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Abstract 

Data heterogeneity appears when the sample comes from at least two different populations. We 

analyze three types of situations. The first and simplest case corresponds to the situation in 

which the majority of the data comes form a central model and a few isolated observations 

comes from a contaminating distribution. Then the data from the contaminating distribution are 

called outliers and they have been studied in depth in the statistical literature. The second case 

corresponds to the situation in which we still have a central model but the heterogeneous data 

may appears in clusters of outliers which mask each other. This is the multiple outlier problem 

which is much more difficult to handle and it has understood and analyzed in the last few years. 

The few Bayesian contributions to this problem are presented. The third case corresponds to the 

situation in which we do not have a central model but instead different groups of data have been 

generated by different models. When the data is multivariate normal, this problem has been 

analyzed by mixture models under the name of cluster analysis but a challenging area of 

research is to develop a general methodology to apply this multiple model approach to other 

statistical problems. Heterogeneity implies in general an increase in the uncertainty of 

predictions, and in this paper a procedure to measure this effect is proposed. 
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1. INTRODUCTION 

Since the beginning of data analysis it was found that real data is often contaminated by hetero­

geneous observations or outliers. Outliers have been found even in small set of data coming from 

controlled experiments (see for instance Stigler, 1973, 1986). It is well known that the presence 

of a few extreme outliers can distort completely the result of the statistical analysis and make 

the Bayesian inference very inefficient. In spite of the seminal paper by Box and Tiao (1968), the 

study of outliers has not attracted many interest in the Bayesian literature. For instance in the 

1997 Current index of statistics (CIS) out of 1151 references leading with outliers only 67 (5.8 %) 

either use Bayesian methods or refer to them. 

In the last ten years in which large data sets are becoming more common due to the increasing 

computer power available, it has been found that outliers appear often in clusters, and then the 

methods derived to deal with a few isolated outliers are unable to detect them. This problem is 

called masking and again it has been mainly studied from the frequentist approach. For instance, 

going again to the 1997 CIS, out of the 22 papers leading with masking only two use the Bayesian 

approach. 

Today many data sets are huge and heterogeneous: the computer has made possible to take 

measurements of many variables with almost no cost at short intervals in an automatic way. For 

instance, we find data sets of thousands of variables and millions of observations in astronomy 

(see Fayyad et al., 1996 for a description of some of these huge data set), quality control (in many 

chemical processes data is recorded every second or ten seconds of many production variables), 

finance (the stock transactions are collected at each pulse), business (all the purchases made in 

some period of time by millions of credit car users), and so on. These huge data sets creates new 

problems for statistical analysis, because none of the usual textbook hypothesis are expected to 

be true. We expect clustering of outliers and masking, nonstationarity, dependent observations, 

selection bias and errors in variables, as well as other measurement problems (see Hand, 1998 for 

an excellent description of these problems). A consequence of this is that different models are 

supposed to hold in different regions of the parameter space and also at each point we have several 

different models which can generate the data. The Bayesian paradigm is a flexible tool in order to 

model this type of situations although it may require some adjustment in order to represent some 

of the complicated and messy data set which we will be dealing with in the next future. 

An important consequence of heterogeneity is model uncertainty. If the observations in the 

sample can be generated by different models, this will increase the uncertainty of the forecast of a 

future observation. To be specific, suppose that we assume that future data can be generated by 

a set of models M 1 , ••. , Mm with probabilities WI, ... , Wm. Then the forecast of a new observation 
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will be given by 

and the variability in the mixture distribution p(y) will be in general larger than the variability of a 

central single distribution p(y / M), which is usually considered in standard statistical applications. 

In this work we review the Bayesian contributions to deal with heterogeneity in the linear 

regression model. Bernardo and Smith (1994) and O'Hagan (1994) are general references and 

good introductions to this problem. The paper is organized as follows. In section 2 we review 

briefly the methods developed for dealing with isolated outliers in linear models; in section 3 we 

discuss masking in regression and in section 4 we introduce the general heterogeneity problem and 

its relationship to Bayesian clustering. Finally, in section 5 we comment on the implication of 

heterogeneity in increasing model uncertainty for forecasting, and a statistic to measure this effect 

is suggested. 

2. SINGLE OUTLIERS AND INFLUENTIAL DATA 

We consider the usual regression model 

i = 1, ... ,n, (2.1) 

where Y = (Yl, ... , Yn)' is a vector of responses, X = (Xl, ... , xn)' is a full rank n x p matrix of 

independent variables, f3 is a p-vector of unknown parameters and u is a vector of non observable 

random perturbations. 

The Bayesian methods for outlier and influential data identification can be classified into two 

groups: i) diagnostic methods; and ii) robust methods. These two approaches differ in the way 

they assume that the data have been generated. The diagnostic methods consider a central model 

and try to find observations which have a small probability of being generated by it. They do not 

establish the mechanism which generates outliers. The robust methods incorporates an alternative 

model which can generate aberrant observations; for instance in regression the usual assumed 

hypothesis of normality is changed to the assumption of a heavy tail error distribution. 

2.1. Diagnostic methods 

The diagnostic methods assume a central model for data generation and outliers are considered 

as observation with small probability of being generated by this central model. Therefore they 
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are identified by looking at the predictive densities P(Yi I Y(i»' where Y(i) means that the data 

point Yi is deleted from the sample and analyzed as a new observation. If Yi is a single outlier, 

the probability to predict Yi given the rest of the sample is very low. This procedure for outlier 

detection is known as the ordinate of the conditional predictive density method, and was introduced 

by Geisser (1980). 

