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Abstract. In the domain of inductive learning from examples, usually, training data are not evenly distributed in the input space.
This makes global and eager methods, like Neural Networks, not very accurate in those cases. On the other hand, lazy methods
have the problem of how to select the best examples for each test pattern. A bad selection of the training patterns would lead to
even worse results. In this work, we present a way of performing a trade-off between local and non-local methods using a lazy
strategy. On one hand, a Radial Basis Neural Network is used as learning algorithm; on the other hand, a selection of training
patterns is performed for each query in a local way. The selection of patterns is based on the analysis of the query neighborhood,
to forecast the size and elements of the best training set for that query. Moreover, the RBNN initialization algorithm has been
modifie in a deterministic way to eliminate any initial condition influence The method has been validated in three domains, one
artificia and two time series problems, and compared with traditional lazy methods.
Keywords: Lazy learning, local learning, Radial Basis Neural Networks, pattern selection

1. Introduction

When the training data are not evenly distributed in
the input space, the non-local learning methods could
be affected by decreasing their generalization capabil-
ities. One way of resolving such problem is by using
local learning methods [2,17]. Local methods use only
partially the set of examples for making the learning.
They select, from the whole examples set, those that
consider more appropriate for the learning task. The
selection is made for each new test pattern presented to
the system, by means of some kind of similarity mea-
surement to that pattern. k-NN [4] is a typical example
of these systems, in which the selected learning pat-
terns are the k closest to the test pattern by some dis-
tance metric, usually the Euclidean distance.
Those local methods, usually known as lazy learning

or instance-based learning algorithms [1] are based on
the assumption that all the test patterns have the same
structure and need the same selection procedure. This
assumption is often invalid because the input space is
neither isotropic nor homogeneous and has irrelevant
and non-homogeneous features. Thus, these methods
are highly dependent on the number of examples se-
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lected and on the metric used, being frequent the situ-
ations where an Euclidean metric might not be appro-
priate.
Bottou and Vapnik [3] introduces a dual, local/non-

local, approach to give good generalization results in
non-homogeneous domains. This approach is based on
the following procedure:

• For each test pattern (local learning):

- Select the k closest examples from the example
set

- Train a Neural Network using the above se-
lected examples (non-local learning)

- Apply the above trained Neural Network to
predict the test pattern

This is a good combination between local and non-
local learning. However, the neural network used is
a linear classifie and the method assumes that Euclid-
ean distance is an appropriate metric. Besides, it con-
siders that all test patterns have the same structure but
some domains would require different behaviors when
being in different regions. This anisotropy of the space
would need of some specifi selection procedures.
In this work we introduce some modification in

the general procedure of Bottou and Vapnik, by con-
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sidering the use of Radial Basis Neural Networks
(RBNN) [5,8,12]. RBNN have some advantages when
using dual techniques: they are non-linear, universal
approximators [10] and their training is very fast, with-
out increasing significat vely the computational cost of
standard lazy approaches.
RBNN are eager or non-lazy learning methods, be-

cause they must estimate the target function before
the test pattern is known. In this work, we use RBNN
with a lazy learning approach, making the selection of
training patterns based on a kernel function. This se-
lection is not homogeneous, as happened in [3]; by op-
posite it is detected, for each testing pattern, how many
training patterns would be needed, and what is the im-
portance in the learning process of each one of them.
This importance is taken into consideration, in the form
of a weight, in the learning process of the network.
Regarding to RBNN, the initialization of the training

algorithm is a critical factor that influence their per-
formance. This algorithm has been modifie in a de-
terministic way to eliminate any initial condition influ
ence. Regarding to the selection procedure by means
of a kernel function, it may occur that no training pat-
tern is selected for certain test patterns, due to the dis-
tribution of data in the input space. We propose two
different approaches to treat this problem.
The fina method results to be a dual local/non-local

method, where the initialization of the network is de-
terministic and the method is able to determine the de-
gree of locality of each region of the space, by means
of a kernel function that could be considered as a para-
meter, and modifie appropriately. In some cases a test
pattern could be considered as non-local in the sense
that it corresponds to more frequent situations. In this
case almost the totality of the training patterns will be
selected, and the method behaves like an non-local ap-
proach. This transition between local and non-local be-
havior is made automatically.
The rest of this paper is organized as follows. Sec-

tion 2 describes the learning method. Section 3 re-
ports the experiments carried out and, finall , Section 4
draws the conclusions of the paper.

2. Description of the method

The learning method proposed in this work con-
sists of training RBNN with a lazy learning approach.
This method has been called LRBNN (Lazy RBNN
method) and is based on the selection, from the whole
training data, of an appropriate subset of training pat-

terns in order to improve the answer of the network for
a novel pattern. For each new pattern received, a new
subset of training examples is selected. The LRBNN
method is based on the ideas found in [14]. The pre-
sented method deals with some problems found in
the previous work when a lazy strategy is used to train
a RBNN. LRBNN constitutes a complete and closed
method.
The general idea consists of selecting those pat-

terns close to the new query instance, in terms of
the Euclidean distance. In order to give more impor-
tance to the closest examples, some weighting mea-
sure must be considered and there are two ways of do-
ing it: weighting the data directly or weighting the er-
ror criterion used by the RBNN in such a way that
the neural model must fi more tightly the closest pat-
terns [2]. Both ways are equally valid and we have cho-
sen the firs one. In order to use standard RBNN, we
have chosen the replication of examples as a way of
weighting the data, without using a weighting value as-
sociated to each example. Thus, selected patterns are
included one or more times in the resulting training
subset and the network is trained with the most useful
information, discarding those patterns that not only do
not provide any knowledge to the network, but might
confuse the learning process.
The weighting measure assigns a weight to each

training example; this is done by using a kernel func-
tion which depends on the Euclidean distance from
the training pattern to the novel one. The maximum
value of the kernel function must be given at zero dis-
tance and the function should decrease smoothly as
distance increases [16]. In this work, the inverse func-
tion [Eq. (1)] is used:

