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Abstract

Classical orthogonal polynomials are characterized from their orthogonality and by a first or second structure relation. For the
semiclassical orthogonal polynomials (a generalization of the classical ones), we find only the first structure relation in the literature.
In this paper, we establish a second structure relation. In particular, we deduce it by means of a general finite-type relation between
a semiclassical polynomial sequence and the sequence of its monic derivatives.
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1. Introduction

Classical orthogonal polynomial sequences (Hermite, Laguerre, Bessel, and Jacobi) are characterized by the property
that the sequence of its monic derivatives is again orthogonal (Hahn’s property, see [2,1,7–10,12,13]). Taking into
account the key role of such families of polynomials in the study of hypergeometric differential equations resulting
from Mathematical Physics, we find a vast literature with different approaches to the subject. For instance, the functional
equation (Pearson equation) satisfied by classical linear functionals and, more generally, semiclassical linear functionals
allows an efficient study of some properties of both classical and semiclassical orthogonal polynomials [3,12,14].
However, the sequences of classical orthogonal polynomials {Cn}n�0 can be characterized taking into account its
orthogonality as well as one of the two following differential-difference equations, the so-called structure relations.

• First structure relation [2,1,10,12,13]

E(x)C[1]
n (x) =

n+t∑
�=n

�n,�C�(x), n�0, �n,n �= 0, n�0,

where C[1]
n (x) = (n + 1)−1C′

n+1(x), n�0, and E is a monic polynomial such that deg E = t �2.
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Table 1

(A1) Hermite

Ĥn(x) = Ĥ [1]
n (x), n�0,

(A2) Laguerre, L̂
(�)[1]
n (x) = L̂

(�+1)
n (x), n�0,

xL̂(�+1)
n (x) = L̂

(�)
n+1(x) + (n + � + 1)L̂(�)

n (x), n�0,

L̂(�)
n (x) = L̂(�+1)

n (x) + nL̂
(�+1)
n−1 (x), n�1,

with � �= −n, n�1.

(A3) Bessel, B̂
(�)[1]
n (x) = B̂

(�+1)
n (x), n�0,

x2B̂(�+1)
n (x) = B̂

(�)
n+2(x) − n + 2�

(n + �)(n + � + 1)
B̂

(�)
n+1(x) − (n + 2�)�n+1

n + 1
B̂(�)

n (x), n�0,

B̂(�)
n (x) = B̂(�+1)

n (x) + n

(n + � − 1)(n + �)
B̂

(�+1)
n−1 (x) − (n − 1)�n

(n + 2� − 2)
B̂

(�+1)
n−2 (x), n�2,

with �n = − n(n + 2� − 2)

(2n + 2� − 3)(n + � − 1)2(2n + 2� − 1)
, n�1, and � �= −n

2
, n�0.

(A4) Jacobi, P̂
(�,�)[1]
n (x) = P̂

(�+1,�+1)
n (x), n�0,

(x2 − 1)P̂
(�+1,�+1)
n (x) = P̂

(�,�)
n+2 (x) + 2(� − �)(n + � + � + 2)

(2n + � + � + 2)(2n + � + � + 4)
P̂

(�,�)
n+1 (x) − (n + � + � + 2)�n+1

n + 1
P̂

(�,�)
n (x), n�0,

P̂
(�,�)
n (x) = P̂

(�+1,�+1)
n (x) − 2n(� − �)

(2n + � + �)(2n + � + � + 2)
P̂

(�+1,�+1)
n−1 (x) − (n − 1)�n

n + � + �
P̂

(�+1,�+1)
n−2 (x), n�2,

with �n = 4n(n + � + �)(n + �)(n + �)

(2n + � + � − 1)(2n + � + �)2(2n + � + � + 1)
, n�1,

and � �= −n, � �= −n, � + � �= −n − 1, n�1.

• Second structure relation [10,12]

Cn(x) =
n∑

�=0

�n,�C[1]
� (x), n�0, (∗)

with �n,� = 0, for � < n − t, n� t, 0� t �2.

The explicit expression for the parameters involved in the first and second structure relations is given in Table 1 (for
more details, see [10,12,13]).

A generalization of this family leads to semiclassical orthogonal polynomials [3–5,12,14,17]. In fact, classical
orthogonal polynomials are semiclassical of class zero. It is well-known that a first structure relation for the semiclassical
orthogonal polynomials was established (see [3–5,12]) and it reads as follows.

A sequence {Bn}n�0 of semiclassical orthogonal polynomials satisfies

E(x)B[1]
n (x) =

n+t∑
�=n−	

�n,�B�(x), n�	, �n,n−	 �= 0, n�	 + 1,

where E is a monic polynomial, deg E = t, and 	 is a positive integer, such that t �	 + 2.
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The formulation of a second structure relation for semiclassical orthogonal polynomial sequence has been the aim
of several contributions. In [6], the author tried to characterize semiclassical orthogonal polynomials {Bn}n�0 by its
orthogonality and the following finite-type relation:

Bn(x) =
n∑

�=0

�n,�B
[1]
� (x), n�0,

with �n,� = 0, for � < n − t , n� t, t �0.

Unfortunately, no successful result has been achieved, except the fact that no orthogonal polynomial sequences
satisfy the previous relation for t �3.

Recently, Maroni and Sfaxi [15] introduced the concept of diagonal sequence. It reads as follows.
Let {Bn}n�0 be a sequence of monic orthogonal polynomials and 
 a monic polynomial with deg 
 = t. If there

exists an integer s�0 such that


(x)Bn(x) =
n+t∑

�=n−s

�n,�B
[1]
� (x), n�s, �n,n−s �= 0, n�s,

then the sequence {Bn}n�0 is said to be diagonal associated with 
 and index s. The authors prove that diagonal
sequences are semiclassical. Obviously, the above finite-type relation, that we will call diagonal relation, is nothing
else that the second structure relation characterizing such a family. But, some semiclassical orthogonal polynomials are
not diagonal. As an example, we can mention the case of a semiclassical polynomial sequence {Qn}n�0, orthogonal
with respect to the linear functional v, satisfying the functional equation: v′+�v=0, where �(x)=−ix2+2x−i(�−1).

