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a b s t r a c t

The multi-point Metropolis algorithm is an advanced MCMC technique based on drawing
several correlated samples at each step and choosing one of them according to some
normalized weights. We propose a variation of this technique where the weight functions
are not specified, i.e., the analytic form can be chosen arbitrarily. This has the advantage
of greater flexibility in the design of high-performance MCMC samplers. We prove that
our method fulfills the balance condition, and provide a numerical simulation. We also
give new insight into the functionality of different MCMC algorithms, and the connections
between them.

1. Introduction

Monte Carlo statistical methods are powerful tools for numerical inference and stochastic optimization (see Robert and
Casella (2004), for instance). Markov chainMonte Carlo (MCMC)methods are classicalMonte Carlo techniques that generate
samples from a target probability density function (pdf) by drawing from a simpler proposal pdf, usually to approximate an
otherwise-incalculable (analytically) integral (Liu, 2004; Liang et al., 2010). MCMC algorithms produce a Markov chain with
a stationary distribution that coincides with the target pdf.

The Metropolis–Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is the most famous MCMC technique.
It can be applied to almost any target distribution. In practice, however, finding a ‘‘good’’ proposal pdf can be difficult. In
some applications, theMarkov chain generated by theMH algorithm can remain trapped almost indefinitely in a local mode
meaning that, in practice, convergence may not be reached.

The Multiple-Try Metropolis (MTM) method of Liu et al. (2000) is an extension of the MH algorithm in which the next
state of the chain is selected among a set of independent and identically distributed (i.i.d.) samples. This enables the MCMC
sampler to make large step-size jumps without a lowering the acceptance rate; and thus MTM can explore a larger portion
of the sample space in fewer iterations.

An interesting special case of the MTM, well-known in molecular simulation field, is the orientational bias Monte Carlo,
as described in Chapter 13 of Frenkel and Smit (1996) and Chapter 5 of Liu (2004), where i.i.d. candidates are drawn from a
symmetric proposal pdf, and one of these is chosen according to some weights directly proportional to the target pdf. Here,
however, the analytic form of the weight functions is fixed and unalterable.

Casarin et al. (in press) introduced a MTM scheme using different proposal pdfs. In this case the samples produced are
independent but not identically distributed. In Qin and Liu (2001), another generalization of theMTM (called themulti-point
Metropolismethod) is proposed using correlated candidates at each step. Clearly, the proposal pdfs are also different in this
case.

Moreover, in Pandolfi et al. (2010) an extension of the classical MTM technique is introduced where the analytic form of
the weights is not specified. In Pandolfi et al. (2010), the same proposal pdf is used to draw samples, so that the candidates
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generated in each step of the algorithm are i.i.d. Further interesting and related considerations about the use of auxiliary
variables for building acceptance probabilities within a MH approach can be found in Storvik (2011).

In this paper, we draw from the two approaches (Qin and Liu, 2001; Pandolfi et al., 2010) to create a novel algorithm
that selects a new state of the chain among correlated samples using generic weight functions, i.e., the analytic form of the
weights can be chosen arbitrarily. Furthermore, we formulate the algorithm and the acceptance rule in order to fulfill the
detailed balance condition.

Ourmethod allowsmore flexibility in the design of efficientMCMC samplerswith a larger coverage and faster exploration
of the sample space. In fact, we can choose any bounded and positive weight functions to either improve performance or
reduce computational complexity, independently of the chosen proposal pdf. Moreover, since in our approach the proposal
pdfs are different, adaptive or interacting techniques can be applied, such as those introduced by Andrieu and Moulines
(2006) and Casarin et al. (in press). An important advantage of our procedure is that, since in our procedure a new candidate
is drawn from a conditional pdf which depends on the samples generated earlier during the same time step, it constructs
an improved proposal by automatically building on the information obtained from the generated samples.

