regarding the tail risk of short positions, our SPA backtest results confirmed
that distributions with polynomial tail decay (heavy-tailed) outperformed al-
ternative versions, especially for the utility portfolios. The distributions with
exponential tail decays (Gaussian and semi-heavy-tailed) behaved reasonably
well for long positions and longer horizons. Ultimately, the extent to which
we underestimate the tail risk of the portfolio loss distribution depends on
the portfolio weights of the different energy commodities, whether we are
analyzing the short or long trading position, and the horizon and confidence
level considered.

It is worth mentioning that many power firms in liberalized markets have
two main lines of business: electricity generation and electricity distribution.
These days, and given the chronic generation overcapacity afflicting many
developed markets (United States, Europe) most firms tend to focus more
on the distribution business which implies an aggregate short position in
electricity. The evidence we present suggests that conventional market risk
measures (Gaussian VaR and ES) severely underestimate market risk under
these circumstances. This fact should be taken into account not only by the
company’s shareholders and creditors but also by market regulators and
supervisors.

Some questions arise for further research. First, we did not consider the
effects of parameter uncertainty in the calculations of the tail risk measures,
and it would be interesting, albeit computationally intensive, to study the
impacts on the results if we were to take such uncertainty into account.
Second, we characterized the aggregate tail risk using prespecified energy
price risk exposures, given by the portfolio weights, of various representative
energy-market players. However, an advantage of our asset-level approach is
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that we can analyze the sensitivity of the tail risk measures to changes in the
weights of the energy portfolio. Furthermore, we can use these multivariate
approaches to determine how the risk measures we have analyzed might be
used to construct an optimal energy portfolio. Finally, it would be interesting
to compare the GH models with other parametric and semi-parametric
multivariate approaches, such as those related to multivariate extreme value
theories (e.g., Poon, Rockinger, and Tawn (2004)). We leave these questions
for future analysis.
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Asset pricing and derivatives
valuation in continuous time





4
Interconnecting electricity markets:

A real options approach

ELECTRICITY MARKETS have undergone a series of fundamental changes
sparked by the liberalization of this industry. The first stage of liberaliza-
tion required privatization of all or most of the generation assets, as well
as privatization of the transmission grid which transports electricity from
the generation points to the end consumer. Another important step in the
development of the wholesale electricity markets is to exploit price differen-
tials between locations by building interconnectors which are bi-directional
transmission lines connecting the grids of two locations or the grids of two
countries. Although interconnecting different grids is at the top of the
political agenda in many countries, the decision to build them depends on
their financial value.1

Electricity prices are characterized by exhibiting extreme volatility and
by undergoing abrupt changes (large upward spikes and large downward
jumps), as well as fast mean reversion to a seasonal trend. This extreme
behavior is also present in the difference between prices of two locations and
explains why interconnecting two markets could be profitable. The main
question we address in this chapter is how to value an interconnector. One
of the key features that drives the financial value of an interconnector is
that the owner has the right, but not the obligation, to transmit electricity
between two locations. Therefore, once it has been built, the financial value
of an interconnector is given by a series of real options which are written on
the price differential between two electricity markets.

1For example, see Department of Energy (2002) and European Commission
(2008) for the policy steps towards interconnecting grids in the US and European
Union.

103
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In this chapter we propose a valuation tool that uses real options theory
to consider the problem and we employ market data of five pairs of Euro-
pean neighboring countries to value hypothetical interconnectors under
realistic assumptions. The value of an interconnector is given by a strip of
European-style options (Bull Call Spreads) written on the spread between
the two markets and the valuation formula is in closed-form and is quick
to implement. Our model for the spread captures the main characteristics
of the dynamics of price differentials: jumps in both directions, high sea-
sonal volatility, and fast mean reversion to a seasonal trend. We propose
an algorithm to detect jumps where the emphasis is placed on avoiding
misclassifying mean reversion as jumps. We estimate the parameters of the
spread model and find that the introduction of jumps in the model delivers
gains in the in-sample performance of between 20% and 48% with respect
to a misspecified or “naive” model in which jumps are not included.

We show valuations under different liquidity caps, which proxy for the
depth of the interconnected power markets. We also derive no-arbitrage
lower bounds for the value of the interconnector in terms of electricity
futures contracts of the respective power markets. We find that most of
the time these bounds are satisfied, but there are days where the value of
the interconnector is given by the no-arbitrage bound instead of the price
delivered by the sum of the prices of real options. We find that, depending
on the depth of the market, the jumps in the spread can account for between
1% and 40% of the total value of the interconnector. The two markets where
an interconnector would be most (resp. least) valuable are Germany and
the Netherlands (resp. France and Germany). The markets where off-peak
transmission between the two countries is more valuable than transmission
during peak times are: France and Germany, France and UK, and the
Netherlands and UK. We also provide “rules of thumb" to summarize the
different drivers of the interconnector value.

The rest of this chapter is organized as follows. Section 4.1 reviews the
literature on real options in commodity markets, electricity price models,
and spread options. Section 4.2 discusses the data and why interconnectors
are valuable. Section 4.3 frames the financial value of interconnector leases
as a strip of European Bull Call Spread options and Section 4.4 derives
no-arbitrage bounds for the lease based on traded assets such as electricity
forwards and futures. Section 4.5 presents a model for the spread and
derives valuation formulae. Section 4.6 describes how the model parameters
are estimated and describes the algorithm that we propose to detect jumps
and disentangle mean-reversion from jumps. Section 4.7 shows values of
a one-year interconnection lease for five pairs of European neighboring
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markets and discusses the no-arbitrage bounds using futures data. Section
4.8 concludes.

4.1 Literature Review

In energy markets there are many projects whose value depends on the
flexibility of being able to delay decision-making until more information
becomes available. These decisions can include delaying or accelerating
production, postponing entry, scaling production, changing technology, etc,
see Trigeorgis (1996), Brennan and Trigeorgis (2000), and Keppo and Lu
(2003). In many cases the flexibility embedded in some types of project is
what drives most of their value. For example, some electricity plants are only
economically viable to operate when market prices are very high, otherwise
they must be “switched off”. Moreover, gas-fired plants are very valuable
because relative to other plants (for instance nuclear and coal-fired ones) it
is easier to ramp up or ramp down according to the level of market prices.
Neglecting these embedded real options may seriously undervalue some
projects to the extent that they might seem to deliver a negative NPV when
in fact they are viable.

In the natural gas and liquified natural gas (LNG) industry, the value of
some assets and financial instruments principally depends on the flexibility
that these assets provide to their management. For example, the market
value of a natural gas storage facility depends on the ability to store gas
during times of low prices, and the ability to bring the stored gas to market
at times of high prices, see Chen and Forsyth (2007), Boogert and De Jong
(2008), and Carmona and Ludkovski (2010). The value of natural gas supply
contracts depends on the flexibility of the shipper to interrupt delivery
during the life of the contract, see Jaillet, Ronn, and Tompaidis (2004), and
Cartea and Williams (2008).

Real options in electricity markets are also key components in project
valuation. Power plants that offer operational flexibility derive most of
their value from the option to produce electricity when prices are high.
These options are valuable because wholesale electricity prices are extremely
volatile, but the extreme behavior of power prices makes electricity prices
a difficult commodity to model. Modeling electricity interruptible supply
contracts and electricity swing contracts has been undertaken by Kamat
and Oren (2002), Keppo (2004), and Hambly, Howison, and Kluge (2009).
Modeling power prices, and other contracts such as futures and forwards, can
be found in Roncoroni (2002), Cartea and Figueroa (2005), Weron (2006),
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Pirrong and Jermakyan (2008), Cartea and Villaplana (2008), Hikspoors and
Jaimungal (2008), Borak and Weron (2008), Coulon and Howison (2009),
Kiesel, Schindlmayr, and Börger (2009), and Escribano, Peña, and Villaplana
(2011).

The other literature that is relevant to our approach of valuing electricity
interconnectors is that related to spread options in energy commodities:
Dempster, Medova, and Tang (2008), Hikspoors and Jaimungal (2007),
Benth and Šaltytė Benth (2006), Marckhoff and Muck (2009),and for a
thorough and extensive survey on the topic see Carmona and Durrleman
(2003).

4.2 The market for interconnectors and data

An important feature common to all energy commodities is that their market
value depends on the location and the date that the delivery of the com-
modity takes place. This is particularly important for electricity where date
and location are crucial determinants of market clearing prices because
electricity must be consumed immediately upon delivery, while consump-
tion of other energy commodities such as gas and oil can be deferred by
either postponing delivery or by storing them. In fact, as a consequence of
the non-storability of electricity, one can think of electricity delivered over
different intervals of the day, or throughout periods of the year, as different
goods.2

A further consequence of not being able to store electricity is that,
strictly speaking, there are no electricity spot prices as commonly understood.
Market clearing prices must be agreed prior to delivery at a time when
production and demand are not known for sure; this uncertainty is resolved
at the time when the physical transaction occurs. In addition, for this market
clearing process to function, it is necessary for the system operator to ensure
that there is sufficient capacity in the grid to secure transmission from
generators to both retailers and consumers. Therefore, the convention in
the market and the literature is to treat the day-ahead prices as the spot
prices, although their structure is more akin to that of a forward contract.
Depending on the market one can find different day-ahead quotes (prices
today for next-day delivery) for contracts that dispatch electricity over fixed-
time intervals during the delivery day. For example, in the UK it is possible
to individually trade each of the 48 half-hours one day prior to delivery, while

2Due to its non-storability, electricity is considered a non-traded asset, see
Schwartz (1997).
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in the Nord Pool it is possible to individually trade each of the 24 hours one
day prior to delivery. Another standard way in which blocks of electricity are
bundled is peak and off-peak. Peak hours correspond to a fixed interval of
hours for business days characterized by high electricity demand, normally
between 8am and 8pm. Off-peak hours belong to the interval between the
end of a peak block and the beginning of the next one, and include the
24 hours of weekends’ days and holidays. The day-ahead peak and off-peak
contracts specify delivery of 1 MWh for every hour of their corresponding
time interval.

The owner of the interconnector capacity needs to schedule the flows
according to prevailing market prices and the transmission costs in the two
interconnected locations. In practice these decisions are generally taken
on the day-ahead market. Thus, we assume that the decision to use the
interconnector to dispatch electricity from A to B, or vice versa, is based on
the peak and off-peak market prices observed in the day-ahead market, net
of transmission costs.3 Therefore, every day the owner of the interconnector
capacity faces various alternatives. To commit to dispatching electricity the
following day from A to B, or from B to A, during the peak and off-peak
hours. To decide not to dispatch electricity in any direction during the peak
and/or off-peak period.

4.2.1 Data

European energy markets are undergoing important changes in the way
they function and in how integration between them is evolving. Bunn and
Gianfreda (2010) employ electricity forward and spot data to show that the
degree of market integration between the French, German, British, Dutch
and Spanish markets is increasing. Here we look at five electricity markets:
Powernext (France), UKPX (the United Kingdom), EEX (Germany and
Austria), APX (the Netherlands) and Nord Pool (Norway, Sweden, Finland
and Denmark). Table 4.1 summarizes the data we use in this chapter. For
all markets, peak and off-peak day-ahead prices for weekdays are available.4

3In spite of that, inefficient arbitrage transmission can occur. Bunn and Zach-
mann (2010) have shown that, under the presence of a dominant generator in one
location, there might be electricity flows from high to low price area, even whilst
most players trade in the opposite (efficient arbitrage) direction.

4In addition, for France, UK, and Nord Pool, we have data for weekends. The
definition of peak hours differs across markets. For example, peak hours for France
are between 9am and 8pm, Germany from 7am to 7pm, UK from 8am to 8pm, and
Nord Pool from 7am to 10pm.
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Panel A in Table 4.1 shows statistics for peak and off-peak prices for these
five markets. Panel B in Table 4.1 hints at why interconnecting neighboring
markets might be desirable. If we assume that transmission costs are around
5 Euros/MWh and if the price paid for interconnector capacity is seen as
a sunk cost, then from a mean price point of view it would be profitable to
transmit electricity across the different locations. For example, by looking
at the mean of the historical spreads it seems that in the off-peak segment
of the day it would be profitable to use the interconnector between France
and the UK, and between the Netherlands and the UK. Similarly, in the
peak segment, electricity would flow from Germany to Nord Pool, from the
Netherlands to Germany, and from the UK to the Netherlands.

As Table 4.1 shows, the correlation between the prices used to calculate
the locational spreads in Panel B are in all cases significant and relatively
high. Spreads range from a minimum of 0.33 for off-peak hours between
Nord Pool and Germany, to a maximum of 0.85 for peak hours between
France and Germany; two markets that are already partially interconnected.

We perform an Augmented Dickey-Fuller (ADF) test on the prices and
spreads using 21 lags. Although the power of this type of test is sensitive to
heteroscedasticity and outliers, statistics suggest the rejection of the unit root
hypothesis in favor of mean-reverting alternatives in all cases. This pattern is
even stronger for spread prices than for the price levels. The Jarque-Bera
statistics show that spreads are far from being Gaussian. Moreover, spreads
present a significant non-zero skewness and larger kurtosis than the prices.

Other important statistics shown in Panel B of Table 4.1 are the maxima
and minima of the spreads. For example, the minimum peak spread between
Germany and the Netherlands is -901 Euros/MWh. The maximum spread
is between the Netherlands and UK at 915 Euros/MWh. Although these
are the extreme cases observable in the data and although they are not
frequent occurrences in these markets, it prompts a very important question.
Will it be possible for the owner of the interconnector capacity to take
simultaneous short and long positions in the two locations when the market
is undergoing such remarkable price differentials? Although there seems to
be insufficient public information about the depth of these markets, market
participants agree that these represent situations where liquidity in at least
one of the two locations is too thin. Consequently, it does not seem plausible
to assume that the owner of the interconnector capacity will be able to
take advantage of such extreme situations; something that will need to be
taken into account when valuing the real option held by the owner of the
interconnector capacity. We will return to this issue in Section 4.3 below.
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4.3 Valuing interconnection capacity: a strip of real options

Writing contracts on the difference between two or more assets has a long
tradition in commodity markets. In the exchanges, all of the commonly
traded energy spread options have the difference between a linear combi-
nation of energy futures contracts as the underlying. These standard spread
option contracts are written on the difference of futures contracts between:
electricity and natural gas (the spark spread), electricity and coal (the dark
spread), electricity and a fuel including emission allowance costs (the clean
spread), crude oil and one of its derivative products (the crack spread), and
others.5

We note that all energy spread options that are traded in exchanges
have payoffs based on futures contracts. Consequently, models proposed
in the literature to price options on spreads are designed to capture the
stylized features of the underlying futures. Compared to more traditional
asset classes such as equity, modeling commodities futures is relatively more
involved due to the fact that energy futures have delivery periods (which
can range from one day to years) rather than spot or instantaneous delivery,
see Benth and Koekebakker (2008), Fusai, Marena, and Roncoroni (2008),
Borak and Weron (2008), and Fusai and Roncoroni (2008).

Our objective is to price the optionality provided by an interconnector
that can exploit the wholesale electricity spot price differential between two
markets.6 There are two crucial features that differentiate our problem
from the more traditional spread options studied in the literature. First,
for the owner of the interconnector capacity, the underlying “asset” of the
real option is MWh of electricity and not futures or forwards written on
electricity.

Second, the value of interconnection capacity between two locations,
for instance locations A and B, is equivalent to holding a strip of European-
style options. The decision to use the interconnector to dispatch or not to
dispatch electricity in any direction, at peak and off-peak hours, is based on
the day-ahead market. That is, every day the owner of the interconnector
exercises the right to use the capacity to simultaneously buy electricity in
market A, to sell the same quantity of electricity in market B, or vice versa.
In other words, the owner of the capacity holds four daily European options:

5See www.nymex.com for more information on the exchange traded spread
options in energy commodities.

6Bunn and Martoccia (2010) show that such optionality is exhibited by some of
the established transmission auction prices for inter-country electricity trading in
Europe.
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two options on the spread between A and B; and two options on the spread
between B and A (one option for peak and the other for off-peak). Since
each individual option is only for one day, we cannot cast the valuation
problem in terms of futures contracts since the delivery period for these will
be at least one month. Nevertheless the information provided by futures
contracts can be used to determine no-arbitrage bounds for the European
options on the spread; this is discussed in detail below in Section 4.4.

A further assumption we make is that the capacity of the interconnector
is small relative to that of the markets it is connecting. This is the same
as assuming that the presence of the interconnector does not alter the
price dynamics in either market; a plausible assumption for the cases we
study below. Although our model does not endogenize the impact that the
interconnector might have on the spread dynamics, our framework allows
us to analyze different scenarios and look at the sensitivity of the value of
the interconnector to: price volatility; price spikes; speed of mean reversion;
and liquidity constraints when two markets are interconnected.7

In Panel B of Table 4.1 we showed the maxima and minima of the spread
for different locations and argued that in these extreme conditions markets
were too thin; in Figure 4.2 we can also appreciate some of the extreme
prices in the spread. In at least one of the locations it does not seem plausible
to take long or short positions at the prices that produced such large spreads.
Here we assume that during times of extreme price deviations, the owner of
the interconnector capacity can take positions in both markets but we limit
the extent to which he can profit from the situation. We do this by capping
the amount of profit that can be extracted from in-the-money options upon
exercise, when valuing interconnection capacity. We denote the maximum
spread level, at which it is feasible for the owner of the interconnector
capacity to take positions in both locations, by M and for simplicity assume
that this liquidity cap is the same regardless of whether it is an option on the
peak or off-peak spread.

The valuation problem thus reduces to being able to price European
capped options. For ease of presentation let us focus on the spread between
A and B, which we denote SA,B(t), and assume that it is for peak electric-
ity, without specifying the particular hour during the peak segment. Let
CA,B
p

(
SA,B,M, t;T,KA,B) denote the price of a European call at time t, writ-

ten on the spread SA,B(t) during peak time, but capping the maximum value
at M > 0, and expiring at a future date T with strike price KA,B < M . The

7Keppo and Lu (2003) consider the impact that market entry of a large electricity
producer has on equilibrium prices.
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pay-off of such option is given by max
(
min{SA,B(T ),M} −KA,B, 0

)
. The

option gives the right to transmit 1 MWh of electricity, during a designated
hour of the day, but for ease of notation we do not specify the particular
hour of the day.8 The strike price represents the transmission costs between
locations A and B, and time T represents the time in future periods when
the decision will be made whether to use the interconnector capacity. Then,
the price of the call is given by

CA,B
p

(
SA,B,M, t;T,KA,B) = e−ρ(T−t)Et

[
max

(
min{SA,B(T ),M} −KA,B, 0

)]
(4.1)

where ρ is the risk-adjusted discount rate, Et denotes the expectation opera-
tor with information up until time t, max(a, b) denotes the maximum of the
quantities a and b, and min{a, b} denotes the minimum of the quantities a
and b.

The valuation problem of the capped European call (4.1) is also known
in the literature as a Bull Call Spread. Note that capping the states of
nature where the value of the call exceeds the cap M is equivalent to being
long a standard European call option with strike KA,B and short a standard
European call option with strikeM written on the underlying SA,B(t). Hence

CA,B
p

(
SA,B,M, t;T,KA,B) =CA,B

p

(
SA,B,∞, t;T,KA,B)

− CA,B
p

(
SA,B,∞, t;T,M

)
, (4.2)

where the standard European call C ·,··
(
S·,·,∞, t;T,K ·,·

)
= e−ρ(T−t) Et[max

(S·,·(T )−K ·,·, 0)], i.e. is given by equation (4.1) with M =∞.

Generally, rights to interconnector capacity are sold over a period of
time that covers a number of years and represents a significant proportion
of the life of the interconnection assets. For expository purposes we will
assume that the rights are in the form of a one-year lease and we value a
lease for capacity of 1 MWh during peak times and 1 MWh during off-peak
times. The value of the interconnector lease is given by the sum of all the
capped European call options (one for every day of transmission from A to B
and from B to A) between time t and expiry of the lease contract. Denoting
by V (t) the value of the interconnector lease with 1 MWh of capacity at time
t for one hour during peak and one hour during off-peak we have that

V (t) = V peak(t) + V off-peak(t) (4.3)

8If the peak time is 12 hours then the owner of the interconnector capacity holds
12 call options CA,B

p for the peak time and 12 options for the off-peak time CA,B
op

where the subscript op stands for off-peak.
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where

V peak(t) =
365∑
i=1

CA,B
p

(
SA,B,M, t; t+ i/365,KA,B)

+
365∑
i=1

CB,A
p

(
SB,A,M, t; t+ i/365,KB,A) (4.4)

is the value of the strip of peak real options, and

V off-peak(t) =
365∑
i=1

CA,B
op

(
SA,B,M, t; t+ i/365,KA,B)

+
365∑
i=1

CB,A
op

(
SB,A,M, t; t+ i/365,KB,A) (4.5)

is the value of the strip of off-peak real options. Here the notations Cp and
Cop denote the capped calls on the peak and off-peak segments of every day
respectively and the sum is from day 1 until day 365. Hence the one-year
lease consists of 1,460 options, of which 730 are for a one-hour slot during
peak times and 730 are for a one-hour slot during off-peak times.9 Are the
values (4.4) and (4.5) arbitrage free? We know that storing electricity in
an economical way is not possible, therefore the four strips of 365 options
described here cannot be arbitraged using a buy-and-hold argument. Below
we show that by setting a simple strategy based on forward contracts, one
can derive lower bounds for the four options discussed here.

4.4 No-arbitrage bounds

Although the real option valuation of the interconnector requires knowledge
of the distribution of the difference between peak and off-peak prices under
the statistical measure and the risk-adjusted rate ρ in order to discount the
risky cash-flows, one can check whether the strip of call options being used
in the valuation satisfies no-arbitrage lower bounds given by the forward or
futures markets in both locations.