In fact, the sequence {Qn}n�0 is characterized by its orthogonality and the following relation [11],

(x + vn,0)Qn(x) = Q
[1]
n+1(x) + �nQ

[1]
n (x), n�0,

where

vn,0 = i(n + 1)


n+1
− i
n+1
n+2

n + 2
− �n, n�1, v0,0 = − i
1
2

2
− �0,

�n = i(n + 1)


n+1
, n�1, �0 = 0.

Here, 
n+1 and �n are the recurrence coefficients of the orthogonal polynomial sequence {Qn}n�0. In fact, {Qn}n�0
is not diagonal and the constants vn,0 depend on the integer n. This family will be analyzed more carefully in
Section 4.1.

The aim of our contribution is to give, under certain conditions, a second structure relation characterizing a sequence
of semiclassical orthogonal polynomials in terms of a relation between the orthogonal polynomial sequence {Bn}n�0

and the sequence of monic derivatives {B[1]
n }n�0, where B

[1]
n (x) = (n + 1)−1B ′

n+1(x), n�0, as follows:

n+	∑
�=n−	

�n,�B�(x) =
n+	∑

�=n−t

�n,�B
[1]
� (x), n� max(t + 1, 	),

where

�n,n+	 = �n,n+	 = 1, n� max(t + 1, 	),

∃ r �	 + t + 1, �r,r−	�r,r−t �= 0.

Notice that for 	 = 0 the second structure relation (∗) follows.
The structure of the paper is the following. In Section 2, a basic background about linear functionals, orthogonal

polynomials, and semiclassical linear functionals is given in order to allow the reader to be familiar with such concepts.
In Section 3 we present two new characterizations for sequences of semiclassical orthogonal polynomials. Theorems
3.2 and 3.5 are the extensions of the second structure relations satisfied by classical orthogonal polynomials. Finally,
in Section 4 we find such relations for two examples of semiclassical orthogonal polynomials of class 1.
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2. Background

Let u be a linear functional in the linear space P of polynomials with complex coefficients and let P′ be its algebraic
dual space, i.e., the linear space of the linear functionals defined on P. We will denote by 〈u, f 〉 the action of u ∈ P′
on f ∈ P and by (u)n := 〈u, xn〉, n�0, the moments of u with respect to the sequence {xn}n�0. Let us define the
following operations in P′. For any polynomial h and any c ∈ C, let Du = u′, hu, and (x − c)−1u be the linear
functionals defined on P by

〈u′, f 〉 := −〈u, f ′〉, f ∈ P,

〈hu, f 〉 := 〈u, hf 〉, f, h ∈ P,

〈(x − c)−1u, f 〉 := 〈u, �c(f )〉, f ∈ P, c ∈ C,

where

�c(f )(x) = f (x) − f (c)

x − c
.

Let {Bn}n�0 be a sequence of monic polynomials (SMP), deg Bn = n, n�0, and {un}n�0 its dual sequence, un ∈
P′, n�0, defined by 〈un, Bm〉 := �n,m, n, m�0, where �n,m is the Kronecker symbol.

Let recall the following results [7,12].

Lemma 2.1. For any u ∈ P′ and any integer m�1, the following statements are equivalent.

(i) 〈u, Bm−1〉 �= 0, 〈u, Bn〉 = 0, n�m.

(ii) There exist �� ∈ C, 0���m − 1, �m−1 �= 0, such that u = ∑m−1
�=0 ��u�.

On the other hand, it is straightforward to prove

Lemma 2.2. For any (̂t , 	̂, r̂) ∈ N3, r̂ � 	̂+ t̂ +1 and any sequence of monic polynomials {�n}n�0, deg �n=n, n�0,

with dual sequence {wn}n�0, such that

�n(x) =
n∑

�=n−̂t

�n,�B�(x), n� t̂ + 	̂ + 1, �̂r,̂r−̂t �= 0,

�n(x) = Bn(x), 0�n� t̂ + 	̂,

we have wk = uk, 0�k� 	̂.

The linear functional u is said to be quasi-definite if the principal submatrices Hn = ((u)i+j )
n
i,j=0 are non-singular,

for all integer n�0.

Assuming u quasi-definite, there exists a sequence of monic polynomials {Bn}n�0 such that (see [7])

(i) deg Bn = n, n�0
(ii) 〈u, BnBm〉 = rn�n,m, with rn = 〈u, B2

n〉 �= 0, n�0.

The sequence {Bn}n�0 is said to be the sequence of monic orthogonal polynomials, in short SMOP, with respect to
the linear functional u.

If {Bn}n�0 is a SMOP, with respect to the quasi-definite linear functional u, then it is well known (see [10,12]) that
its corresponding dual sequence {un}n�0, is

un = r−1
n Bnu, n�0. (2.1)
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Or, equivalently, (see [7]), the sequence {Bn}n�0 satisfies a three-term recurrence relation

Bn+1(x) = (x − �n)Bn(x) − 
nBn−1(x), n�0, (2.2)

with 
n �= 0, n�1 and B−1(x) = 0, B0(x) = 1.

Conversely, given a SMOP {Bn}n�0 generated by a recurrence relation as above, with 
n �= 0, n�1, there exists an
unique quasi-definite linear functional u such that the family is the corresponding SMOP. This result is known as the
Favard Theorem (see [7]).

An important family of linear functionals is constituted by the semiclassical linear functionals, i.e., when u is quasi-
definite and satisfies [3,12,17]

(Eu)′ + Fu = 0. (2.3)

Here (E, F ) is an admissible pair of polynomials, i.e., the polynomial E is monic, deg E = t, deg F = p�1, and if
p = t − 1, then (1/p!)F (p)(0) /∈ N∗.