K(d) = 1/d (1)

where d is the distance from the training pattern to
the new query.
To exploit this idea, a n-dimensional sphere centered

at the test pattern is established, in order to select only
those patterns placed into it. Its radius – named r –
is a threshold distance, since all the training patterns
whose distance to the novel sample is bigger than r
will be discarded. Distances may have very different
magnitudes depending on the problem domains, due
to their different data values and number of attributes.
It may happen that for some domains the maximum
distance between patterns is many times the maximum
distance between patterns for other domains. In or-
der to make the method independent of this fact, both



the sphere radius and the training patterns distances
will be relative respect to the maximum distance to
the test pattern. Thus, the relative threshold distance
or relative radius, rr, will be used to select the train-
ing patterns situated into the sphere centered at the test
pattern, being rr a parameter that must be established
before the application of the learning algorithm.
Next, the sequential structure of LRBNN method is

presented. Let us consider q an arbitrary novel pattern
described by a n-dimensional vector, q = (q1, . . . , qn),
where qi represents the attributes of the instance q. Let
X be the whole available training data set:

X = {(xk, yk)k = 1 . . . N ;

xk = (xk1, . . . ,xkn); yk = (yki, . . . , ykm)} (2)

For each new pattern q,

1. The standard Euclidean distances dk from the
pattern q to each input training pattern are calcu-
lated.

2. In order to make the method independent on
the distances magnitude, relative distances must
be used. Thus, a relative distance drk is calcu-
lated for each training pattern: drk = dk/dmax,
where dmax is the distance from the novel pat-
tern to the furthest training pattern.

3. A weighting function or kernel function K() is
used to calculate a weight for each training pat-
tern from its distance to the test pattern. This
function is the inverse of the relative distance
drk:

K(xk) =
1

drk
; k = 1 . . . N (3)

4. These values K(xk) are normalized in such
a way that the sum of them equals the number of
training patterns in X. These normalized values
are called normalized frequencies, fnk, and are
calculated in the following way:

fnk = V · K(xk) (4)

where

V =
N∑N

k=1 K(xk)
(5)

5. Both the relative distance drk and the normal-
ized frequency fnk are used to decide whether

the training pattern (xk, yk) is selected and –
in that case – how many times is included in
the training subset. They are used to generate
a natural number, nk, following the next rule:

if drk < rr then
nk = int(fnk)+ 1

else
nk = 0

(6)

where int(fnk) is the largest integer lower than
fnk. At this point, each training pattern in X
has an associated natural number, nk, which in-
dicates how many times the pattern (xk, yk) will
be used to train the RBNNwhen the new instance
q is reached. If the pattern is selected, nk > 0
otherwise nk = 0.

6. A new training subset associated to the query in-
stance q, Xq , is built up. Given a pattern (xk, yk)
from the original training setX , that pattern is in-
cluded in the new subset if the value nk is higher
than zero. In addition, the pattern (xk, yk) is
placed nk times randomly in the training set Xq .

7. The RBNN is trained using the new subset Xq .
This training process implies the determination
of the centers and dilations of the hidden neurons
and the determination of the weights associated
from those hidden neurons to the output neuron.
Those parameters are calculated as follows:

• The centers of neurons are calculated in an un-
supervised way using the K-means algorithm
in order to clusterize the input space formed
by all the training patterns included in the sub-
set Xq , which contains the replicated selected
patterns.

• The neurons dilations or widths are evaluated
as the geometric mean of the distances from
each neuron center to its two nearest centers.

• The weights associated to the connections
from the hidden neurons to the output neu-
ron are obtained, in an iterative way, using
the gradient descent method to minimize the
mean square error measured in the output of
the RBNN over the training subset Xq .

In order to apply the LRBNN method, two features
must be taken into account. On one hand, the results
would depend on the random initialization of K-means
algorithm which is used to determine the locations of
the RBNN centers and must be applied for each novel
or test pattern. Hence, running the K-means algorithm



with different random initialization for each test sam-
ple would not be very appropriate due to the high com-
putational cost.
On the other hand, a problem arises when the test

pattern belongs to regions of the input space with a low
data density: it would be possible that the sphere cen-
tered at the test sample would not include any train
example into it. In this case, the method should of-
fer some alternative in order to provide an answer for
the test sample. We present solutions to both problems,
which are described in the following.

1. K-means initialization. Having the objective of
achieving the best performance, a deterministic
initialization, instead of the usual random ones,
is proposed. The idea is to obtain a prediction of
the network with a deterministic initialization of
the centers whose accuracy is similar to the one
obtained when several random initializations are
done. The initial location of the centers will de-
pend on the location of the closest training ex-
amples selected. The deterministic initialization
is obtained as follows:

• Let (x1, x2, . . . , xl) be the l selected training
patterns, ordered by their normalized frequen-
cies (fn1, fn2, . . . , fnl) calculated in Eq. (4).

• Let m be the number of hidden neurons of
the RBNN to be trained.

• The center of the ith neuron is initialized to
the xi position, for i = 1, 2, . . . ,m.

It is necessary to avoid the situations where
m > l. The number of hidden neurons must be
fi ed to a number smaller than the selected pat-
terns, since the opposite would not have any
sense.

2. Empty training set. It has been observed that
when the input space data is highly dimensional,
in certain regions of it the data density can be
so small that the sphere centered at the query in-
stance does not include any train pattern into it
if the relative radius is small. When this situation
occurs, an alternative way to select the training
patterns must be taken. In our work, we propose
two different approaches which are experimen-
tally evaluated.