The rest of the paper is organized as follows. In Section 2 we recall the standard multi-point Metropolis algorithm. In
Section 3we introduce our novel schemewith genericweight functions and correlated samples. Section 4provides a rigorous
proof that the novel scheme satisfies the detailed balance condition. A numerical simulation is provided in Section 5 and
finally, in Section 6, we discuss the advantages of our proposed technique and provide an insight into the relationships
among different MTM schemes in literature.

2. Multi-point Metropolis algorithm

In the classical MH algorithm, a new possible state is drawn from the proposal pdf and the movement is accepted with a
suitable decision rule. In the multi-point approach, several correlated samples are generated and, from these, a ‘‘good’’ one
is chosen.

Specifically, consider a target pdf po(x) known up to a constant (hence, we can evaluate p(x) ∝ po(x)). Given a current
state x ∈ R (we assume scalar values only for simplicity in the treatment), we draw N correlated samples each step from a
sequence of different proposal pdfs {πj}

N
j=1, i.e.,

y1 ∼ π1(·|x), y2 ∼ π2(·|x, y1), y3 ∼ π3(·|x, y1, y2), . . . , yN ∼ πN(·|x, y1, . . . , yN−1). (1)

Therefore, we can write the joint distribution of the generated samples as

qN(y1, . . . , yN |x) = qN(y1:N |x) = π1(y1|x)π2(y2|x, y1) · · · πN(yN |x, y1:N−1), (2)

i.e.,

qN(y1:N |x) = π1(y1|x)
N
j=2

πj(yj|x, y1:j−1) (3)

where, for brevity, we use the notation y1:j , [y1, . . . , yj] and yj:1 , [yj, . . . , y1] denotes the vector with the reverse order.
A ‘‘good’’ candidate among the generated samples is chosen according to weight functions

ωj(z1, . . . , zj+1) ∈ Rj+1
→ R+

where z1, . . . , zj+1, are generic variables and j = 1, . . . ,N . The specific analytic form of theweights needed in this technique
is

ωj(z1, . . . , zj+1) , p(z1)π1(z2|z1) · · · πN(zj|z1:j−1)λj(z1, . . . , zj+1), (4)

where p(x) ∝ po(x) is the target pdf, λj can be any bounded, positive, and sequentially symmetric function, i.e.,

λj(z1, z2:j+1) = λj(zj+1:2, z1). (5)

Note that, since qj(z2:j+1|z1) = π1(z2|z1) · · · πN(zj|z1:j−1) (see Eq. (2)), we can rewrite the weight functions as

ωj(z1, . . . , zj+1) = p(z1)qj(z2:j+1|z1)λj(z1, z2:j+1). (6)

2.1. Algorithm

Given a current state x = xt , the multi-point Metropolis algorithm consists of the following steps:

1. Draw N samples y1:N = [y1, y2, . . . , yN ] from the joint pdf

qN(y1:N |x) = π1(y1|x)
N
j=2

πj(yj|x, y1:j−1)

namely, draw yj from πj(·|x, y1:j−1), with j = 1, . . . ,N .
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2. Calculate the weights ωj(yj:1, x) as in Eq. (4), and normalize them to obtain ω̄j, j = 1, . . . ,N .
3. Draw a y = yk ∈ {y1, . . . , yN} according to their weights ω̄1, . . . , ω̄N .
4. Set

x∗

1 = yk−1, x∗

2 = yk−2, . . . , x∗

k−1 = y1, (7)

and finally x∗

k = x. Then, draw other ‘‘reference’’ samples

x∗

j ∼ πi(·|y, x∗

1:j−1), (8)

for j = k + 1, . . . ,N . Note that for j = k + 1 we have

πj(·|y, x∗

1:j−1) = πj(·|y, x∗

1 = yk−1, . . . , x∗

k−1 = y1, x∗

k = x),

and, for j = k + 2, . . . ,N , we have

πj(·|y, x∗

1:j−1) = πj(·|y, x∗

1 = yk−1, . . . , x∗

k−1 = y1, x∗

k = x, x∗

k+1:j−1).