The pair (E, F ) is not unique (see [12]). Eq. (2.3) can be simplified if there exists a zero � of E such that{
E′(�) + F(�) = 0,

〈u, �2
�(E) + ��(F )〉 = 0.

(2.4)

After simplification by x − �, the linear functional u fulfils

(��(E)u)′ + (�2
�(E) + ��(F ))u = 0. (2.5)

We define the class of u as the minimum value of max(deg(E) − 2, deg(F ) − 1), for all admissible pairs (E, F ). The
pair (E, F ) giving the class 	 (	�0 because deg(F )�1) is unique [12].

When u is semiclassical of class 	, its corresponding SMOP is said to be semi-classical of class 	.

When 	 = 0, i.e., deg E�2 and deg F = 1, then u is classical (Hermite, Laguerre, Bessel, and Jacobi). For more
details see [2,1,10,12,13].

3. Main results

For a semiclassical linear functional u of class 	, let (E, F ) be the unique admissible pair of polynomials, with E
monic, deg E = t, deg F = p�1, such that 	 := max(t − 2, p − 1).

Now, given {Bn}n�0 a SMOP with respect to u, we get

(EBn)
′(x) =

n+t−1∑
�=0

�n,�B�(x), n� max(t − 1, 0), (3.1)

where

�n,n+t−1 = n + t ,

�n,� = 〈u, B2
� 〉−1〈u, (EBn)

′B�〉 = 〈u, B2
� 〉−1〈u, (EBnB�)

′ − EBnB
′
�〉,

= − 〈u, B2
� 〉−1〈EB ′

�u + EB�u
′, Bn〉, 0���n + t − 1.

On the other hand, if deg(EB ′
n − (E′ + F)Bn) = n + 	(n) + 1, n�0, then we easily deduce

E(x)B ′
n(x) − (E′ + F)(x)Bn(x) =

n+	(n)+1∑
�=0

�̃n,�B�(x), n�0, (3.2)

where

�̃n,� = 〈u, B2
� 〉−1〈u, (EB ′

n − (E′ + F)Bn)B�〉, 0���n + 	(n) + 1. (3.3)
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Notice that the coefficient of xn+	(n)+1 in E(x)B ′
n(x) − (E′ + F)(x)Bn(x), is

�̃n,n+	(n)+1 =

⎧⎪⎨
⎪⎩

−(1/p!)F (p)(0) if p > t − 1 (	 = p − 1),

n − t − (1/p!)F (p)(0) if p = t − 1 (	 = t − 2 = p − 1),

n − t if p < t − 1 (	 = t − 2).

(3.4)

As a consequence, the admissibility condition of the pair (E, F ) yields

�̃n,n+	(n)+1 �= 0 either n� t + 1 or n = t and p� t − 1.

Moreover, for each integer n� t ,

	(n) =
{	 either n� t + 1 or n = t and p� t − 1,

< 	 if n = t and p < t − 1.
(3.5)

Lemma 3.1. For any monic polynomial E, deg E = t, and any SMOP {Bn}n�0 with respect to u the following
statements are equivalent.

(i) There exists a non-negative integer 	 such that the polynomials Bn satisfy

(EBn)
′(x) =

n+t−1∑
�=n−	−1

�n,�B�(x), n�	 + 1, (3.6)

�n,n−	−1 �= 0, n� t + 	 + 2. (3.7)

(ii) There exists a polynomial F, deg F = p�1, such that

(Eu)′ + Fu = 0, (3.8)

where the pair (E, F ) is admissible.
(iii) There exist a non-negative integer 	 and a polynomial F , deg F = p�1, such that

E(x)B ′
n(x) − (E′ + F)(x)Bn(x) =

n+	(n)+1∑
�=n−t+1

�̃n,�B�(x), n� max(t − 1, 0), (3.9)

�̃n,n−t+1 �= 0, n� max(t − 1, 0), (3.10)

�̃n,0 = −(u)−1
0 〈u, B2

n〉�0,n, 0�n� max(t − 1, 0), (3.11)

where 	 = max(t − 2, p − 1) and the pair (E, F ) is admissible.

We can write

�̃n,� = −〈u, B2
n〉

〈u, B2
� 〉��,n, 0���n + 	(n) + 1, n�0. (3.12)

Proof. Assume (i) holds. For each integer n�0, we have

〈Eu′
n, Bm〉 = −〈un, (EBm)′〉 =

m+t−1∑
�=m−	−1

�m,��n,�, m�0.

Therefore,

〈Eu′
n, Bm〉 =

{0 either m�n − t or m�n + 	 + 2,

−�m,n n − t + 1�m�n + 	 + 1.
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From Lemma 2.1, Eu′
n = −∑n+	+1

�=n−t+1��,nu�, n�0 holds. Using (2.1), we get

E(B ′
nu + Bnu

′) = −�n+	+1u, n�0, (3.13)

where

�n+	+1(x) =
n+	+1∑

�=n−t+1

��,n
〈u, B2

n〉
〈u, B2

� 〉B�(x), n�0, (3.14)

with deg �n+	+1 �n + 	 + 1, n�0, and if n� t + 1 then deg �n+	+1 = n + 	 + 1.

Taking n = 0 in (3.13), we obtain

(Eu)′ + Fu = 0, (3.15)

where F(x) = −E′(x) + �	+1(x).

Putting p = deg F, and q = deg �	+1, then

p� max(t − 1, 	 + 1), q � min(max(t − 1, p), 	 + 1).

Necessarily, p�1, otherwise F(x) = (u)−1
0 〈u, F 〉 = (u)−1

0 〈(Eu)′, 1〉 = 0. This implies (Eu)′ = 0. Then, Eu = 0. This
yields u = 0 because E �= 0 which contradicts the quasi-definiteness of u (see [12,16]).

Inserting (3.15) into (3.13) and using the quasi-definiteness of u, we get

E(x)B ′
n(x) − �	+1(x)Bn(x) = −�n+	+1(x), n�0.