Assume that the lessor sells capacity for each hour of the day. For
example, one can purchase interconnector capacity for the hour 8am to 9am
for as many days as desired, or one can purchase the entire peak segment
for as many days as desired. Now, let us focus on the no-arbitrage bound

9The value of a one-year lease for the 12 peak and 12 off-peak hourly slots of the
day is given by 12

(
V peak(t) + V off-peak(t)

)
.
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satisfied by interconnector capacity on peak electricity. Denote an electricity
future for peak electricity in location i = {A,B} by F ip(t, T1, T2) where t is
the current time, T1 is the expiry of the contract, delivery of electricity starts
at time T1 + 1, and T2 is the last day of delivery. Below we show that at time t
the price of interconnector capacity between dates T1 + 1 and T2, inclusive,
must satisfy

T2∑
j=T1+1

CA,B
p (t; j) + CB,A

p (t; j) ≥
T2∑

j=T1+1
e−r(j−t)

(
FB
p (t, T1, T2)

− FA
p (t, T1, T2)−KA,B

)
(4.6)

where CA,B
p (t; j) = CA,B

p (SA,B,M, t;T,KA,B) and CB,A
p (t; j) = CB,A

p (SB,A,M,
t;T,KB,A) are the prices of the capped options at time t that give the holder
the right, but not the obligation, to use the interconnector to deliver 1 MWh
of peak electricity from location A to B, or from B to A, at time T . r is the
risk-free rate, and KA,B and KB,A are the transmission costs incurred when
dispatching the 1 MWh of electricity.

Inequality (4.6) is a no-arbitrage bound because if it is not satisfied the
following set of trades produces a riskless profit. First, assume that market
quotes reveal that FB

p (t, T1, T2)−FA
p (t, T1, T2)−KA,B > 0; the interconnector

capacity between locations A and B for peak electricity costs

T2∑
j=T1+1

CA,B
p (t; j) + CB,A

p (t; j) ; (4.7)

and inequality (4.6) is not satisfied. Second, pay (4.7) for the strip of calls
on the interconnector capacity for the peak hours between T1 + 1 and T2
and, at the same time, go long a forward contract in location A and short
a forward contract in location B (both with expiry T1 and end of delivery
T2 for peak electricity). Every day, from T1 + 1 to T2, collect the 1 MWh
bought at price FA

p (t, T1, T2) in location A, send the power to B via the
interconnector, sell it in B for FB

p (t, T1, T2), and pay transmission charges of
KA,B. Therefore the present value of the net profits, where we include the
cost of the interconnector capacity, is given by

T2∑
j=T1+1

e−r(j−t)
(
FB
p (t, T1, T2)− FA

p (t, T1, T2)−KA,B
)

−
T2∑

j=T1+1
CA,B
p (t; j) + CB,A

p (t; j) > 0, (4.8)
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which is greater than zero and represents a riskless profit, i.e. an arbitrage.

One of the points we clarify in the arbitrage strategy above is that al-
though we assume that electricity is bought in market A and sold in market
B, the arbitrageur’s strategy requires him to purchase options to send peak
electricity from both A to B, and also from B to A, even if he never transmits
power from B to A. His arbitrage strategy commits him to using all the
capacity every day during peak hours in only one direction, and the seller
of the capacity charges the amount (4.7) regardless. This explains why we
include the strip of options

∑T2
j=T1+1C

B,A
p (t; j) as part of the cost of using

the interconnector.

Therefore, given two peak forward contracts in locations A and B with
the same T1 and T2, the following bounds must be obeyed for t < T1:

T2∑
j=T1+1

e−r(j−t)
(
FB
p (t, T1, T2)− FA

p (t, T1, T2)−KA,B
)
≤

T2∑
j=T1+1

CA,B
p (t; j) + CB,A

p (t; j) , (4.9)

and

T2∑
j=T1+1

e−r(j−t)
(
FA
p (t, T1, T2)− FB

p (t, T1, T2)−KB,A
)
≤

T2∑
j=T1+1

CA,B
p (t; j) + CB,A

p (t; j) , (4.10)

for peak hours. Similarly, given off-peak forward contracts in locations A and
B, FA

op and FB
op, we can obtain no-arbitrage lower bounds for the off-peak

real options, CA,B
op (t; j) and CB,A

op (t; j).

4.5 A model for the electricity spot price differentials

Modeling electricity prices, and other financial instruments related to this
market, is quite recent in the academic literature. For instance, the work of
Schwartz (1997) and Schwartz and Smith (2000) which considered storable
commodities served as a platform for a number of articles that proposed
no-arbitrage models for the dynamics of electricity prices, see Roncoroni
(2010). Examples of no-arbitrage models are found in Lucía and Schwartz
(2002) and Cartea and Figueroa (2005). Other models examined in the
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literature are the so-called equilibrium and hybrid models, see for example:
Bessembinder and Lemmon (2002), Barlow (2002), Pirrong and Jermakyan
(2008), and Cartea and Villaplana (2008), among others.

Since the valuation of the call options embedded in the interconnector
capacity is cast within the real options framework, the emphasis must be
placed on a model that is specified under the statistical measure. Instead
of estimating the parameters for the two markets A and B, we can value
the interconnector capacity by modeling the difference in prices directly.
Therefore, we can estimate the parameters of the spread model and use it as
the departure point to value the European call options on the spread.10

Here we propose a model for the spread in the spirit of the no-arbitrage
spot price models which captures the most important features of the price
dynamics, that is: large price spikes or jumps, strong mean reversion of
large deviations and the presence of a seasonal component. In addition,
we obtain the following three desired properties. First, the spread model
also exhibits the stylized characteristics observed in the price difference
between two locations, specifically large positive and negative deviations
that mean revert very quickly to a seasonal trend. Second, the estimation
of the spread model parameters can be achieved with the usual techniques.
Third, the spread model specification enables us to calculate the price of
European-style options by employing standard tools.

Let SA,B(t) = SA(t) − SB(t) denote the spread in wholesale prices at
time t between locations A and B. We propose, under the statistical measure,
the following arithmetic model for the price differences between locations A
and B, SA,B(t), at time T :

SA,B(T ) = f(T ) +X(T ) + Y (T ) (4.11)

where f(T ) is a deterministic seasonal pattern (i.e. the long term trend of
the spot) evaluated at time T , X(T ) is a mean reverting stochastic process at
time T given by

X(T ) = X(t)e−α(T−t) +
∫ T

t
e−α(T−u)σ(u)dW (u), (4.12)

and Y (T ) is a zero-mean reverting pure jump process at time T expressed as

Y (T ) = Y (t)e−β(T−t)+
∫ T

t
e−β(T−u)dJ+(u)+

∫ T

t
e−β(T−u)dJ−(u) , (4.13)

10Models for the spread can also be found in Benth and Šaltytė Benth (2006) and
Benth and Kufakunesu (2009).
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where α and β are the speeds of mean reversion for the Gaussian diffusion
and the jump process, respectively; σ(t) is the time-dependent deterministic
volatility; dW (u) are the increments of a standard Brownian motion; and
dJ+(u) and dJ−(u) are the increments of a compound Poisson process
defined as

Js(t) =
Ns(t)∑
n=1

jsn, s = +,− , (4.14)

where N s(t) denotes an inhomogeneous Poisson process with time-depen-
dent intensity λs(t). The random variables {js1, js2, . . . , jsn} represent the
size of the jumps in the spread process, which are i.i.d. and exponentially
distributed with parameter ηs so that the expected size of the jump is 1/ηs.

The spread between B and A is given by SB,A(T ) = −SA,B(T ). Once
we have the model for the price differences, we can proceed to value the
European call options on the spread.

4.5.1 Call option with jumps

In this subsection we describe how to price the real option (4.1) when the
spread follows (4.11), with OU component (4.12), and jump component
(4.13) with exponentially distributed jumps. The value of the call option is
expressed in closed-form in Fourier space (see Appendix for details). The
value of a European-style option to transmit electricity from market B to
market A is given by evaluating

CA,B(SA,B, t;T,KA,B) = e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi
ΨA,B
S (−ξ)ΠA,B(ξ) dξ (4.15)

where the transform variable ξ = ξr + iξi, with ξr, ξi ∈ R, i =
√
−1, and

ΠA,B(ξ) is the Fourier transform of the call option payoff between locations
A and B:

ΠA,B(ξ) =
∫ ∞
−∞

eiξx max(x−KA,B, 0)dx = −eiξKA,B

ξ2 , for ξi > 0 . (4.16)

To calculate the inversion in (4.15) we also require the characteristic func-
tion of SA,B(T ) (see Appendix for the proof):

ΨA,B
S (ξ) = eiξh(T )− 1

2 ξ
2
∫ T
t

e−2α(T−u)σ2(u)du e
∫ T
t

(
η1

η1−iξe−β(T−u)−1
)
λ+(u)du

× e
∫ T
t

(
η2

η2+iξe−β(T−u)−1
)
λ−(u)du

, (4.17)
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where h(T ) = f(T ) +X(t)e−α(T−t) + Y (t)e−β(T−t), λ+(t) and λ−(t) are the
time-dependent intensities of the Poisson arrival of positive and negative
jumps respectively, and we require −η2 < ξi < η1.

Note that if we make the assumption that there are no jumps in the
spread, the value of the capped European option to transmit electricity from
location B to A is given by (see Appendix for the proof):

CA,B = e−ρ(T−t)
[(
µ(t, T )−KA,B + v(t,T )φ(β1)

1−Φ(β1)

)
Φ(−β1)

−
(
µ(t, T )−M + v(t,T )φ(β2)

1−Φ(β2)

)
Φ(−β2)

]
, (4.18)

where

µ(t, T ) =f(T ) +X(t)e−α(T−t) and

v2(t, T ) =
∫ T

t
e−2α(T−u)σ2(u)du , (4.19)

CA,B = CA,B(SA,B,M, t;T,KA,B), φ(x) and Φ(x) denote the probability
density and distribution functions of a standard normal random variable.
β1 = (KA,B − µ(t, T ))/v(t, T ), β2 = (M − µ(t, T ))/v(t, T ) and M is the
liquidity cap. The price of the option to transmit electricity from A to B is
calculated in the same way.

4.6 Estimation of model parameters

In this section, we discuss how we estimate the underlying structural pa-
rameters of the state variables X(t) and Y (t), as well as the deterministic
seasonal factor, f(t). The estimation procedure requires the following steps.
First, find the deterministic seasonal trend f(t) using an OLS regression and
compute the detrended spread. Second, detect the positive and negative
jumps in the detrended spread series considering mean reversion in the
jumps. The jump detection algorithm we employ is designed to cope with
the problem of miss-identifying mean reversion as jumps. Third, find the
MLE of the (possibly time-dependent) intensity of positive and negative
jumps. Finally, estimate the parameters of the state variables X(t) and Y (t).

equations (4.11), (4.12) and (4.13) describe the continuous-time model
for the spread SA,B(t) between locations A and B. We estimate the parameters
of the discrete-time versions of the continuous-time equations (4.12) and
(4.13) employing daily electricity data. For ease of notation we use time t
in subscript to denote the discrete version of the continuous time variables,
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for example the discrete versions of X(t) and Y (t) are denoted by Xt and
Yt respectively. To estimate the parameters of the Gaussian process X(t) we
use the discrete model

Xt = e−α∆tXt−∆t + εt t = 1, 2, . . . , N (4.20)

where εt satisfies

E[ε2
t ] = σ2

ε, t = σ2
t

2α (1− e−2α∆t) and E[εt] = 0 , (4.21)

and we specify the discrete-time version of the jump factor Y (t) as

Yt = e−β∆t Yt−∆t + ∆J+ + ∆J− , (4.22)

where ∆J+,− = J+,−∆N+,−. Here ∆N+ and ∆N+ are the increments
of the discrete-time counting process for positive and negative jumps with
arrival frequency λ+

t ∆t and λ−t ∆t. The random variables J+ and J− are
positive and negative exponentially i.i.d. jump sizes with parameters η+ and
η−. Hence, their means are E[J+] = 1/η+ and E[J−] = 1/η−.

We use these discrete schemes to estimate the set of parameters of the
Gaussian, {α, σ(t)}, and jump processes, {β, λ+

t (t), λ−t (t), η+, η−}. Before
determining these parameters, we proceed with the analysis of the seasonal
behavior of spreads and prices.

4.6.1 The deterministic function f(t) and other seasonal features.

We follow the approach developed in Manoliu and Tompaidis (2002) and
Jaillet, Ronn, and Tompaidis (2004) to model the seasonal component f(t)
of the spread of electricity spot prices. The discrete-time version of f(t) takes
the form:

ft = f0 + f1 t+
11∑
m=1

FmD
m
t (4.23)

where f0 is a constant, f1 is the coefficient for the time trend, Fm, for
m = 1, . . . , 11, are constant parameters and Dm

t are monthly dummies
taking the value 1 if t belongs to the m-th month and 0 otherwise. Table 4.2
shows the estimates and Figure 4.1 depicts some examples of the seasonal
function (4.23) for individual peak and off-peak spreads.

One of the features that we explore is whether there is a seasonal pattern
in the volatility of the spread innovations which can emerge from a seasonal
pattern in the diffusion coefficient σε,t of the Xt process; and/or in the
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Panel A: France and Germany

Exhibit 1: Peak Spread Exhibit 2: Off-Peak Spread
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Panel B: France and UK

Exhibit 1: Peak Spread Exhibit 2: Off-Peak Spread
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Panel C: Nordpool and Germany

Exhibit 1: Peak Spread Exhibit 2: Off-Peak Spread
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Figure 4.1. Examples of interconnection’s deterministic component for
peak and off-peak load

This figure shows the deterministic component of the peak and off-peak
spread Si,j between the respective locations (black solid line in Exhibits 1
and 2 of each Panel). Table 4.2 reports the parameters employed to depict
the seasonal components. In all graphs the y-axis is in Euros/MWh.



4.6. Estimation of model parameters 121

T
ab

le
4.

2.
C

oe
ffi

ci
en

ts
of

th
e

de
te

rm
in

is
ti

c
co

m
po

n
en

t

In
th

is
ta

bl
e

w
e

re
po

rt
th

e
O

L
S

es
ti

m
at

es
pa

ra
m

et
er

s
of

th
e

ti
m

e-
de

pe
n

de
n

td
et

er
m

in
is

ti
c

co
m

po
n

en
to

fe
qu

at
io

n
(4

.2
3)

:f
t

=
f

0
+
f

1
t
+
∑ 11 m

=
1
F
m
D
m t

,w
h

er
e

f
0

is
a

co
n

st
an

t,
f

1
is

th
e

co
ef

fi
ci

en
t

fo
r

th
e

ti
m

e
tr

en
d,
F
m

fo
r
m

=
1,
..
.,

11
ar

e
co

n
st

an
t

pa
ra

m
et

er
s,

an
d
D
m t

ar
e

m
on

th
ly

du
m

m
ie

s,
ta

ki
n

g
th

e
va

lu
e

1
if
t

be
lo

n
gs

to
th

e
m

th
m

on
th

an
d

0
ot

h
er

w
is

e.
R

2
sh

ow
s

th
e

go
od

n
es

s
of

fi
t

of
th

e
lin

ea
r

re
gr

es
si

on
,t

h
e
F

-s
ta

ti
st

ic
an

d
it

s
p

-v
al

ue
,i

n
pa

re
n

th
es

es
,s

h
ow

th
e

ov
er

al
l

si
gn

ifi
ca

n
ce

of
th

e
m

od
el

.D
W

st
an

ds
fo

r
th

e
D

ur
bi

n
-W

at
so

n
st

at
is

ti
c

(p
-v

al
ue

in
pa

re
n

th
es

es
),

an
d

is
us

ed
to

te
st

th
e

pr
es

en
ce

of
au

to
co

rr
el

at
io

n
in

th
e

re
si

du
al

s.

Fr
an

ce
-G

er
m

an
y

Fr
an

ce
-U

K
N

or
d

Po
ol

-G
er

m
an

y
Pe

ak
O

ff
-P

ea
k

Pe
ak

O
ff

-P
ea

k
Pe

ak
O

ff
-P

ea
k

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

f
0

2.
24

1.
51

-5
.9

4
-3

.7
7

2.
67

1.
17

0.
56

0.
42

3.
36

1.
67

4.
51

2.
65

f
1

(×
10

2
)

0.
19

3.
81

0.
35

6.
56

-0
.2

3
-3

.0
3

-0
.5

1
-1

1.
89

-0
.8

9
-1

6.
18

-0
.2

5
-5

.4
7

Ja
n

-3
.6

8
-1

.9
5

2.
12

1.
06

4.
07

1.
47

0.
79

0.
50

-1
.2

2
-0

.4
8

0.
64

0.
30

Fe
b

-3
.6

3
-1

.8
8

0.
82

0.
40

2.
37

0.
84

1.
60

0.
98

-0
.1

5
-0

.0
6

-3
.6

2
-1

.6
4

M
ar

-3
.7

0
-1

.9
5

0.
70

0.
35

-2
.5

1
-0

.9
1

-1
.3

2
-0

.8
3

1.
33

0.
52

-2
.9

4
-1

.3
7

A
pr

-5
.9

8
-3

.1
4

-0
.3

8
-0

.1
9

1.
68

0.
60

-2
.6

9
-1

.6
7

3.
04

1.
19

-0
.6

9
-0

.3
2

M
ay

-6
.0

5
-3

.2
0

-1
.1

4
-0

.5
7

-0
.0

8
-0

.0
3

-9
.2

1
-5

.5
9

2.
71

1.
07

-1
.1

1
-0

.5
2

Ju
n

-6
.4

5
-3

.3
8

-3
.6

1
-1

.7
9

9.
00

3.
11

-9
.5

4
-5

.7
5

-3
.3

2
-1

.3
1

-2
.2

9
-1

.0
7

Ju
l

-4
.2

4
-2

.1
7

0.
49

0.
24

14
.2

6
4.

98
-1

2.
02

-7
.3

0
-1

3.
04

-5
.1

3
-3

.4
8

-1
.6

2
A

ug
-8

.1
0

-4
.1

4
-4

.7
4

-2
.2

9
1.

02
0.

36
-9

.8
6

-5
.9

9
2.

83
1.

11
1.

27
0.

59
Se

p
-5

.8
9

-2
.9

8
-2

.0
3

-0
.9

7
3.

36
1.

16
-2

.8
4

-1
.7

1
-2

.6
2

-1
.0

2
-1

.7
2

-0
.7

9
O

ct
-4

.9
3

-2
.5

3
-0

.8
9

-0
.4

3
1.

18
0.

41
1.

10
0.

67
-4

.3
1

-1
.7

0
-1

.5
2

-0
.7

1
N

ov
-3

.0
3

-1
.5

5
1.

36
0.

66
5.

23
1.

81
1.

11
0.

67
-1

0.
50

-4
.0

9
-0

.3
9

-0
.1

8

R
2

0.
01

9
0.

03
1

0.
03

4
0.

11
3

0.
12

6
0.

01
8

F
-st

at
3.

20
7

5.
19

2
5.

53
8

28
.2

62
28

.1
10

3.
54

3
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
D

W
2.

16
7

2.
19

7
1.

39
4

1.
10

5
1.

02
8

1.
40

7
(0

.0
01

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)
(0

.0
00

)



122 4. Interconnecting electricity markets: A real options approach

Table 4.2 (continued)

Germany-Netherlands Netherlands-UK
Peak Off-Peak Peak Off-Peak

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat

f0 -30.12 -9.35 7.68 5.07 24.05 6.82 -7.51 -4.99
f1(×102) 0.76 8.71 0.07 1.82 -1.17 -10.24 -0.65 -13.42
Jan 12.03 2.97 -4.85 -2.54 -1.72 -0.40 5.26 2.89
Feb 14.29 3.45 -6.41 -3.29 -5.25 -1.21 8.80 4.75
Mar 12.69 3.11 -6.45 -3.37 -8.74 -2.04 5.71 3.13
Apr 12.65 3.07 -6.13 -3.17 -1.63 -0.38 5.72 3.09
May 9.94 2.44 -3.71 -1.94 -1.86 -0.42 -3.81 -2.03
Jun 6.18 1.53 -3.62 -1.91 11.56 2.60 -4.97 -2.63
Jul 8.70 2.15 -5.55 -2.91 4.33 0.98 -10.62 -5.66
Aug 3.98 0.98 -5.47 -2.88 9.25 2.11 -3.79 -2.02
Sep 1.25 0.30 -2.91 -1.51 3.30 0.75 0.25 0.13
Oct 2.51 0.62 -2.52 -1.33 10.10 2.31 2.87 1.54
Nov 3.43 0.84 -2.22 -1.16 9.97 2.25 -0.25 -0.13

R2 0.048 0.012 0.078 0.168
F -stat 9.630 2.247 13.115 31.486

(0.000) (0.000) (0.000) (0.000)
DW 1.420 1.885 1.173 0.563

(0.000) (0.002) (0.000) (0.000)

intensity of the jumps, λ+
t and λ−t . To test for seasonality in the parameters

that drive the conditional variance, we assume a time-dependent seasonal
functional form for the volatility σε,t, and for the intensity parameters λ+

t

and λ−t .

In order for the number of parameters in the model to be tractable, and
for us to have sufficient observations for each case, we model the periodicity
with seasonal dummies as follows:

σε,t = σε,winterD
winter
t +σε,springD

spring
t +σε,summerD

summer
t +σε,autumnD

autumn
t

(4.24)
for the volatility, and

λ+,−
t = λ+,−

winterD
winter
t + λ+,−

springD
spring
t + λ+,−

summerD
summer
t + λ+,−

autumnD
autumn
t

(4.25)
for the intensity parameters of the positive and negative jumps. D·t are
seasonal dummies which take the values 0 or 1. That is, December, January,
and February correspond to the dummy variable Dwinter

t ; March, April, and
May to Dspring

t ; June, July, and August to Dsummer
t ; and, finally, September,

October, and November to Dspring
t .

In the next section we show how to deal with these seasonal patterns in
trend, volatility and intensity and their relation with the filtering of jumps
and the estimation of the state-variables.
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4.6.2 Methodology to deal with the jump process and parameter estimates

Here we discuss how to estimate the underlying structural parameters of the
Gaussian variable X(t) and the jump factor Y (t) described by the discrete-
time models (4.20) and (4.22). The estimation consists of the next steps:

i) Remove the fitted seasonal component from the spread and calculate
the detrended spread denoted by S̃A,B

t = SA,B
t − ft.

ii) Detect the arrival of jumps (positive or negative) in the detrended
spread series S̃A,B

t and avoid classifying fast mean-reversion as jumps.

iii) Estimate the jump intensities allowing for seasonal dependence in the
arrival of the jumps.

iv) Estimate the parameters of the exponential distributions for positive
and negative jumps.

v) Estimate the mean-reversion rates of the Gaussian and jump factors of
the spread model and the volatility of the Gaussian process.

The first step is straightforward, we discuss the others below.