5. Compute ωj(x∗

j:1, y) as in Eq. (4).
6. Let xt+1 = yk with probability

α = min

1,

N
j=1

ωj(yj:1, x)

N
j=1

ωj(x∗

j:1, y)

 , (9)

otherwise set xt+1 = xwith probability 1 − α.
7. Set t = t + 1 and repeat from step 1.

The kernel of this technique satisfies the detailed balance condition as shown in Qin and Liu (2001). However, to fulfill this
condition, the algorithm requires the weights to be defined exactlywith the form in Eq. (4).

3. Extension with generic weight functions

Now, we consider generic weight functions ωj(z1, . . . , zj+1) ∈ Rj+1
→ R+, that have to be (a) bounded and (b) positive.

In this case, the algorithm can be described as follows.

1. Draw N samples y1:N = [y1, y2, . . . , yN ] from the joint pdf

qN(y1:N |x) = π1(y1|x)
N
j=2

πj(yj|x, y1:j−1)

namely, draw yj from πj(·|x, y1:j−1), with j = 1, . . . ,N .
2. Choose some suitable (bounded and positive) weight functions. Then, calculate each weight ωj(yj:1, x), and normalize

them to obtain ω̄j, j = 1, . . . ,N .
3. Draw a y = yk ∈ {y1, . . . , yN} according to ω̄1, . . . , ω̄N , and set W̄y = ω̄k, i.e.,

W̄y ,
ωk(yk:1, x)
N
j=1

ωj(yj:1, x)
. (10)

4. Set

x∗

1 = yk−1, x∗

2 = yk−2, . . . , x∗

k−1 = y1, (11)

and finally x∗

k = x. Then, draw the remaining ‘‘reference’’ samples

x∗

j ∼ πj(·|y, x∗

1:j−1), (12)

for j = k + 1, . . . ,N .
5. Compute the general weights ωj(x∗

j:1, y) and calculate the normalized weight

W̄x ,
ωk(x∗

k:1, y)
N
j=1

ωj(x∗

j:1, y)
. (13)
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6. Set xt+1 = yk with probability

α = min

1,

p(y)π1(x∗

1|y)π2(x∗

2|y, x
∗

1) · · · πk(x∗

k |y, x
∗

1, . . . , x
∗

k−1)

p(x)π1(y1|x)π2(y2|x, y1) · · · πk(yk|x, y1, . . . , yk−1)

W̄x

W̄y


. (14)

We can rewrite it in a more compact form as

α = min

1,

p(y)qk(x∗

1:k|y)
p(x)qk(y1:k|x)

W̄x

W̄y


, (15)

where we recall

qk(y1:k|x) = π1(y1|x)
k

j=2

πj(yj|x, y1:j−1) (16)

where k is the index of the chosen sample yk.
Otherwise, set xt+1 = xwith probability 1 − α.

7. Set t = t + 1 and repeat from step 1.

We emphasize that in the algorithm above we have not specifically defined the weight functions.

3.1. Examples of weight functions

The weight functions must to be bounded and positive. The choice can depend on some criteria such as improving
performance or reducing computational complexity. If the target density is bounded, two possibilities are

ωj(z1, . . . , zj+1) = p(z1), (17)

or

ωj(z1, . . . , zj+1) = p(z1)p(z2) · · · p(zj+1), (18)

with j = 1, . . . ,N . Other possible choices are the following

ωj(z1, . . . , zj+1) =


p(z1)

qj(z1:j|zj+1)

θ

, (19)

where θ > 0 is a positive constant, or

ωj(z1, . . . , zj+1) =
p(zj)

q1(zj|zj+1)

p(zj−1)

q2(zj−1:j|zj+1)
· · ·

p(z1)
qj(z1:j|zj+1)

, (20)

and a third possible choice

ωj(z1, . . . , zj+1) =
p(z1)

πj+1(z1|zj+1:2)
, (21)

whereπj+1(z1|zj+1:2) is the j+1-th proposal pdf used in step 1 of the algorithm. It is important to remark that the z-variables
are ordered such that z1 is the most recently generated sample, zj is the first drawn sample, and zj+1 represents the previous
step of the chain.