In particular, for n� t + 1, the analysis of the degrees of both sides in the last relation yields

when t − 1 > q, then t − 2 = p − 1 = 	 (which implies t �2).
when t − 1�q, then q = 	 + 1, p�	 + 1, hence max(t − 2, p − 1)�	, but q � max(t − 1, p), therefore 	 =
max(t − 2, p − 1).

In all cases, we have 	 = max(t − 2, p − 1).

Obviously, the pair (E, F ) is admissible, indeed if p = t − 1, then we have

n − t − (1/p!)F (p)(0) �= 0, n� t + 1,

i.e., (1/p!)F (p)(0) /∈ N∗.

So, relations (3.9)–(3.11) are valid. Thus, we have proved that (i) ⇒ (ii) and (i) ⇒ (iii).
(ii) ⇒ (iii). We have E(x)B ′

n(x) − (E′ + F)(x)Bn(x) = ∑n+	(n)+1
�=0 �̃n,�B�(x), n�0. According to (3.8), we get

〈u, (EB ′
n − (E′ + F)Bn)B�〉 = 〈u, E(BnB�)

′ − EBnB
′
� − (E′ + F)BnB�〉,

= 〈−(Eu)′, BnB�〉 − 〈u, EBnB
′
� + (E′ + F)BnB�〉,

= − 〈u, (EB�)
′Bn〉,

and from (3.3), −〈u, (EB�)
′Bn〉= �̃n,�〈u, B2

� 〉, 0���n+	(n)+1, n�0. Thus, �̃n,�=0, 0���n−t, n� t. Moreover,

for � = n + t − 1 and n� max(t − 1, 0),

−〈u, (EBn−t+1)
′Bn〉 = −(n + 1)〈u, B2

n〉 = �̃n,n−t+1〈u, B2
n−t+1〉,

for � = 0 and 0�n� t − 1, (t �1),

�̃n,0 = −(u)−1
0 〈u, E′Bn〉 = −(u)−1

0

t−1∑
�=0

�0,�〈u, B�Bn〉 = −(u)−1
0 〈u, B2

n〉�0,n.
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Then, E(x)B ′
n(x) − (E′ + F)(x)Bn(x) = ∑n+	(n)+1

�=n−t+1 �̃n,�B�(x), n� max(t − 1, 0), where

�̃n,n−t+1 �= 0, n� max(t − 1, 0),

�̃n,0 = −(u)−1
0 〈u, B2

n〉�0,n, 0�n� max(t − 1, 0).

(iii) ⇒ (i). From (3.9) we get 〈un, EB ′
m − (E′ + F)Bm〉 = ∑m+	(m)+1

�=0 �̃m,��n,�, n, m�0, i.e.,

〈(Eun)
′ + (E′ + F)un, Bm〉 = −

m+	(m)+1∑
�=0

�̃m,��n,�, n, m�0.

Taking n = 0, since u = (u)0u0, we get

〈(Eu)′ + (E′ + F)u, Bm〉 =
{0 m� t,

(u)0�̃m,0 0�m� t − 1, (t �1).

From Lemma 2.1, (2.1) and (3.11), we get

(Eu)′ + (E′ + F)u = − (u)0

t−1∑
�=0

�̃�,0u�

= − (u)0

t−1∑
�=0

�̃�,0

〈u, B2
� 〉B�u =

t−1∑
�=0

�0,�B�u = E′u.

Thus, (Eu)′ + Fu = 0.

On the other hand,

〈(Eun)
′ + (E′ + F)un, Bm〉 = 0, m�n + t ,

〈(Eun)
′ + (E′ + F)un, Bm〉 = −�̃m,n, 0�m�n + t − 1.

From Lemma 2.1, (Eun)
′ + (E′ +F)un =−∑n+t−1

�=0 �̃�,nu�, n�0. Using (2.1), (EBnu)′ + (E′ +F)Bnu=−∑n+t−1
�=0

�̃�,n(〈u, B2
n〉/〈u, B2

� 〉)B�u, n�0. Since, (Eu)′ + Fu = 0, then ((EBn)
′ + ∑n+t−1

�=0 �̃�,n(〈u, B2
n〉/〈u, B2

� 〉)B�)u =
0, n�0. According to the quasi-definiteness of u, (EBn)

′(x) = −∑n+t−1
�=0 �̃�,n(〈u, B2

n〉/〈u, B2
� 〉)B�(x), n�0.

From (3.9) to (3.11), we finally obtain �̃�,n = 0, for 0���n − 	 − 2, n�	 + 2, and �̃n−	−1,n �= 0, for � = n − 	 −
1, n� t + 	 + 2. Hence, (i) follows taking into account (3.12). �

Notice that the equivalence of parts (i) and (ii) in the above Lemma are essentially contained in Proposition 7.10
of [12].

3.1. First characterization of semiclassical polynomials

Theorem 3.2. For any monic polynomial E, with deg E = t, and any SMOP {Bn}n�0 with respect to u, the following
statements are equivalent.

(i) There exist a non-negative integer 	, an integer p�1, and an integer r �	 + t + 1, with 	 = max(t − 2, p − 1),

such that

n+t∑
�=n−	

�n,�B�(x) =
n+t∑

�=n−t

�n,�B
[1]
� (x), n� max(	, t), (3.16)
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where

�n,n+t = �n,n+t = 1, n� max(	, t), �r,r−	�r,r−t �= 0,

〈(Eu)′, Bn〉 = 0, p + 1�n�	 + 2t + 1, 〈(Eu)′, Bp〉 �= 0,

and if p = t − 1, then 〈u, B2
p〉−1〈u, EB ′

p〉 /∈ N∗, (admissibility condition).
(ii) There exists a polynomial F , deg F = p�1, such that

(Eu)′ + Fu = 0, (3.17)

where the pair (E, F ) is admissible.