(a) If the subset Xq associated to a test sample
q is empty, then we apply the method of se-
lection to the closest training pattern, as if
it was the test pattern. In more detail: let xc

be the closest training pattern to q. Thus, we

will consider xc the new test pattern, being
named q′. We apply our lazy method to this
pattern q′, that is, the selection sphere cen-
ter is placed at q′, and the associated train-
ing set Xq′ is generated. Since q′ ∈ X , Xq′

will always have, at least, one element. At
this point, the network is trained with the set
Xq′ to answer to the test point q.

(b) If the subset Xq associated to a test sample q
is empty, then the network is trained with X ,
the set formed by all the training patterns. In
other words, the network is trained as usual,
with all the available patterns.

As it was previously mentioned, if no training
examples are selected, the method must provide
some answer to the test pattern. Maybe, the most
intuitive solution consists of using the whole
training data set X; this alternative does not have
disadvantages since the networks will be trained,
in a fully global way, with the whole training set
only for a few test samples. However, in order
to maintain the coherence of the idea of training
the networks with some selection of patterns, we
suggest the firs alternative. The experiments car-
ried out show that this alternative behaves better.

3. Experimental validation

In this section, the LRBNN learning method has
been applied to three different problems: two artificia
problems and a real one. The firs one corresponds to
an artificia regression problem (a piecewise-define
function), the second one corresponds to a well known
artificia time series prediction problem – the Mackey-
Glass time series-and, finall , a real time series pre-
diction problem define by means of a time-series de-
scribing the behavior of the water level at Venice La-
goon.
In the next subsections, the features of the differ-

ent problems and the results obtained for each domain
are presented and analyzed. A comparative study with
other lazy techniques and with the traditional training
of RBNN is also included.

3.1. Domains description

The three domains cited above are described in de-
tail in the following paragraphs.



• A piecewise-defined function
The piecewise-define function is a single vari-
able function given by Eq. (7).

f (x) =




−2.186x − 12.864 if − 10 � x < −2
4.246x if − 2 � x < 0
10e−0.05x−0.5 if 0 � x � 10
× sin((0.03x + 0.7)x)

(7)

The training set is composed of 120 input-output
points randomly generated by an uniform distri-
bution in the interval [−10, 10]. 80 input-output
points generated in the same way are used as test
patterns. Data are normalized in the interval [0, 1].

• The Mackey-Glass time series prediction
This time series is widely used in the literature
about RBNN, being some of the most important
works the next: [8,11,18,19]. This domain repre-
sents a chaotic time series created by the Mackey-
Glass delay-difference equation [6]:

dx(t)
dt

= −bx(t)+ a
x(t − τ )

1+ x(t − τ )10
(8)

In the same way as in the studies mentioned
above, the series has been generated using the next
values for the parameters: a = 0.2, b = 0.1, and
τ = 17. The task for the RBNN is to predict
the value of the time series at point x[t+P ] from
the earlier points (x[t],x[t − 6],x[t − 12],x[t −
18]). The number of sample steps P has been set
to 50. Thus, the function (whose dimension is 4)
to be learned by the network is:

x(t) = f (x(t − 50),x(t − 50− 6),

x(t − 50− 12),x(t − 50− 18)) (9)

5000 values of the time series are generated us-
ing the Eq. (9) and fixin x(0) = 0. The ini-
tial 3500 samples are discarded in order to avoid
the initialization transients. 1000 data points, cor-
responding to the sample time between 3500 and
4499, have been chosen for the training set. The
test set is composed by the points corresponding
to the time interval [4500, 5000]. All data points
are normalized in the interval [0, 1].

• Prediction of water level at Venice Lagoon
This real world time series represents the behav-
ior of the water level at Venice Lagoon. Unusual
high tides result from a combination of chaotic

climatic elements with the more normal, peri-
odic, tidal systems associated with a particular
area. The prediction of high tides has always been
the subject of intense interest, not only from a hu-
man point of view, but also from an economic one,
and the water level of Venice Lagoon is a clear ex-
ample of these events [7,9]. The most famous ex-
ample of floodin in the Venice Lagoon occurred
in November 1966 when the Venice Lagoon rose
by nearly 2 meters above the normal water level.
That phenomenon is known as “high water” and
many efforts have been made in Italy to develop
systems for predicting sea level in Venice, mainly
for the prediction of the high water phenom-
enon [13]. Different approaches have been devel-
oped for the purpose of predicting the behavior of
sea level at the Venice Lagoon [13,15]. Multilayer
feedforward neural networks have also been used
to predict the water level [20] obtaining same ad-
vantages over linear and traditional models.
In this work, LRBNN method has been used
with the purpose of predicting the next sampling
time from some samples measured at previous
times. There is a great amount of data represent-
ing the behavior of the Venice Lagoon time se-
ries. However, corresponding data associated to
the stable behavior of the water are very abun-
dant opposed to those data associated to high wa-
ter phenomena. This situation leads to the fact that
RBNN trained with a complete data set is not very
accurate in predictions of high water phenom-
ena. Hence, the aim in this context is to observe
whether a selection of training patterns may help
to obtain better predictions of high water phenom-
ena.
Since the goal in this work is to predict only
the next sampling time, a nonlinear model us-
ing the six previous sampling times, i.e., data of
the six previous hours, may be appropriate. Thus,
the function to be learned, whose dimension is 6,
is:

x(t) = f (x(t − 1),x(t − 2),x(t − 3),

x(t − 4),x(t − 5),x(t − 6)) (10)

A training data set of 3000 points correspond-
ing to the water level measured each hour has
been extracted from available data (water level
of Venice Lagoon between 1980 and 1994 sam-
pled every hour). This set has been chosen in
such a way that both stable situations and high



Fig. 1. Water level at Venice Lagoon during four months. Training
set.

water situations appear represented in the set
(see Fig. 1). High-water situations are considered
when the level of water is not lower than 110 cm.
1010 test patterns have also been extracted from
the available data containing both high water and
periodic situations.