The conditional predictive density can be seen as the ratio of two predictive densities, 

p(y) 
p(Yi I Y(i») = -(-)' 

P Y(i) 

and involves the predictive distribution p(y) that was suggested by Box (1980) as a general diag­

nostic tool for any statistical model. This idea has been also explored by Pet tit and Smith (1985) 

and Pettit (1990). 

The conditional predictive ordinate is connected with the classical studentized residual test for 

outlier detection. With non informative priors, Pet tit (1990) shows that 

~ 

p(Yi I Y(i» = c s~)(1- hi)1/2(1 + n -;-1)'- 2 (2.2) 

where ti is the studentized residual 

t. _ Yi - x~/3 
t - S(i) (1 - hi)1/2' 

(2.3) 

/3 = (X'X)-l X'y is the least square estimate, S~i) = E(Yj - xj/3(i»)/(n - P - 1) is the unbiased 

residual variance estimate when Yi is deleted, and hi is the leverage of the observation, that is, 

the i - th diagonal element of the matrix H = X(X'X)-l X', given by hi = x~(X'X)-lXi' 

Then data with large studentized residual have a small conditional predictive ordinate (2.2) and 

will be detected as outliers. An advantage of the conditional predictive ordinate method is that 

observations with high leverage (hi is bounded by 1) will have small conditional predictive ordinate 

(2.2), independently that they are outliers or not. This is deduced from the studentized residual 

expression 

t
. _ (1 - hi )1/2ei(i) 
t - , 

Si 

where ei(i) = Yi - x~/3(i) is the least square residual after deleting Yi in the regression estimation. 

When hi goes to 1, the studentized residual goes to zero, independently that the i - th data is 

an outlier (ei(i) is large) or a good data (ei(i) is small). In this case, the i - th data point is very 

far from the rest in the independent variables space, and it is call an influential data. Note that 

the Bayesian measure is able to detect both outliers and influential points whereas the studentized 

residual will be unable to detect high leverage outliers. 
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The Bayesian approach for the identification of influential points is to measure the change of 

a relevant distribution when the point under consideration is deleted. Johnson and Geisser (1983, 

1985) and Geisser (1985) proposed the Kullback-Leibler divergence (Kullback and Leibler, 1951) to 

measure the distance between the predictive distribution when deleting one data, P(Y(i»), and the 

predictive with all the sample, p(y), and proved that their measure is asymptotically equivalent 

to the sum of the Cook's statistic (Cook, 1977) and a convex function of the studentized residuals. 

The relationship between Cook's statistics and the studentized residual (2.3) is given by the formula 

Then it is easy to see, that the Cook's statistic will be large for influential outliers and small 

for good data. Another approach is proposed by Pettit and Smith (1985) and by Guttman and 

Peiia (1988, 1993). These late authors proposed to compare by the Kullback-Leibler divergence the 

posterior parameter distributions, with and without the observations. They proved that changes 

in the posterior distribution of f3 are also function of the Cook's statistic, as it is derived from the 

expression of the Kullback-Leibler divergence 

where pD(i) = (13 - j3(i»)'X(i)X(i)(13 - j3(i»)/S~i). These authors also proved that changes in the 

posterior distribution of (J'2 can be interpreted as an outlier measure depending on the studentized 

residuals ti and the standardized residuals Ti. Finally, the changes in the joint posterior distribution 

of the two parameters are combinations of the influence measures on the posterior distribution of 

f3 and of the outlier measure. Giron, Martfnez and Morcillo (1992) proposed to consider an 

observation as influential when it does not belong to the highest predictive density region p(y I 
Y(i»)' and estimation influential with respect to a set of parameters when it does not belong 

to the highest posterior distribution region. They applied these ideas to regression models and 

showed the relationship of the proposed procedure with the Kalman Filter. Kass, Tierney and 

Kadane (1989) also suggested some influence measures based on deleting one observation. They 

use asymptotic methods to study the changes in some functions of interest. Using Decision Theory 

ideas Kempthorne (1986) and Carlin and Polson (1991) analyzed changes in the Bayes risk to 

identify influential points. 

Note that all the proposals mentioned for the single outlier and influential data identification 

can be easily extended to the problem of group identification, but they require that the number 

and the position of the outliers are known. 
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2.2. Robust methods 

The robust methods propose a model for the generation of all the data, including possible outliers. 

Then the estimation is carried out using all the sample, but the model used reduces the weight of 

the outliers in the estimation. There are two ways to obtain this effect. The first one is to assume 

a heavy tail distribution. The second to assume a mixture of distributions: a central one which 

generates the good points and an alternative one which is responsible for the outliers. In practice 

both are similar because the justification of using a heavy tail distribution is that the central model 

is contaminated but an unspecified distribution with heavy tails and this property is transmitted 

to the final mixture distribution. 

Several heavy tail distribution have been suggested for regression problems. Box and Tiao (1973) 

proposed the power exponential family. West (1984) suggested to use heavy tail distributions that 

can be decomposed in a mixture of normal with different scales. It includes some well known 

families like the Student-t, the stables, the logistic and the double exponential. An advantage 

of this family is that it is possible to study the posterior parameter distributions by exploring 

some properties of the errors, which is not always the case with general heavy tail distributions. 

Fernandez and Steel (1998) have proposed skewed student distributions which can also used for 

this purpose. 