Proof. (i) ⇒ (ii). Consider the SMP {�n}n�0 defined by

�n+t+1(x) =
n+t∑

�=n−t

n + t + 1

� + 1
�n,�B�+1(x), n�	 + t + 1, (3.18)

�n(x) = Bn(x), 0�n�	 + 2t + 1. (3.19)

From (3.16),

�′
n+t+1(x) = (n + t + 1)

n+t∑
�=n−	

�n,�B�(x), n�	 + t + 1. (3.20)

Taking into account u is quasi-definite, then

〈(Eu)′, �n+t+1〉 = − 〈u, E�′
n+t+1〉

= − (n + t + 1)

n+t∑
�=n−	

�n,�〈u, EB�〉 = 0, n�	 + t + 1.

So, from the assumption, 〈(Eu)′, �n〉 = 0, n�p + 1, and 〈(Eu)′, Bp〉 �= 0. If we denote {wn}n�0 the dual sequence
of {�n}n�0, and we apply Lemma 2.1, then we get

(Eu)′ =
p∑

�=1

〈(Eu)′, B�〉w�. (3.21)

On the other hand, if we take t̂ = 2t, 	̂ = 	 + 1, and r̂ = r + t + 1, the expressions (3.18), and (3.19) can be written
as follows

�n(x) =
n∑

�=n−̂t

�̃n,�B�(x), n� 	̂ + t̂ + 1,

�n(x) = Bn(x), 0�n� 	̂ + t̂ ,

where

�̃n,� = n

�
�n−t−1,�−1, n − t̂ ���n, n� 	̂ + t̂ + 1,

�̃̂r,̂r−̂t = r + t + 1

r − t + 1
�r,r−t �= 0 (̂r �	 + 2t + 2 = 	̂ + t̂ + 1).

From Lemma 2.2, and (2.1), it follows wk = uk = (Bk/〈u, B2
k 〉)u, 0�k� 	̂ = 	 + 1. So, relation (3.21) becomes

(Eu)′ + Fu = 0, (3.22)

where F(x) = ∑p
�=1(〈u, EB ′

�〉/〈u, B2
� 〉)B�(x), with deg F = p, as we have 〈u, EB ′

p〉 �= 0.
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From the assumption, (1/p!)F (p)(0)=〈u0, B
2
p〉−1〈u, EB ′

p〉 /∈ N∗, for p=t −1. Hence, the pair (E, F ) is admissible
with associated integer 	.

(ii) ⇒ (i). From Lemma 3.1(i), and making n → n + 1 we have

(EBn+1)
′(x) =

n+t∑
�=n−	

�n+1,�B�(x), n�	, (3.23)

where

�n+1,n+t = n + t + 1, n�	, (3.24)

�n+1,n−	 �= 0, n� t + 	 + 1. (3.25)

On the other hand, the orthogonality of {Bn}n�0 allows to write

E(x)Bn+1(x) =
n+t∑

�=n−t

〈u, EBn+1B�+1〉
〈u, B2

�+1〉
B�+1(x), n� t − 1.

Hence,

(EBn+1)
′(x) =

n+t∑
�=n−t

(� + 1)〈u, EBn+1B�+1〉
〈u, B2

�+1〉
B[1]

� (x), n� t . (3.26)

From (3.23) and (3.26), we obtain (3.16) with

�n,� = �n+1,�

n + t + 1
, n − 	���n + t , (3.27)

�n,� = (� + 1)〈u, EBn+1B�+1〉
(n + t + 1)〈u, B2

�+1〉
, n − t ���n + t , (3.28)

�n,n−	�n,n−t = (n − t + 1)

(n + t + 1)2

〈u, B2
n+1〉

〈u, B2
n−t+1〉

�n+1,n−	 �= 0, n�	 + t + 1. (3.29)

Then,

〈(Eu)′, Bn〉 = −〈u, FB ′
n〉 =

{0, p + 1�n�	 + 2t + 1,

−(1/p!)F (p)(0)〈u, B2
p〉 �= 0, n = p = deg F,

and the admissibility of (E, F ) yields 〈u, B2
p〉−1〈u, EB ′

p〉 /∈ N∗, if p = t − 1. �

In the case of classical linear functionals, we get the following result.

Corollary 3.3. Let {Bn}n�0 be a SMOP with respect to u, and a monic polynomial E, deg E = t �2, such that
〈u, E〉 �= 0, the following statements are equivalent.

(i) The linear functional u is classical, i.e. there exists a polynomial F, with deg F = 1, such that (Eu)′ + Fu = 0.
(ii)

∑n+t
�=n �n,�B�(x) = ∑n+t

�=n−t�n,�B
[1]
� (x), n� t, where �n,n+t = �n,n+t = 1, n� t. Furthermore, there exists an

integer r � t + 1 such that �r,r�r,r−t �= 0, and if t = 2 then 〈u, B2
1 〉−1〈u, E〉 /∈ N∗ (admissibility condition).

3.2. Second characterization of semiclassical polynomials

From the previous characterization, we do not deduce the second structure relation of classical orthogonal polynomials
(∗). Our goal is to establish the characterization that allows us to recover such a case.

First, we have the following result.
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Proposition 3.4. For any monic polynomial E, deg E = t, and any SMOP {Bn}n�0 with respect to u, the following
statements are equivalent.

