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i Inductive Functional Programming

= R. Olsson. Inductive Functional
Programming Using Incremental
Program Transformation. Artificial
Intelligence Journal. 74:1. 1995

= ADATE: Automatic Design of Algorithms
Through Evolution
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i Motivation

= Loops and recursion are hard for GP

= Crossover Is a very low-level program
transformation operator

= Unlike GP, exhaustive search, from
simple to complex programs

= Implicitely, it assumes Occam’s Razor:
simpler programs are more likely to be
correct
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i Representation Language

= ML-ADATE: A functional language based
on ML

= Why a functional language?: no global
variables, effects of subexpresions are
local, and changes to them remain local

= Usually functional programs are smaller
than imperative ones (and the system
looks for simple programs)
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i ADATE Lenguage

= Subset of ML
= Type definitions: tuples and lists

= Definitions of Functions (and
variables) (in let sentences)

= Case sentences (conditionals)
= It allows for recursion
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‘L Case Definitions (boolean)

= If (A<B) then C else D

Case (A<B) of
False => D
| True =>C
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Case Definition (boolean
expressions)

rogra =
fun £ (V2 4] =
case Vo 4 of
nil = Vi 4
| cons( Vi aa, Vi &b | =>
let
fun ga diS4ed (Vi doded) =
case Wi dbdeld of
nil =» cons( V2 _aa, nil |
| consd M2 _cheSd NP _cheS2 ) =k
case |[(Va aa < Va chefl) |of

falEE';F'EEEET'?E:EEEEI, ga d8ded | V2 chefz | |
| true =:
cons i Ve aa, V2 dSdeld |

in
gae doded( £ V2 ab | |
end g Tutorial



Case Definitions (for types,

i like lists)

= If (A is the empty list) then B else C
Case A of

Nil => B

| ALl::AS1 =>C
= (Al::AS1 is a list made of an element Al and

a sublist AS1. A=[1,2,3], Al=1, AS1=[2,3])
= For data types, the branches in the case

must correspond to the type definition

= A list can either be:
= the empty list (NIL)

= or a list made ORTCQ(%%QL(@&’26%mgm£%§}duﬁﬁ/§;?2gramming Tutorial




Case Definition (list types)

rogram = A list can be either:
fun £ iHE_%] = _
case Vi 4 of *The empty list NIL
nil =» Vi 4 _
| cons{ VZ aa, VZ &b | =» A construction of an
let element and a list:
fun gE_Iﬂ.Ei"-IEE i‘i.FE_dB‘&EEJ] = cons(element, |iSt)
case HE_I:lEI‘&EB of

nil =» cons( V2 _aa, nil |
| cons( V2 chesl, Vi chedi | |=>
case (Ve aa < Va chedl) of

false => cons( Vi chedl, gi dSd4ed( Vi chedBi | |

| true =:
cons i Ve aa, V2 dSdeld |
in
gae doded( £ V2 ab | |
endc

g Tutorial



Function (subroutine)
‘L Definitions (local)

let
fun g(x) = 3*Xx
In

g(3)
end
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Function Definitions

rogram =
fun £ (Va2 4] =
case Vo 4 of
nil => Ve 4
| cons( Vi aa, Vi &b | =>
let
fun g2 dodes (V2 d34ed) =
= s
nil =» cons( V2 _aa, nil |
| cons( V2 chesl, Vi chedi | =>
case (Ve aa < Va chefl) of
false => cons( Vi chedl, gi dSd4ed( Vi chedBi | |
| true =:
cons i Ve aa, V2 dSdeld |

in
gae doded( £ V2 ab | |
end g Tutorial




i Specifications in ADATE

= A set of types

= Primitive functions / terminals

= Type of the program £ to be inferred
= Asetof inputs {l, I,, ..., |..}

= Well chosen, incremental difficulty and special
cases

= A fitness function (output evaluation oe) that
evaluates programs, taking into account the
iInput/output pairs

= 1(15,1(1), (12:1(12)), ... (1,,1(1,))}
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i Partially Correct Programs

= They can return:
= The correct answer
= Don’t know (?)
= The wrong answer
= Maximum number of calls reached
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The Output Evaluation
i Function (oe)

= Let P the candidate solution (program) to be
evaluated

= Input to oe:
= list of [(1,, P(1,)), ..., (1., P(1.))]
= Output from oe:

= Number of correct (N.), wrong (N,,), and don’t
know answers

= List of grades / fitness [g4, J,, ..., ,]: list of real
values that measure the quality of the P’s

outputs.
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i Input/Output Pairs and Grades

= In some cases an |/0O specification is
adequate:

= Reverse list: ([1,2,3], [3,2,1]), ([2,1], [1,2])
= In other cases, a graded value Is better

= Pacman: [g, = number of points, g, = time
the Pacman survived]

= TSP: [g, = length of the path]
= Shortest path for robot navigation, etc.
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Example of Specification: Sort.

i /0 pairs

- ([0, 1) .([0,2,11, [0,1,2] )
* ([0], [0]) * ([1,0,2],[0,1,2] )
* ([0,1],[0,1] ) e ([1,2,0], [0,1,2] )
* ([1,0], [0,1] ) e ([2,0,1], [0,1,2] )
- (10,1,2], [0,1,2] ) e ([2,1,0], [0,1,2] )
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i Specification of Sort. Datatype