The second way is to accept the normality assumption for most of the data and assume an 

alternative distribution for the outliers. Then the lack of homogeneity in the sample is modeled 

with a mixture of distributions. In this model, it is assumed that the data may come from a 

central distribution with high probability, (1- a), and from a contaminated distribution with low 

probability, a. Two main outlier identification tools are used: 1) the posterior distribution for 

each point coming from the alternative distribution, given a particular generation mechanism for 

the rest of the sample; and 2) the Bayes factor to compare predictive distributions with different 

models. The cases more studied are those introduced by Tukey (1960) of mixtures of normals for 

the error distribution. The first one is the normal scale contamination model, Box and Tiao (1968) 

(Se model), where the data follow a model with error distributions 

i = 1, ... ,no 

The second one is the normal level-shift model, by Guttman (1973) and Abraham and Box (1978) 

(LS model), where the error distributions are 

i = 1, ... ,no 

The third is the additive model with m outliers, by Guttman, Dutter and Freeman (1978) (AD 

model). It supposes that there are m outliers in the sample (m is fixed by analyzing the model for 
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rn = 0,1, ... ) and the error distributions are Uij ,...., N()..j,0-2 ), for j = 1, ... , rn, and 

Uij ,...., N(0,0-2 ), otherwise. These models can be combined and, for instance, Eddy (1980) has 

proposed a combination of the Box and Tiao (1968) and Abraham and Box (1978) models. 

In general, these proposals assume that the regression model is written as 

where h is the central model and h is a contaminating one. If we assume that a is known, 

the ML estimation of this model can be carried out by the EM algorithm, as shown by Aitkin 

and Thnnicliffe-Wilson (1980). The EM algorithm can be seen as introducing a set of unobserved 

classification variables ~ = (Ob ... , On)', defined as Oi = 1 when Yi is generated by the alternative 

distribution, and Oi = 0 otherwise. Then we substitute these variables for their expectations and 

estimate the parameters given the values of these variables. 

In the Bayesian approach we want to compute the posterior distribution of the parameters 

given the data. This is also simplified if we introduce the classification variables and compute 

the posterior distribution p({3, 0-2 , ~ I y). The data Yi will be called an outlier when the marginal 

probability Pi = p(Oi = 1 I y) is greater than 0.5. Thus, a is the prior probability that any 

observation is an outlier. Calling A(r) to the event "r particular Oi variables are equal to one and 

the remaining n - r are zero" , the posterior distribution of (3 is 

p({31 y) = L:p(A(r) I y) p({31 A(r), y), 
r 

where the weights p(A(r) I y) are the posterior probabilities of all the possible configurations A(r). 

With the usual reference priors for (3 and 0-2 , p({3, 0-2)c:x0--2 , and assuming that k and a in the SC 

model or a and ).. in the LS model, are known, these probabilities can be found in Freeman (1980). 

Eddy (1980) indicated that the mean of the distribution of p({31 A(r), y) in the three models can 

be seen as weighted least square estimates. 

To identify the outliers we can use the weights p(A(r) I y). In the particular case of a single 

outlier in the sample, the probabilities are 

(2.4) 

where Ai(r) means that Oi is equal to one, that is, Yi is one of the r contaminated data. The values 

of v and w depend on the model: v = n - p and w = a/k(l- a) for the SC model, v = n - p-1 

and w = a/(l - a) for the LS model, and v = n - p - 1 and w = 1 for the AD model. In the 

general case the probability of an observation to be an outliers is given by Pi = Lrp(Ai(r) I y). 

This probability requires to compute the probabilities for all the 2n possible combinations. We 
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will see in the next subsection an alternative and feasible way to compute these probabilities by 

using MCMC methods. 

The second method to identify outliers is to use Bayes factors. With the Bayes factor, and 

applying the Jeffreys rule (Jeffreys, 1961), it is possible to compare the predictive distribution for 

a model with only one outlier with the predictive distribution for an outlier free model. In this 

case the Bayes factor can be expressed as 

F (.)_p(yIA i (1» 
10 Z - p(y I A(O» . 

Pettit (1992) extended the use of the Bayes factor to improper prior distributions by using the 

Spiegelhalter and Smith (1982) method of finding imaginary observations subsets of minimum size. 

Peiia and Guttman (1993) compared these approaches and showed that the posterior probability 

of a particular set of data to be outlier with the LS or AD model is inversely proportional to the 

ordinate of the predictive density, so that both approaches can be considered as equivalent. 

2.3. Outlier detection with Gibbs Sampling 

Bayesian analysis of outlier problems using the Gibbs sampler was initialized by Verdinelli and 

Wasserman (1991) for LLd. data. Their procedure was generalized by Justel and Peiia (1996a) to 

the case of outliers in regression models. They considered the Box and Tiao (1968) model with the 

reference priors mentioned before, but assume that the contamination parameter a is unknown and 

use a Beta( /1, /2) as prior distribution for this parameter. Gibbs sampling avoids the 2n necessary 

computations to obtain the marginal posterior probabilities Pi. 

The application of the Gibbs sampling (see Gelfand and Smith, 1990) is carried out by aug­

menting the parameter vector with a set oflatent (unobserved) classification variables (151 , ... ,c5n ). 

Then the objective ofthe procedure is to obtain samples from the joint posterior p(f3, 0, a 2 , a I y). 

Starting from an arbitrary vector of initial values, the Gibbs sampler provides a sample of the 

posterior distribution for all the parameters in the model. It means that when the algorithm con­

verges we will have a sample to be used for the computation of an estimate of p(c5i = 1 I y), for 

i = 1, ... , n. The basic requirement for the Gibbs sampler is to be able to draw samples from 

all the conditional parameter distributions, conditional to the sample and to the other parame­

ters. Justel and Peiia (1996a) computed all the necessary conditionals and showed that generation 

from these distributions is very easy by using random number generators, as the ones described in 

Devroye (1986) or Ripley (1987). 