3.2. Experimental results using LRBNN

We have applied our local learning method to all
the domains described above. As it was remarked in
Section 2, the relative radius rr must be given as an
external parameter of the method in order to study its
influenc on the performance of the model. This para-
meter indicates the radius of the n-dimensional sphere
centered at the test pattern to be predicted. Besides,
RBNN with different architectures, i.e., different num-
ber of hidden neurons – must be trained so that the in-
fluenc of the network architecture can also be studied.
The performance of the method has been measured in
terms of the RBNN’s errors over the whole test set. The
error, e, for the test set is evaluated as:

e =
1
N

N∑
k=1

ek (11)

where N is the number of patterns in the test set and
ek represents the error for the kth test pattern, calcu-
lated as ek = |ỹk − yk|, being ỹk the output of the net-
work and yk the desired output for that pattern. In all
the studied domains the output is a real number.
In order to validate the proposed deterministic ini-

tialization, two groups of experiments for each domain
have been done. In the firs group, ten different random
initializations of RBNN centers have been carried out

and the mean and standard deviation of the errors com-
mitted for each run have been calculated. In the second
set of experiments, only one run has been done using
the deterministic initialization. In this case, the error,
given by Eq. (11), is calculated.
Next, the experimental results are presented.

3.2.1. An artificia approximation problem:
A piecewise-define function

The learning method described in Section 2 has been
applied to this problem for RBNN with different archi-
tectures, from 7 to 27 neurons, varying the relative ra-
dius from 0.02 to 0.3 taking a step of 0.04. As it was
previously commented, the aim of these experiments
consists of studying the influenc of the relative radius
on the generalization ability of the networks. It is con-
venient to recall that the performance of RBNN de-
pends on the location of the RBF centers, being this
location the key issue of the learning process of these
networks.
Usually, standard K-means algorithm (which is

a non-linear optimization algorithm whose result de-
pends on the initial values of the centers) is used to
fin these locations. Thus, the performance of RBNN
trained in the usual way depends on the initial ran-
dom values of the centers, and several experiments
with different initial center locations must be done in
order to obtain representative results. As it was ex-
plained in Section 2, our approach provides a way to
fix deterministically, the initial positions of the cen-
ters. These positions only depend on the location of
the most weighted selected patterns and, thus, no addi-
tional experiments must be done.
In order to show that this deterministic initialization

lead to an appropriate performance of RBNN when
they are trained following the lazy learning approach,
experiments with the lazy approach where the neu-
rons centers are randomly initialized are also made.
Table 1 shows the mean performance of the method
for ten random initializations. Each value of the er-
ror for a specifi number of neurons and radius corre-
sponds to the mean value of ten different errors [given
by Eq. (11)]. In Table 2, the standard deviations for
these ten error values corresponding to each network
architecture and radius are shown.
In Table 1, the column named “NP” (Null Pat-

terns) displays the number of test patterns for which
the number of selected training patterns is zero. As
we can see, in all cases, even when the relative ra-
dius is very small, the number of selected training
patterns is bigger than zero (the associated training
set for all the test patterns is not empty). This hap-



Table 1
Mean errors with random initialization of centers. Piecewise-define function

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.02 0.00975 0.01178 0.01643 0.03824 0.03424 0.05668 0 100
0.06 0.00774 0.00315 0.00289 0.00273 0.00389 0.00469 0 100
0.1 0.01063 0.00401 0.00332 0.00285 0.00348 0.00315 0 100
0.14 0.01079 0.00563 0.00440 0.00374 0.00373 0.00316 0 100
0.18 0.01441 0.00861 0.00567 0.00474 0.00405 0.00366 0 100
0.22 0.01865 0.01262 0.00848 0.00565 0.00461 0.00420 0 100
0.26 0.02492 0.01506 0.01130 0.00675 0.00545 0.00477 0 100
0.3 0.02787 0.02028 0.01340 0.00855 0.00607 0.00508 0 100

Table 2
Standard deviations of errors corresponding to ten random initialization of centers. Piecewise-define function

rr Hidden neurons
7 11 15 19 23 27

0.02 0.001722 0.001097 0.003988 0.005335 0.015298 0.014543
0.06 0.001060 0.000661 0.000361 0.000533 0.000380 0.000561
0.1 0.001006 0.000740 0.000329 0.000292 0.000536 0.000666
0.14 0.001914 0.000874 0.000520 0.000414 0.000452 0.000543
0.18 0.001967 0.000697 0.000614 0.000558 0.000714 0.000504
0.22 0.001915 0.001350 0.001169 0.000622 0.000433 0.000735
0.26 0.002775 0.001461 0.001206 0.000987 0.000690 0.000798
0.3 0.002690 0.001113 0.001555 0.001215 0.000618 0.000846

pens because the piecewise-define function is an one-
dimensional domain and the data are uniformly dis-
tributed in the input space; thus, the test patterns al-
ways have some training patterns in its neighborhood
for the radius taken in these experiments. The column
named % PP shows the percentage of predicted pat-
terns. Obviously, when the number of “null patterns”
is zero, all the test patterns (100%) can be predicted
using the method.
In Table 3, errors over the whole test set [see

Eq. (11)], for each architecture and for each relative ra-
dius, are shown when the deterministic initialization is
made. As it is possible to observe, the results are sim-
ilar, or slightly better, than the ones showed in Table
1 obtained when different random initializations are
made. In order to compare both tables more easily, val-
ues in Table 3 are written in boldface when they are
lower than the corresponding values in Table 1.
Figure 2 shows graphically the results correspond-

ing to Table 3. We can see that when the number of
neurons is big enough (more than 11 neurons), the er-
ror decreases and when rr is 0.1 or bigger the error
does not change significat vely as the radius increases.
This behavior is explained as follows: as the radius

Fig. 2. Errors with deterministic initialization. Piecewise-define
function.

grows up, more patterns are selected allowing the net-
work to perform better with the test set. If the number
of neurons is very small, the network can not gener-
alize properly when the number of training patterns is
high, and that is why the error increases when the ra-
dius gets bigger. If the number of neurons is higher,
the network can fi the training set, even if the num-
ber of patterns is high, keeping the value of the error
relatively constant.