Clearly, owing to the great flexibility in the construction of the weight functions, it can be difficult to assert which is
the best choice in terms of the performances of the algorithm. However, evidently, in general, including more statistical
information in theweights can improve performance yet, at the same time, increases the computational cost of the designed
technique.

More specific theoretical or empirical studies are needed to clear up this issue. Indeed, observe that the point of the best
selection of the weights is even unclear in the classical MTM by Liu et al. (2000), as for the method in Pandolfi et al. (2010),
for instance.

3.2. Relationship with the independent multiple tries scheme

In Pandolfi et al. (2010) i.i.d. candidates are proposed at each time step. The acceptance probability α in Eqs. (14)–(15)
may appear similar to the acceptance probability in Pandolfi et al. (2010). However, note that the expression of α in Eq. (15)
is different to the acceptance probability in Pandolfi et al. (2010) for two main reasons:

(a) the first factor
p(y)qk(x∗1:k|y)
p(x)qk(y1:k|x)

is distinct (see Eqs. (16)), and
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(b) the definition and computation of W̄x and W̄y (see Eqs. (10) and (13)) are also different since here the weight functions
take into account the previous generated samples (in the same time step).

If here we set πj(yj|x, y1:j−1) = π(yj|x) for all j = 1, . . . ,N , then the steps of our algorithm coincide exactly with those
of the technique in Pandolfi et al. (2010) except for step 4. Indeed, the procedures of choosing the ‘‘reference’’ points are
different in the two methods (in our case, some of them are fixed while in Pandolfi et al. (2010) all the reference points are
chosen randomly). We can find a specular difference between the methods in Liu et al. (2000) and Qin and Liu (2001).

3.3. Multi-point Metropolis as specific case

In the case when the weight functions are chosen as in Eq. (6), i.e., ωk(z1, . . . , zj+1) = p(z1)qj(z2:j+1|z1)λj(z1, . . . , zj+1),
where

λj(z1, z2:j+1) = λj(zj+1:2, z1), (22)

is sequentially symmetric, then our scheme coincides exactly with the standard multi-point Metropolis method in Qin and
Liu (2001). Indeed, first of all we can rewrite the expression (15) as

α = min

1,
p(y)qk(x∗

1:k|y)
p(x)qk(y1:k|x)

ωk(x∗

k:1, y)
ωk(yk:1, x)

N
j=1

ωj(yj:1, x)

N
j=1

ωj(x∗

j:1, y)

 . (23)

Then, recalling the Eq. (11), i.e., x∗

1 = yk−1, x∗

2 = yk−2, . . . ., x∗

k−1 = y1, x∗

k = x and y = yk, the two weights ωk(x∗

k:1, y) and
ωk(yk:1, x) can be expressed exactly as

ωk(x∗

k:1, y) = ωk(x∗

k = x, x∗

k−1 = y1, . . . , x∗

1 = yk−1, y = yk)
= p(x)qk(y1:k|x)λk(x, y1:k),

and

ωk(yk:1, x) = ωk(yk = y, yk−1 = x∗

1, . . . , y1 = x∗

k−1, x = x∗

k)

= p(y)qk(x∗

1:k|y)λk(y, x∗

1:k),

respectively. Therefore replacing the weights ωk(x∗

k:1, y) and ωk(yk:1, x) in Eq. (23), we obtain

α = min

1,
λk(x, y1:k)
λk(y, x∗

1:k)

N
j=1

ωj(yj:1, x)

N
j=1

ωj(x∗

j:1, y)

 = min

1,

N
j=1

ωj(yj:1, x)

N
j=1

ωj(x∗

j:1, y)

 ,

that coincides with acceptance probability in Eq. (9) of the standard multi-point Metropolis algorithm. Note that we have
considered λk(x, y1:k) = λk(y, x∗

1:k). Indeed, since x∗

k = x we can write λk(x, y1:k) = λk(y, x∗

1:k−1, x), then because
x∗

1:k−1 = yk−1:1, we obtain λk(x, y1:k) = λk(y, yk−1:1, x), and as y = yk, finally we have

λk(x, y1:k) = λk(yk:1, x),

that is exactly the condition assumed in Eq. (22). In the following, we show the proposed technique satisfies the detailed
balance condition.