The full conditional distributions are: 
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i) The conditional distribution of the vector f3 is Np (i3, a2 (X'V-1 X)-l) , where 

i3 = (X'y-1 X)-l X'y-1 y and Y is a diagonal matrix with elements Vii = 1 + bi(k2 - 1). 

ii) The conditional distribution of a2 is Inverted - Gamma (n/2, 2::ui2 /2), where ut = (Yi­

xi(3)/(1 + bi(k - 1)). 

Hi) The conditional distribution of a is Beta ('11 + 2:: bi ,)'2 + n - 2:: bi). 

iv) The conditional probability of bi = 1 is 

P(bi = 11 y,{3,a2 ,a) = (1 + (1: a) FlO(i)) -1, 

where FlO = k· exp (-uU2</J-1a2) is the Bayes factor and </J = 1- k-2. 

(2.5) 

Note that the conditional probability that observation ith is an outlier depends only on the 

standardized residual uUa2. If the residual is small, FlO(i) will be large and the probability (2.5) 

will be small. The opposite occurs when u~ / a 2 is large. 

Although the Gibbs sampler allows for easy computations of the marginal probabilities for each 

data to be an outlier, Justel and Peiia (1996a) showed in several examples that Gibbs sampling 

fails for outlier detection in some data sets with multiple outliers. This case will be discussed in 

the next section. 

3. MULTIPLE OUTLIERS 

The formulas (2.2) and (2.4) can be easily used for single outlier detection, as well as generalized for 

checking the presence of a particular group of outliers (Le., see Peiia and Guttman, 1993). However, 

the most relevant problem is when the number and the position of the outliers are unknown, as it 

is the usual case with real data. In this case, two ideas may be considered: (1) to detect multiple 

outliers one by one, using single outlier detection procedures; and (2) to identify multiple outliers 

by computing all the probabilities for the possible outlier groups. 

These two possibilities present serious problems in some particular, but not unusual, situations. 

In one hand, the deleting one by one observation procedures with multiple outliers can be subject 

to masking. Masking occurs when one outlier observation is not detected because of the presence 

of other outliers. Also, one good point can be wrongly identified as outlier due to the effect of the 

outliers, and this is called the swamping problem. The masking appears when there are several 

very similar outliers, which are also high leverage data. In this case, the studentized residuals tend 

to be small when they are not all deleted at the same time. Moreover, when the size of the outlier 

group is large the leverages of these data tend to be small, although they are very far away. Then 

the conditional predictive ordinate is large and outliers are not identified. Peiia and Yohai (1995) 
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proved this fact in the limit case of a group I of nr outliers, (Ya, :z:~), where ha = :z:~(X~r)X(r))1 :z:~. 

Then the residuals are 
Ya - :z:~j3(I) 

ea = . 
1 + nr ha 

If ha is large, the residuals are small and they do not change if only one data is deleted (nr is 

substituted by nr -1). The leverages for all the data in the group I are hal{l + nrha), that tend 

to be small when nr increases. 

On the other hand, the generalization of (2.4) for a particular group of outliers may avoid 

the masking, but they involve the extensive computations of the 2n posterior probabilities which 

correspond to all the possible configurations for the generation of the data. 

Some proposals have been suggested to solve the masking problem from a Classical point of 

view, as the LMS of Rousseeuw (1984), or the methods of Rousseeuw and Zomeren (1990), Hadi 

and Simonoff (1993), Atkinson (1994), and Peiia and Yohai (1995, 1998). However, the masking 

problem has received very few attention in the Bayesian literature. We only have found the works 

of Peiia and Tiao (1992) and Justel and Peiia (1996b). 

3.1. Bayesian robustness curves 

Peiia and Tiao (1992) proposed a method based on stratified sampling to reduce the heavy com­

putations on the multiple outlier detection problem. They suggested two new diagnostic tools: the 

Bayesian robustness curves BROC and SEBROC. Using the SC model, these curves compare the 

model with h outHers (Mh) with the outlier free model (Mo). The BROC is defined as the ratio 

of the posterior probabilities of model Mh and Mo, for different values of the number of outliers 

h, that is 
P(Mh I y) n a 

( ) ( )

h 

PhD = P(Mo I y) = h 1- a Ph,O, 

where the Bayes factor is 

(3.1) 

The sum in (3.1) is over the (~) possible configurations of h outliers and n - h good data, and s~r) 

is a residual sum of squares given in Box and Tiao (1968). The BROC curve provides information 

about the number of outliers, however it is not able to identify masked outHers. The alternative 

in these cases is to use the Sequential Bayesian Robustness Curve (SEBROC) that is, for each h, 

the ratio 
PhD 

Sh,h-l =~. 
rh-I,D 
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The key point of the proposal in Peiia and Tiao (1992) is to use stratified sampling ideas to 

reduce the (~) computations for Ph,o, or the (h~l) + (~) for Sh,h-lt without loss of efficiency. The 

method consists on: 

1. If the i - th observation is an outlier, all the elements 

de .) = p{Ai,j(2) I y) _ p{Ai{l) I y) p{Aj {l) I y) 
t,J p{A{O) I y) p{A{O) I y) p{A{O) I y) 

will take high values. Divide the sample in two parts, one of size nl that holds the potential 

outliers and another of size n - nl that holds the possible good data. 

2. Using that 

compute the (~) combinations in which h of the n data are deleted by computing all the 

combinations on the group of size nI, but only a small sample on the group of size n - nl' For 

instance, if nl = 10, n2 = 20 and h = 3, compute the (\0) combinations in which three data 

are deleted from the nI, the C20) combinations in which two data are deleted from the nl 

and one randomly selected from the n2 , the e~) combinations in which one data is deleted 

from the nl combined with a random sample of the e20) combinations of good data, and one 

small random sample of the e~) possibilities of deleting good data. 