Table 3
Errors with deterministic initialization of centers. Piecewise-define function

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.02 0.00883 0.00927 0.01027 0.01707 0.03594 0.06726 0 100
0.06 0.00690 0.00208 0.00257 0.00255 0.00237 0.00785 0 100
0.1 0.00872 0.00407 0.00519 0.00302 0.00237 0.00246 0 100
0.14 0.00938 0.00719 0.00583 0.00391 0.00516 0.00404 0 100
0.18 0.01515 0.00816 0.00459 0.00351 0.00375 0.00507 0 100
0.22 0.02060 0.01266 0.00914 0.00398 0.00415 0.00393 0 100
0.26 0.02550 0.01760 0.01059 0.00541 0.00518 0.00505 0 100
0.3 0.03061 0.01937 0.01411 0.00660 0.00659 0.00640 0 100

3.2.2. An artificia time series prediction problem:
The Mackey-Glass time series

The proposed LRBNN method has been applied to
this artificia time series, where – in the same way as in
the previous domain – RBNN of different architectures
are used, varying the relative radius from 0.04 to 0.24.
As in the previous problem, the aim of these experi-
ments consists of studying the influenc of the relative
radius on the generalization ability of the networks,
when the centers of the neurons are deterministically
initialized. In order to evaluate this deterministic ini-
tialization and compare it with the usual (random) one,
we have also made experiments with the lazy learning
approach when the neurons centers are randomly ini-
tialized. Ten runs have been made and the mean values
of the corresponding errors [see Eq. (11)] are shown
in Table 4. Table 5, shows the corresponding standard
deviations for these values.
On the other hand, when the proposed deterministic

initialization is applied, the obtained results are shown
in Table 6. As in the previous domain, values lower
than the corresponding errors in Table 4 are written
in boldface. We can observe that the error values are
slightly better than the ones obtained when the neurons
centers were randomly located.
As in the piecewise-define function, the column

named “NP” displays the number of “null patterns”,
that is, test patterns for which the number of selected
training patterns is zero. Opposite to the previous prob-
lem, when the relative radius is small (0.04) there are
some test patterns with empty selected training sets.
This situation arises because of the dimensionality of
the problem and the non-uniform distribution of data.
This can be explained as follows: as the dimensionality
of the problem grows up, the data gets more and more
scattered. Besides, since data density is not uniform in
the input space, it is very likely to fin these anom-
alous situations into the low-density regions. The “PP”

column displays the “Predicted Patterns” percentage,
that is the percentage of test patterns that are correctly
answered. As it is shown, when rr = 0.04, there are
45 test patterns for which the networks can not make
a prediction because the associated training sets are
empty. Thus, these test patterns are discarded, corre-
sponding the error values to the rest of patterns, that is,
to the 91% of the whole test set.
As it was explained in Section 2, two alternative

ways of treating these anomalous patterns are pre-
sented. Method (a) keeps the local approach, by find
ing the closest training pattern to the novel one and se-
lecting the training examples belonging to its neighbor-
hood. On the contrary, Method (b) renounce to the lo-
cal approach and follows a global one, assuming that
the whole training set must be taken into account since
no training patterns are situated in the novel pattern
neighborhood.
Our learning method must give a prediction for

every novel pattern, that is, we must guarantee a 100%
of predicted patterns. With the aim of studying the per-
formance of both approaches, the global and the lo-
cal one, RBNN of different architectures are trained
when a relative radius of 0.04 is taken. Both Method
(a) andMethod (b) have been applied and the obtained
error values are shown in Table 7. Of course, a de-
terministic initialization of the K-means algorithm has
been done.
The results showed in Tables 6 and 7 are merged and

graphically represented in Fig. 3 in the following way:
the figur on the left shows the errors obtained when
Method (a) is applied if null test patterns are found.
The figur on the right corresponds to Method (b). In
all cases, the 100% of the test patterns are predicted.
Both figure are very similar because they only dif-
fer when the relative radius is 0.04 and, in this case,
only 45 null patterns are found; that is, methods (a)



Table 4
Mean errors with random initialization of centers. Mackey-Glass time series

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.04 0.02527 0.02641 0.02683 0.02743 0.02691 0.02722 45 91
0.08 0.02005 0.01891 0.01705 0.01571 0.01716 0.01585 0 100
0.12 0.02379 0.01954 0.01792 0.01935 0.01896 0.01940 0 100
0.16 0.02752 0.02223 0.01901 0.02106 0.02228 0.02263 0 100
0.2 0.03031 0.02427 0.02432 0.02287 0.02281 0.02244 0 100
0.24 0.03422 0.02668 0.02627 0.02482 0.02635 0.02798 0 100

Table 5
Standard deviations of errors corresponding to ten random initialization of centers. Mackey-Glass time series

rr Hidden neurons
7 11 15 19 23 27

0.04 0.001272 0.001653 0.002001 0.001148 0.001284 0.001280
0.08 0.001660 0.000503 0.001205 0.000900 0.002154 0.001906
0.12 0.001334 0.001387 0.001583 0.001703 0.000986 0.001324
0.16 0.001495 0.001847 0.002146 0.000844 0.000969 0.001327
0.2 0.001423 0.001160 0.001655 0.001712 0.001336 0.001218
0.24 0.001978 0.001322 0.001213 0.001775 0.001453 0.001992