4. Proof of the detailed balance condition

To guarantee that a Markov chain generated by an MCMC method converges to the target distribution p(x) ∝ po(x), the
kernel A(y|x) of the corresponding algorithm fulfills the following detailed balance condition1

p(x)A(y|x) = p(y)A(x|y).

First of all, we have to find the kernel A(y|x) of the algorithm, i.e., the conditional probability to move from x to y. For
simplicity, we consider the case x ≠ y (case x = y is trivial). The kernel can be expressed as

A(y = yk|x) =

N
j=1

h(y = yk|x, k = j), (24)

1 Note that the detailed balance condition is sufficient but not necessary condition. Namely, the detailed balance ensures invariance. The converse is not
true. Markov chains that satisfy the detailed balance condition are called reversible.
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where h(y = yk|x, k = j) is the probability of accepting xt+1 = yk given xt = x when the chosen sample yk is the j-th
candidate, i.e., when yk = yj.

In the sequel, we study just one h(y = yk|x, k) for a generic k ∈ {1, . . . ,N}. Indeed, if h(y = yk|x, k) fulfills the
detailed balance condition (it is symmetric w.r.t. x and y), then A(y|x) also satisfies the detailed balance because it is a
sum of symmetric functions. Therefore, we want to show that

p(x)h(y|x, k) = p(y)h(x|y, k),

for a generic k ∈ {1, . . . ,N}. Following the steps above of the algorithm, we can write

p(x)h(y|x, k) = p(x)


· · ·

 
N
j=1

πj(yj|x, y1:j−1)


ωk(yk:1, x)
N
j=1

ωj(yj:1, x)


N

i=k+1

πi(x∗

i |y, x
∗

1:i−1)



· min

1,

p(y)qk(x∗

1:k|y)
p(x)qk(y1:k|x)

W̄x

W̄y


dy1:k−1dyk+1:Ndx∗

k+1:N .

Note that each factor inside the integral corresponds to a step of themethod described in the previous section. The integral is
over all auxiliary variables. Recalling the definition of the joint probability qk(y1:k|x) and W̄y, the expression can be simplified
to

p(x)h(y|x, k) = p(x)


· · ·


qk(y1:k|x) ·


N

j=k+1

πj(yj|x, y1:j−1)


· W̄y ·


N

i=k+1

πi(x∗

i |y, x
∗

1:i−1)



· min

1,

p(y)qk(x∗

1:k|y)
p(x)qk(y1:k|x)

W̄x

W̄y


dy1:k−1dyk+1:Ndx∗

k+1:N ,

and we only arrange it, obtaining

p(x)h(y|x, k) =


· · ·


p(x)qk(y1:k|x)W̄y


N

j=k+1

πj(yj|x, y1:j−1)

 
N

i=k+1

πi(x∗

i |y, x
∗

1:i−1)



· min

1,

p(y)qk(x∗

1:k|y)
p(x)qk(y1:k|x)

W̄x

W̄y


dy1:k−1dyk+1:Ndx∗

k+1:N .

Now, we multiply the two members of the function min[·, ·] by the factor p(x)qk(y1:k|x)W̄y so that

p(x)h(y|x, k) =


· · ·

 
N

j=k+1

πj(yj|x, y1:j−1)

 
N

i=k+1

πi(x∗

i |y, x
∗

1:i−1)


· min


p(x)qk(y1:k|x)W̄y, p(y)qk(x∗

1:k|y)W̄x

dy1:k−1dyk+1:Ndx∗

k+1:N .