3.2. Adaptive Gibbs Sampling 

The proposal of Justel and Peiia (1996b) is based on an adaptive Gibbs sampling algorithm 

(AGSA). When the outliers are isolated the Gibbs sampler works very well, however in strong 

masking cases the algorithm fails and outliers may not be detected when the convergence seems to 

be reached. A key factor to explain the lack of convergence in these cases seems to be the effect of 

the leverage in the estimation of linear regression models. When high leverage outliers which cause 

masking are classified as good data in the initial vector 6(0), the probabilities that these points are 

identified as outliers depend on the initial residuals u~O) = Yi - x~,a(O), where ,a(0) is the mean of 

the conditional distribution given 6(0). For large k, the residuals u~O) will be small if the lever ages 

are high, and these decrease with the number of outliers. Therefore, for high leverage outliers the 

residuals u~O) will be close to zero and the probabilities (2.5) will also be close to zero. On the 

other hand, when the masked outliers are not classified as good data in the initial vector 6(0), the 

out-of-sample residuals u~O) will be large and the probability (2.5) will be close to one. Therefore, 

the set of outliers will be detected in the next iteration only when all of them are classified as such 

in the drawing from the conditional distribution (2.5). 
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The solution to this problem begins with the correct initial classification of the group of masked 

outliers. Justel and Peiia (1996b) proposed to compute the posterior probabilities of each observa­

tion being an outlier with the AGSA. The idea is to use the Gibbs sampler to find an outlier free 

subset. Then to split the sample and adapt the initial conditions to incorporate this information 

about possible outliers. When running the Gibbs sampling with these initial conditions it converges 

very quick to the posterior distributions. The splitting mechanism is based on the eigenstructure 

of the 8's covariance matrix estimated with the Gibbs sampler output. This matrix exploits the 

dependency structure among the observations generated by masking. The eigenvectors associated 

to the non zero eigenvalues provide information about which data are outlier candidates. The 

result is an adaptive method divided in three stages: 

i) Standard Gibbs sampler: The Gibbs sampling is initialized by classifying a few data as good 

observations. Then the algorithm is run until the outlier probability series are stable. 

ii) Outlier free subset identification: The covariance matrix of the classification variables is es­

timated with the Gibbs output from the first stage. The outlier free subset contains the 

observations with non null coefficients on the eigenvectors associated to the non zero eigen­

values and the observations with high marginal probability. 

iii) Estimation: The Gibbs sampling is initialized by classifying as good the data in the outlier 

free subset. Then the algorithm is run until the outlier probability series are stable and all 

the posterior distributions are estimated with the Gibbs sampling output. 

The procedure can be used automatically and includes: (1) a criterion for initial conditions 

selection without any prior information; and (2) a method to be used for grouping data based on 

the covariance matrix. Its application to some of the most frequently used examples in multiple 

outlier detection shows that it is able to unmask outliers in samples where other methods fail. 

4. THE GENERAL CASE 

The general heterogeneity case corresponds to a situation in which each point can be generated by 

a different model. To be specific, suppose that we have a set of models M1, ... , Mm such that M j 

implies that F(y I x) is N(J3jx, a;), that is, the data come from different regression models with 

different regression parameters and error variances. Associated with each of these models are prior 

probabilities Wj, where :EWj = 1. When we know which model generates each observation, and 

we assume the prior covariances between coefficients of different equations are zero, we have the 

seemingly unrelated regression of Zellner (1971). When the prior covariance matrix is not block 

diagonal, then we have the shrinkage estimates by Lindley and Smith (1972). 

Model heterogeneity may seem to be related to the problem of model selection, where we have 
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a set (Ml' M2, ... , Mm) of possible models and we want to select the one which is more compatible 

with the data. The problem has a straightforward solution achieved by computing the posterior 

probabilities 
p(Mi I D) = p(D I Mi)p(Mi) 

2::p(D I Mi)p(Mi) 

where D is the sample data. The specification of p(Mi) requires that we have a partition of the 

model space, that is the models must be incompatible, and in model selection this is not the case 

in general. This is obvious when some models are nested, as when selecting between a linear or a 

quadratic regression. In general, the alternative non nested models that we are considering have 

some degree of overlapping, because they have been chosen to explain the same data set. However, 

the problem of overlapping models does not appear in the heterogeneity case in which we do not 

intend to select a model, rather we assume that we have several models and the problem is to 

identify the observations generated from each model and to use this information for estimation 

and forecasting. 

A particular case of model heterogeneity is the one in which the response y is a r-dimensional 

vector, we do not have explanatory variables in the model, and the distributions F are known or 

are known up to a parameter vector 9. This is the standard clustering problem. The application 

of mixture models to clustering has a long tradition. See Binder (1978), Titterington et al. (1985), 

McLachlan and Basford (1998), Bernardo and Giron (1988, 1989), Lavine and West (1992) and 

Bernardo (1994). In the standard application of cluster analysis the number of components in the 

mixture, m, is assumed known. Then the model can be estimated by MCMC by introducing latent 

(unobserved) variables bj (1 :s j :s n) which indicate the label of the group from which observation 

j is drawn. Of course, a priori 

p(bj = i) = Wi, for i = 1, ... ,m. 

This model has been studied by Diebolt and Robert (1994) who proposed a data augmentation 

algorithm to carry out the estimation and proved that it converges geometrically. They also study 

the convergence of Gibbs sampling. 