(i) There exists a polynomial F, deg F = p�1, such that

(Eu)′ + Fu = 0, (3.30)

where the pair (E, F ) is admissible.
(ii) There exist a non-negative integer 	 and a polynomial F, deg F = p�1, such that

E(x)B ′′
n(x) − F(x)B ′

n(x) − (E′′ + F ′)(x)Bn(x) =
n+	(n)∑
�=n−	

ϑn,�B�(x), n�	, (3.31)

where

ϑn,n−	 �= 0 either n�	 + t + 1 or n = 	 + t and p� t − 1, (3.32)

ϑn,0 = (u)−1
0 〈u, B2

n〉ϑ0,n, 0�n�	, (3.33)

where 	 = max(t − 2, p − 1) and the pair (E, F ) is admissible. We can write

ϑn,� = 〈u, B2
n〉

〈u, B2
� 〉ϑ�,n, 0���n + 	(n), n�0. (3.34)

Proof. We have

E(x)B ′′
n(x) − F(x)B ′

n(x) − (E′′ + F ′)(x)Bn(x) =
n+	(n)∑

�=0

ϑn,�B�(x), n�0, (3.35)

where for all integers 0���n + 	(n), and n�0,

〈u, B2
� 〉ϑn,� = 〈u, (EB ′′

n − FB ′
n − (E′′ + F ′)Bn)B�〉,

= 〈B�u, EB ′′
n − FB ′

n − (E′′ + F ′)Bn〉,
= 〈(EB�u)′′ + (FB�u)′ − (E′′ + F ′)B�u, Bn〉.

From (3.30),

(EB�u)′′ + (FB�u)′ − (E′′ + F ′)B�u

= B ′′
� Eu + 2B ′

�(Eu)′ + B�(Eu)′′ + B�(Fu)′ + B ′
�Fu − (E′′ + F ′)B�u,

= (EB ′′
� − FB ′

� − (E′′ + F ′)B�)u.

Therefore,

〈u, B2
� 〉ϑn,� = 〈u, (EB ′′

� − FB ′
� − (E′′ + F ′)B�)Bn〉, and inserting (3.35)

=
�+	(�)∑

i=0

ϑ�,i〈u, B2
n〉�i,�,

= ϑ�,n〈u, B2
n〉.

In particular, for 0���n − 	 − 1, then n�� + 	 + 1�� + 	(�) + 1. Thus, we deduce ϑ�,n = 0. Hence, ϑn,� =
0, 0���n − 	 − 1.
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For � = n − 	, and n�	 + t, we obtain

〈u, B2
n−	〉ϑn,n−	 = 〈u, (EB ′

n−	 − (E′ + F)Bn−	)′Bn〉,

=
n+1∑
�=0

�̃n−	,�〈u, B ′
�Bn〉,

= (n + 1)�̃n−	,n+1〈u, B2
n〉 taking into account (3.2).

But, from (3.4) to (3.5), we get ϑn,n−	 �= 0, either n�	 + t + 1, or n = 	 + t and p� t − 1.

As a consequence,

E(x)B ′′
n(x) − F(x)B ′

n(x) − (E′′ + F ′)(x)Bn(x) =
n+	(n)∑
�=n−	

ϑn,�B�(x), n�	,

where ϑn,n−	 �= 0, either n�	 + t + 1, or n = 	 + t and p� t − 1.

Thus, we have proved (i) ⇒ (ii).
(ii) ⇒ (i). From (3.31) we have

〈(Eu)′′ + (Fu)′ − (E′′ + F ′)u, Bn〉 = 0, n�	 + 1,

〈(Eu)′′ + (Fu)′ − (E′′ + F ′)u, Bn〉 = (u)0ϑn,0 = 〈u, B2
n〉ϑ0,n, 0�n�	.

According to Lemma 2.1,

(Eu)′′ + (Fu)′ − (E′′ + F ′)u =
	∑

n=0

(u)0ϑn,0

〈u, B2
n〉 Bnu,

=
	(0)∑
n=0

ϑ0,nBnu = −(E′′ + F ′)u.

Then ((Eu)′ + Fu)′ = 0 or, equivalently, (Eu)′ + Fu = 0.

Finally, since 	(n) = 	 and ϑn,n+	 = (n + 	 + 1)�̃n,n+	+1 �= 0, for n� t + 1, then �̃n,n+	+1 �= 0, n� t + 1. This
yields the admissibility of the pair (E, F ) taking into account (3.4). �

Notice that this result appears as Proposition 7.16 in [12] without proof.
Our main result is the next one.

Theorem 3.5. For any monic polynomial E, with deg E = t, and any SMOP {Bn}n�0 with respect to u, the following
statements are equivalent.

(i) There exist a non-negative integer 	, an integer p�1, and an integer r �	 + t + 1, with 	 = max(t − 2, p − 1),

such that

n+	∑
�=n−	

�n,�B�(x) =
n+	∑

�=n−t

�n,�B
[1]
� (x), (3.36)

where

�n,n+	 = �n,n+	 = 1, n� max(	, t + 1), �r,r−	�r,r−t �= 0,

〈(Eu)′, Bn〉 = 0, p + 1�n�2	 + t + 1, 〈(Eu)′, Bp〉 �= 0,

and if p = t − 1, then 〈u, B2
p〉−1〈u, EB ′

p〉 /∈ N∗ (admissibility condition).
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(ii) There exists a polynomial F , deg F = p�1, such that

(Eu)′ + Fu = 0, (3.37)

where the pair (E, F ) is admissible.

Proof. (i) ⇒ (ii). Consider the SMP {�n}n�0 given by

�n+	+1(x) =
n+	∑

�=n−t

n + 	 + 1

� + 1
�n,�B�+1(x), n�	 + t + 1, (3.38)

�n(x) = Bn(x), 0�n�2	 + t + 1. (3.39)

We can easily deduce

�′
n+	+1(x) = (n + 	 + 1)

n+	∑
�=n−	

�n,�B�(x), n�	 + t + 1. (3.40)

Taking into account the linear functional u is quasi-definite, we get

〈(Eu)′, �n+	+1〉 = − 〈u, E�′
n+	+1〉,

= − (n + 	 + 1)

n+	∑
�=n−	

�n,�〈u, EB�〉 = 0, n�	 + t + 1.