Detecting jumps. We apply a recursive semi-parametric filter to identify
the calendar position of the jumps in the spread. The procedure identifies a
hypothetical arrival of a jump when the detrended spread difference devi-
ates, in absolute value, by more than three standard deviations from its mean.
In our framework, these standard deviations might be time-dependent, so
we compute them taking into account the possible seasonal pattern in the
variance of the spread, see equation (4.24). We remove the observations iden-
tified as possible jumps, recalculate the mean, and proceed to filter again.
We iterate until no jumps are found. However, in highly mean-reverting
time series, for instance electricity prices, some of these hypothetical jumps
could correspond to the mean-reversion effect and not to the arrival of
jumps of opposite sign. As we can see in equation (4.22), the mean-reversion
effect with rate β is always present in the discrete-time dynamics of the jump
process Yt.

Disentangling jumps from mean reversion. Our methodology is de-
signed to cope with the problem of miss-identifying mean reversion as jumps
as follows. Assume that at time t spread prices are above the estimated sea-
sonal trend SA,B

t > f̂t. Suppose that the next price innovation is negative, i.e.
SA,B
t+1 − S

A,B
t < 0, and that it is flagged as a possible jump because in absolute

terms the innovation is larger than three standard deviations from the mean.
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Panel A: Interconnection France–Germany

Exhibit 1: Peak Exhibit 2: Off-Peak
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Panel B: Interconnection France–United Kingdom

Exhibit 1: Peak Exhibit 2: Off-Peak
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Panel C: Interconnection Nord Pool–Germany

Exhibit 1: Peak Exhibit 2: Off-Peak
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Figure 4.2. Examples of detecting jumps from the jump diffusion process

This figure shows the spread series Si,j (Euros/MWh) for the two possible load
regimes, peak and off-peak, for three examples of interconnection. The dashed
line represents the 95% confidence intervals for the deterministic component for
each series. The gray circles below the lower confidence bound mark the presence
of a negative jump, while the black circles above the upper confidence bound show
the position of a positive jump.
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Now, before labeling it as a downward jump, we check “how close” the new
value SA,B

t+1 is to f̂t+1. If it is close to the seasonal component then it cannot
be a downward jump, it must be mean reversion. If it is sufficiently below
f̂t+1, then it is a downward jump, that is, it diverges from the long-term
trend. The metric used here to assess proximity to the seasonal trend is
based on the confidence bounds for the estimates of f̂t. Spread prices that
after a large negative innovation fall within 95% of the confidence bounds
of the estimated seasonal trend, f̂t, or above are not considered negative
jumps, but are due to mean reversion. Only innovations that take the spread
below the lower 95% confidence interval are considered a downward jump.
Similarly, large upward shocks to the spread are considered positive jumps if
they satisfy two requirements: the innovation is larger than three standard
deviations from the mean; and the resulting spread at time t+ 1 is above the
upper 95% confidence interval of the estimated seasonal trend, f̂t.

With the advent of high-frequency financial data, jump detection in
equity returns has received a considerable amount of attention. Perhaps the
first non-parametric filter designed to detect the arrival (including position)
of Poisson jumps is that of Lee and Mykland (2008). In order to appreciate
the performance of our jump filter we use Monte Carlo simulations and
compare our results to those given by the Lee-Mykland (L-M) test. For
example, we simulate 500 paths of the discrete version of (4.11) where we
use the seasonal component estimated for the peak spread between France
and Germany.11 We compare the performance of the two tests by looking
at the probability that the test fails to detect a jump, and the probability of
spurious detection. We find that our jump detection filter performs better
than the L-M test on both counts. In this example, the probability of not
detecting an actual jump (resp. detecting a spurious jump) with our filter is
0.17 (resp. 0.03), whereas for the L-M is 0.48 (resp. 0.44).12

Estimating jump intensities. Once we have identified the jumps, we
estimate their intensity by maximum likelihood. We analyze two scenarios,

11The parameters we employ are: α = 250, β = 150, λ’s are seasonal, being
λ+ = [8, 2, 8, 7] and λ− = [5, 4, 10, 4] (that is, one λ± for each season: winter,
spring, summer, and autumn), η+ = 1/70, η− = 1/50, σ = 10, and the length of
the time series is N = 2, 774. We chose these parameters based on the estimation
results reported below.

12We note that the L-M test is designed to perform better the higher the frequency
of the data and in this case we have used daily observations which is the frequency
available for the our electricity data. Moreover, other filters have been proposed
in the literature, however, although they are designed to tell whether there is a
non-Gaussian component in the price process, they are not capable of detecting
the position of the possible jump.
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Table 4.3 (continued)

Germany-Netherlands Netherlands-UK
Peak Off-Peak Peak Off-Peak

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat

λ+ 7.030 7.138 6.706 6.951 8.431 7.014 2.007 3.018
λ− 7.138 7.199 3.461 4.761 6.558 6.086 8.833 7.199

λ+
winter 6.655 3.018 8.873 3.600 6.783 2.760 1.043 0.750

λ+
spring 2.184 1.470 4.804 2.483 3.098 1.666 0.516 0.429

λ+
summer 7.140 3.261 7.980 3.490 9.374 3.261 2.757 1.470

λ+
autumn 12.062 4.402 5.169 2.624 14.954 4.308 3.877 1.848

λ−winter 4.880 2.483 3.106 1.848 7.304 2.892 5.217 2.336

λ−spring 1.747 1.256 3.057 1.848 3.098 1.666 5.680 2.483

λ−summer 7.980 3.490 6.300 3.018 3.860 1.848 15.440 4.402

λ−autumn 13.785 4.761 1.292 1.020 12.185 3.813 9.415 3.261

p-val (+) 0.001 0.237 0.001 0.070
p-val (-) 0.000 0.032 0.003 0.004

one where intensities are constant, and the other where intensities are time-
dependent and may exhibit a seasonal pattern as described in equation
(4.25). MLE results for the positive and negative intensities λ+(t) and λ−(t)
are shown in Table 4.3. In the table we also report the p-values of the
likelihood ratio test, which compares the unrestricted model for the jump
intensities (seasonal λ+,−(t)) with the restricted model of constant intensities.
p-values under 0.10 indicate rejection of the constant (restricted) model
with a 10% significance level. In 16 out of 20 cases, we reject the model with
constant intensity at a 10% significance level. For example, for peak spread
between France and Germany, we reject the constant model in favor of a
seasonal intensity for both positive (5% significance) and negative jumps
(10% significance). Results in Table 4.3 show that the estimated number of
jumps for spreads ranges from 2 to 9 per year. In Figure 4.2, we show the
positions of negative and positive jumps for some of the markets we study.

Estimating jump size parameters. One of the advantages of being able
to locate jumps is that we also know their sizes and signages. We use this
information to fit an exponential distribution to the jump data and to obtain
the average sizes of positive and negative jumps given by 1/η+ and 1/η−.13

13We do this in the following way. Once we have located the positive and negative
jumps, we estimate the sizes using the differences between the spread S̃A,B

t of the
observation and the previous value of the spread, S̃A,B

t−1. This approach performs
well when the mean-reversion rates of jumps and OU processes are large, which is
the case in electricity prices and the spread.



128 4. Interconnecting electricity markets: A real options approach

T
ab

le
4.

4.
E

st
im

at
es

of
se

as
on

al
vo

la
ti

lit
y,

m
ea

n
re

ve
rs

io
n

ra
te

s
an

d
ju

m
ps

si
ze

s

T
h

is
ta

bl
e

re
po

rt
s

th
e

pa
ra

m
et

er
s

es
ti

m
at

es
of

se
as

on
al

vo
la

ti
lit

y
σ

(t
)o

ft
h

e
di

ff
us

io
n

pr
oc

es
s,

th
e

ju
m

ps
si

ze
s

m
ea

n
1/
η

+
an

d
1/
η
−

,a
n

d
th

e
m

ea
n

re
ve

rs
io

n
ra

te
s

α
an

d
β

of
th

e
di

ff
us

io
n

an
d

th
e

ju
m

p
co

m
po

n
en

t.
A

ll
pa

ra
m

et
er

s
ar

e
ex

pr
es

se
d

in
an

n
ua

lt
er

m
s

an
d

in
E

ur
os

/M
W

h
,t

o
be

co
n

si
st

en
tw

it
h

th
e

ar
it

h
m

et
ic

m
od

el
fo

r
th

e
sp

re
ad

.W
e

sh
ow

t−
st

at
is

ti
cs

an
d

th
e

R
M

SE
of

th
e

m
od

el
.

Fr
an

ce
-G

er
m

an
y

Fr
an

ce
-U

K
N

or
d

Po
ol

-G
er

m
an

y
Pe

ak
O

ff
-P

ea
k

Pe
ak

O
ff

-P
ea

k
Pe

ak
O

ff
-P

ea
k

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

C
oe

ff
t-s

ta
t

α
27

3.
07

14
.0

2
10

8.
02

14
.1

9
12

2.
05

15
.4

1
10

9.
06

18
.5

8
66

.5
4

16
.2

3
70

.2
1

16
.3

8
σ

w
in

te
r

23
0.

17
19

.3
6

30
0.

22
20

.8
9

34
1.

70
21

.4
8

16
2.

47
27

.3
6

28
8.

27
25

.6
3

23
7.

22
25

.3
8

σ
sp

ri
n

g
13

2.
57

19
.4

8
18

8.
81

21
.2

4
24

5.
19

21
.5

9
16

5.
48

27
.4

7
17

9.
57

25
.7

7
18

1.
76

25
.7

0
σ

su
m

m
er

28
9.

95
18

.8
4

24
4.

60
20

.8
9

32
1.

42
20

.9
5

23
9.

16
26

.6
7

24
1.

30
25

.9
6

29
0.

71
25

.8
7

σ
au

tu
m

n
21

8.
22

18
.6

8
21

1.
21

20
.4

8
37

0.
60

20
.8

9
19

3.
47

26
.5

3
25

7.
66

25
.7

1
19

0.
03

25
.6

3

β
18

3.
90

30
.1

2
96

.4
6

21
.1

0
16

7.
14

21
.6

8
12

1.
68

21
.3

8
20

6.
85

25
.1

1
10

0.
45

20
.6

7
1/
η

+
72

.7
2

5.
43

67
.7

7
5.

43
86

.3
5

6.
12

53
.1

2
6.

25
56

.1
4

3.
39

74
.6

8
4.

98
1/
η
−

59
.2

4
5.

36
80

.8
7

5.
57

76
.8

2
5.

13
53

.2
7

5.
28

71
.4

8
7.

22
72

.4
4

5.
57

R
M

SE
9.

10
10

.9
4

14
.8

9
9.

93
12

.9
1

11
.9

2



4.7. The market value of interconnectors 129

Table 4.4 (continued)

Germany-Netherlands Netherlands-UK
Peak Off-Peak Peak Off-Peak

Coeff t-stat Coeff t-stat Coeff t-stat Coeff t-stat

α 5.37 7.57 1.42 4.06 194.44 15.75 50.45 13.95
σwinter 353.00 30.30 275.56 24.67 331.83 20.61 117.53 24.38
σspring 308.88 30.50 186.01 25.25 277.81 20.72 128.01 24.51
σsummer 785.73 31.02 205.20 25.58 620.57 20.15 180.54 23.83
σautumn 444.71 30.65 204.41 25.29 458.49 20.26 137.28 23.86

β 10.34 21.43 52.65 15.22 231.53 22.84 120.37 14.12
1/η+ 106.25 6.63 71.45 6.44 100.57 6.50 28.44 2.49
1/η− 135.45 6.69 79.70 4.24 74.19 5.57 33.35 6.69

RMSE 30.35 12.42 20.25 7.86

The estimates are shown in Table 4.4.

Estimating mean-reversion parameters and the volatility of the OU pro-
cess. For each time series we estimate the mean-reversion rates of the
Gaussian process Xt and jump process Yt, and the volatility parameters of Xt

by minimizing the mean-squared errors which are given by the average of the
squared differences between the observed and the modeled spreads. Using
the model specification of equations (11), (12) and (13), we have that the dif-
ferences between observed spreads and the proposed jump dynamics follows
an autoregressive process of order one, that is, S̃A,B

t −e−βYt−1−Ĵ+
t −Ĵ−t = Xt,

where Xt = e−αXt−1 + εt and εt ∼ N(0, σ2
ε,t). Hence, the estimates of both

mean-reversion rates β and α, as well as the volatility of the OU process can
be simultaneously obtained by means of nonlinear least squares. We report
the results in Table 4.4 where we see that spreads show significant mean
reversion in jumps and in the Gaussian deviations. The half-life of the jumps
ranges between 1 and 15 days approximately.

As a specific case we study a “naive” or misspecified version of the spread
model where we do not include the jump process Y (t). In the interest of
space, the estimates of the model without jumps are not reported, however,
results show that the introduction of jumps in the model delivers gains in the
in-sample performance of between 20% and 48% compared to the “naive”
version.

4.7 The market value of interconnectors

In this section we discuss the results of valuing interconnection capacity
in neighboring European countries. Based on the market data described
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above, we calculate the market value of a one-year lease of an interconnector
that gives the lessee the right, but not the obligation, to transmit 1 MWh
of electricity between two markets during peak and off-peak times. The
lease contract starts on January 1, 2010 and ends on December 31, 2010
and we assume that the initial condition of the OU and jump processes
are both zero: X(t) = Y (t) = 0 and t = January 1, 2010. We estimate the
spread model with electricity prices data available until July 2009. Using
these estimates, we value the interconnector lease that starts on January 1,
2010. Since the estimation is done in July 2009, the values for X(t) and
Y (t) in January 1, 2010 are unknown. Hence, we take as initial values of
the OU and jump processes the expected value of both variables, which is
zero for both. We use the valuation formulae (4.4) and (4.5) to calculate
prices for the four strips of options that total the value of the one-year lease
of 1 MWh capacity for a one-hour slot during peak time and a one-hour slot
during off-peak time. We assume that the cash-flows are discounted at the
risk-adjusted rate ρ = 10%.

Initially we do not check whether the option values that we obtain are
equal or above the no-arbitrage bounds derived in Section 4.4. We do
this below in Subsection 4.7.1, where we calculate the lower bounds using
futures data. Our assumption is that the lessor will price the real options
and calculate the lower bounds (4.9) and (4.10) for peak-hours, and the
corresponding bounds for off-peak hours, but for clarity we show the results
of the option valuation first and then where necessary we amend the values
in the light of the no-arbitrage bounds.14

We provide different values of the interconnector, which result from dif-
ferent assumptions about: the seasonal function of the spread; the liquidity
and depth in both markets; and how jumps affect the extrinsic value of the
real options used to calculate the value of the interconnector. We discuss
how these three assumptions affect the value of the interconnector:

Seasonal component. One of the points that we scrutinize is how the
seasonal component affects the value of the interconnector. In this chapter
we have assumed that the seasonal component is deterministic and that the
historical seasonal trend will repeat itself at future dates when forecasting
the spread. Although this assumption is consistent with that of the literature,
care must be taken when producing forecasts and pricing options written on

14If one or more lower bounds are not satisfied, the lessor will set the price
according to the bound instead of the price indicated by the value of the strip
of options. Alternatively, if a bound is not satisfied, one expects that market
participants will bid the price of the lease up until the price reaches the no-arbitrage
bound.
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electricity price spreads. Indeed, inspecting Figure 4.1 prompts the question
of whether it is plausible to expect that the seasonal component will in the
future be broadly the same as it was in the past. The answer is probably
not, but until now there has been no better alternative in the literature.
Therefore, to appreciate the contribution of the seasonal component to
the value of the interconnector, we look at different scenarios where we
assume that for future dates the seasonal component is as in Figure 4.1, and
for comparative purposes we also assume that the seasonal component is
f(T ) = 0 for all T . To assume that the seasonal trend is zero is an extreme
case because the markets that we are considering have their idiosyncrasies
and this makes it reasonable to expect predictable patterns in the average
price differentials between them.

Liquidity constraints. As discussed above, it does not seem plausible to
exploit large price differentials due to liquidity reasons in the two markets.
We cap the maximum price differentials that can be profited from at differ-
ent levels: M ∈ {10, 20, 30, 40, 50,∞} Euros/MWh, where we allow M =∞
to include the hypothetical case where there are no liquidity constraints in
the day-ahead market.In all examples we assume that the transmission costs
from A to B, and from B to A, for both peak and off-peak times, are K = 5
Euros/MWh, which seems a plausible figure for the interconnection costs
according to some market participants. Nevertheless, these costs could vary
across different markets and the value of the interconnector will be affected
by changes in K: the higher is K the lower the value of the interconnector.

Jumps and extrinsic value. Both the volatility of the OU component of
the spread model and the jumps increase the value of the interconnector.
We can isolate the contribution of the jumps to the value of the intercon-
nector in the following way. Estimate the model parameters and value the
interconnector with the jumps in the spread and then compare it to the
valuation obtained if we “switch off” the jump factor, by setting the jump
intensities of the positive and negative jumps to zero.

We address the three points discussed above and report the values of
the interconnector in Tables 4.5 and 4.6. In the tables the values of the one
year-lease are broken into the four options available to the manager of the
lease: transmit electricity from A to B and from B to A for both on-peak and
off-peak segments of the day. Note that these values are for the use of the
interconnector during the 365 days of the one-year lease. The total value of
the lease is given by the sum of the four options.

Table 4.5 shows the value of a one-year interconnector lease for both
peak and off-peak use. In the first column we show the different assumptions
for the value of the liquidity cap M . The second and third columns show



132 4. Interconnecting electricity markets: A real options approach

T
ab

le
4.

5.
V

al
ue

of
on

e-
ye

ar
in

te
rc

on
n

ec
to

r
le

as
e

T
h

e
m

od
el

fo
r

th
e

sp
re

ad
,S

(T
),

is
(4

.1
1)

,(
4.

12
),

an
d

(4
.1

3)
.T

h
e

pa
ra

m
et

er
s

of
th

e
se

as
on

al
co

m
po

n
en

tf
(T

)a
re

gi
ve

n
in

T
ab

le
4.

2;
th

e
pa

ra
m

et
er

es
ti

m
at

es
of

th
e

O
U

,X
(T

),
ar

e
in

Pa
n

el
B

of
T

ab
le

4.
4;

th
e

pa
ra

m
et

er
s

of
th

e
ju

m
p

co
m

po
n

en
t,
Y

(T
),

ar
e

at
th

e
bo

tt
om

of
Pa

n
el

B
in

T
ab

le
4.

4
an

d
in

Pa
n

el
B

of
T

ab
le

4.
3.

In
co

lu
m

n
s

3
an

d
4

th
e

in
te

n
si

ty
pa

ra
m

et
er

s,
λ
± se

as
on

,o
ft

h
e

po
si

ti
ve

an
d

n
eg

at
iv

e
ju

m
ps

ar
e

se
tt

o
ze

ro
.

Se
as

on
al

it
y,

O
U

,a
n

d
Ju

m
ps

Se
as

on
al

it
y

an
d

O
U

Se
as

on
al

it
y,

O
U

,a
n

d
Ju

m
ps

Se
as

on
al

it
y

an
d

O
U

f
(T

)+
X

(T
)+

Y
(T

)
f

(T
)+

X
(T

)
f

(T
)+

X
(T

)+
Y

(T
)

f
(T

)+
X

(T
)

Pe
ak

Fr
an

ce
an

d
G

er
m

an
y

O
ff

-P
ea

k
Fr

an
ce

an
d

G
er

m
an

y
M

G
er
→

Fr
Fr
→

G
er

G
er
→

Fr
Fr
→

G
er

G
er
→

Fr
Fr
→

G
er

G
er
→

Fr
Fr
→

G
er

10
60

1
25

1
57

2
20

9
73

7
45

9
72

8
39

7
20

1,
13

6
46

7
1,

00
2

33
7

1,
69

7
1,

02
3

1,
60

5
80

5
30

1,
31

2
55

4
1,

07
4

35
5

2,
17

7
1,

31
6

1,
96

0
93

9
40

1,
39

8
60

5
1,

08
1

35
7

2,
41

6
1,

48
8

2,
07

7
97

5
50

1,
45

7
64

1
1,

08
2

35
7

2,
55

0
1,

60
4

2,
11

0
98

4
∞

1,
68

1
76

1
1,

08
2

35
7

2,
94

9
2,

09
5

2,
12

0
98

5
Pe

ak
Fr

an
ce

an
d

U
K

O
ff

-P
ea

k
Fr

an
ce

an
d

U
K

M
U

K
→

Fr
Fr
→

U
K

U
K
→

Fr
Fr
→

U
K

U
K
→

Fr
Fr
→

U
K

U
K
→

Fr
Fr
→

U
K

10
61

6
66

1
58

0
66

2
89

1,
33

3
41

1,
38

2
20

1,
47

2
1,

56
8

1,
33

9
1,

54
0

18
7

3,
35

4
62

3,
46

1
30

1,
96

0
2,

05
8

1,
71

7
1,

97
5

24
3

4,
47

2
64

4,
56

5
40

2,
22

9
2,

30
4

1,
88

0
2,

15
9

28
2

4,
96

9
64

5,
00

4
50

2,
38

2
2,

43
0

1,
94

0
2,

22
56

31
0

5,
17

4
64

5,
14

3
∞

2,
85

0
2,

72
5

1,
96

7
2,

25
5

40
1

5,
44

1
64

5,
18

9
Pe

ak
N

or
d

Po
ol

an
d

G
er

m
an

y
O

ff
-P

ea
k

N
or

d
Po

ol
an

d
G

er
m

an
y

M
G

er
→

N
P

N
P
→

G
er

G
er
→

N
P

N
P
→

G
er

G
er
→

N
P

N
P
→

G
er

G
er
→

N
P

N
P
→

G
er

10
66

1,
51

2
61

1,
50

8
43

2
82

9
40

3
81

5
20

13
5

4,
22

6
12

0
4,

19
9

97
2

1,
99

7
86

4
1,

91
5

30
16

5
6,

39
1

14
0

6,
31

3
1,

24
6

2,
65

1
1,

05
2

2,
46

5
40

17
8

7,
93

5
14

6
7,

77
9

1,
39

2
2,

99
3

1,
12

1
2,

69
7

50
18

6
8,

92
0

14
7

8,
67

1
1,

47
8

3,
17

7
1,

14
3

2,
78

4
∞

20
6

10
,3

02
14

8
9,

51
0

1,
76

2
3,

62
8

1,
15

3
2,

82
6



4.7. The market value of interconnectors 133

T
ab

le
4.