Table 6
Errors with deterministic initialization of centers. Mackey-Glass time series

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.04 0.02904 0.03086 0.03096 0.03109 0.03231 0.03295 45 91
0.08 0.01944 0.01860 0.01666 0.01565 0.01551 0.01585 0 100
0.12 0.02131 0.01742 0.01644 0.01607 0.01628 0.01602 0 100
0.16 0.02424 0.02029 0.01812 0.01729 0.01783 0.01809 0 100
0.2 0.02837 0.02083 0.01927 0.01874 0.02006 0.02111 0 100
0.24 0.03082 0.02439 0.02256 0.02199 0.02205 0.02293 0 100

Table 7
Errors with deterministic initialization of centers and null patterns processing (rr = 0.04). Mackey-Glass time series

Hidden neurons NP % PP

7 11 15 19 23 27
Method (a) 0.02974 0.03043 0.03132 0.03114 0.03309 0.03373 45 100
Method (b) 0.03385 0.03641 0.03545 0.03464 0.03568 0.03408 45 100

and (b) are only applied to 9% of the patterns when
rr = 0.04.
It is possible to observe that the performance of

the networks is scarcely influence by the value of
the relative radius when it is bigger than a certain value
and the number of neurons is big enough. The error
decreases with the radius until rr = 0.08, and then
it maintains its value nearly constant as the radius in-
creases if the number of neurons is bigger than 7. Thus,
the relative radius is not a critical parameter if the num-

ber of neurons is bigger than 7 and the relative radius is
bigger than 0.08.When the number of neurons is small,
the performance of the networks gets worse as the ra-
dius increases. This is explained because the number
of training patterns selected is very big and the num-
ber of neurons of the RBNN are insufficien to fi such
training set.
With respect to the null patterns treatment, in Table

7 we can see that method (b) behaves slightly worse
than method (a) in all the cases. Thus, when a local



Fig. 3. Errors with deterministic initialization and null patterns processing. Left: Method (a), right: Method (b). Mackey-glass time series.

approach is taken, the method gets better results than
when all the available patterns are used to train the net-
works. Besides, it is important to recall that no ran-
dom initializations are necessary to obtain the centers
positions of the neurons because the method provides
a way to fi their initial positions.

3.2.3. A real time series prediction problem:
The Venice Lagoon time series

The local learning method described in Section 2
has also been applied to the Venice Lagoon time series
domain; RBNN with different architectures are trained
and the relative radius has been fi ed to different val-
ues from 0.04 to 0.2. As in the previous domains, two
sets of experiments have been done: the firs one cor-
responds to the usual random K-means initialization;
in order to obtain representative results, ten runs of
the method have been carried out and the mean val-
ues and standard deviations of the results are showed
in Tables 8 and 9.
The second set of experiments, carried out only

once, corresponds to the deterministic initialization of
the neurons centers. The results are displayed on Ta-
ble 10. As it happened on the previous domains, when
the deterministic initialization of the centers is done,
the results are similar or slightly better than when
the centers are randomly located (the values written
in boldface correspond to errors lower than the corre-
sponding ones in Table 8).
We can observe that there are null patterns even

when the relative radius grows to 0.08. When rr =
0.04, 34 test patterns can not be predicted. Thus, only
a 96.63% of the test set can be properly predicted. And
still for rr = 0.08, 3 patterns are not predicted.
Table 11 shows the errors obtained when both meth-

ods (a) and (b) are applied if null patterns are found.

It is important to realize that, although it seems that
the results are worse than those seen on Table 10,
a 100% of the test patterns are properly predicted.
In Fig. 4 (left and right), errors are separately

showed, depending on which method is used, when
null patterns are found. The figur on the left shows
the errors obtained when the method (a) is applied if
null test patterns are found and the figur on the right
shows the results corresponding to method (b). In this
domain, the differences between both figure are sig-
nificant specially when the relative radius is 0.04. In
this case, 34 null patterns are found, that is, 3.36%
of the whole test set. We can appreciate that method
(a) achieves lower errors that method (b). Thus, when
a lazy learning approach is applied the result is better
than when the RBNN are trained with all the available
training patterns.
As in previous cases, it is possible to observe that

when the relative radius is small errors are high due
to the shortage of selected training patterns; besides,
as the relative radius increases, the error decreases and
then it does not change significat vely. Thus, as it hap-
pened with the previous domains, the relative radius is
not a critical parameter if the number of neurons and
the relative radius are big enough.

3.3. Comparison of LRBNN with global and lazy
methods

The proposed method has been compared in two dif-
ferent ways. First, LRBNN has been compared with
RBNN trained in a traditional (global) way. And, sec-
ond, since our method is based on a lazy strategy, it
has also been compared with traditional lazy learning
methods.