From the assumption and Lemma 2.1, we get 〈(Eu)′, �n〉= 0, n�p + 1, and 〈(Eu)′, Bp〉 �= 0. If we denote {wn}n�0
the dual sequence of {�n}n�0, then we get

(Eu)′ =
p∑

�=1

〈(Eu)′, B�〉w�. (3.41)

Taking t̂ = 	 + t , 	̂ = 	 + 1, and r̂ = r + 	 + 1, (3.38), and (3.39) can be written as follows:

�n(x) =
n∑

�=n−̂t

�̃n,�B�(x), n� 	̂ + t̂ + 1,

�n(x) = Bn(x), 0�n� 	̂ + t̂ ,

where

�̃n,� = n

�
�n−	−1,�−1, n − t̂ ���n, n� 	̂ + t̂ + 1,

�̃̂r,̂r−̂t = r + 	 + 1

r − 	 + 1
�r,r−t �= 0 (̂r �2	 + t + 2� 	̂ + t̂ + 1).

From Lemma 2.2, and (2.1), it follows wk = uk = (Bk/〈u, B2
k 〉)u, 0�k� 	̂ = 	 + 1. So, (3.41) becomes

(Eu)′ + Fu = 0, (3.42)

where F(x) = ∑p
�=1(〈u, EB ′

�〉/〈u, B2
� 〉)B�(x). Since, 〈u, EB ′

p〉 �= 0, then deg F = p.

From the assumption, if p = t − 1, then (1/p!)F (p)(0) = 〈u, B2
p〉−1〈u, EB ′

p〉 /∈ N∗. Hence, the pair (E, F ) is
admissible with associated integer 	.

(ii) ⇒ (i). From Lemma 3.1(iii), there exists a polynomial F, deg F = p�1, such that

E(x)B ′
n(x) − (E′ + F)(x)Bn(x) =

n+	(n)+1∑
�=n−t+1

�̃n,�B�(x), n� max(t − 1, 0), (3.43)

13



where

�̃n,n−t+1 �= 0, n� max(t − 1, 0), (3.44)

�̃n,0 = −(u)−1
0 〈u, B2

n〉�0,n, 0�n� max(t − 1, 0), (3.45)

where 	 = max(t − 2, p − 1) and the pair (E, F ) is admissible.
Differentiating both sides of (3.43), we get

E(x)B ′′
n(x) − F(x)B ′

n(x) − (E′′ + F ′)(x)Bn(x) =
n+	(n)∑
�=n−t

�n,�B
[1]
� (x), n� t , (3.46)

where �n,� = (� + 1)�̃n,�+1, 0���n + 	(n), n� t.

From (3.31) and (3.46), we obtain (3.36) where

�n,� = ϑn,�

ϑn,n+	
, n − 	���n + 	, (3.47)

�n,� = (� + 1)�̃n,�+1

ϑn,n+	
, n − t ���n + t , (3.48)

�n,n−	�n,n−t = (n − t + 1)

ϑ2
n,n+	

ϑn,n−	�̃n,n−t+1 �= 0, n�	 + t + 1. (3.49)

Finally,

〈(Eu)′, Bn〉 = −〈u, FB ′
n〉 =

{0 p + 1�n�2	 + t + 1,

−(1/p!)F (p)(0)〈u, B2
p〉 �= 0, n = p = deg F.

From the admissibility of the pair (E, F ), if p = t − 1, then 〈u, EB ′
p〉/〈u, B2

p〉 /∈ N∗. �

4. Examples

In order to illustrate the result of Theorem 3.5, we study two examples.

4.1. First example

Let {Qn}n�0 be a SMOP with respect to the linear functional v solution of the functional equation [11]

v′ + �v = 0, (4.1)

where �(x)=−ix2 + 2x − i(�− 1), with quasi-definiteness conditions � /∈ ⋃
n�0 En, where E0 ={� ∈ C : F(�)= 0},

F (�) = ∫ +∞
−∞ eix3/3−x2+i(�−1)x dx, and for each integer n�1, En = {� ∈ C : �n(�) = 0}. Here, �n(�) is the Hankel

determinant of dimension n associated with v. Notice that v is semiclassical of class one.
The recurrence coefficients �n and 
n+1, n�0, for the sequence {Qn}n�0 are determined by the system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n + 1


n+1
= 2 − i(�n + �n+1), n�0,

i(
n+2 + 
n+1) = �(�n+1), n�0,


1 = −i�(�0), �0 = −i
F ′(�)

F (�)
.

(4.2)
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The sequence {Qn}n�0 is characterized by one of the two following relations (see [15])

• First structure relation

Q[1]
n (x) = Qn(x) + �n,n−1Qn−1(x), n�1, (4.3)

where �n,n−1 = −i
n
n+1/(n + 1), n�1.

• Second structure relation

(x + vn,0)Qn(x) = Q
[1]
n+1(x) + �nQ

[1]
n (x), n�0, (4.4)

where

vn,0 = i(n + 1)


n+1
− i
n+1
n+2

n + 2
− �n, n�1, v0,0 = − i
1
2

2
− �0,

�n = i(n + 1)


n+1
, n�1, �0 = 0.

Lemma 4.1. Let {Qn}n�0 be the SMOP with respect to the linear functional v satisfying (4.1), then

(i) The sequence {Qn}n�0 is not diagonal.
(ii) The coefficients vn,0 depend on n.

Proof. Assume {Qn}n�0 is diagonal with respect to 
, deg 
 = t, and index s. Then (see [14,15]), (t/2)�s� t + 2
and we have the following diagonal relation:


(x)Qn(x) =
n+t∑

�=n−s

�n,�Q
[1]
� (x), n�s, �n,n−s �= 0, n�s.

If we denote by {vn}n�0 and {v[1]
n }n�0 the dual sequences of {Qn}n�0 and {Q[1]

n }n�0, respectively, then v = �v0,

with � = (v)0 �= 0, and the last relation is equivalent (see [15]) to the following relation that we will also call diagonal
relation,


v[1]
n = kn�n+sv, n�0, (4.5)

where

kn = �n+s,n

〈v, Q2
n+s〉

,

and

�n+s(x) =
n+s∑
�=0

��,n

�n+s,n

〈v, Q2
n+s〉

〈v, Q2
�〉

Q�(x), n�0.