Therefore, it is straightforward that the expression above is symmetric in x and y. Indeed, we can exchange the notations of
x and y, and x∗

i and yj, respectively, and the expression does not vary. Then we can write

p(x)h(y|x, k) = p(y)h(x|y, k). (25)

We can repeat the same development for each k obtaining

p(x)A(y|x) = p(y)A(x|y), (26)

that is the detailed balance condition. Therefore, the generated Markov chain converges to our target pdf.

5. Toy example

Nowweprovide a simple numerical simulation to show an example ofmulti-point schemewith genericweight functions
and compare it with the technique in Pandolfi et al. (2010). Let X ∈ R be a random variable2 with bimodal pdf

po(x) ∝ p(x) = exp

−(x2 − 4)2/4


. (27)

Our goal is to draw samples from po(x) using our proposed multi-point technique.

2 Note that we consider a scalar variable only to simplify the treatment. Clearly, all the considerations and algorithms are valid for multi-dimensional
variables.
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a b c

Fig. 1. (a) The target density po(x) (solid line) and the normalized histogram of the samples generated using the proposed scheme and with N = 10. (b)
The mean acceptance probability of jumping in a new state, depending on the number of tries N . We show the results of the technique in Pandolfi et al.
(2010) (dashed line for weights ω

(1)
j and dotted line with triangles for ω

(3)
j ) and our method (squares for ω

(1)
j , solid line with ω

(2)
j , and with circles with

ω
(3)
j ). (c) Estimated linear correlation coefficient depending on the number of tries N for the different techniques.

We consider Gaussian densities as proposal pdfs (a standard choice)

πj(yj|xt , y1:j−1) ∝ exp

−

(yj − µj)
2

2σ 2


(28)

where we use σ 2
= 1 and

µj =
γ1

i − 1
(xt + y1 + · · · + yi−2) + γ2yi−1, (29)

i.e, µ is a weighted mean (γ1 + γ2 = 1) of the previous state xt and the previous generated samples (at the same time step).
Specifically, we set γ1 = 0.2 and γ2 = 0.8.

Moreover, we choose very simple weight functions depending only on first variable and on the target pdf

ω
(1)
j (z1, z2, . . . , zj+1) = [p(z1)]θ , (30)

with θ = 1/2. Note that p(·) is bounded and also positive (since it is a pdf). This kind of weight cannot be used in the
multi-point scheme of Qin and Liu (2001), expect for θ = 1 and using a specific sequence of the proposal pdfs. Moreover,
for θ = 1 this weight function can be also used in a standard MTM of Liu et al. (2000) if the chosen proposal density π(y|x)
is symmetric (i.e, π(y|x) = π(x|y) and choosing λ(x, y) =

1
π(x|y) ).

We also compare the performances of the proposed algorithms with the weights as

ω
(2)
j (z1, . . . , zj+1) = p(z1)p(z2) · · · p(zj+1), (31)

and

ω
(3)
j (z1, . . . , zj+1) =

p(z1)
πj+1(z1|zj+1:2)

. (32)

Then, we run the proposed multi-point algorithm with different numbers N of candidates and calculate the estimated
acceptance rate (the averaged probability of accepting a movement) and linear correlation coefficient (between one state

of the chain and the next). We also run the method in Pandolfi et al. (2010) with proposal pdf π(yj|xt) ∝ exp

−

(yj−xt )2

2σ 2


and compare the performances, using weight functions as in Eq. (30) and the third type in Eq. (32). Because the samples are
generated independently, we do not compare using weights in Eq. (31), as statistically this no longer makes sense.