In practice the number of components in the mixture is unknown. Then we have four possible 

approaches. The first one estimates m by a Schwarz criterion (Raftery, 1996). The second one use 

a Kullblack-Leibler estimate (Mengersen and Robert, 1996). The third one (Nobile, 1994) assumes 

a prior distribution for m , evaluates the likelihood of the data under each mixture model p(y I m) 

and then uses Bayes Theorem to compute the posterior p(m I y). Finally, the fourth and more 

direct approach is to assume that the value of m is unknown and so it is included as an additional 

parameter to be estimated: we have a problem of Bayesian analysis of mixtures with an unknown 

number of components. A problem recently analyzed by Richardson and Green (1997). These 
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authors proposed a model in which the joint distribution of all the variables of interest is given by 

p(m,cS,w,O,y) =p(m}p(w I m)p(cSl w,m}p(O I m)p(y I cS,O), 

which is similar to the model considered by Binder (1978). Briefly, we have a hierarchical model in 

which first we specify the number of components, m, then the probability of each component, w, 

then we decide how many observations we take from each component by specifying the values of 

the latent variables, cS, then we fix the values of the parameters, 0, given the model m and finally 

we set the values of the sample given the model from which they are generated. 

The authors apply this model to univariate normal mixtures. The prior distribution for the 

number of components is assumed to be uniform between 1 and a given value mmax. The prior 

probabilities for wand the parameters 0 = (/-L, 0-) are the usual ones: for w a Dirichlet distribution, 

for the mean a normal prior and an inverted gamma for the variance. 

The estimation of this model is carried out by a reversible jump MCMC, (Green, 1995) which 

is a Metropolis-Hasting algorithm in which, in addition to the usual Gibbs sampling updating of 

the parameters o,w,O, two further moves are introduced. 

(1) Splitting one mixture component into two, or merging two mixture components into one; 

(2) The birth or death of an empty component. 

At each step a random choice is made between attempting to split or combine. This is done 

with equal probabilities unless we have just one group (then we always split) or we have reached 

the maximum number of groups (then we always combine). The combining is carried out by 

choosing at random two adjacent groups in terms of the current value of their means and merging 

the observations of both groups into a new group. Splitting is made by random selection of a 

group and splitting it into two, also at random. The decision between birth and death is also taken 

randomly with equal probabilities and either a new group is created by sampling the parameters 

from the prior distribution or it is deleted. 

The application of this scheme to the regression case present several problems. First, as in 

the normal mean case there is an identification problem because the whole model is invariant to 

permutation of the level of the groups. In the univariate case this is solved by using an increasing 

order for the means, but in the regression case it is not obvious how to define a clear ordering for 

the vectors of regression parameters i3i , j = 1, ... , m. Second, the splitting and merging of the 

groups use the natural adjacent idea in the univariate case but there is not a clear way to extend 

this approach to the vector case in regression. Third we wonder if the same type of problems 

of convergence for the Gibbs Sampling that we have found in the multiple outlier case can again 

appears here. In the univariate case the possibility of strong making for the leverage effect of some 
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observations does not appear, but in the regression set up the algorithm may fail for the same 

reasons shown in Justel and Peiia (1996a). Further research is needed to discover if the reversible 

jump MC MC algorithm can be used with success in regression problems. 

5. HETEROGENEITY AND MODEL UNCERTAINTY 

Model heterogeneity implies that if we want to forecast the value of a future observation y and: (1) 

we know that it can be generated by a set of models Ml, ... , Mm with probabilities Wl, ... , Wm , (2) 

we do not know which one will be the correct model, then we have to use the marginal predictive 

density given by 

where D stands for data. In standard statistical applications either we have a central model or 

a model is selected from the sample. Let us call Mo to this central model and p(y I Mo, D) 

to the predictive distribution derived from it. Using p(y I Mo, D) instead of p(y I D) will in 

general underestimate the uncertainty in the forecast. We define the increase in uncertainty due 

to model heterogeneity by the Kullblack-Leibler distance between the distributions p(y I D) and 

p(y I Mo,D) 

J p(y I D,Mo) 
U = In p(y I D) p(y I D, Mo)dy 

This measure is positive if both distribution are different and will be equal to zero if they are 

equal. For instance, let us consider the simplest case of isolated outliers in the Box and Tiao 

(1968) regression model. Then if we want to forecast the value of a new response variable, y, given 

the values of the explanatory variables x, the predictive distribution p(y I D, Mo) is a Student t 

distribution with mean mo and variance Vo. The distribution p(y I D) will be a mixture of two 

Student t distributions with the same mean, mo, variances Vo and Vl = v Ok2 and mixing proportions 

(1 - a), and a. In order to compute the KL distance we can approximate these distributions by 

normals with the same mean and variance to obtain 

where V2 is the variance of the mixture distribution p(y I D). Note that as both distributions have 

the same mean, the KL distance is just the average of the two measures of the relative change in 

the variances, log(v2/vo) and (vo - V2)/V2. Using that in this model V2 = vo(1 + a(k2 - 1)) we 

obtain that 
1 

U = 2log(1 + a(k2 
- 1)) - a(k2 

- 1)/2(1 + a(k2 
- 1)), 
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and so the increase in uncertainty in the forecast is a mono tonic increasing function in a and 

k2 . We see that the increase in uncertainty depends on the parameter ,\ = a(k2 - 1). The first 

derivative of U with respect to ,\ is 
dU 
- = -...,...----:--=-

2(1 +'\)2 d'\ 

which it is always positive and it is zero at ,\ = 0, indicating that a small model heterogeneity 

has no effect on the uncertainty ofthe prediction. The inflexion point of the U{'\) function can be 

obtained from 
~U 1-,\ 
d,\2 = 2{1 + ,\)3 

and it is reached for ,\ = 1 which corresponds, for instance, to the case a = .05 and k = 6. From this 

point, increasing k and/or a by a fixed amount will produce smaller increases in the uncertainty 

of the prediction. 