5
(c

on
tin

ue
d)

Se
as

on
al

it
y,

O
U

,a
n

d
Ju

m
ps

Se
as

on
al

it
y

an
d

O
U

Se
as

on
al

it
y,

O
U

,a
n

d
Ju

m
ps

Se
as

on
al

it
y

an
d

O
U

f
(T

)+
X

(T
)+

Y
(T

)
f

(T
)+

X
(T

)
f

(T
)+

X
(T

)+
Y

(T
)

f
(T

)+
X

(T
)

Pe
ak

G
er

m
an

y
an

d
N

et
h

er
la

n
ds

O
ff

-P
ea

k
G

er
m

an
y

an
d

N
et

h
er

la
n

ds
M

N
e
→

G
er

G
er
→

N
e

N
e
→

G
er

G
er
→

N
e

N
e
→

G
er

G
er
→

N
e

N
e
→

G
er

G
er
→

N
e

10
81

6
84

8
86

0
78

8
88

1
75

2
85

8
77

1
20

2,
37

7
2,

47
5

2,
49

1
2,

27
9

2,
54

0
2,

15
6

2,
46

5
2,

21
0

30
3,

84
2

4,
01

1
4,

00
6

3,
65

9
4,

06
2

3,
43

2
3,

93
2

3,
51

5
40

5,
21

5
5,

45
9

5,
40

7
4,

93
2

5,
45

5
4,

58
5

5,
26

5
4,

69
2

50
6,

49
8

6,
82

4
6,

69
9

6,
10

4
6,

72
0

5,
62

4
6,

46
9

5,
74

9
∞

22
,4

61
27

,9
29

19
,4

24
17

,7
88

15
,8

95
12

,5
64

14
,6

23
12

,5
51

Pe
ak

N
et

h
er

la
n

ds
an

d
U

K
O

ff
-P

ea
k

N
et

h
er

la
n

ds
an

d
U

K
M

U
K
→

N
e

N
e
→

U
K

U
K
→

N
e

N
e
→

U
K

U
K
→

N
e

N
e
→

U
K

U
K
→

N
e

N
e
→

U
K

10
39

0
97

1
34

7
99

3
18

1,
58

6
14

1,
58

2
20

93
9

2,
43

8
80

3
2,

47
1

31
4,

36
4

21
4,

32
0

30
1,

28
3

3,
31

3
1,

05
4

3,
32

1
37

6,
35

1
22

6,
21

4
40

1,
50

1
3,

77
0

1,
18

7
3,

73
2

39
7,

50
6

22
7,

23
9

50
1,

64
1

3,
99

6
1,

25
4

3,
90

9
41

8,
07

4
22

7,
67

6
∞

2,
11

2
4,

35
9

1,
30

8
4,

03
3

44
8,

60
6

22
7,

89
2



134 4. Interconnecting electricity markets: A real options approach

values of the flow from one market to the other during peak time when
the model includes the seasonal trend f(T ), the OU Gaussian shocks X(T ),
and the jumps Y (T ). For example, if M = 10 Euros/MWh, the value of
the 365 options to send 1 MWh of peak electricity from Germany to France
(France to Germany) during peak times is 601 Euros (251 Euros), and if
the cap is M = 50 the 365 options are worth 1,457 Euros (641 Euros). In
the same table, columns 4 and 5, show the value of the interconnector for
peak time if the jump intensities are set to zero. In this case, if M = 10
Euros/MWh, the 365 options to send peak electricity from Germany to
France (France to Germany) is 572 Euros (209 Euros), or if the cap is
M = 50 Euros/MWh the value of the options is 1,082 Euros (357 Euros).15

Hence, if we use this example as a proxy for the value added by the jumps,
then the difference between columns 2 and 4 (3 and 5) indicates how much
value can be extracted from using the interconnector when there are jumps
in the spread between Germany and France during peak hours. Columns 6
through 9 can be interpreted in the same way, but they refer to electricity
flows during off-peak hours.

From Table 4.5 we see that the effect of the liquidity cap is different
across the markets we study. For example, if the cap between Germany
and the Netherlands is reduced from M =∞ to M = 50 Euros/MWh, the
value of the interconnector decreases by almost 75%. If we draw the same
comparison in the UK–Netherlands market, the value of the interconnector
only decreases by 8%. These different effects of the liquidity cap are due
to the particular characteristics of the spread in each market: seasonal
component, volatility of the OU process, jump intensities and jump sizes.
For example, the cap has an important effect on the markets where the
spread undergoes frequent and large jumps which is the case for Germany–
Netherlands. And in general, depending on the depth of the market, the
results of Table 4.5 show that the jumps in the spread can account for
between 1% and 40% of the total value of the interconnector.

Moreover, Table 4.5 shows that the peak and off-peak value of intercon-
nection can also be different even within the same market, hence there are
markets where most of the value of the interconnector is derived from flows
in one direction and for a particular segment of the day. For instance, most
of the value of the interconnection between the Netherlands and the United
Kingdom is provided by off-peak hours, while most of the value between
Germany and Nord Pool is during peak hours.

In Table 4.6 we investigate the case when the seasonal trend is set to zero

15These values are calculated employing equation (4.4), where location A is
France and location B is Germany.
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for all T . The table gives an indication of what happens to the value of the
interconnector if it is assumed that for future dates the parameters of the
OU and jump component are the same, but that the deterministic seasonal
trend of the spread between the locations is zero. By comparing these values
to those of Table 4.5, we can see that the seasonal trend adds considerable
value to the interconnector, especially for cases with high liquidity cap M .
For example, if the spread is modeled with f(T ) +X(T ) + Y (T ), then the
value of an interconnector between France and Germany is 6,252 Euros
(M = 50 Euros/MWh), but if we assume that the seasonal function is set to
zero, f(T ) = 0, then the value drops to 5,904 Euros.16 Moreover, Table 4.6
also shows that the cases in Table 4.5 where the interconnector was mostly a
uni-directional flow are mainly due to the seasonal component.

Finally, based on the statistics and estimates in Tables 4.1-4.4, we provide
some rules of thumb that help to interpret and provide a qualitative summary
of the results in Tables 4.5 and 4.6.

First, as in financial options, high volatilities in the underlying spread
means higher interconnector values. This feature is clearly exhibited by
the peak-hour interconnections in Germany-Netherlands, Netherlands-UK,
and Germany-Nordpool, where the standard deviations of the spread of
the peak-hours are the largest and so are their interconnector values (see
summary statistics in Table 4.1). As discussed above, the variance of the
spread process depends on four elements: the variance of the diffusion
process, the size and arrival intensity of jumps, the mean-reversion rate of
the diffusion, and the mean reversion rate of the jumps. Each one of these
elements affects the value of the interconnector.

Similar to the effect of volatility of the underlying asset of financial
options, the higher the volatility of the diffusion part of the spread, the
higher is the value of the interconnector. By inspecting Table 4.6 (columns
4 and 5 for peak hours, and 8 and 9 for off-peak hours) where we turn
off the effect of the seasonal trend and the jumps in the spread, we can
see how the diffusion component of the spread model affects the value
of the interconnector. For example, if we look at the peak-hour and the
off-peak-hour spreads of Germany-Nordpool we see that they have similar
mean-reversion rates, but the volatility of the diffusion component of the
peak spread is slightly higher than that of the off-peak spread. Thus, as

16These figures are obtained from adding up the values of the peak and off-
peak of the flows between Germany and France. Note that the lessee owns the
four options: Germany to France, France to Germany during peak time as well as
off-peak time.
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expected, the interconnector values for peak hours are higher than those
for off-peak hours.

The largest values of the interconnector correspond to markets where
the size and frequency of jumps is significantly large (e.g. Germany-Nether-
lands peak hours in Table 4.5). The effect of the jump component depends
on the depth of the market; increases in the liquidity cap M imply significant
increases in the value of the interconnectors.

At the same time, for similar levels of variance in the diffusion process
of the spread, a larger rate of mean reversion of the diffusion component
decreases the value of the interconnector. An example of this effect can be
found in the results for the France-Germany interconnector values when the
jump component is “switched off” (see Table 4.6, columns 4 and 5 for peak
hours, and 8 and 9 for off-peak hours). There we observe that the off-peak
interconnector values are larger than the corresponding peak interconnector
values while the diffusion volatilities of peak and off-peak spreads are similar.
Thus, this difference in the option values can be attributed mainly to the
difference in the speed of mean reversion between the diffusion processes
of the peak and off-peak spreads.

If we take into account the jump component, we also observe that,
when the arrival intensities and jump sizes are similar, the speeds of mean
reversion of the jump and diffusive component, become important drivers
of the interconnector value. Thus, spreads with higher mean reversion rates
of the jump processes have the lowest interconnector value.

4.7.1 No-arbitrage bounds

The values in Tables 4.5 and 4.6 do not take into account the arbitrage
bounds that forward or futures prices could impose on the valuation of the
interconnector. In this subsection we use the prices shown in Table 4.5 for
the benchmark model S(T ) = f(T ) +X(T ) + Y (T ) in columns 2, 3 (peak)
and columns 6, 7 (off-peak) as a reference. For a fixed liquidity cap M , the
no-arbitrage bounds require that the sum of the values in columns 2 and 3
obey the peak electricity bounds (4.9) and (4.10). Similarly, for a given cap
M the sum of values in columns 6 and 7 must obey the no-arbitrage bounds
for off-peak hours.

To verify whether the prices reported in the valuation tables are arbi-
trage-free, we look at a particular example. Recall that the values reported
in the tables are for a one-year lease between January 1 2010 and December
31 2010 and that these values were calculated employing data that ended
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Panel A: Interconnection between France (B) and Germany (A)

Exhibit 1: Futures Peakload Exhibit 2: Futures Baseload
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Panel B: Interconnection between France (B) and the United Kingdom (A)
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Panel C: Interconnection between Nord Pool (B) and Germany (A)
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Figure 4.3. Empirical no-arbitrage bounds

Dashed, straight lines show the corresponding interconnector value of Table 4.5 for
different liquidity constraints M = 10, 20, 40 and∞. Figure also shows the bounds
(Eur/MWh) computed from equations (4.9) and (4.10) for peak hours and the
respective ones for off-peak hours. The no-arbitrage bounds resulting from buying
a forward contract in location B, and shorting a forward contract for location A
(bound A→B) are depicted by a solid line. Similarly, the dotted line represents
the bound resulting from being long a forward contract in location A, and short a
forward in location B (bound B→A).
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in June 2009 (below we show in detail how the bound for peak time on
October 29 2009 between Germany and France is calculated). The no-
arbitrage bounds will depend on the market data on the day the calculation
is performed; here it can be any day between July 1 2009 and December
31 2009. Figure 4.3 shows the bounds for every day during this period
for France and Germany, France and UK, and Nord Pool and Germany.
We can observe that the bounds exhibit considerable variation over time.
These pronounced changes in the bounds are a reflection of changes in
futures prices due to changes in: market expectations, fuel prices, changes
in risk-premia, weather predictions, etc.

For example, the no-arbitrage bound for peak electricity between France
and Germany on October 29 2009 is calculated in the following way. Assume
that M = 20, and the price for a one-year lease of 1 MWh capacity, for a
one-hour slot during the peak time between Germany and France, is 1,603
Euros (1,136 Euros for transmission from Germany to France plus 467 Euros
for transmission from France to Germany; see Table 4.5). On October
29 2009, yearly peak-load futures (delivering electricity during peak time
throughout 2010) are trading at 77.63 Euros/MWh in France and 68.15
Euros/MWh in Germany. Now, consider the following strategy: 1) Purchase
the yearly peak-load forward in Germany and sell a yearly peak-load forward
in France; 2) Purchase interconnector capacity for 2010, during peak time
at 1,603 Euros (4.40 Euros/MWh during 365 days); 3) Every day during
2010, transmit 1 MWh from Germany to France and pay transmission costs
of 5 Euros/MWh. Following equation (4.9), the no-arbitrage lower bound is
1,611 Euros, and the net present value of this arbitrage strategy is 8 Euros
(i.e. the difference between the no-arbitrage bound and the value of the
interconnector capacity).17 Therefore, the valuation in Table 4.5 does not
satisfy the no-arbitrage bound and if the lessor is selling capacity on October
29 2009, he should increase the price from 1,603 Euros to at least 1,611.
However, if the same arbitrage strategy is considered on October 30 2009,
the non-arbitrage bound is equal to 1,236 Euros, which is below the value
charged by the lessor, and there are no opportunities to arbitrage the price.
Exhibit 1 of Panel A in Figure 4.3 illustrates this example.

17That is,
∑365
t=1 e−rt (77.63 - 68.15 - 5) = 1,611 Euros/MWh; the risk-free rate

employed in the calculations is 3%. Note that this profit is for 1 MWh but could
be much more if we consider that an interconnector may have a capacity of 1,000
MWh (or more) and that there are 12 peak hourly slots every day. In this case the
total profit is 96,000 Euros.
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4.8 Conclusions

In this chapter we show how to value an electricity interconnector as an
asset that gives the owner the optionality to manage electricity flows between
two markets. In financial terms, the value of the interconnector is the same
as a strip of real options written on the spread between the power prices
of two markets. We model the spread prices based on a: seasonal trend,
mean-reverting Gaussian process, and mean-reverting jump process.

As a first contribution, we express the value of these real options in
closed-form in the presence of mean-reverting jumps processes. We also
propose a methodology to detect jumps in the spread that addresses the
possible miss-classification of mean reversion as jumps. We estimate the
parameters of the spread model and find that the introduction of jumps in
the model delivers gains in the in-sample performance of between 20% and
48% with respect to a misspecified or “naive” model in which jumps are not
included.

We value a hypothetical one-year lease of the interconnector between
five pairs of European neighboring markets. The total value of the lease is
the sum of the premia of 1,460 (4 times 365) real options on the spread:
365 options to transmit electricity from market A to B during on-peak hours;
365 to transmit electricity from A to B during off-peak hours; and the same
number for transmitting both on- and off-peak power from market B to A. We
show valuations under different assumptions about the seasonal component
of the spread and different liquidity caps, which proxy for the depth of the
interconnected power markets. Finally, we provide some rules of thumb to
interpret the different interconnector values.

Although we cast the problem in terms of real options, where the statis-
tical distribution of the spread and the risk-adjusted discount rate are key
ingredients in the valuation, we also derive no-arbitrage lower bounds for
the value of the interconnector in terms of electricity futures contracts. We
show that most of the time these bounds are satisfied, but there are days
where the value of the interconnector is given by the no-arbitrage bound
instead of the price delivered by the sum of the prices of real options.

We find that the seasonal component is an important factor that deter-
mines the direction of the interconnector value. We also show that the vari-
ance of the diffusion process, the size of the jumps, and the mean-reversion
rates of the diffusion and jump processes are key elements to determine the
final value of the interconnector. Some of our valuation findings indicate
that, depending on the depth of the market, the jumps in the spread can
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account for between 1% and 40% of the total value of the interconnector.
The presence of a liquidity constraint reduces the value of interconnectors
specially for those interconnected markets where the jump component plays
a key role in the variance of the spread price. The two markets where an
interconnector would be most (least) valuable is between Germany and the
Netherlands (between France and Germany). The markets where off-peak
transmission between the two countries is more valuable than transmission
during the peak times are: France and Germany, France and UK, and the
Netherlands and UK.
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Mean-reversion rate and risk

premium in commodity markets

TRYING TO UNDERSTAND THE PRICE BEHAVIOR of commodities has a long tra-
dition in the finance literature and is a long standing issue for stakeholders
in commodity markets. On the one hand, there are market participants with
exposure to spot price risks because they produce or consume the commod-
ity. On the other hand, there are those that have no need to purchase or
sell the commodity, but enter the market for speculative purposes. Either
way, both types need to understand not only the behavior of spot prices but
also the dynamics of the financial instruments written on the commodities
so that decisions about bearing spot price risk, hedging, and speculation can
be made.

From a reduced-form modeling perspective there are two possible ways
to model price behavior. One way is first to build a model for commodity
prices that tries to capture the main features of the price dynamics under
both the data generating measure and risk-adjusted measure. The alternative
way is to specify a reduced-form model under the risk-adjusted measure and
place less importance on the dynamics of the commodity under the data
generating measure. This second approach, although desirable in some
cases, is built at the expense of not capturing some of the characteristics
exhibited by price dynamics of the commodity under the data generating
measure which in some cases, such as in energy commodities, might be an
undesirable feature.

Our departure point in this chapter is that an important proportion of
market participants are exposed to spot price commodity risk and it is their
needs to hedge their positions the key factor which brings them to market
to trade derivatives instruments to manage their exposures. Therefore,
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understanding the dynamics of commodities under the data generating
measure is as important as understanding the dynamics of prices under the
risk-adjusted measure. The main questions we set out to answer here are:
how are the data generating and risk-adjusted measures related? How can
we reconcile the behavior of the physical dynamics of spot prices with those
of the different forwards with different expiries?

To answer this question we first need to understand: what are the key
elements that market participants price according to their risk preferences?
What are the main risks that different stakeholder wish to offload? What
happens to the risks that are being managed across different time horizons?
What are futures contracts insurance for? Although our discussion could be
applied to a wide variety of commodities, especially those whose prices tend
to show a degree of mean reversion, we focus on two energy commodities:
gas and electricity.

In general, establishing the link between the data generating measure
and the risk-neutral measure in asset pricing is a difficult task because of
market incompleteness. In energy markets in particular, the connection
between these two measures is less well understood and has been overlooked
in most cases, especially in electricity. So far, most of the reduced-form
models for gas and electricity lack either a more realistic representation of
prices under the data generating measure, or a better specification of the
risk-adjusted measure to reconcile the dynamics of derivative instruments,
for instance futures or forward contracts across different maturities.

This chapter contributes to the literature on the pricing of risk in com-
modities by proposing a parsimonious reduced-form model that can capture
the main characteristics of commodity prices under the data generating
measure and show that there is a family of risk-adjusted measures capable of
capturing the fact that market participants may overstate (understate) the
probability of occurrence of undesirable (desirable) events.

In particular we show that participants in energy markets price financial
instruments under the risk-adjusted measure by modifying how long devi-
ations from the seasonal component may last. In the most general version
of our model there are three factors out of which two are mean reverting:
one factor is an Ornstein-Uhlenbeck (OU) driven by Brownian motion and
the other factor is a mean reverting jump process with positive and negative
jumps.

Until now, all reduced-form models that specify jumps in prices under
the data generating measure assume that under the risk-adjusted measure
the jump component has all or most of the following characteristics: a) jumps
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are non-systematic or that the market-price of jump risk is zero; b) jumps
have the same arrival structure under both measures; c) the distribution of
jump sizes is the same under both measures; and d) the speed at which jumps
mean revert is the same under both the data generating and risk-adjusted
measures.

Assumptions a) to d) are at odds with the evidence observed in gas and
power markets because forward contracts are in most cases bought (resp.
sold) by consumers (resp. producers) of the commodity as insurance against
large upward (resp. downward) price deviations that would have an adverse
effect on their profits. For instance, assuming that jumps are non-systematic
implies that in the cross section of futures prices the presence of jumps does
not affect futures prices.

Assuming that spot prices mean revert at the same speed under both
measures makes it difficult to reconcile the spot and forwards model dynam-
ics with observed market prices. The family of risk-adjusted measures that we
propose allow for the mean reversion of the jump component of spot prices
to be different between the two measures.

In the empirical part, we estimate our model using the Bayesian inference
for two types of energy commodities, natural gas and power. Specifically, we
implement a Markov Chain Monte Carlo (MCMC) estimation scheme, which
accounts for parameter uncertainty. Our results suggest that the degree of
mean reversion under the physical and the risk-adjusted measures differ.
Under the Q measure, the estimates of the speed of mean-reversion of the
Gaussian factor decrease for all models. On the contrary, the estimates of
the mean-reversion rate corresponding to the jump factor are much higher
under Q than under the physical measure P .

The rest of the chapter is organized as follows. Section 5.1 relates the
chapter to previous literature of commodity modeling. Section 5.2 describes
the arithmetic model and presents the new change of measure that we pro-
pose. Section 5.3 summarize the inference methodology and the MCMC
estimation. Section 5.4 presents the data and develops the empirical applica-
tion. Finally, in Section 5.5 we conclude.

5.1 Background

In this section we review some of the models that have been proposed in
the commodities literature. The common characteristic shared by most
commodities is mean reversion in spot prices. Reduced-form models for
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storable commodities have been around for a long time. Gibson and Sch-
wartz (1990) propose a two-factor model where spot prices follow a geometric
Brownian motion and the stochastic convenience yield follows an OU mean
reverting process under the data generating measure. They propose a
risk-adjusted measure which results from introducing a market-price of
convenience yield risk in the form of a linear shift in the distribution of
the convenience yield under the data generating measure. In their model
the mean reversion of spot prices under both the data generating and risk-
adjusted measure is induced by the mean reversion in the convenience yield.
The model is applied to oil spot and forward prices. This model is extended
in Schwartz (1997) and applied to oil, gold an copper. Miltersen and
Schwartz (1998) allow for both stochastic convenience yield and stochastic
interest rates and Hilliard and Reis (1998) further extend the model to
include jumps in the spot price process. Another common feature to all
these models is that when one of the factors of the model is mean reverting
then the speed of mean reversion will be the same under both the data
generating and risk-adjusted measure.

Furthermore, Schwartz and Smith (2000) propose a two-factor model for
oil prices In this model one of the factors is an OU process where the under
the risk-adjusted measure is obtained by introducing a state dependent
market price of risk which allows for the mean reversion speed under the
pricing measure to be slower than under the data generating measure.

Casassus and Collin-Dufresne (2005) propose a three-factor model of
spot prices, convenience yields and interest rates. The factor dynamics are
driven by OU Brownian motion processes. The connection between the data
generating measure and the risk-adjusted measure is introduced via a state
dependent market price of risk for each factor. The immediate implication
is that under the data generating measure the speed of mean reversion of
spot prices, convenience yields, and interest rates can be different from the
speed of mean reversion under the risk-adjusted measure. They estimate
the model parameters to futures prices of: crude oil, copper, gold, and
silver, and show that risk-premia are varying and negatively correlated with
the spot price. One of their findings is that in the four commodities they
study the speed of mean reversion of spot prices is higher under the data
generating measure than under the risk-adjusted measure. Furthermore, the
authors present an extension to their Gaussian model to include jumps in
the spot prices. They assume that jump-size risk is not priced and that jump
intensities are the same under both the data generating and risk-adjusted
measure which implies that forward prices are not affected by the inclusion
of jumps.
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Furthermore, electricity is the only commodity that is either impossible
or too uneconomical to store at a relevant scale. The literature proposes
to model wholesale electricity prices by employing reduced-form models or
equilibrium models. Examples of the reduced form models include those of
Lucía and Schwartz (2002) and Cartea and Figueroa (2005). Alternatives to
the reduced-form models are the so-called equilibrium and hybrid models
that, given the particular characteristics of electricity, explain price formation
based on state variables that are mainly associated to supply and demand,
see for example Bessembinder and Lemmon (2002), Pirrong and Jermakyan
(2008), and Benth, Cartea, and Kiesel (2008). In the next sections, we
propose a reduced-form, arithmetic model for commodity spot prices; and a
new, more flexible change of measure, for which pricing and calibration of
basic building blocks such as futures contracts can be performed analytically.