Moreover, observe that in the scheme of Pandolfi et al. (2010) (where the candidates are drawn independently), the
weight functions in Eq. (32) become ω(3)(yj, xt−1) =

p(yj)
π(yj|xt−1)

where xt−1 is the previous step of the chain.3Note also that

this particular choice of weights ω(3) can be used in the standard MTM of Liu et al. (2000) (by choosing λ(x, y) =
1

π(y|x)π(x|y) )
and, in this case, the technique of Pandolfi et al. (2010) coincides with a standard MTM.

Fig. 1(a) depicts the target density po(x) (solid line) and the normalized histogram of 100, 000 samples drawn using
our proposed scheme and N = 10. Fig. 1(b)–(c) illustrate the mean acceptance probability and the estimated correlation
coefficient (for different values of N and averaged using 5000 runs) of the two techniques and different choice of weights:
our method is shown with squares using ω

(1)
j , with solid line using ω

(2)
j and with circles using ω

(3)
j . The performances of the

3 Note that, in the expression of the weights ω(3)(yj, xt−1), we remove the subscript j because in Pandolfi et al. (2010) the analytic form of the weights
is the same for each generated sample yj , j = 1, . . . ,N .
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Fig. 2. Comparison of differentMTM schemes in literature according to the flexibility in the choice of the proposal andweight functions.With the acronym
OBMC we indicate the orientational bias Monte Carlo introduced by Frenkel and Smit (1996).

method in Pandolfi et al. (2010) are depicted with dashed line corresponding to the first choice ω
(1)
j , and dotted line with

triangles for ω
(3)
j .

We can see although the proposed technique always attains smaller acceptance rates, the resulting correlations are
always smaller than the correlations obtained by the othermethod, except usingweightsω

(2)
j in Eq. (31). Moreover, the best

results are obtained with the proposed technique using the weights ω
(3)
j in Eq. (32). In this case, the correlation decreases

when N increases, up to 0.72 with N = 100.

6. Discussion

In thiswork,we have introduced aMetropolis schemewithmultiple correlated pointswhere theweight functions are not
defined specifically, i.e., the analytic form can be chosen arbitrarily. We proved that our novel scheme satisfies the detailed
balance condition.

Our approach draws from two different approaches (Pandolfi et al., 2010; Qin and Liu, 2001) to form a novel efficient and
flexible multi-point scheme.

The multi-point approach with correlated samples provides different advantages over the standard MTM. For instance,
themulti-point procedure can iteratively improve the proposal pdfs in twodifferentways. Firstly, since the proposal pdfs can
be distinct, as in Casarin et al. (in press), it is possible to tune the parameters of each proposal in every time step. Secondly,
since the candidates are generated sequentially, successive proposal pdfs can be improved learning from the previously
produced samples during the same time step.

Moreover, in our technique, the only constraints of the weight functions are that they must be bounded and positive,
unlike in the existing multi-point Metropolis algorithm (Qin and Liu, 2001) which is based on a specific definition of the
weight functions. Here the weights can be chosen with respect to some criteria such as improving performance or reducing
computational complexity. Thus ourmethod avoids any control or check the existence of a suitable functionλ and, therefore,
the selection of the weight functions is broader and easier.

It is interesting to observe that, in general, the function λmay depend on the proposal pdf for a specific choice of weights
and, in some cases, may entail certain constraints on the proposal pdf (such as that it be symmetric, for instance). An
important consequence of this, it is that the weights can be chosen independently of the specific proposal pdf used in the
algorithm. Namely, the proposal distribution and the weight functions can be selected separately, to fit well to the specific
problem and to improve the performance of the technique. However, further theoretical or empirical studies are needed to
determine the best choice of weight functions given a certain proposal and target density.

Furthermore, unlike in Pandolfi et al. (2010), in our method the weights can depend on the previous candidates, and
the dimension of the weight functions grows from R2 to RN , thus being more general and potentially more powerful. Fig. 2
illustrates the relationships among different MTM schemes according to the flexibility in the choice of the proposal and
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weight functions. Finally, we have also shown a numerical simulation and a simple multi point scheme that provides good
performances reducing the correlation in the produced chain.
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