In the general heterogeneity case, the mean of the distributions p{y I D) and p{y I Mo, D) will 

also be different and the KL distance will depends on the standardized mean difference as well as 

on the variance changes. An approximation to the KL measure can be computed in closed form 

by approximating the Student t distributions by normal distributions. 

REFERENCES 

Abraham, B. and Box, G.E.P. (1978). "Linear models and spurious observations". Applied Statis­

tics, 27,131-138. 

Aitkin, M. and Thnnicliffe-WHson, G. (1980). "Mixture models, outliers, and the EM algorithm". 

Technometrics, 22, 325-31. 

Atkinson, A.C. (1994). "Fast very robust methods for the detection of multiple outliers". Journal 

of the American Statistical Association, 89, 1329-1339. 

Bernardo, J.M. (1994). "Optimizing prediction with hierarchical models: Bayesian clustering". In 

Aspects of uncertainty: A tribute to D. V. Lindley. Ed. P.R. Freeman and A.F.M. Smith. John 

WHey. 

Bernardo, J.M. and Gir6n, F.J. (1988). "A Bayesian analysis of simple mixture problems". 

Bayesian Statistics 3, 67-88. Ed. J.M. Bernardo et al. Oxford University Press. 

Bernardo, J.M. and Gir6n, F.J. (1989). "A Bayesian approach to cluster analysis". Questiio, 12, 

97-112. 

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory. John WHey. 

Binder D. (1978). "Bayesian Clustering". Biometrika, 65, 31-38. 

15 



Box, G.E.P. (1980). "Sampling and Bayesian inference in scientific modelling and robustness" 

(with discussion). Journal of the Royal Statistical Society, A, 143, 383-430. 

Box, G.E.P. and Tiao, C.G. (1968). "A Bayesian approach to some outlier problems". Biometrika, 

55, 119-129. 

Box, G.E.P. and Tiao, C.G. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley. 

Carlin, B.P. and Polson, N.G. (1991). "An expected utility approach to influence diagnostics". 

Journal of the American Statistical Association, 86, 1013-1021. 

Cook, RD. (1977). "Detection of influential observations in linear regression". Technometrics, 19, 

15-18. 

Current Index of Statistics. (1997). American Statistical Association. 

Devroye, L. (1986). Non-uniform Random Variate Generation. Springer-Verlag. 

Diebolt, J. and Robert, C. (1994). "Estimation of finite mixture distributions through Bayesian 

Sampling". Journal of the Royal Statistical Society, B, 56, 363-375. 

Eddy, W.F. (1980). Discussion to the paper of P.R Freeman. Bayesian Statistics 1, 370-373. Ed. 

J.M. Bernardo et al. Oxford University Press. 

Fayyad, U., Piatestsky-Shapiro, G. and Smyth, P. (1996). "From data mining to knowledge dis­

covery: an overview". In Advances in Knowledge Discovery and Data Mining. Ed. U. Fayyad 

et al. MIT Press. 

Fernandez, C. and Steel, M. (1998). "On Bayesian modeling of fat tails and skewness". Journal 

of the American Statistical Association, 93, 359-372. 

Freeman, P.R (1980). "On the number of outliers in data from a linear model". Bayesian Statistics 

1, 349-365. Ed. J.M. Bernardo et al. Oxford University Press. 

Geisser, S. (1980). Discussion to the paper of G.E.P. Box. Journal of the Royal Statistical Society, 

A, 143, 416-417. 

Geisser, S. (1985). "On the predicting of observables: a selective update". Bayesian Statistics 2, 

203-230. Ed. J.M. Bernardo et al. North Holland. 

Gelfand, A.E. and Smith, A.F.M. (1990). "Sampling-based approaches to calculating marginal 

densities". Journal of the American Statistical Association, 85, 398-409. 

Gir6n, F.J., Martinez, L. and Morcillo, C. (1992). "A Bayesian justification for the analysis of 

residuals and influence measures". Bayesian Statistics 4, 651-660. Ed. J.M. Bernardo et al. 

Oxford University Press. 

Green, P. (1995). "Reversible jump Markov chain Monte Carlo computation and Bayesian model 

determination". Biometrika, 82, 711-732. 

Guttman, 1. (1973). "Care and handling of univariate or multivariate outliers in detecting spuri­

ousity - A Bayesian approach". Technometrics, 15, 723-738. 

16 

, I 



Guttman, I., Dutter, R. and Freeman, P.R. (1978). "Care and handing of univariate outliers in the 

general linear model to detect spurosity - A Bayesian approach". Technometrics, 20, 187-193. 

Guttman, I. and Pena, D. (1988). "Outliers and influence: evaluation by posteriors of parameters in 

the linear model". Bayesian Statistics 3,631-640. Ed. J.M. Bernardo et al. Oxford University 

Press. 

Guttman, I. and Pena, D. (1993). "A Bayesian look at diagnostic in the univariate linear model". 

Statistica Sinica, 3, 367-390. 

Hadi, A.S. and Simonoff, J.S. (1993). "Procedures for the identification of multiple outliers in 

linear models". Journal of the American Statistical Association, 88, 1264-1272. 