5.2 An arithmetic jump-diffusion model for the spot

Let X(t) be the vector of state variables (X1(t), X2(t), X3(t))′. The evolution
of the state variables X(t) under the real probability measure P is given by

dX(t) = −APX(t)dt+ CP dL(t) , (5.1)

where dL(t) = (dL1(t), dL2(t), dL3(t))′. L1(t) and L2(t) are independent
Brownian motions and L3(t) is an independent compound Poisson process
with intensity parameter λ and jump sizes distributed as N(µZ , σZ). Here,
AP is a 3× 3 diagonal matrix that reflects the mean-reversion rates of the
state variables under the physical measure P ,

AP = diag(α1, 0, α3) . (5.2)

Note that we are considering the case where α2 = 0, that is X2(t) is an
arithmetic Brownian motion while X1(t) is a Gaussian OU process. The 3×3
lower triangular matrix CP defines the dependence between state variables
and is given by

CP =
(

Σ 0
0 1

)
, (5.3)

where Σ is the Cholesky factorization for the 2×2 variance-covariance matrix
under P of the Gaussian state variables X1(t) and X2(t); that is

Σ =
(

σ1 0
σ2ρ12 σ2

√
1− ρ2

12

)
. (5.4)
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Under the physical measure P , the spot price process S(t) can be de-
composed into a stochastic component defined by the state variables in X(t)
and a deterministic component µ(t).1 That is:

S(t) = µ(t) + ı′X(t) , (5.5)

where ı is a 3×1 vector of ones. In the empirical application, we will consider
the following seasonal deterministic function µ(t) = µ0 + µ1t+ µ2d

winter
t +

µ3d
spring
t + µ4d

summer
t , where µ0, . . . , µ4 are constant parameters and dwinter

t ,
d

spring
t , and dsummer

t are deterministic dummy variables for winter, spring,
and summer, correspondingly.

5.2.1 An alternative change of measure: Reversion rate can vary

We now consider the following change of measure Q:

dL(t) = dLQ(t) + Λ(t)dt (5.6)

with
Λ(t) = ΦQ + C−1

P BQX(t). (5.7)

Here, dLQ(t) = (dLQ1 (t), dLQ2 (t), dLQ3 (t))′ and ΦQ is defined as

ΦQ = (θ1, θ2, φ
′
3(θ3))′ , (5.8)

where φ′i(θ) is the derivative of the logarithm of the moment generating
function of Li(t). BQ is a 3×3 diagonal matrix of parameters:

BQ = diag(β1, 0, β3) , (5.9)

where we are considering possible changes in the mean-reversion rate under
Q for the mean-reverting processes X1(t) and X3(t). Then, under the Q-
measure, the dynamics of state variable vector X(t) is given by

dX(t) = (CPΦQ −AQX(t))dt+ CPdLQ(t) (5.10)

where AQ = AP −BQ.

To obtain the change of measure Q, we define for each component i of
X(t) the following process

Yi(t, z) =
(

eθiz + βi
φ′i(0)Xi(t)

)
. (5.11)

1Notice that the model is arithmetic and allows eventually for possible negative
prices in the spot. A first specification of this type can be traced back to Ross (1997).
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Note that, for the validity of this change of measure, we need to assume
exponential integrability conditions for the Lévy measure of Li, `i, that is,∫ ∞

−∞
eθiz`i(dz) <∞. (5.12)

The exponential integrability condition of the Lévy measure ensures the
existence of moments of all orders, and makes the measure change valid in
the case of βi = 0. Furthermore, Nicolato and Venardos (2003, Theorem
3.1.) specifies a necessary condition for Yi to give an equivalent measure
change: ∫ T

0

∫
R+

(
√
Yi(s, x)− 1)2`i(dz)ds <∞ a.s. . (5.13)

Using the triangle inequality, and requiring that `i(IR+) < ∞, shows that
condition (5.13) is satisfied:∫ T

0
(
√
Yi(s)− 1)2ds ≤ c

∫ T

0

∫ ∞
0

Yi(s, z)`i(dz)ds+ T`i(IR+)

≤ c
( ∫ T

0
Xi(s)ds `i(IR+) + T

∫ ∞
0

eθiz`i(dz) + `i(IR+)
)

<∞ ,

since Xi(s) is a cadlag process and c is an appropriate constant value. Then,
we have thatQ is an equivalent measure, for which the compensator measure
of Li is given by

`Qi (dt, dz) = Yi(t)`i(dz)dt . (5.14)

Specifically for the compound Poisson process X3(t), we can therefore
write the dynamics with respect to Q as

dX3(t) = −α3X3(t)dt+
∫ ∞
−∞

z NQ(dz, dt) +
∫ ∞
−∞

zY3(t, z)`3(dz)dt

=
(
− α3X3(t) +

∫ ∞
−∞

zeθ3z`3(dz) + β3
φ′3(0)

∫ ∞
−∞

z`3(dz)
)
dt+ dLQ3 (t)

=
(
φ′3(θ3)− (α3 − β3)X3(t)

)
dt+ dLQ3 (t) ,

where NQ is the compensated Poisson random measure associated to L3;
dLQ3 (t) is a Q-martingale with the compensator measure of equation (5.14);
and

φ′3(θ3) =
∫ ∞
−∞

zeθ3z`3(dz) ,

which is the expectation of L3 under P when θ3 = 0. When Li(t) is a
Brownian motion, such as in X1(t) and X2(t), the above derivation is still
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valid, since the measure change (5.6) works on each factor independently,
but in this case we have φ′j(θj) = θj , for j = 1, 2.2

The effect of the stochastic term Xi(t) in the measure change (5.14) can
be seen as a complete shift by a constant. When Xi(t) is low or for βi = 0,
we essentially have the usual transform rescaling, a re-weighting of the Lévy
measure. But if, for example, the process Xi exhibits large shocks, we shift
the whole compensator measure by a factor. In the case of X3, this shift
could be interpreted as if we rescale the jump intensity in the compound
Poisson process. For instance, if θ3 = 0, we have under Q a compound
Poisson process with a stochastic intensity λ(1 + β3X3(t)/φ′i(0)), where λ is
the intensity under P . That is, if this is a negative (positive) rescaling, we
lessen (intensify) the compound Poisson process under Q.

5.2.2 The futures price and the risk premium

The futures price f(t, T ) at time t of a contract to deliver one unit of com-
modity at time T > t is defined as the expected spot price under the
risk-adjusted probability measure Q

f(t, T ) = IEQt [S(T )] , t ∈ [0, T ]. (5.15)

For energy’s futures contracts, instead of a single maturity time, every con-
tract specifies a delivery period, which are typically a month, quarter, season,
or even year. Hence, if F (t, T1, T2) denotes the market price for an energy’s
futures contract with time T1 until maturity and delivery period [T1, T2], then

F (t, T1, T2) = 1
T2 − T1

IEQt
[ ∫ T2

T1
S(u)du

]
(5.16)

where t < u and T1 ≤ u ≤ T2. Therefore, by definition, we have that
S(t) = f(t, t) = F (t, t, t+ 1).

Considering the dynamics of X(t) under Q in equation (5.10) and that
the Lévy measures `Qi are Q-martingales, we compute the expectation in
equation (5.16) and find the following expression for the futures price

F (t, T1, T2) = µ̄(T1, T2) + ᾱQ,1(t, T1, T2)X1(t) + ϑ1
αQ,1

(1− ᾱQ,1(t, T1, T2))

+X2(t) + ϑ̃2τ̄(t, T1, T2) + ᾱQ,3(t, T1, T2)X3(t)

+ φ′(θ3)
αQ,3

(1− ᾱQ,3(t, T1, T2)) , (5.17)

2Note that the Gaussian cumulant function is given by φ(θ) = θ2/2
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where ϑ̃2 = ϑ1ρ12 + ϑ2
√

1− ρ2
12, ϑ1 = θ1σ1, and ϑ2 = θ2σ2. The functions

µ̄(T1, T2), ᾱQ,i(t, T1, T2), and τ̄(t, T1, T2) are respectively the average of µ(u),
e−αQ,i(u−t), and (u− t) over the interval [T1, T2], that is

µ̄(T1, T2) = 1
T2 − T1

∫ T2

T1
µ(u) du , (5.18)

ᾱQ,i(t, T1, T2) = e−αQ,i(T1−t) − e−αQ,i(T2−t)

αQ,i(T2 − T1) , and (5.19)

τ̄(t, T1, T2) = ((T2 − t) + (T1 − t))/2 . (5.20)

Furthermore, lets define the risk premium for Q as the difference be-
tween the futures price and the predicted spot price,

ΠQ(t, T1, T2) = F (t, T1, T2)− 1
T2 − T1

IEPt

[∫ T2

T1
S(u) du

]
. (5.21)

The theory of normal backwardation says that producers are willing to pay
a premium for having their production hedged, implying that ΠQ < 0. In
electricity, there is some empirical evidence for ΠQ > 0 in the short end, that
is, for contracts close to maturity. Under our specification, we may observe
a change in the sign of the risk premium, for example, from positive to
negative along the forward curve, a change which is stochastically dependent
on the price factor Xi(t).

5.3 Econometric methodology

This section describes the estimation problem when both spot and futures
prices are observed. Our implementation is based on an MCMC simulation
that provides inference for unobserved state variables and model parameters
given information under the probability measures P and Q. We follow here
Eraker, Johannes, and Polson (2003), Eraker (2004), Jacquier, Johannes,
and Polson (2007), Johannes and Polson (2009), Johannes and Polson
(2010), and Polson and Stroud (2003) mainly.

Consider the observations of spot prices S̃t and monthly futures prices
F̃t,n for maturities T1,n − t, where n = 1, . . . , N . For each discrete, integer
time t ∈ [0, L], we have the panel Yt = {Yt,j}N+1

j=1 = [S̃t, F̃t,1, . . . , F̃t,N ]. That
is, there are observations available for N + 1 assets over a period [0, L]
obtaining a total of N + 1 × L data points. We assume that market prices
Yt,j are observed with independent pricing errors εt,j ∼ N (0, σ2

ε,j) ,

Yt,j = H(t, T1,j , T2,j , Xt,Θ) + εt,j , j = 1, . . . , N + 1 , (5.22)
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where H(t, T1,j , T2,j , Xt,Θ) represents the theoretical value of spot and
futures prices, S(t) (for j = 1) and F (t, T1,j , T2,j) (for j = 2, . . . , N + 1);
which, in our model specification, are determined by the vector of state
variables Xt and a parameter vector Θ through the functions defined in
equations (5.5) and (5.17), respectively. There are mainly two motivations
for adding an additive pricing error: to consider the possibility that the
model can be misspecified and that there can be measure errors related with
noisy price observations.

5.3.1 Bayesian inference

The specification of the pricing errors allows us to describe the conditional
likelihood of the set of observations Y = {Yt,j : t = 1, . . . , L; j = 1, . . . , N +
1} as the function

p(Y |X,Θ) ∝
L∏
t=1

N+1∏
j=1

ψ(Yt,j ;H(t, T1,j , T2,j , Xt,Θ), σ2
ε,j) , (5.23)

where ψ(x;m, s2) is the Gaussian density function with mean m and variance
s2 evaluated at x. The parameter vector Θ can be decomposed into the
parameter vector under P and the parameter vector under the risk-adjusted
probability measure Q, that is, Θ = {ΘP ,ΘQ}. Furthermore, the dynamics
of the spot prices can be determined using the likelihood p(S|X,ΘP ), where
the state variables X evolve according to the dynamics defined in equation
(5.1) and ΘP = {α1, α2, σ1, σ2, ρ12, λ, µZ , σZ}. The parameter vector ΘQ

denotes the market price of risk parameters, ΘQ = {θ1, θ2, θ3, β1, β3}, which
are used in the derivative pricing, but do not affect the dynamics under P of
the state variable vector X .

Then, the inference problem consists of the computation of the joint
posterior density of latent variables and parameters given by

p(X,ΘP ,ΘQ|Y ) ∝ p(Y |X,ΘP ,ΘQ)p(X|ΘP )p(ΘP )p(ΘQ) , (5.24)

where p(X|ΘP ) denotes the density corresponding to the state variable dy-
namics, and p(ΘP ) and p(ΘQ) denotes priors on the parameters under P
and Q, respectively. Furthermore, the likelihood p(Y |X,ΘP ,ΘQ), described
in equation (5.23), can be decomposed in two factors p(S|X,ΘP ) corre-
sponding to the underlying spot price, and p(F |S,X,ΘQ) corresponding to
the panel of futures prices.

The joint posterior density p(X,ΘP ,ΘQ|Y ) summarizes the sample in-
formation concerning the parameters and latent variables combining the
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likelihood and the prior information. Unfortunately, this posterior density
is an unknown, non-standard, and highly dimensional density function, and,
therefore, difficult to sample directly.

5.3.2 MCMC implementation

The MCMC approach provides a method to sample parameters ΘP and ΘQ

and latent variables Xt from their joint posterior density p(X,ΘP ,ΘQ|Y ).
We first employ a time discretization of the continuous time model to com-
pute the likelihood p(Y |X,ΘP ,ΘQ) and the latent state distribution p(X|
ΘP ), assuming that the time interval matches the observed frequency (one
day). The discretization bias is small because we are using daily data.

The MCMC method consists in constructing a Markov chain that has
as stationary distribution the joint posterior density. To handle the dimen-
sionality problem and the presence of nonstandard conditional densities,
we employ a hybrid Gibbs sampler. The Gibbs sampler allows to simulate
iteratively, in sub-sets, all the variables of the joint posterior distribution,
obtaining a sequence that converges to p(Y |X,ΘP ,ΘQ). Gibbs sampling
makes use of the close-form derivation of conditional posterior densities
for some sub-sets of parameters and latent variables. However, there are
some elements of the set of values we want to estimate, {Θ, X}, that do not
have standard, closed form posterior densities. In this case, we implement a
Metropolis algorithm, i.e. an accept-reject procedure, to draw from these
random variables.

Thus, our MCMC simulation generates samples iteratively, for g = 1,
. . . , G, from the following set of conditional posteriors:

i) Sub-set i of parameters at iteration g, Θ(g)
i , from p(Θi|Θ(g−1)

−i , X(g−1),
Y ), where Θ−i denotes the elements of the parameter vector except
Θi.

ii) State variable j at time t, X(g)
j,t , from p(Xj,t|Θ(g)

i , X
(g−1)
j,−t , Y ), where

Xj,−t denotes all the values of the state variable j in the sample interval
[0, L] except the value at t.

For g = 0, we initialize the recursive scheme using an appropriate set of
starting values. The conditional posteriors of the parameters under P ,
ΘP , the variance matrix of the pricing errors, Σε, and the market price of
risk parameters θ1 and θ2 are known in closed form and can be sampled
directly using standard distributions. Note that we employ diffusive priors
for the density specification p(Θ). In contrast, the conditionals for the
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mean-reversion rated under Q, αQ1 and αQ3 , and the market price of risk
for jumps θ3 are not standard due to the nonlinear form in which these
parameters enter into the futures pricing function. We therefore use a
fat-tailed random walk Metropolis algorithm to sample these parameters.
For the state variables, for each iteration, 2L latent variables (jump times
and sizes) have to be drawn for the mean-reverting jump diffusion X3,t,
and L variables for each of the two correlated Gaussian processes X1,t and
X2,t. The conditional posterior for the jump times is Bernoulli since the
jump indicator is a binary random variable, can only take two values (0
or 1). Finally, conditional on the jump indicators, the model is a linear,
Gaussian state-space model, and it is possible to use the Kalman filter to
obtain a direct block draw of the L-dimensional state variables (X1, X2). The
block sampling procedure is as follows: first, we run the usual Kalman filter
algorithm (forward-filtering step), then we move backward to unwind the
conditioning information (backward-sampling step).

5.4 Data and empirical application

We estimate the model for two types of energy commodities, natural gas and
power, using the Bayesian inference described in the previous section. We
first introduce the data sample, then we describe and discuss our results.

5.4.1 Description of the data

The empirical analysis of this chapter is based on a sample of spot (day
ahead) and futures prices of natural gas and electricity. In particular, we
use daily data of monthly futures contracts for physical delivery through
the transfer of rights in respect of natural gas at the National Balancing
Point (NBP) and electricity on a continuous baseload basis, i.e. 23:00 - 22:59
Monday - Sunday; both operated by National Grid, the transmission system
operator in Great Britain and traded at the Intercontinental Exchange (ICE)
in pence/therm and pounds/MWh, respectively. We consider contracts with
maturities 1, 3, 6, and 9 months (labeled from M1 to M9), having a panel of
5 asset prices (4 futures and 1 spot prices) at each time period. Delivery is
made equally each day throughout delivery period, in this case, one month.
Our sample of natural gas prices ranges from March 13, 2003 to June 17,
2013; containing 2,592 trading days and 10,368 futures prices. The sample of
electricity prices ranges from September 14, 2004 to December 7, 2012, that
is, 2,107 trading days and 8,428 futures prices. Table 5.1 shows the summary
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statistics for both commodities. Figure 5.1 exhibits the price of spot, M1,
and M9 contracts on natural gal and electricity over their respective sample
periods.

5.4.2 Empirical results

Given the samples of the posterior distributions for the parameter vector Θ
and the state variables Xt, we can obtain straightforward the Monte Carlo
estimate of the mean of parameters and latent variables, for example, the
mean of parameter Θi ⊂ Θ is IE[Θi|Y ] ≈ 1

G

∑G
g=1 Θ(g)

i . Our estimates
take into account parameter uncertainty, when we estimate the mean of
the posterior state-variable distribution, we are considering the fact that
parameter estimates are random variables. In this section, we compute
posterior estimates of the different parameters and state variables employed
in our model specification using the NBP natural gas and UKPX electricity
futures data described above. In this empirical application, we also compare
the more general model with other nested specifications with less state
variables.

Tables 5.2 and 5.3 reports the posterior means, posterior standard devi-
ations (in parentheses), and the posterior 5 and 95 percentiles (in square
brackets) of the different model parameters for the NBP natural gas and
UKPX electricity, respectively. For each commodity we present the param-
eters governing the seasonal trend (µ1, . . . , µ4), the mean reversion under
the physical measure P (α1), the variance matrix of the Gaussian factors, (σ1,
σ2, and ρ12) , the market price of risk parameters for the different factors (θ1
and θ2), the mean-reversion rate under the risk-adjusted measure Q (αQ1 ).
For the jump diffusion models, we also report the jump intensity (λ) and
the mean and standard deviation of jump sizes (µZ and σZ), as well as, the
mean-reversion of jumps under P and Q (α3 and αQ3 ) and the market price
of risk parameter for jumps (θ3). Finally, for each model considered, we
also present in Tables 5.2 and 5.3 the standard deviation diagonal matrix
(σε,1, . . . , σε,5) of the independent pricing error vector εt. Columns 1 and
2 reports the one-factor and two-factor Gaussian Models (OU model and
OU-AB model, respectively). Columns 3 and 4 (OU-MRJ and OU-AB-MRJ
models) shows the previous two Gaussian models plus a mean-reverting
jump diffusion factor, which consists in a mean-reverting compound Poisson
process with Gaussian jump sizes.

Furthermore, Figure 5.2 shows the estimated jump times for the OU-AB-
MRJ model, and Figure 5.3 exhibits the inferred state-variable paths for this
model and the 95% confidence intervals for these paths.
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Table 5.2. Parameter estimates for NBP natural gas

The table reports posterior means, standard deviation (in parenthesis), and 95%
confidence intervals (in square brackets) for the the model most general model de-
scribed in Section 5.2, OU-AB-MRJD, and other nested models: OU is the arithmetic
model with one mean-reverting Gaussian factor, OU-AB is the two-factor arithmetic
model composed by a mean-reverting Gaussian process and an arithmetic Brownian
process; and OU-MRJ is the OU model plus a mean-reverting jump diffusion. The
estimates correspond to a unit of time defined to be one day. The estimation sample
ranges from March 13, 2003 to June 17, 2013.