Table 8
Mean errors with random initialization of centers. Venice Lagoon time series

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.04 0.01840 0.01881 0.01888 0.01951 0.02053 0.02080 34 96.63
0.08 0.02000 0.01950 0.01859 0.01841 0.01919 0.01985 3 99.70
0.12 0.02043 0.01702 0.01621 0.01627 0.01681 0.01778 0 100
0.16 0.01891 0.01569 0.01587 0.01618 0.01684 0.01770 0 100
0.2 0.02067 0.01597 0.01573 0.01617 0.01724 0.01799 0 100
0.24 0.02468 0.01632 0.01612 0.01667 0.01733 0.01771 0 100

Table 9
Standard deviations of errors corresponding to ten random initialization of centers. Venice Lagoon time series

rr Hidden neurons
7 11 15 19 23 27

0.04 0.000379 0.001171 0.001591 0.002235 0.001515 0.001074
0.08 0.001284 0.001573 0.001360 0.001667 0.000905 0.000940
0.12 0.001350 0.001505 0.002025 0.001658 0.001191 0.002127
0.16 0.000976 0.001553 0.001376 0.000971 0.001706 0.001512
0.2 0.001652 0.001137 0.001052 0.000871 0.001388 0.000783
0.24 0.001142 0.000894 0.000819 0.001970 0.001793 0.001952

Table 10
Errors with deterministic initialization of centers. Venice Lagoon time series

rr Hidden neurons NP % PP

7 11 15 19 23 27
0.04 0.01896 0.01905 0.01917 0.02016 0.02010 0.02093 34 96.63
0.08 0.02063 0.01933 0.01800 0.01802 0.01754 0.01910 3 99.70
0.12 0.02019 0.01683 0.01563 0.01539 0.01555 0.01562 0 100
0.16 0.01893 0.01602 0.01418 0.01441 0.01477 0.01568 0 100
0.2 0.02123 0.01483 0.01423 0.01416 0.01449 0.01597 0 100
0.24 0.02435 0.01607 0.01466 0.01426 0.01514 0.01511 0 100

Table 11
Errors with deterministic initialization of centers and null patterns processing. Venice Lagoon time series

rr Meth Hidden neurons NP % PP

7 11 15 19 23 27
0.04 (a) 0.02139 0.02186 0.02291 0.02347 0.02285 0.02407 34 100.00
0.04 (b) 0.02596 0.02468 0.02453 0.02481 0.02610 0.02762 3 100.00
0.08 (a) 0.02063 0.02061 0.01981 0.01890 0.01959 0.01900 0 100.00
0.08 (b) 0.02100 0.02108 0.02034 0.01953 0.02071 0.02003 0 100.00

3.3.1. LRBNN versus global RBNN

In order to compare the lazy learning strategy
(LRBNN) with the traditional one, RBNN with dif-
ferent number of hidden neurons have been trained,
in a global way, using the whole training data set in
order to build a global approximation. When RBNN

are trained as usual, the standard K-means algorithm
is used and several experiments with different initial
centers locations are made. In Table 12, the test errors
[Eq. (11)] obtained for different application domains
are shown. Results corresponding to RBNN with less
than 10 neurons are not shown because they are worse
than the ones showed on the table.



Fig. 4. Errors with deterministic initialization and null patterns processing. Left: Method (a), right: Method (b). Venice Lagoon time series.

Table 12
Errors with traditional learning of RBNN

Hidden neurons Piecewise-
define
function

Mackey-Glass
time series

Venice
Lagoon time
series

10 0.15291 0.13296 0.14397
20 0.06766 0.13556 0.09021
30 0.05510 0.12714 0.06257
40 0.04666 0.12768 0.06048
50 0.05287 0.11229 0.05086
60 0.04803 0.10520 0.05036
70 0.04312 0.12740 0.05894
80 0.04418 0.11154 0.06833
90 0.04405 0.11771 0.08715
100 0.04156 0.11628 0.09843
110 0.04496 0.10273 0.08937
120 0.04361 0.11144 0.10303
130 0.04281 0.12768 0.10969

In Table 13, the best results obtained in the different
domains for both methods, lazy and traditional ones,
are shown. As it is possible to observe, in all applica-
tion domains the performance of RBNN is significa
tively improved when a weighted selection of training
patterns is made. In all cases, as we have already com-
mented, the value of the parameters (number of hidden
neurons and relative radius) in LRBNN are not criti-
cal because for all the domains, if the relative radius
and the number of neurons is big enough, the perfor-
mance of the local method is significat vely better than
the performance of the traditional learning approach.
Although the best results for both approaches are

shown in Table 13, they are the mean values for all
the patterns of the corresponding test set. It is interest-
ing to show the errors committed by both methods for

each test pattern. Figures 5, 6 and 7 show these results,
corresponding to the situations indicated in Table 13.
Figure 5 displays the errors for each test pattern of

the piecewise-define function for both learning meth-
ods.
It is possible to observe that, for the majority of pat-

terns, the error is smaller when the LRBNN method
is used. Most of the test patterns of the piecewise-
define function can be more accurately approximated
when the RBNN is trained with an appropriate selec-
tion of patterns – the most relevant examples – instead
of the whole training set.
In Fig. 6 the errors per test pattern corresponding to

the Mackey-Glass time series are shown. As in the pre-
vious case, although the mean error comparison shows
that the LRBNN method behaves better than the usual
one, it is interesting to verify that this better behavior
occurs for the majority of the test patterns.
Figure 7 shows the errors committed by the different

learning strategies for each test pattern of the Venice-
lagoon time series domain. As in the previous cases,
most of the test patterns are better approximated when
LRBNN is used. The error, when the network is
trained in the traditional way is significantl higher,
for the majority of patterns, than the corresponding to
the lazy learning method, when an appropriate selec-
tion of patterns is made.

3.3.2. LRBNN versus traditional lazy learning
methods

We have also compared LRBNN with some of
the most well-known lazy methods: K-nearest neigh-
bor, weighted k-nearest neighbor and local linear
regression methods [2]. The local linear regression
method is specially interesting because is similar to
the method proposed in [3], where a linear model is
trained with the k nearest examples to the query.



Fig. 5. Piecewise-define function: Errors for each test pattern.

Fig. 6. Mackey-Glass time series: Errors for each test pattern.

Fig. 7. Venice Lagoon time series: Errors for each test pattern.