It is clear that v satisfies an infinite number of relations as (4.5). Indeed, by multiplying both hand sides of (4.5) by a
monic polynomial, we get another diagonal relation.

For this reason, we will assume t = deg 
. It is the minimum integer number such that v satisfies diagonal relations
as (4.5). Likely, (4.5) cannot be simplified.

Notice that t �1. Otherwise if we suppose that t = 0, then 0�s�2 and we recover the first structure relation
characterizing classical sequences. This contradicts the fact that the sequence {Qn}n�0 is semiclassical of class one.

Consequently, since t �1 and s�(t/2) then s�1.

Now, differentiating both hand sides of (4.5) and using (2.1), from the functional (4.1) and (v
[1]
n )′ =−(n+ 1)vn+1 =

−(n + 1)〈v, Q2
n+1〉−1Qn+1v, n�0, we obtain


̃v[1]
n = kn�n+s−1v, (4.6)
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where


̃(x) = t−1
′(x), �n+s−1(x) = t−1(�′
n+s(x) − �n+s(x)�(x) + dn
(x)Qn+1(x)),

dn = (n + 1)(〈v, Q2
n+1〉kn)

−1, n�0.

Notice that the polynomials �n+s−1 and 
̃ are monic, with deg 
̃ = t − 1�0.

In order to determine the degree of �n+s−1, we proceed in two steps. First, we multiply (4.5) by 
, and using (4.6)
as well as the quasi-definiteness of u, we obtain 
̃(x)�n+s(x)=
(x)�n+s−1(x). Second, analyzing the highest degree
of the last relation, we get deg �n+s−1 =n+ s −1, n�0. But, this contradicts the fact that t =deg 
. It is the minimum
integer number such that v satisfies diagonal relations as (4.5).

Hence, (i) holds.
The assertion (ii) is a straightforward consequence of (i) and (4.4). �

From the orthogonality of {Qn}n�0, relation (4.4) can be rewritten as follows:

Qn+1(x) + (�n + vn,0)Qn(x) + 
nQn−1(x) = Q
[1]
n+1(x) + �nQ

[1]
n (x), n�0, (4.7)

according to Theorem 3.5, taking E(x) = 1 and F(x) = �(x).

4.2. Second example (Bachène [3])

Consider the Hermite generalized orthogonal polynomial sequence {Hn(x; �)}n�0. We remind that it satisfies the
following recurrence relation:{

Hn+1(x; �) = xHn(x; �) − �nHn−1(x; �), n�0,

H0(x; �) = 1,
(4.8)

where �0 = 0, and �n = 1
2 (n + �(1 − (−1)n), n�1.

The quasi-definiteness condition is � �= −n − (1/2), n�0. Further, we are interested in the family of class one,
i.e., � �= 0. Notice that the Hermite sequence is obtained for � = 0.

The sequence {Hn(x; �)}n�0 is orthogonal with respect to the linear functional H(�) satisfying

(xH(�))′ + (2x2 − (2� + 1))H(�) = 0. (4.9)

It is well-known that {Hn(x; �)}n�0 is characterized by its orthogonality as well as by the following first structure
relation:

xH [1]
n (x; �) = Hn+1(x; �) + �nHn−1(x; �), n�0, (4.10)

where �0 = 0, �n = 2(n + 1)−1�n�n+1, n�1.

From Theorem 3.5, (4.9), and the symmetry of the polynomial sequence, i.e., Hn(−x; �) = (−1)nHn(x; �), n�0,

the Hermite generalized polynomial sequence {Hn(x; �)}n�0 satisfies

Hn+1(x; �) + �n,n−1Hn−1(x; �) = H
[1]
n+1(x; �) + �n,n−1H

[1]
n−1(x; �), n�1, (4.11)

where

�2n,2n−1 = �2n,2n−1 = 0, n�1,

�2n+1,2n = (n + 1)(2n + 2� + 1)

2n + 3
, n�1, �2n+1,2n = (n + 1)(2n + 1)

2n + 3
, n�1.

Notice that the Hermite generalized sequence can not satisfy a second structure relation

(x + an)Hn(x; �) = H
[1]
n+1(x; �) + bnH

[1]
n (x; �) + cnH

[1]
n−1(x; �), n�0, (4.12)

where an, bn, and cn, n�0, are complex numbers, with c0 = 0.
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This is the aim of the following Lemma.

Lemma 4.2. For � ∈ C∗ and � �= −n − ( 1
2 ), n�0, the Hermite generalized sequence {Hn(x; �)}n�0 does not satisfy

a relation as (4.12).

Proof. Since the polynomial sequence {Hn(x; �)}n�0 is symmetric, we can assume that an = bn = 0, n�0. Indeed,
from (4.12), we get

(−x + an)Hn(−x; �) = H
[1]
n+1(−x; �) + bnH

[1]
n (−x; �) + cnH

[1]
n−1(−x; �), n�0.

The symmetry of the sequences {Hn(x; �)}n�0 and {H [1]
n (x; �)}n�0 give

(x − an)Hn(x; �) = H
[1]
n+1(x; �) − bnH

[1]
n (x; �) + cnH

[1]
n−1(x; �), n�0. (4.13)

From (4.12) and (4.13), we easily deduce

xHn(x; �) = H
[1]
n+1(x; �) + cnH

[1]
n−1(x; �), n�0. (4.14)

So, this justify our assumption.
Further, multiplying both sides of (4.14) by x and taking into account (4.8) and (4.10), we get{�n+1 + cn = �n + �n+1, n�0,

cn�n−1 = �n�n−1, n�2.

For n = 3, c3�2 = �3�2, and �4 + c3 = �3 + �4. Then, �4 + �−1
2 �3�2 = �3 + �4. But, from (4.8) and (4.10), we get

� = 0. This yields a contradiction. �
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