OU OU-AB OU-MRJ OU-AB-MRJ

µ0 22.65 (2.695) 25.16 (1.882) 15.17 (1.520) 26.03 (1.381)
[18.68, 27.58] [22.20, 28.05] [12.89, 17.80] [24.03, 28.66]

µ1 3.086 (0.376) 3.487 (0.371) 3.528 (0.159) 3.650 (0.225)
[2.527, 3.778] [3.002, 4.005] [3.220, 3.767] [3.279, 3.986]

µ2 0.235 (1.182) 0.057 (1.166) 0.278 (0.627) 0.312 (0.717)
[-1.692, 2.242] [-1.913, 1.931] [-0.753, 1.245] [-0.994, 1.351]

µ3 0.178 (1.325) 0.045 (1.409) -0.391 (0.708) -0.281 (0.832)
[-2.015, 2.332] [-2.500, 2.336] [-1.568, 0.756] [-1.681, 1.125]

µ4 -1.437 (1.200) -1.254 (1.143) -1.515 (0.586) -1.361 (0.725)
[-3.342, 0.653] [-3.106, 0.612] [-2.526, -0.541] [-2.578, -0.150]

α1 0.027 (0.006) 0.175 (0.059) 0.0092 (0.0027) 0.720 (0.196)
[0.017, 0.035] [0.101, 0.2753] [0.0048, 0.0137] [0.420, 1.059]

α3 1.435 (0.119) 1.532 (0.127)
[1.244, 1.645] [1.344, 1.755]

σ1 3.467 (0.089) 3.232 (0.334) 1.749 (0.041) 1.905 (0.137)
[3.319, 3.617] [2.653, 3.772] [1.683, 1.817] [1.688, 2.142]

σ2 2.451 (0.225) 2.379 (0.099)
[2.113, 2.845] [2.225, 2.554]

ρ12 -0.239 (0.140) -0.781 (0.026)
[-0.462, -0.004] [-0.820, -0.736]
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Table 5.2 (continued)

OU OU-AB OU-MRJ OU-AB-MRJ

λ 0.051 (0.005) 0.047 (0.005)
[0.042, 0.060] [0.038, 0.056]

µZ 9.655 (2.470) 10.46 (2.540)
[5.763, 13.77] [6.436, 14.82]

σZ 17.26 (1.173) 16.76 (1.187)
[15.45, 19.29] [14.90, 18.80]

θ1 6.905 (2.628) 2.882 (5.764) 8.603 (11.75) 1.792 (10.93)
[3.085, 10.77] [-1.324, 17.10] [7.110, 10.53] [-1.025, 8.433]

θ2 6.478 (2.204) 9.092 (11.10)
[1.487, 8.565] [2.034, 12.72]

θ3 -0.189 (0.042) 0.210 (0.010)
[-0.235, -0.098] [0.194, 0.226]

αQ,1 0.0033 (0.0003) 0.012 (0.003) 0.0011 (0.0002) 0.0034 (0.0013)
[0.0026, 0.0038] [0.007, 0.018] [0.0008, 0.0013] [0.0016, 0.0056]

αQ,3 6.634 (0.162) 84.12 (3.796)
[6.306, 6.851] [78.68, 90.89]

σε,1 1.999 (0.088) 1.868 (0.095) 0.922 (0.031) 0.918 (0.032)
[1.856, 2.147] [1.709, 2.022] [0.873, 0.974] [0.867, 0.971]

σε,2 7.182 (0.1447) 7.055 (0.224) 5.982 (2.836) 6.749 (5.872)
[6.955, 7.427] [6.687, 7.426] [5.726, 6.107] [5.862, 8.085]

σε,3 12.75 (0.4244) 13.02 (0.536) 11.79 (0.785) 12.32 (3.874)
[12.10, 13.46] [12.13, 13.89] [11.37, 12.21] [11.54, 12.76]

σε,4 16.34 (0.513) 17.65 (0.730) 15.89 (3.082) 16.50 (1.253)
[15.56, 17.23] [16.42, 18.84] [15.32, 16.38] [15.75, 17.21]

σε,5 15.02 (0.462) 16.38 (0.679) 14.87 (5.231) 15.48 (1.129)
[14.31, 15.84] [15.23, 17.48] [14.27, 15.27] [14.81, 16.14]
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Regarding the variance matrix of the Gaussian components, we find
that the volatility of the mean-reverting variable X1,t (short-term factor),
σ1, for the OU and OU-AB models, is relatively high, 3.47 and 3.23 for
natural gas, and 4.44 and 6.31 for electricity. For the OU-MRJ and OU-AB-
MRJ models, the estimates of σ1 are much smaller (1.75 and 1.90, for NBP
natural gas; and 2.13 and 2.39, for UKPX), suggesting that the jump factor
is explaining a significant part of the unconditional price variations. The
correlation coefficient ρ12 between the Gaussian state-variables is negative
and large in magnitude, especially when the jumps are included in the model
specification. The estimates of ρ12 for the OU-AB-MRJ model are -0.78 and
-0.25, for NBP gas and UKPX electricity, respectively.

Next, we examine the jump intensity λ and the jump size parameters, µZ
and σZ , for both commodities. We observe that jumps are more frequent
than in other asset classes, such as equity. The intensity estimates show
that on average we can expect around 5 jumps in 100 trading days for NBP
natural gas, and about 15 jumps for UKPX electricity. The estimates of the
mean jump size are largely positive and significant. According to OU-AB-
MRJ estimates, the average jump size µZ is in the range [6.4, 14.8] with 95%
probability for natural gas, and in the range [11.7, 16.5] for electricity; while
the posterior mean of the standard deviation of jump sizes σZ is 16.8 and
16.9 for gas and electricity, respectively. These results indicates that, when
jumps occur, positive size jumps are more common than negative ones.

We now turn to discuss the mean-reversion rate parameters of the Gaus-
sian OU variable and the jump factor under the physical and risk-adjusted
measures: α1 and αQ1 , and α3 and αQ3 , respectively. The mean reversion
rates under the physical measure are significant for both commodities and
for all models. The estimates of speed of mean reversion of the jump factor
under P for the OU-MRJ and OU-AB-MRJ are around 1.44 and 1.53 for
natural gas, and 1.69 and 1.70 for electricity. That means the observed
half-life of the price deviations corresponding to the jump factor is less than
1 day. For both jump models, the estimates of the mean-reversion rate of the
Gaussian state-variable are 0.009 and 0.72 for natural gas, and 0.01 and 0.60
for electricity; which corresponds to an estimated half-life of 75 and 1.0 days,
and 57 and 1.2 days, respectively. Under the Q measure, the estimates of the
speed of mean-reversion of the Gaussian factor decrease for all models. For
the jump diffusion models OU-MRJ and OU-AB-MRJ, the expected half lives
in days corresponding to the αQ1 estimates for natural gas are 630 and 204.
The 95%-probability ranges are [533, 866] and [124, 433] for each model.
For electricity, the expected half lives are 1,155 and 4.10 days, respectively.
Therefore, under the risk-adjusted measure, the degree of mean reversion of
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Table 5.3. Parameter estimates for UKPX electricity

The table reports posterior means, standard deviation (in parenthesis), and 95%
confidence intervals (in square brackets) for the the model most general model de-
scribed in Section 5.2, OU-AB-MRJD, and other nested models: OU is the arithmetic
model with one mean-reverting Gaussian factor, OU-AB is the two-factor arithmetic
model composed by a mean-reverting Gaussian process and an arithmetic Brownian
process; and OU-MRJ is the OU model plus a mean-reverting jump diffusion. The
estimates correspond to a unit of time defined to be one day. The estimation sample
ranges from September 14, 2004 to December 7, 2012.

OU OU-AB OU-MRJ OU-AB-MRJ

µ0 32.77 (4.645) 19.49 (8.965) 25.85 (7.029) 10.28 (4.847)
[24.66, 40.37] [7.261, 37.19] [16.76, 36.03] [0.902, 17.47]

µ1 1.632 (0.611) 1.107 (1.735) 2.378 (0.720) 7.288 (0.768)
[0.735, 2.797] [-1.883, 3.592] [1.195, 3.320] [5.842, 8.427]

µ2 -0.795 (2.303) -0.560 (1.972) -0.617 (1.174) -0.746 (1.233)
[-4.516, 3.095] [-3.753, 2.766] [-2.551, 1.273] [-2.796, 1.319]

µ3 -0.474 (2.575) -0.234 (2.354) -0.460 (1.391) -1.046 (1.572)
[-4.743, 3.854] [-4.280, 3.534] [-2.702, 1.815] [-3.561, 1.542]

µ4 1.790 (2.163) 1.145 (2.117) -0.276 (1.159) -0.477 (1.406)
[-1.773, 5.299] [-2.397, 4.714] [-2.107, 1.617] [-2.693, 1.900]

α1 0.037 (0.008) 0.667 (0.111) 0.0122 (0.0041) 0.599 (0.236)
[0.025, 0.050] [0.488, 0.852] [0.0057, 0.0193] [0.301, 1.030]

α3 1.693 (0.127) 1.697 (0.124)
[1.497, 1.919] [1.515, 1.916]

σ1 4.444 (0.268) 6.309 (0.501) 2.127 (0.138) 2.388 (0.180)
[4.015, 4.888] [5.441, 7.086] [1.904, 2.358] [2.104, 2.692]

σ2 2.485 (0.202) 1.930 (0.148)
[2.171, 2.836] [1.695, 2.188]

ρ12 0.009 (0.169) -0.249 (0.096)
[-0.268, 0.291] [-0.403, -0.088]
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Table 5.3 (continued)

OU OU-AB OU-MRJ OU-AB-MRJ

λ 0.153 (0.013) 0.138 (0.013)
[0.133, 0.175] [0.118, 0.159]

µZ 13.10 (1.295) 14.03 (1.458)
[11.03, 15.27] [11.74, 16.50]

σZ 16.48 (0.746) 16.92 (0.815)
[15.32, 17.75] [15.64, 18.32]

θ1 4.943 (2.243) 1.837 (11.27) -0.732 (8.825) 8.589 (42.65)
[1.296, 8.578] [-17.23, 20.88] [-11.76, 4.622] [-15.41, 60.08]

θ2 2.776 (1.764) -3.809 (1.201)
[0.213, 5.952] [-5.206, -2.155]

θ3 0.247 (0.007) 0.226 (0.006)
[0.233, 0.258] [0.217, 0.236]

αQ,1 0.0027 (0.0003) 0.0879 (0.0359) 0.0006 (0.0003) 0.169 (0.002)
[0.0022, 0.0031] [0.0265, 0.1407] [0.0002, 0.0011] [0.167, 0.171]

αQ,3 167.9 (77.08) 453.7 (19.88)
[56.77, 295.0] [429.9, 492.3]

σε,1 6.352 (0.201) 4.243 (0.458) 2.264 (0.129) 1.953 (0.119)
[6.023, 6.679] [3.498, 4.999] [2.058, 2.476] [1.763, 2.155]

σε,2 8.605 (0.287) 7.791 (0.363) 8.565 (3.351) 8.893 (4.570)
[8.159, 9.094] [7.225, 8.409] [7.628, 10.54] [7.457, 13.33]

σε,3 10.36 (0.733) 10.09 (0.735) 9.362 (1.573) 9.637 (2.874)
[9.248, 11.62] [8.916, 11.32] [8.533, 10.15] [8.405, 11.42]

σε,4 11.86 (0.964) 12.77 (1.023) 10.72 (0.620) 11.01 (1.111)
[10.39, 13.58] [11.17, 14.55] [9.852, 11.67] [9.844, 12.28]

σε,5 9.659 (0.706) 11.17 (0.701) 9.026 (2.110) 9.208 (0.671)
[8.621, 10.92] [10.06, 12.38] [8.122, 10.03] [8.392, 10.11]
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the Gaussian factor is extremely reduced in most of the models, and the risk
premium α1 − αQ1 , which is associated with the volatility risk, is estimated to
be always positive. On the contrary, the estimates of the mean-reversion rate
corresponding to the jump factor are much higher under Q than under the
physical measure P . For natural gas, the posterior means of αQ3 are 6.63 for
the OU-MRJ model and 84.1 for the OU-AB-MRJ model. For electricity, the
observed half-life values are even closer to zero. These results suggest that
the presence of a jump is largely vanished under the risk-adjusted measure
right after the jump occurs.

The significance of the market price of risk parameters differs among
models and commodities, however we can observe some common patterns.
For natural gas, the θ1 estimates, i.e. the coefficient related to the Gaussian
OU factor, are not estimated with much accuracy, are only significant and
positive for the OU and OU-MRJ models, but not when we include the AB
factor (i.e. the long-term state variable) in the model specification. For
electricity, it is only significant in the OU model. In contrast, the θ2 and θ3
estimates, i.e. the risk premia related to the AB and the MRJ factors, are in
general significant for both commodities, although their expected sign and
magnitude vary across the different model specifications.

Finally, regarding the measure error variances Σε, we find that the
inclusion of mean-reverting jumps reduce on average the estimates of Σε

related to the futures and spot prices. In particular, for NBP natural gas,
the pricing error variances of the spot prices diminish 54% and 51% when
using the OU-MRJ and OU-AB-MRJ models instead of the OU and OU-AB
models. For UKPX electricity, this reduction is even greater, 64% and 54%,
respectively.

5.5 Conclusions

In this chapter, we propose a new way of thinking about the market price of
risk so that market participants bearing spot commodity risk are compen-
sated for: jump arrival risk; jump size risk; and speed of mean reversion
risk of both diffusion and/or jumps. When pricing under the risk-adjusted
measure agents will: over-state the time it takes to return to the seasonal
trend; alter the mean of the process; and change the intensity of the jumps
and their average size. Our approach can also be viewed as a special case of
stochastic discount factors that not only affect the mean of the process but
also its variance via the persistence of shocks to the economy.

Using a panel data on natural gas and electricity futures, we empirically
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estimate the model using a MCMC methodology. We find evidence of the
different degree of mean reversion under the physical and the risk-adjusted
measures. We also report the features of a mean-reverting jump component
under both probability measures.

Although our specification does not include specifically a dynamics for
the convenience yield, we can infer from the instantaneous interest rate
dynamics the stochastic process for the convenience yield or, in terms of
market price of risk, we can infer an implicit stochastic market price of risk.



6
General conclusions and

further research

THE INCREASING PRESENCE OF INVESTORS and financial intermediaries in
commodity markets, together with the huge increase in the volatility of
commodity prices, have renewed the interest in commodities and commodity
derivatives. In the last decade, a better understanding of the behavior of
commodity prices and their idiosyncratic statistical features has emerged as a
relevant financial and policy topic. This thesis provides new insights, first, to
analyze the multivariate distribution of commodity returns and its impact on
portfolio selection and tail risk measures; and, second, to price commodity
derivatives under the presence of non-Gaussian shocks in a continuous time
framework.

To conclude this thesis, we summarize the main findings and contribu-
tions along these lines and provide some extensions for future research. We
divide our following exposition into theoretical or methodological contribu-
tions and empirical results; let us start with the former.

6.1 Summary of methodological contributions

In Chapter 2, supported by different empirical analyses of the statistical
features of commodity returns, we propose a new multivariate conditional
skewed t copula model for the joint distribution of oil, gold, and equity
returns that allows for time-varying moments and state-dependent tail behav-
ior.

We also solve numerically the portfolio selection problem of an investor
with three-moment preferences when commodity futures are part of the

167
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investment opportunity set. In our specification, we consider the investor’s
loss aversion, in the form of the portfolio returns’ skewness, and we modify
the budget constraint of the investor’s problem to take the collateral of
commodity futures contracts into account (Chapter 2).

We also contribute to understand the tail behavior of energy price risk
using a dynamic multivariate model, in which the vector of innovations is gen-
erated by different multivariate GH distributions (Chapter 3). Specifically,
we consider the NIG, the VG, the skewed t, Student’s t, and the Gaussian
distributions; we model different dependence patterns (e.g., dependence in
the extremes, positive or negative skewness) and tail decays (e.g., exponen-
tial vs. polynomial). Due to the normal mean-variance mixture structure of
GH distributions, we can apply the powerful EM algorithm for parameter
estimation. In our specification, we approximate the exposure of physical
and financial players to energy price risk using portfolios of crude oil, natural
gas, coal, and electricity futures.

In Chapter 4, we address the question of how to value an electricity
interconnector, using a strip of real options written on the price differential
between two power markets . Our model for the dynamics of spread prices
captures: jumps in both directions, high seasonal volatility, and fast mean
reversion to a seasonal trend. We also derive no-arbitrage lower bounds for
the value of the interconnector in terms of electricity futures contracts of
the respective power markets. To estimate the jump diffusion parameters,
we propose a methodology to detect spikes where the emphasis is placed on
avoiding misclassifying mean reversion as jumps.

Chapter 5 contributes to literature on the pricing of risk in commodities
by proposing a parsimonious reduced-form model that can capture the main
characteristics of commodity prices under the data generating measure and
show that there is a family of risk-adjusted measures capable of capturing
the fact that market participants may overstate (understate) the probability
of occurrence of undesirable (desirable) events. We propose an arithmetic
model, instead of exponential, because the pricing and calibration of ba-
sic building blocks such as futures contracts can be performed analytically.
Our model consists of three factors: an arithmetic Brownian factor, which
describes a long-term component; an Ornstein-Uhlenbeck (OU) driven by
a Brownian motion, for short-term Gaussian shocks; and a mean-reverting
jump process with positive and negative jumps. The family of risk-adjusted
measures that we propose allows for the mean reversion of the jump compo-
nent of spot prices to be different between the two measures. Now, we turn
to summarizing the main empirical findings.



6.2. Summary of empirical results 169

6.2 Summary of empirical results

Our first empirical application analyzes 20 years of weekly data of oil and
gold futures and, using a rolling window scheme, computes the time series
of portfolio weights corresponding to various copula models (Chapter 2).
We find that the different specifications of the time-varying marginal dis-
tributions, the presence of dynamic conditional dependence among the
univariate processes, and the modeling of tail and asymmetric dependence
are the main factors behind the differences between the allocation strategies.
Results suggest that both marginal distribution modeling and copula model-
ing have important implications for out-of-sample portfolio performance (as
in Patton (2004)). Overall, conditional t copulas yield better portfolio deci-
sions in terms of investment ratios and relative performance than Gaussian
models, especially when variance and loss aversion decrease.

In a posterior empirical analysis over a seven-year sample of NYMEX
energy futures prices, we calculate recursively the conditional tail risk mea-
sures, in a multivariate approach, of different exposures to energy market
risk (Chapter 3). Our in-sample and out-of-sample results suggest the im-
portance of fat tails and positive skewness in the multivariate distribution
of energy risk factors. Regarding the tail risk of short positions, distribu-
tions with polynomial tail decay (heavy-tailed) outperformed alternative
versions with exponential tail decays, especially for the utility portfolios. The
extent to which the tail risk of the portfolio loss distribution is underesti-
mated depends on the portfolio weights of the different energy commodities,
whether we analyze the short or long trading position, and the horizon and
confidence level considered.

In the empirical application of Chapter 4, we employed nine years of
electricity prices for five pairs of European neighboring markets to value
hypothetical interconnectors under different assumptions about the seasonal
component of the spread and under different liquidity caps, which proxy
for the depth of the interconnected power markets. Our valuation findings
indicate that the jumps in the spread can account for between 1% and
40% of the total value of the interconnector, depending on the depth of
the market. Some “rules of thumb" summarize the different drivers of the
interconnector value: the variance of the diffusion process, the size of the
jumps, and the mean-reversion rates of the diffusion and jump processes, all
of which are key elements to determine the final value of the interconnector.

Finally, in the empirical part of Chapter 5, we considered two energy
commodities: natural gas and electricity traded in United Kingdom, over
a period of 10 and 8 years. For the model estimation, we implement a
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MCMC scheme, which accounts for parameter uncertainty. We show that
participants in energy markets price financial instruments under the risk-
adjusted measure by overstating how long deviations from the seasonal
component may last. Assuming that spot prices mean revert at the same
speed under both measures makes it difficult to reconcile the spot and
forwards model dynamics with observed market prices. Furthermore, results
suggest that the presence of jumps in spot prices under the data generating
measure becomes an important contributing factor to the prices of futures
written on the commodity.

6.3 Extensions and further research

To conclude, some extensions to our different analysis can be considered.
With respect to Chapter 2, it would be interesting to study the sensitivity of
the investor’s portfolio decisions to parameter uncertainty using Bayesian
analysis. Note that some cautions with the propagation of errors between the
marginal distributions and the copula function must be taken into account
when implementing this type of analysis. Another possibility is to extend
our portfolio selection problem with commodity futures to a dynamic asset
allocation context (in a manner similar to Stefanova (2009)). Thus, we could
evaluate the hedging component of the optimal portfolio weights under the
effects of skewness and asymmetric dependence.

Turning to Chapter 3, some questions also arise for further research.
First, we did not consider the effects of parameter uncertainty in the calcula-
tions of the tail risk measures, and it would be interesting, albeit computa-
tionally intensive, to study the impacts on the results if we were to take such
uncertainty into account. Second, we characterized the aggregate tail risk
using prespecified energy price risk exposures, given by the portfolio weights,
of various representative energy-market players. However, an advantage of
our asset-level approach is that we can analyze the sensitivity of the tail risk
measures to changes in the weights of the energy portfolio. Furthermore, we
can use these multivariate approaches to determine how the risk measures
we have analyzed might be used to construct an optimal energy portfolio.
Finally, it would be interesting to compare the GH models with other para-
metric and semi-parametric multivariate approaches, such as those related
to multivariate extreme value theories (e.g., Poon, Rockinger, and Tawn
(2004)).

Regarding the interconnector valuation (Chapter 4), several extensions
might be considered for future analysis. Using a string of spread options
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may not capture the full flexibility in the contract. More complete valuation
could be based on the formulation of the problem as a stochastic control
or optimal switching problem (as in Carmona and Ludkovski (2010)), for
which the optimal transmission strategy would be a function of time and the
random scenarios of the time evolution of the difference between the spot
prices. Moreover, taking control of the transmission, the agent could hedge
the risk exposure associated with the transmission decision with a financial
position in the futures markets. We leave these questions for future analysis.

In Chapter 4 and Chapter 5 we used reduced form models based on la-
tent variables to describe the dynamics of prices. It also would be interesting
to relate the presence of jumps and the risk-adjusted dynamics, proposed in
Chapter 5, with commodity market fundamentals (see Bessembinder and
Lemmon (2002)). Thus, new structural models, at substantial computational
cost, might incorporate the underlying factors that drive commodity prices
and might be used to value contingent claims on commodities.

Incorporating jump clustering under the data generating measure would
be a desirable property, but it would come at the expense of parsimony.
Although we do not model jump clustering under the data generating
measure, the family of risk-adjusted measures in Chapter 5 can allow for
jump clustering, which is precisely a feature that some market participants
consider insuring against.

Assuming a diffusion process for the instantaneous interest rate and
using no-arbitrage relationships, we can infer the stochastic process for
the convenience yield; alternatively, we could infer an implicit stochastic
dynamics for market price of risk.
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A.1 The generalized t univariate distribution

In this appendix, we summarize some useful results related to the general-
ized t distribution introduced by Hansen (1994) and posteriorly analyzed by
Jondeau and Rockinger (2003), among others. The following presentation
is based on these works. Consider a random variable z that follows a gen-
eralized t distribution. Its probability density function g(z; ν, λ) is defined
as

g(z; ν, λ) =


b c

[
1 + 1

ν − 2

(
b z + a

1− λ

)2 ]−(ν+1)/2

z < −a/b

b c

[
1 + 1

ν − 2

(
b z + a

1 + λ

)2 ]−(ν+1)/2

z > −a/b
, (A.1)

where 2 < ν < +∞ and −1 < λ < 1, and the constants a, b and, c are given
by

a = 4λ c (ν−2)/(ν−1), b2 = 1+3λ2−a2, and c = Γ ((ν + 1)/2)√
π(ν − 2) Γ (ν/2)

.