Table 13
LRBNN versus traditional learning of RBNN

Piecewise-define
function

Mackey-Glass
time series

Venice Lagoon
time series

LRBNN 0.00208 0.01551 0.01416
rr = 0.06, 11 neurons rr = 0.08, 15 neurons rr = 0.2, 19 neurons

Traditional
method

0.04156 0.10273 0.05036
100 neurons 110 neurons 60 neurons

Table 14
Best results for LRBNN, k-NN, Weighted k-NN and Local linear regression methods

Piecewise-define
function

Mackey-Glass
time series

Venice Lagoon
time series

LRBNN 0.00208 0.01551 0.01416
rr = 0.06, 11 neurons rr = 0.08, 15 neurons rr = 0.2, 19 neurons

kNN 0.01113 0.02731 0.02072
k = 2 k = 3 k = 8

Weighted kNN 0.00793 0.02403 0.01915
k = 4 k = 6 k = 6

Local linear
regression

0.02513 0.02747 0.02124
k = 3 k = 3 k = 4

The different lazy methods have been run for dif-
ferent values of k parameter (number of patterns se-
lected). For the piecewise-define function, k is var-
ied from 1 to 25; for the Mackey-Glass time series k
is varied from 1 to 50 and for the Venice Lagoon time
series k is varied form 1 to 75, because more data are
available. In Table 14, the best errors obtained by these
methods together with those obtained by LRBNN are
shown.
It can be observed that the LRBNN method obtains

better results than the classic lazy techniques for all
the domains. This is due to two main reasons. Firstly,
the lazy strategy proposed in this work selects a differ-
ent number of training examples depending on the lo-
cation of the query in the input space, whereas the other
ones select k patterns for all the queries. Secondly,
a non-linear approximation is used to fi the train-
ing examples selected, which can be an advantage in
same cases. Moreover, the classic lazy techniques de-
pend highly on the k parameter, whereas the LRBNN
method does not depend significantl on the radius, as
it has been shown in previous sections.

4. Conclusions

Global learning methods estimate the target function
once for the whole instance space. They build a general

and explicit approximation that allows to forecast all
the test patterns, no matter the characteristics those ex-
amples have. On the other hand, local methods, instead
of estimating the target function for the entire instance
space, estimate it locally and differently for each new
query instance.
Usually, the input space has a non-homogeneous

structure, being data points unevenly distributed in
the input space. In these cases, where the target func-
tion is very complex, the accuracy of global methods
could be affected and local methods might be more
appropriate, allowing to describe the complex target
function as a collection of less complex local approxi-
mations.
However, local learning methods have to deal with

some drawbacks. They are usually based on the as-
sumption that all the test patterns have the same struc-
ture and need the same selection procedure. They as-
sume some kind of linear behavior at a local scale lead-
ing to a high dependency on the number of examples
selected and on the metric used, being frequent the sit-
uations where an Euclidean metric might not be appro-
priate.
Although some methods that combine local and

non-local strategies have produced good results in
some domains, they still assume that Euclidean dis-
tance is an appropriate metric and consider that all



the test patterns have the same structure and need
the same selection procedure. Other domains would re-
quire specifi and non-linear behaviors for different re-
gions of the input space.
We try to complement the good characteristics of lo-

cal and non-local approaches by using a lazy learning
method for selecting the training set, but using RBNN
for making predictions. RBNN have some advantages:
they are universal approximators and therefore the as-
sumption of local linear behavior is no longer needed;
besides, their training is very fast, without increasing
significat vely the computational cost of standard lo-
cal learning approaches. We have presented a method
(LRBNN) that can get the locality of the input space,
and then uses a non-linear method to approximate each
region of the input space. In addition, the selection of
patterns is made using a kernel function, taking into
account the distribution of data.
When a lazy learning strategy is used, two impor-

tant aspects related to RBNN training and patterns se-
lection have been taken into account. In the firs place,
the initialization of the neurons centers is an impor-
tant factor that influence RBNN performance. Usu-
ally, the initial location of centers are randomly estab-
lished, but in a lazy strategy, in which a network must
be trained for each new query, random initialization
must be avoided. For this reason, in this work the algo-
rithm has been modifie in a deterministic way to elim-
inate any initial condition influenc with the objective
of achieving the best performance; we propose a way
to determine the initial location of the neurons centers,
depending on the location of the closest training exam-
ples selected. Regarding to the selection procedure, in
which the Inverse kernel function is used, it may oc-
cur that no training pattern is selected for certain test
patterns, due to the distribution of data in the input
space. We have proposed and validated two different
approaches to treat this problem.
LRBNN has been applied to three different domains:

an artificia regression problem, and two time series
prediction problems, an artificia one (the well known
Mackey-Glass time series) and a real one (represent-
ing the Venice Lagoon water level). For all domains,
we present the results obtained by LRBNN when a de-
terministic centers initialization is made. Besides, with
the aim of showing the advantages of this determin-
istic initialization, the same method is applied but
the RBNN are trained with a random initialization of
their centers. We show the mean results of several ran-
dom initializations. As we said before, LRBNN pro-
vides two alternative ways of guarantying the selec-

tion of training examples for all the query instances.
When the use of these alternative methods is necessary,
the obtained results are also showed.
The results obtained by LRBNN improves signifi

cantly the ones obtained by RBNN trained in a global
way and those obtained by the classic lazy techniques.
Besides, the proposed deterministic initialization of
the neurons centers produces similar or slightly better
results than the usual random initialization, being thus
preferable because only one run is necessary. More-
over, the method is able to predict 100% of the test pat-
terns, even in those extreme cases when no train ex-
amples would be selected using the normal selection
method. The experiments show that the relative radius,
parameter of the method, is not a critical factor be-
cause if it reaches a minimum value and the network
has a sufficien number of neurons, the error on the test
set keeps its low value relatively constant.
Thus, we can conclude that the combination of lazy

learning and RBNN, can produce significan improve-
ments in some domains.
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