Hand, D.J. (1998). "Data mining: statistics and more?". The American Statistician, 52, 112-119. 

Jeffreys, H. (1961). Theory of Probability (third edition). Oxford University Press. 

Johnson, W. and Geisser, S. (1983). "A predictive view of the detection and characterization of 

influential observations in regression analysis". Journal of the American Statistical Association, 

78, 137-144. 

Johnson, W. and Geisser, S. (1985). "Estimative influence measures for the multivariate general 

model". Journal of Statistical Planning and Inference, 11, 33-56. 

Justel, A. and Pena, D. (1996a). "Gibbs sampling will fail in outlier problems with strong masking". 

Journal of Computational and Graphical Statistics, 5, 176-189. 

Justel, A. and Pena, D. (1996b). "Bayesian unmasking in linear models". CORE Discussion Paper 

9619. Universite Catholique de Louvain. 

Kass, R.F., Tierney, L. and Kadane, J.B. (1989). "Approximate methods for assessing influence 

and sensitivity in Bayesian analysis". Biometrika, 76, 663-674. 

Kempthorne, P.J. (1986). "Decision-theoretic measures of influence in regression". Journal of the 

Royal Statistical Society, B, 48, 370-378. 

Kullback, S. and Leibler, R.A. (1951). "On information and sufficiency". Annals of Mathematical 

Statistics, 22, 79-86. 

Lavine, M. and West, M. (1992). "A Bayesian method for classification and discrimination". The 

Canadian Journal of Statistics, 20,451-461. 

Lindley D.V. and Smith, A.F.M. (1972). "Bayes estimates for the linear model". The Journal of 

Royal Statistical Society, B, 34, 1-18. 

McLachlan, G.J. and Basford, K.E. (1998). Mixture Models: Inference and Applications to Clus­

tering. Marcel Dekker. 

Mengersen, K. and Robert, C. (1996). "Testing for mixtures: a Bayesian entropy approach". In 

Bayesian Statistics 5, 255-276. Ed. J.O. Berger, J.M. Bernardo, A.P. Dawid, D.V. Lindley 

and A.F.M. Smith. Oxford University Press. 

17 



Nobile, A. (1994). Bayesian analysis of finite mixture distributions. Ph.D. Thesis. Carnegie Mellon 

University, Pittsburgh. 

O'Hagan, A. (1994). Kendall's Advanced Theory of Statistics. Vol. 2B. Bayesian Inference. 

Edward Arnold. 

Pena, D. and Guttman, I. (1993). "Comparing probabilistic methods for outlier detection in linear 

models". Eiometrika, 80, 603-610. 

Pena, D. and Tiao, G.C. (1992). "Bayesian robustness functions for linear models". Eayesian 

Statistics 4, 365-388. Ed. J.M. Bernardo et al. Oxford University Press. 

Pena, D. and Yohai, V.J. (1995). The detection of influential subsets in linear regression by using 

an influence matrix. Journal of the Royal Statistical Society, E, 57, 145-156. 

Pena, D. and Yohai, V.J. (1998). "A fast procedure for diagnostics and robust estimation in large 

data sets" . Journal of the American Statistical Association, forthcoming. 

Pettit, L.1. (1990). "The conditional predictive ordinate for the normal distribution". Journal of 

the Royal Statistical Society, E, 52, 175-184. 

Pettit, 1.1. (1992). "Bayes factor for outliers models using the device of imaginary observations". 

Journal of the American Statistical Association, 87, 541-545. 

Pettit, L.I. and Smith, A.F.M. (1985). "Outliers and influential observations in linear models". 

Eayesian Statistics 2, 473-494. Ed' J.M. Bernardo et al. Oxford University Press. 

Raftery, A.E. (1996). "Hypothesis testing and model selection". In Markov Chain Monte Carlo in 

Practice, 163-188. Ed. W.R. Gilks, S. Richardson and D.J. Spiegelhalter. Chapman and Hall. 

Richardson, S. and Green P.J. (1997). "On Bayesian analysis of mixtures with an unknown number 

of components". Journal of the Royal Statistical Society, E, 59, 731-792. 

Ripley, B.D. (1987). Stochastic Simulation. John WHey. 

Rousseeuw, P.J. (1984). "Least median of squares regression". Journal of the American Statistical 

Association, 79, 871-880. 

Rousseeuw, P.J. and van Zomeren, B.C. (1990). "Unmasking multivariate outliers and leverage 

points". Journal of the American Statistical Association, 85, 633-639. 

Spiegelhalter, D.J. and Smith, A.F.M. (1982). "Bayes factors for linear and log-linear models with 

vague prior information". Journal of the Royal Statistical Society, E, 44, 377-387. 

Stigler, S.M. (1973). "Simon Newcomb, Percy Daniel and the history of robust estimation 1885-

1920". Journal of the American Statistical Association, 68, 872-879. 

Stigler, S.M. (1986). The History of Statistics. Harvard University Press. 

Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1995). Statistical Analysis of Finite Mixture 

Distributions. John WHey. 

Tukey, J.W. (1960). "A survey of sampling from contaminated distributions". Contributions to 

Probability and Statistics: Volume Dedicated to Harold Hotelling. Oxford University Press. 

18 

, I 



Verdinelli, 1. and Wasserman, L. {1991}. "Bayesian analysis of outlier problems using the Gibbs 

sampler". Statistics and Computing, 1, 105-117. 

West, M. (1984). "Outlier models and prior distribution in Bayesian linear models". Journal of 

the Royal Statistical Society, B, 46, 431-439. 

Zellner, A. (1971). An introduction to Bayesian Inference in Econometrics. John WHey. 

19 