(A.2)
Furthermore, Γ(y) denotes the Gamma function, defined as

Γ(y) =
∫ ∞

0
ty−1e−tdt

for <(y) > 0 (see (Abramowitz and Stegun, 1965)).
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The first three moments of the standardized innovations Z are defined
as:

IE(Z) = 0; IE(Z2) = Var(Z) = 1; and (A.3)

IE(Z3) = Skew(Z) = m3 − 3am2 + 2a3

b3
(A.4)

where m2 = b2 + a2 and m3 = 16cλ(1 +λ2)(ν− 2)2/((ν− 1)(ν− 3)) if ν > 3
(see Jondeau and Rockinger (2003)).

According to Jondeau and Rockinger (2003, Proposition 1), we can
express the the generalized t cumulative distribution function, G(p ; ν, λ), as
a function of the standard Student’s t distribution with ν degrees of freedom,
T (p; ν), as follows

G(p; ν, λ) =

 (1− λ)T
(√

ν
ν−2

bp+a
1−λ ; ν

)
p < −a/b

(1 + λ)T
(√

ν
ν−2

bp+a
1+λ ; ν

)
p > −a/b

, (A.5)

where the standard Student’s t distribution is defined as

T (p; ν) =
∫ p

−∞

Γ ((ν + 1)/2)√
πν Γ (ν/2)

(
1 + x2/ν

)−(ν+1)/2
dx. (A.6)

Finally, the inverse function of the generalized t distribution can be
obtained by inverting the standard Student’s t distribution, such that

G−1(u; ν, λ) =


1
b

[
(1− λ)

√
ν−2
ν T−1

(
u

1−λ ; ν
)
− a

]
u < 1−λ

2
1
b

[
(1 + λ)

√
ν−2
ν T−1

(
u+λ
1+λ ; ν

)
− a

]
u ≥ 1−λ

2
, (A.7)

where u ∈ [0, 1].

A.2 Explanatory variables for the mean equation

We include the following explanatory factors in the conditional mean equa-
tion of our marginal distribution model: short rate, default spread, momen-
tum, basis, and growth in open interest.

• The short rate is a proxy for the expected shocks in the economy. We
use the weekly average yield of the three-month T-bills.

• The default spread is the difference between Moody’s Baa and Aaa
corporate bond yields and should capture the variation in the risk
premium. We also employ the weekly average of this variable.
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• Momentum is computed as the moving average of previous returns,
and it is employed to measure the market sentiment. In our empirical
application, we compute it using the weekly returns of previous eight
weeks.

• The basis is the relative difference between the six-month-maturity
future prices and the month-ahead futures prices; the basis measures
the futures curve slope with respect to a six-month delivery horizon.
For the empirical application, we employ the weekly average of this
measure.

• The dollar open interest is the month-ahead futures price multiplied
by the number of contracts outstanding; thus, growth in open interest
measures the capital flow into commodity markets. Again, to reduce
the noise in the measure, we use the weekly average of this variable.

Although all these variables are considered for the mean equation, we
ultimately just select the exogenous regressors that are statistically significant
in our time-series analysis.

A.3 Copula functions

This section describes the three implicit copulas we propose as dependence
functions of our multivariate model: the Gaussian, t, and skewed t copulas
(see Section 2.2). These three copulas correspond to the dependence
functions contained in three multivariate normal mixture distributions (see
McNeil, Frey, and Embrechts (2005)). This class of distributions adopts the
following representation:

X = µ+Wγ +
√
WZ (A.8)

where µ and γ are parameter vectors in IRd, Z ∼ N(0,Σ), and W is a
random variable independent of Z. When the mixing random variable W
satisfies ν/W ∼ χ2(ν), then the resulting mixture distribution of the random
vectorX is denoted as the asymmetric or skewed t distribution,H(µ,Σ, ν,γ),
which belongs to the the wider family of multivariate generalized hyperbolic
distributions.

Applying Sklar’s theorem in equation (2.6), we can obtain the skewed
t copula function from the generalized hyperbolic skewed t distribution,
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H(0,P , ν,γ), defined by µ = 0, and the correlation matrix P implied by
the dispersion matrix Σ.1Then, the skewed t copula is defined as

CSK(u;P , ν,γ ) = H
(
H−1

1 (u1 ; ν, γ1), . . . , H−1
d (ud ; ν, γd) ;P , ν,γ

)
,

(A.9)
where the Hi(· ; ν, γi) are the d univariate skewed t distribution functions,
the H−1

i are the corresponding quantile functions, and u = (u1, . . . , ud)′ is
the probability transformed vector.

Special cases can be obtained from the normal mixture representation
in equation (A.8). When γ = 0, we have the multivariate Student’s t
distribution; obviously, when W is constant, we obtain the multivariate
Gaussian distribution. Thus, the unique t copula of a d-variate Student’s t
distribution can be expressed as

CT(u;P , ν) = T (T−1(u1; ν), . . . , T−1(ud; ν) ; P , ν) , (A.10)

where T (· ; P , ν) is the joint distribution function of a d-variate Student’s
t distribution with ν degrees of freedom and correlation matrix P , and
T−1(ui; ν) is the inverse function of the univariate Student’s t distribution
with ν degrees of freedom. In the same way, we can define the d-variate
Gaussian copula as

CG(u; P ) = Φ(Φ−1(u1), . . . , Φ−1(ud) ; P ) , (A.11)

where Φ(· ; P ) denotes the joint distribution function of the d-variate stan-
dard normal distribution with correlation matrix P , and Φ−1 denotes the
inverse of the univariate standard normal distribution.

We proceed to compute the density functions of the three copulas. The
density function of a parametric copula that is absolutely continuous is given
by

c(u) = ∂dC(u1, . . . , ud)
∂u1 · · · ∂ud

. (A.12)

For the case of the three implicit copulas we consider here, the density
functions can be obtained from differentiating equations (A.9), (A.10), and
(A.11). Thus, the density function of the d-variate skewed t copula can be
expressed as

cSK(u; P , ν,γ) = h(H−1
1 (u1; ν, γ1), . . . , H−1

d (ud; ν, γd) ; P , ν,γ )
h1(H−1

1 (u1; ν, γ1); ν, γ1) · · ·hd(H−1
d (ud; ν, γd); ν, γd)

.

(A.13)

1The copula function is invariant under any strictly increasing transformation of
the marginal distributions, including the standardization of the components of the
random vector X.



A.4. The two-stage log-likelihood function 177

where h(·; P , ν,γ) is the joint density of the multivariate skewed t distribu-
tion H , and the hi(·; ν, γi) are its corresponding marginal density functions.
Using the results from McNeil, Frey, and Embrechts (2005, Section 3.2.3)
for the density functions of generalized hyperbolic distributions, and some
algebra, we explicitly obtain the density function of the d-variate skewed t
copula, given by

cSK(u; P , ν,γ) = |P |−1/2
(

Γ(ν2 )
21−ν/2

)d−1 ∏d
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2 ex′P−1γ (A.14)

where x = (x1, . . . , xd)′ and xi = H−1
i (ui ; ν, γi).

In addition, Γ(·) denotes the Gamma function and Kη is the modified
Bessel function of the second kind with order η, which can be implemented
numerically (see Abramowitz and Stegun (1965) for more details about these
functions and their properties). A similar expression to that in equation
(A.12) can be derived for the t and Gaussian copulas from their respective
joint and marginal density functions. Thus the density function of the
d-variate t copula is given by

cT(u;P , ν) = |P |−1/2
Γ
(
ν+d

2

)
Γ
(
ν
2
)d−1

Γ
(
ν+1

2

)d
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i=1

(
1 + x2

i
ν

)(ν+1)/2

(
1 + x′P−1x

ν

)(ν+d)/2 , (A.15)

where xi = T−1(ui; ν). Finally, the density function of the d-variate Gaussian
copula is expressed as

cG(u;P ) = |P |−1/2 exp
(
−1

2 x
′
(
P−1 − IId

)
x

)
, (A.16)

where xi = Φ−1(ui) and IId denotes the unit matrix of size d.

A.4 The two-stage log-likelihood function

Following Nelsen (2006, Theorem 2.10.9) and Patton (2006b, Theorem
1), equation (2.6) presents a multivariate and conditional extension to



178 A. Appendix

Sklar’s theorem. Then, according to equation (2.6), the conditional density
function of the joint distribution Ft(r1,t+1, . . . , rd,t+1; θ) is given by

ft(rt+1;θ) = ∂dFt(rt+1;θ)
∂r1,t+1 · · · ∂rd,t+1

=
d∏
i=1

fi,t(ri,t+1 ;θi,M ) · ct(ui,t+1, . . . , ui,t+1 ;θC), (A.17)

where the ui,t+1 = Fi,t(ri,t+1 ;θi,M ) are the marginal conditional distribu-
tions; fi,t(ri,t+1 ;θi,M ) are the marginal conditional density functions; and
ct(u1,t+1, . . . , u

d
d,t+1 ;θC) is the conditional copula density function (defined

in equation (A.12)).

Taking logarithms in equation (A.17) and summing for all observations
in the sample, r̄T = {r1, . . . , rT }, we determine that the log-likelihood
function of the joint model L(θ ; r̄T ) in equation (2.16) can be divided in
two terms, as follows:

L(θ ; r̄T ) =
d∑
i=1

T∑
t=1

log fi,t(ri,t+1 ;θi,M ) +
T∑
t=1

log ct(u1,t+1, . . . , ud,t+1 ;θC)

=
d∑
i=1
Li(θi,M ; r̄T ) + LC(θC ;θM , r̄T ) , (A.18)

where Li and LC are the log-likelihood functions for the i-th marginal model
and for the copula function, respectively. Moreover, θM = (θ1,M . . . θd,M )′
is the parameter set of the d marginal conditional distributions, and θC is
the parameter set of the conditional copula.

A.5 Multivariate tests

Engle and Sheppard (2001) test for constant correlation Panel B of
Table 2.2 presents the results of Engle and Sheppard (2001) test for constant
correlation for 5, 10, and 20 lags. This test requires a consistent estimate of
the constant conditional correlation and a vector autoregression. We use the
standardized residuals of GARCH(1,1) processes to estimate the correlation
matrix, P , and the diagonal matrix of standard deviations, Dt+1. Then,
under the null hypothesis of constant correlation, all the coefficients in

vechu(Yt+1) = α+ β1vechu(Yt+1−1) + . . .+ βsvechu(Yt+1−s) + ηt (A.19)
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should be 0; vechu is an operator that selects the upper off-diagonal elements,
and Yt+1 is a symmetric matrix defined by

(P−1/2D−1
t+1rt+1)(P−1/2D−1

t+1rt+1)′ − II.

Under the null hypothesis, the statistic β̂X′Xβ̂′

σ̂2
η

is asymptotically distributed

as χ2
s+1, where X is the vector of regressors, β is the vector of coefficients in

the latter regression equation (A.19), and σ̂2
η is the unbiased sample variance

of the estimated residuals η̂t. All test p-values, which represent the probability
of constant correlation, are all less than 0.05; we reject the hypothesis of
constant correlation for all lags considered and for all sample periods.

Mardia (1970) test of multivariate normality We implement the Mar-
dia (1970) test of multivariate normality, based on d-variate measures for the
skewness and kurtosis of the vector of returns. These measures are computed
using the so-called Mahalanobis angle, defined as

Dtt′ = (rt − r̄)′S̄−1(rt′ − r̄),

where r̄ and S̄ are the sample mean and covariance estimators. Under this
framework, d-variate skewness and kurtosis are computed as

sd = 1/T 2
T∑
t=1

T∑
t′=1

D3
tt′ and kd = 1/T

T∑
t=1

(D1/2
tt )4 .

Under the null hypothesis of multivariate normality, 1/6Tsd and kd are
asymptotically distributed as a χ2(d(d+ 1)(d+ 2)/6) and a N(d(d+ 2), 8d(d+
2)/T ), respectively. Panel C of Table 2.2 reports these multivariate measures,
sd and kd, for our three-dimensional vector of returns and their correspond-
ing statistics, rejecting the null hypothesis of multivariate normality for the
three sample periods considered.

Test of ellipticity of the vector of returns Following McNeil, Frey, and
Embrechts (2005), we test for the ellipticity of the vector of returns. This test
considers if standardized returns are consistent with a spherical distribution.
Standardized returns zt are defined by the sample mean and covariance as
follows

zt = S̄−1/2(rt − r̄)
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If zt is consistent with the spherical assumption, then the statistic Tellip will
be distributed according to a Beta distribution; that is,

Tellip =
k∑
i=1

z2
i /

d∑
i=1

z2
i ∼ Beta(k/2, (d− k)/2) ,

where d is the dimension of the returns vector (i.e. d = 3), and k is chosen to
roughly equal d− k (see McNeil, Frey, and Embrechts (2005)). We analyze
the results of this test graphically, through the qq-plot in Exhibit 2 of Figure
2.2, and numerically, implementing a Kolmogorov-Smirnov (KS) test with
the data, whose results are reported in Panel C of Table 2.2. The curvature
in the qq-plot suggests that the vector of returns is not elliptically distributed
for any of the sample periods considered (we just report the plot for the
full-sample period). For the full-sample period, the KS test statistic equals
0.174, above the critical value (0.048). Therefore, we reject the elliptical
hypothesis. The same conclusion is inferred for the other subsamples.

Exceedance correlation The exceedance correlation is defined as the
correlation between the returns above or below a given quantile. Following
Longin and Solnik (2001), Ang and Chen (2002), and Patton (2004), we
use exceedance correlation to investigate the dependence structure among
commodities and equity returns, checking for the presence of possibly asym-
metric interactions. The exceedance correlation at a threshold level q is
given by

%(q) =
{

Corr
[
ri, rj

∣∣ ri 6 Qi(q) ⋂ rj 6 Qj(q)
]

if q 6 0.5
Corr

[
ri, rj

∣∣ ri > Qi(q)
⋂
rj > Qj(q)

]
if q > 0.5 ,

where Qi(q) and Qj(q) are the q-th quantiles of returns ri and rj . Figure 2.3
plots exceedence correlation as a function of returns quantiles. The shape of
the exceedance correlation function depends on the bivariate distribution
between each pair of returns; it provides a means to measure the degree
of asymmetry in the joint distribution of these returns. The exceedance
correlation for the extreme returns is 0 for a bivariate normal distribution.

Patton (2006b)’s Symmetrized Joe-Clayton copula To attend to the
tail dependence of the returns vector, we fit the symmetrized Joe-Clayton
(SJC) copula proposed by Patton (2006b) to our unfiltered sample of returns.
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The SJC copula is given by:

CSJC(u1, u2; τU , τL) = 1/2
(
u1 + u2 − 1 + CJC(u1, u2; τU , τL)

+ CJC(1− u1, 1− u2; τL, τU )
)
.

This copula is a modification of the Joe-Clayton copula CJC:

CJC(u1, u2; τU , τL) = 1−
(

1−
( 1

[1− (1− u1)κ]ξ

+ 1
[1− (1− u2)κ]ξ − 1

)−1/ξ
)1/κ

where κ = 1/ log2(2 − τU ), ξ = −1/ log2(τL), and τU , τL ∈ (0, 1). The
parameters τU and τD are measure of dependence in the extremes, that is,

lim
ε→0

IP[U1 ≤ ε;U2 ≤ ε] = τL and lim
ε→1

IP[U1 > ε;U2 > ε] = τU

By construction, the SJC copula is symmetric when τU = τL and exhibits
no upper tail dependence if τU = 0, or no lower tail dependence if τL = 0.
In Panel D of Table 2.2, we report the estimates of the upper and lower tail
dependence parameters, τU and τD, corresponding to the SJC copula.

A.6 Description of energy portfolios

We consider two groups of typical energy portfolios. One group represents
the exposures to energy price risk that we can find in the power industry.
In this case, the energy futures portfolio approximates the utility’s future
payoffs. A second group represents the typical financial positions of investors
trading in energy commodities.

In each of these groups, we account for two example portfolios, providing
a total of four representative portfolios, for which we analyze tail behavior
and compute risk measures.

Portfolios of utility companies: Consider an arbitrary utility whose mix of
generation consists of coal-fired plants, which represents intermediate-load
generators, and peak-load power plants, which are fired mainly by natural
gas and marginally with oil.
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Each fuel-fired power plant involves two marketed commodities: the
electricity and the fuel used to produce that electricity. Thus, the payoffs
of the utility can be modeled as a function of the difference between the
electricity price (in $/MWh) and the fuel price (in $/fuel units), multiplied
by the heat rate of the power plant (in fuel units/MWh). The heat rate
determines the efficiency of the power plant and is defined as the conversion
ratio between the electricity and the fuel used for generation.

Therefore, the exposure of the utility to energy price risk can be approx-
imated by an energy futures portfolio composed of long (short) positions
in electricity and short (long) positions in coal, gas, and oil. The size of the
exposure to each fuel is determined by the amount of electricity produced by
that source. Thus, the weight (in dollars) of each fuel in the utility portfolio
is given by

wi,t = qi,0Fi,t = (∓Ci · Hi)Fi,t , for i = 1, 2, 3 (oil, gas, coal) , and

w4,t = q4,0F4,t = (±C)F4,t , for electricity ,
(A.20)

where C (in MWh) is the total electricity capacity/production generated by
coal, gas, and oil; Ci (in MWh) is the amount of power generated by fuel i;
Hi is the heat rate of fuel i expressed in units of fuel per MWh; and Fi,t is
the futures price at time t (in $ per units of fuel).

As a practical example, we analyze the energy risk exposure of an utility
operating in the Pennsylvania-Jersey-Maryland (PJM) Interconnection. We
first calculate the amounts of power Ci using the production capacity by
source of generation data observed in the PJM. In this market, 57 of 100
MWh are generated using some of the three fuels. In particular, coal, natural
gas, and oil are used to produce the 36%, 19%, and 2%, respectively, of
the total load. Then, we calculate the average operating heat rates for each
fuel by dividing the energy consumed for generation (in mmBtu) by the
MWh of generated power. To convert the heat rates in mmBtu to the fuel
units employed in the futures contract price, we apply the corresponding
conversion factors.2

In a second example, we analyze only a gas-fired power plant. In this case,
the total amount of electricity is generated by natural gas, and therefore,

2According to the data reported by the U.S. EIA, the average operating heat
rates for petroleum, coal, and natural gas are (in mmBtu/MWh): 11.02, 10.38, and
8.31, respectively. The conversion factors that we employ also come from the EIA,
and they are as follows: 1 barrel of oil = 5.8 mmBtu, and 1 U.S. ton of coal = 24
mmBtu. Natural gas is traded directly in mmBtu.
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we just have two energy commodities in the portfolio. That is, wgas,t =
(∓C · Hgas)Fgas,t and welec,t = (±C)Felec,t.

In both examples, these portfolios behave as “let-it-run” portfolios, be-
cause the quantities qi,0 are assumed to be fixed (capacity is assumed to
remain constant throughout the sample). The relative weight of a fuel
within the portfolio thus varies, due to changes in its futures prices. That
is, the initial value of the portfolios depends on the futures prices at the
initial observation and the generated capacity. For our sample, the initial
exposures, in dollars, of the utility portfolio are around US$2700 for the
fuels (oil, gas, and coal) and US$5016 for 57MWh of electricity. For the
gas-fired power plant, the exposures corresponding to a supply of 100MWh
of electricity are US$8300 and US$8800 for the natural gas and electricity
contracts, respectively.

Portfolios of financial players: Within this group, we first consider an equal-
ly weighted portfolio, built with the four energy commodities at hand, as a
simple, direct way to gain exposure to energy commodities. This portfolio
can represent investments in an energy index, as well as the behavior of the
energy commodities asset class. For this strategy, the portfolio weight in
dollars for energy futures i at time t = 0 is given by wi,0 = W0/4, where W0
is the initial wealth. If we keep weights constant and equal to 1/4 along the
life of the portfolio, such that wi,t = qi,tFi,t = Wt/4, we must rebalance the
positions in each commodity,

qi,t = Wt/(4Fi,t) =
4∑
j=1

wj,t−1Fj,t/(4Fi,t) . (A.21)

Therefore, an equally weighted portfolio with rebalancing implies the em-
bedded trading strategy of buying “losers” and selling “winners” at the end of
the day. This trading characteristic could be very attractive for investors, due
to the mean-reverting pattern of energy commodity prices. Furthermore,
the performance of the equally weighted portfolio approximates the average
return of the aggregate energy futures market.

In the second example, we consider the minimum variance portfolio
of an investor trading in energy markets. In general, investors (e.g., banks,
asset managers) maximize the expected returns of their portfolios, subject
to some risk constraint. When variance is an adequate measure of risk, this
problem is equivalent to solving the optimal mean-variance portfolio,

w∗t = arg min
wt

1/2 Var(∆Wt) s.t. IE(∆Wt) ≥ R .
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Across the entire spectrum of solutions, which depend on how much risk
the investor accepts to reach a higher expected return R, we focus on
the minimum variance solution. Thus, when we omit the expected return
constraint in the optimization problem, the solution is given by

w∗t = (H̄−1 ı4)/(ı′4H̄−1ı4) , (A.22)

where H̄ is the sample covariance matrix of the energy returns, and ı4 is a
4×1 vector of ones.

To measure the portfolio weights and the risk measures estimates in
dollars, we consider for both portfolios an initial investment of US$1000.

A.7 Generalized hyperbolic distributions

In this appendix, we present some details on the GH distribution functions
that we employ as conditional distributions of our dynamic multivariate
model for the vector of energy returns. The GH distributions are presented
in equation (3.10) as normal mean-variance mixtures, for which the mixture
random variable follows a generalized inverse Gaussian (GIG) distribution,
N−(λ, χ, ψ), with the following density function:

h(ω) = χ−λ(
√
χψ)λ

2Kλ(
√
χψ)

ωλ−1 exp
(
− (χω−1 + ψω)/2

)
, ω > 0 . (A.23)

Here, Kλ(y) is the modified Bessel function of the second kind, with order
λ ∈ IR, defined by the integral representation:

Kλ(y) = 1/2
∫ ∞

0
uλ−1 exp

(
− y(u+ u−1)/2

)
du .

The parameter domain of N−(λ, χ, ψ) satisfies that χ > 0, ψ > 0 if λ < 0;
χ > 0, ψ > 0 if λ = 0; and χ > 0, ψ > 0 if λ > 0. Then, according to
equation (3.10), the joint density function of a d-variate GH distribution is

g(x) =
∫

IR+

e(x−µ)Σ−1γ

det(Σ)1/2(2πw)d/2
exp

(
−Q(x)

2w − γ
′Σ−1γ

2/w
)
h(ω)dω , (A.24)

where Q(x) ≡ (x− µ)′Σ−1(x− µ).
We form several subclasses of GH distributions by evaluating this integral

for different boundary cases of the GIG density function h(ω). In the fol-
lowing, we detail the various cases of GH distributions used in this chapter.
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Normal inverse Gaussian (NIG) distribution: When λ = −1/2, and χ, ψ > 0,
the resulting mixing GIG distribution in (A.23) is known as inverse Gaus-
sian. Integrating in (A.24) and taking into account several properties of
the modified Bessel functions, namely, that K−λ(y) = Kλ(y) and K1/2(y) =
(π/2y)1/2 e−y, we obtain the density function of the multivariate NIG distri-
bution:

g(x) =C K(d+1)/2
(
(χ+Q(x))1/2(ψ + γ ′Σ−1γ)1/2

)
×
(
χ+Q(x)

)−(d+1)/4
e(x−µ)′Σ−1γ , (A.25)

where C is the normalizing constant

C = χ1/2(ψ + γ ′Σ−1γ)(d+1)/4

(2π)d/2det(Σ)1/2(π/2)
e
√
χψ .

If the random variable x follows a NIG distribution, then its mean and
covariance are given by

IE(x) = µ+
(
χ/ψ

)1/2
γ , and

Cov(x) =
(
χ/ψ

)1/2
Σ +

(
χ/ψ3)1/2γγ ′ .

Variance-gamma (VG) distribution: The VG distribution is obtained when
λ > 0 and χ = 0. In this case, the mixing random variable follows a gamma
distribution, with density function h(ω) = (ψ/2)λ ωλ−1 e−ψω/2/Γ (λ), where
Γ (·) is the gamma function (limiting case corresponding to χ→ 0 in (A.23)).
Integrating in (A.24) and taking into account that Kλ(y)' Γ (λ) 2λ−1y−λ

when y → 0+ and for λ > 0, we determine that the VG density function is

g(x) =C Kλ−d/2
(
(χ+Q(x))1/2(ψ + γ ′Σ−1γ)1/2

)
×
(
χ+Q(x)

)λ/2−d/4
e(x−µ)′Σ−1γ , (A.26)

where the constant C is

C = ψλ(ψ + γ ′Σ−1γ)d/4−λ/2

(2π)d/2det(Σ)1/2Γ (λ)2λ−1 .

The mean and covariance of a VG random variable x are

IE(x) = µ+
(
2λ/ψ

)
γ , and

Cov(x) =
(
2λ/ψ

)
Σ +

(
4λ/ψ2)γγ ′ .
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GH skewed t (skT) distribution: In this case, λ = −χ/2 and ψ = 0, and the
mixing random variable follows an inverse gamma distribution with density
function h(ω) = (χ/2)χ/2/Γ (χ/2) ω−(χ/2+1)e−ωχ/2, which is the limiting
case of density (A.23) when ψ → 0. If we integrate ω in (A.24) and apply
Kλ(y) ' Γ (−λ)2−λ−1yλ as y → 0+ for λ < 0, we obtain the skT density
function

g(x) =C K(χ+d)/2
(
(χ+Q(x))1/2(γ ′Σ−1γ)1/2

)
×
(
χ+Q(x)

)−(χ+d)/4
e(x−µ)′Σ−1γ , (A.27)

with constant C

C = χχ/2(γ ′Σ−1γ)(χ+d)/4

(2π)d/2det(Σ)1/2Γ (χ/2)2χ/2−1 .

The mean and covariance of a skT random variable x are

IE(x) = µ+
(
χ/(χ− 2)

)
γ , and

Cov(x) =
(
χ/(χ− 2)

)
Σ +

[
2χ2/((χ− 2)2(χ− 4))

]
γγ ′ .

The mean and variance of the skT distribution are finite only if χ > 2 and
χ > 4, respectively. For this distribution, χ corresponds to the degrees-of-
freedom parameter.

Student’s t (T) distribution: If the vector of asymmetry parameters γ tends
to zero, the mixture representation in equation (3.10) generates symmetric
GH distributions. In particular, when the mixing random variable follows
the inverse gamma distribution defined previously for the skT case (i.e.,
when ψ → 0, λ = −χ/2, and χ > 0), we obtain the multivariate Student’s t
(T) distribution with degrees of freedom χ. Then, the T density function is
given by

g(x) =
χ−d/2Γ

(
(χ+ d)/2

)
πd/2det(Σ)d/2Γ (χ/2)

(
1 +Q(x)/χ

)−(χ+d)/2
. (A.28)

For this symmetric T case, the mean and covariance are IE(x) = µ and
Cov(x) =

(
χ/(χ− 2)

)
Σ, and therefore, the covariance matrix is finite when

χ > 2.

Multivariate Gaussian (G) distribution: When γ = 0 and ω = 1, that is,
when the distribution is symmetric and the mixing variable is constant, we
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obtain in equation (A.24) the density function of the multivariate Gaussian
distribution,

g(x) = 1
(2π)d/2det(Σ)1/2 exp

(
− Q(x)

2
)
, (A.29)

with mean vector IE(x) = µ and covariance matrix Cov(x) = Σ.

A.8 Estimation methodology: QML and EM

We can split the total number of parameters in the model into two subsets.
The first subset ϑ consists of parameters related to the dynamic specifica-
tion of the model, which is defined in equations (3.5), (3.7), and (3.8).
That is, ϑ = (ϑ1, . . . ,ϑ4, δ1, δ

+
1 , δ2)′, where ϑi = (m0,i , Φ1,i , . . . , Φ5,i , α0,i,

α1,i, α
−
1,i, α2,i)′. Even if the true conditional distribution is not Gaussian,

the set of parameters ϑ can be consistently estimated by maximizing the
following Gaussian log-likelihood function:

logL1(ϑ|r1, . . . , rT ) = −T
2 log(det(Ht(ϑ)))− 1

2

T∑
t=1
εt(ϑ)′H−1

t (ϑ)εt(ϑ) ,

(A.30)
where the residual vector εt and the conditional covariance Ht are given by
equations (3.4) and (3.6). This method is known as quasi-maximum likeli-
hood (QML) estimation and yields consistent and asymptotically Gaussian
estimators ϑ̂ of the dynamics equations, which we use to forecast the h-period
mean and covariance. Because normality is not assumed, the standard errors
of the QML estimator ϑ̂ must be “robustified.”

In the second step, assuming we have obtained i.i.d. innovations x̂t
from the QML estimation, we proceed to estimate the subset of parame-
ters θ corresponding to the GH conditional distribution, such that θ =
(λ, χ, ψ,µ, vech(Σ),γ)′. Thus, we need to find the parameters θ that maxi-
mize the log-likelihood function:

logL2(θ|x1, . . . ,xT ) =
T∑
t=1

log g(xt ;θ) , (A.31)

where g(xt ;θ) is the density function of the GH distribution at hand, para-
metrized by θ. Due to the number of parameters and how they enter the
structure of the objective function, the direct maximization of the latter
log-likelihood function is not flexible. For that reason, using the normal
mixture representation of the GH distributions in equation (3.10) and for a
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given mixing of random variables (ω1, . . . , ωT ), we can divide logL2 into two
components:

log L̃2(θ|x1, . . . ,xT ;ω1, . . . , ωT ) =
T∑
t=1

log g(xt|ωt ;µ,Σ,γ)

+
T∑
t=1

log h(ωt ;λ, χ, ψ) , (A.32)

where h(ωt ;λ, χ, ψ) is the density function of ωt featured by the GIG param-
eters (λ, χ, ψ), and g(xt|ωt ;µ,Σ,γ) is the conditional density of xt given ωt
and parameterized by (µ,Σ,γ). The two terms can be maximized separately.
Furthermore, if we suppose that the mixing random variables (ω1, . . . , ωT )
are observable, then g(xt|ωt) is Gaussian.

However, we are not able to observe the random variables (ω1, . . . , ωT ) in
practice. To deal with this latency of (ω1, . . . , ωT ), we employ an estimation
procedure based on the so-called expectation-maximization (EM) algorithm
(see Protassov (2004)). The EM algorithm is an iterative method that consists
of two steps. In the first stage, or expectation step, the mixing variables are
replaced by an estimate, given the observed data and current parameter
estimates, and an expected log-likelihood function is calculated. Then, in
a second, maximization step, we maximize this log-likelihood function and
update the parameter estimates. We repeat these two steps, increasing the
log-likelihood value in each iteration, until the process converges to the
optimal parameter estimates.

Following Hu and Kercheval (2010) and McNeil, Frey, and Embrechts
(2005), we can detail the implementation of the EM procedure to the
particular problem of the estimation of our GH distributions:

1. Select the starting values for the the first guess (k = 1) of the set of
parameters, θ[k]. In this case, reasonable values for µ, Σ, and γ are
the sample mean of the innovations x̄, the sample covariance matrix
H̄ , and the zero vector, respectively.

2. Compute the conditional expectation of the log-likelihood in equation
(A.32), given the data x1, . . . ,xT and the parameters θ[k], such that

Q(θ;θ[k]) = IE[L̃2(θ;x1, . . . ,xT , ω1, . . . , ωT )|x1, . . . ,xT ;θ[k]]
= Q1(µ,Σ,γ;θ[k]) +Q2(λ, χ, ψ;θ[k]) .

For the first term Q1, we consider that the distribution of xt condi-
tioned on ωt is Gaussian. The second term Q2 refers to the condi-
tional expectation of the logarithm of the GIG density function in
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equation (A.23). To compute this second term, we must calculate
some conditional expectations of the functions of ωt that appear in
Q2. In particular, η[k]

t = IE[ωt|xt;θ[k]], δ[k]
t = IE[1/ωt|xt;θ[k]], and

ξ
[k]
t = IE[log(ωt)|xt;θ[k]].

3. Maximize the objective function Q(θ;θ[k]) with respect to the parame-
ters θ to obtain the updated estimates θ[k+1]. The optimized values for
µ,Σ, and γ can be derived analytically from the first order conditions
corresponding to the first term Q1, to obtain the next updates of the
estimates:

γ[k+1] =
1
T

∑T
t=1 δ

[k]
t (x̄− xt)

δ̄[k] η̄[k] − 1
;

µ[k+1] =
1
T

∑T
t=1 δ

[k]
t xt − γ[k+1]

δ̄[k] ; and

Σ[k+1] = |H̄|
1
d 1
T

T∑
t=1

δ
[k]
t (xt − µ[k+1])(xt − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1]′

∣∣∣ 1
T

T∑
t=1

δ
[k]
t (xt − µ[k+1])(xt − µ[k+1])′ − η̄[k]γ[k+1]γ[k+1]′

∣∣∣−1
d ;

where δ̄[k] = 1
T

∑T
t=1 δ

[k]
t , and the other average functions η̄[k] and ξ̄[k]

are defined in the same way. For the T distribution, we use a simplified
version, in which γ[k] = γ[k+1] = 0. To complete the calculation of
θ[k+1], we maximize with respect to λ, χ, and ψ the following function:

Q2(λ, χ, ψ ;θ[k]) = (λ− 1)T ξ̄[k] − 1
2T (χ δ̄[k] + ψ η̄[k])

+ 1
2Tλ log

(
ψ

χ

)
− T log(2Kλ(

√
χψ)).

This maximization can be implemented numerically.3

4. Calculate the increment in the log-likelihood function obtained from
the updated parameters θ[k+1]. The algorithm stops when the relative
increment of the log-likelihood is small enough; otherwise, we set the
counter from k to k + 1 and repeat the process from Step 2.

3For T and skT distributions, the optimization is simplified to the computation
of the degrees of freedom χ[k+1] by solving the equation −Ψ(χ2 ) + log(χ2 ) + 1 −
ξ̄[k] − δ̄[k] = 0 (see Hu and Kercheval (2010)), where Ψ(x) is the so-called digamma
function, defined as the derivative of the logarithm of the gamma function: Ψ(x) ≡
d(log(Γ (x)))/dx.
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Finally, we calculate the standard errors of the parameter estimates of
the GH distribution using a block bootstrap. We generate 500 bootstrap
samples to estimate the confidence intervals.

A.9 Backtests

In this appendix, we present the different backtest measures and method-
ologies that we apply to obtain the results in Tables 3.4, 3.5, and 3.6.

Christoffersen (1998) unconditional coverage LR test: The number of VaR
violations over the out-of-sample period (T + 1, . . . , T + L) is given by the
sum n̂(α, h) =

∑T+L
t=T+1 Ît(α, h). Therefore, the proportion of VaR violations

can be calculated as n̂(α, h)/L. If the proposed model is reasonable, the
indicator series Ît(α, h) should behave as realizations of a Bernoulli distribu-
tion with violation (success) probability α. To test the null hypothesis that
expected proportion of violations should be α, we consider the following
log-likelihood ratio (LR) statistic:

LR = 2 log
(
(nα/L)nα(1− nα/L)L−nα

)
− 2 log

(
(1− α)nααL−nα

)
, (A.33)

where nα ≡ n̂(α, h), and L is the number of observations in the validation
(out-of-sample) period. Under the null hypothesis, the LR statistic should
be asymptotically distributed as χ2(1).

Embrechts, Kaufmann, and Patie (2005) measures: As a first backtesting
measure of the ES forecast, we calculate the conditional average of the
difference between the observed losses and the estimated ES, D̂t(α, h), con-
ditioned on the VaR-violation indicator Ît(α, h). That is,

V1 =
T+L∑
t=T+1

D̂t(α, h)Ît(α, h)/n̂(α, h) . (A.34)

Therefore, a good estimation of the ES leads to a non-negative and low value
of the backtest measure V1.

McNeil and Frey (2000) test: We define the forecast violation residuals as

ŝt(α, h) = D̂t(α, h)/σ̂P, t+h , (A.35)

where D̂t(α, h) is the difference between actual losses and the ES forecast,
and σ̂P, t+h is the estimated volatility of the portfolio losses.
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The expected value of the difference process Dt(α, h), conditional on
the indicator variable It(α, h) (i.e., on a quantile violation), is zero, such
that IE(Dt(α, h)It(α, h)) = 0. Therefore, if we define the model for the
energy portfolio returns correctly, the residuals ŝt(α, h) in the event of a
VaR violation (Ît(α, h) = 1) should be i.i.d. distributed with mean zero.
We are more worried about the negative values of the differences Dt(α, h)
than about the positive ones though, so we test the null hypothesis of a
non-negative mean against the alternative of a mean less than zero. That
is, we check if the ES is systematically underestimated. For that purpose,
following McNeil and Frey (2000), we apply a one-sided bootstrap test that
makes no assumption about the violation residuals’ distribution.

A.10 Superior predictive ability test

The SPA test of Hansen (2005), based on the previous reality check of White
(2000), is designed to compare the performance of a set of forecasting
models. Let L(St, Ŝt) denote the loss of prediction Ŝt when the actual value
is St. The performance of model k at time t relative to a benchmark model,
denoted by k = 0, is given by

dk,t = L(St, Ŝ0,t)− L(St, Ŝk,t), (A.36)

where k = 1, . . .K, and t = T + 1, . . . , T +L, such that L is the length of the
time series of forecasts Ŝk,t. To check if any of the K models are better than
the benchmark model (k = 0), we formulate the testable hypothesis that
the benchmark is the best forecasting model in terms of the loss function
L(St, Ŝt). This hypothesis can be expressed as

H0 : IE(dk,t) 6 0, k = 1, . . . ,K . (A.37)

According to Hansen (2005), one way to test this hypothesis consists of
considering the test statistic:

T SPA = max
k=1,...K

L1/2 d̄k/ς̂
2
k , (A.38)

where d̄k = L−1∑T+L
t=T+1 dk,t, and ς̂2

k is a consistent estimator of the asymp-
totic variance ς2

k , such that ς̂2
k = V̂ar(L1/2 d̄k). That is, the test statistics T SPA

represents the largest t-statistic of relative performance.4

4The reality check of White (2000) employs the non-standardized test statistic
TRC = max

k=1,...,K
d̄k.
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It is convenient to use a bootstrap implementation of the SPA test that
does not require an explicit estimator of the variance ς2

k . For that purpose,
we employ the stationary bootstrap of Politis and Romano (1994).5 From the
B bootstrap resamples (d∗b,1, . . . ,d∗b,L), where d∗b,j ∈ IRK and b = 1, . . . , B,
we construct an estimate of the variance ς2

k and estimates of the distribution
of the statistic T SPA under the null hypothesis. Hansen (2005) proposes a
procedure to approximate the distribution of T SPA and derives consistent
estimates of the p-values for the SPA test pSPA. With this consistent p-value,
as reported in Table 3.6, the test asymptotically determines which models are
worse than the benchmark, preventing them from affecting the distribution
of the test statistics. The null hypothesis is rejected for small p-values.

A.11 Prices of Call Options on the Spread

To calculate European option prices using transform techniques we need
the Fourier transform of the payoff of the option and the characteristic
function (cf) of the process for the spread. We start from the result that for
a Lévy process L(t) and a deterministic function h(t)

E
[
eiξ
∫ T
t
h(u)dLu

]
= e

∫ T
t

Ψ(h(u)ξ)du , ξ = ξr + iξi and ξr, ξi ∈ R .

Hence, for a compound Poisson process with time-dependent intensity
λ(t) and h(u) = e−β(T−u)

E
[
eiξ
∫ T
t
h(u)JdNu

]
= e

∫ T
t

(ΨJ (e−β(T−u)ξ)−1)λ(u)du

where ΨJ(ξ) is the cf of the jump random variable J .

In the particular case where jump sizes are exponentially distributed the
cfs are

E
[
eiξJ

]
= η1
η1 − iξ

with ξi > −η1 and

E
[
eiξJ

]
= η2
η2 + iξ

with ξi < η2 .

Since we assume that the intensity parameters of the inhomogeneous
Poisson processes are either constant or piecewise constant, we must cal-
culate the integrals

∫ T
t ΨJ(e−β(T−u)ξ)du, over a time interval (t, T ], for the

5To choose the block length of the bootstrap resampling, we follow the proce-
dure presented by Patton, Politis, and White (2009).
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positive and negative jumps, respectively:

∫ T

t

( η1
η1 − iξe−β(T−u) − 1

)
du = 1

β
ln
( iξe−β(T−t) − η1

iξ − η1

)
,

and ∫ T

t

( η2
η2 + iξe−β(T−u) − 1

)
du = 1

β
ln
( iξe−β(T−t) + η2

iξ + η2

)
.

Thus, the cf of SA,B(T ), conditioned on information up until time t,
and assuming constant intensity parameters for the jump processes between
(t, T ], is given by

ΨA,B
S (ξ) = E[eiξS(T )] = eiξh(T )− 1

2 ξ
2
∫ T
t

e−2α(T−u)σ2(u)du

×
( iξe−β(T−t) − η1

iξ − η1

)λ+
β
(η2 + iξe−β(T−t)

η2 + iξ

)λ−
β

(A.39)

where h(T ) = f(T ) + X(t)e−α(T−t) + Y (t)e−β(T−t), −η1 < ξi < η2, and λ+

and λ− are the intensities of the Poisson arrival of positive and negative
jumps respectively.

Therefore, the price of European options on the spread SA,B(T ), with
expiry T and strike KA,B is given by an integral along a straight line in C
parallel to R, with −η2 < ξi < η1,

CA,B(S,∞, t;T,KA,B) = e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi
ΨS(−ξ)ΠA,B(ξ)dξ (A.40)

and ΠA,B(ξ) is the Fourier transform of the call option payoff:

ΠA,B(ξ) =
∫ ∞
−∞

eiξx max(x−KA,B, 0)dx = −eiξKA,B

ξ2 (A.41)

for ξi > 0. ΠB,A(ξ) is obtained in the same way.

Proof of equation (4.18). Let Y = SA,B(T ) and let f(y) the pdf of the
normal random variable Y and recall that µ(t, T ) and v2(t, T ) are as in
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(4.19). Then,

CA,B(SA,B,M, t;T,KA,B) = e−ρ(T−t)
[ ∫ ∞

KA,B
Y f(y)dy −KA,B

∫ ∞
β1

φ(x)dx

−
∫ ∞
M

Y f(y)dy −M
∫ ∞
β2

φ(x)dx
]

= e−ρ(T−t)
[ ∫ ∞

KA,B
Y f(y)dy −KA,BΦ(−β1)−∫ ∞

KA,B
Y f(y)dy −MΦ(−β2)

]
= e−ρ(T−t)

[(
µ(t, T )−KA,B + v(t,T )φ(β1)

1−Φ(β1)

)
Φ(−β1)

−
(
µ(t, T )−M + v(t,T )φ(β2)

1−Φ(β2)

)
Φ(−β2)

]
, (A.42)

where β1 = (KA,B − µ(t, T ))/v(t, T ) and β2 = (M − µ(t, T ))/v(t, T ).

Moreover, note that to evaluate the integrals that are of the form

∫ ∞
KA,B

yf(y)dy, (A.43)

in equation (A.42), where f(y) and F (Y ) are the pdf and cdf of the random
variable Y ∼ N(µ(t, T ), v2(t, T )), we use Bayes’ theorem to obtain

∫ ∞
KA,B

yf
(
y | y > KA,B)dy =

∫ ∞
KA,B

y
f(y)

(1− F (KA,B))dy

=µ(t, T ) + v(t, T )
φ
(
KA,B−µ(t,T )

v(t,T )

)
1− Φ

(
KA,B−µ(t,T )

v(t,T )

) ,
and for the last equality we use the fact that for a constant K

E[Y | K < Y ] = µ(t, T ) + v(t, T )
φ
(
K−µ(t,T )
v(t,T )

)
1− Φ

(
K−µ(t,T )
v(t,T )

) (A.44)

and

E[Y | Y < K] = µ(t, T )− v(t, T )
φ
(
K−µ(t,T )
v(t,T )

)
Φ
(
K−µ(t,T )
v(t,T )

) . (A.45)
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Therefore, the truncated integral∫ ∞
KA,B

yf (y) dy =µ(t, T )
(
1− Φ

(
KA,B−µ(t,T )

v(t,T )

))

+ v(t, T )
φ
(
KA,B−µ(t,T )

v(t,T )

)
1− Φ

(
KA,B−µ(t,T )

v(t,T )

)(1− Φ
(
KA,B−µ(t,T )

v(t,T )

)
).
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