= datatype list = nil | cons of int * list

= That is, a list of integers can either be:
= An empty list (nil)

= A construction of an integer and another
list (like [1], [1,3], ...)
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Specification of Sort.

i Primitives

. Funs_to_use — [Ilfalsell, Iltruell, II<|I’ Ilnilll, llconsll]
= cons (a, (bc)) =(a, b, c)

= That Is, very primitive functions indeed. Sort
was built from scratch
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Specification of Sort. Output
i Evaluation Function (oeg)

= It just counts the number of correct and
wrong outputs predicted, from the 1/O set

= No grades are used (but they could be used,
by measuring the degree of disorder In the
output list or how far Is an element from its

final position)
= EX: ([3,2,1], [1,2,3]), but P([3,2,1]) =
[2,1,3].g,=1+1=2
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Components for the Heuristic

i Functions

= Output evaluation function (oe) (“fitness”):
= N., N,,, [grade,, ..., grade,]

= S: Syntactic complexity on the space of
syntactically correct programs (/N is the total
number of nodes and m;is the number of
possible symbols at node J):

. l!'lg _'.i_
T lewes., awa,.

- 2 - —

= T: Time Complexity:

= Number of recursive calls and “calls” to /ets for all
Inputs
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‘L ADATE Heuristic Functions pe;

= Absolute fithess values are not assigned to
programs. Instead, they are compared pairwise

= Pe, to minimize in lexicographic order (if draws
In the first component, compare the second, and

SO 0n)

! Value returned by pe;

| | =N, :: Grades @ [N, ,S,7"
21 =N, :: Grades @ [N,,T,5]
31 [N, ,=N.] @ Grades @ [S5,7"
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Atomic Transformations

= R (Replacement): Replacement changes part of the
iIndividual with new expressions. This is the only
transformation that changes the semantics of the
program

= REQ (Replacement without making the individuals
fitness worse): Does the same as Replacement but
now the new individual is guaranteed to have an
equal or better fitness (several R are made, and the
best of the non-worsening Rs Is chosen)
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i Atomic Transformations

= ABSTR (Abstraction): takes an expression in the
Individual and puts that expression in a function in
a /et...in block and replaces the expression with a
call to that function.

= CASE-DIST (Case distribution): takes a case expression
Inside a function call and moves the function call into each
of the case code blocks.

= EMB (Embedding): changes the return type of functions in
/et ... /n blocks, in order to make it more general
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‘__L Example of Replacement

fun sort Xs = case Xs of nil => Xs | X1::X%s1 =}<:>

fun sort Xs =

!

fun sort A= =

case Xs of nil => ¥d=
| X1::¥X=s1 =>|case X=s1 of nil => X= | X2::Xs2 =

case MNs of nil => XKEs
| X1: . 1 ==

case<:ff>af ] =
‘l’| X2: 1 Xs2 =>|case X2<X1 of true => 7 | false => X=

fun sort Xs =

case Ks of nil => K=

| X1::Xs1 =>

caselsﬂrt Isﬂ of mail => Xs

| X2::¥Xs2 => case X2<X1 of true => 7 | false => X=s
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Expression Synthesis for
‘L Replacement

= They are generated (enumerated) from
small to large, using case sentences,
and the primitives
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Restrictions In Expression
i Synthesis In Recursive Calls

= Let g(A;, A,) be a recursive call within g(V,, V,)
= Then some A, has to be smaller than V.

fun sort fs =
case Xs of nil => Xs Xs1 smaller than Xs = X1::Xs1

|l X1::Xs1|=>

case Enrﬂ Isllnf nil => iIs

| X2::X82 => case X2<X1 of true => 7 | false => Xs

= |t does not guarantee termination, and not all
possible forms of recursivity are included

= But the aim Is to reduce the number of
synthesized expressions anyway
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Restrictions In Expression
i Synthesis In Case Sentences

= More than one branch must be
activated, otherwise the case sentence
IS removed

s The number of branches in the case
expression depends on the type of the
variable. If A 1s a list:

Case A of
Nil => B
| Al::AS1 =>C
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Abstraction (Function
* Definition)

1.-
let fun g“l"’im : H(‘lsl";;‘:l) m g(flﬂ?[h) eﬂd,




i Example of Abstraction

fun sort Xs =

case Xs of nil => Xs
| X1::Xs1 =>
case sort ¥sl1 of nil => XK=
| X2::Xs82 => case X2<X1 of true => 7 | false =>

!

fun sort EKs =

case XKs of nil => Ks
| X1::Xs1 =>
let fun g V1 =
case V1 of nil => XK=
| X2::Xs2 => case X2<X1 of true => 7 | false => Xs
in
gisort Xs1)
and Tutorial




* Distribution Case

hAy,... ACcasb of Matchy => £y | ... | Madeh, = Ly Ay, 4y

!

case [+ of

Matchy => h{Aq, ... A By Aspqa ., AL

| J1-fﬂl!['lr|!-n == h{..-il., e ..-*1,:- -III—’-“- u4ﬁ+1 ------ 4 .I'|'I-:|
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Compound Transformation.
* Coupling Rules

l. REC} = K. The R is applied in the expression introduced by the REQ).

2. REQ) = ABSTR. The ABSTR is such that the expression introduced by the REQ occurs in
the H(EY, ..., Fy ) used by the ABSTR but not entirely in H.

4. ABSTR — R. The R 1s applied in the the right hand side H(V,, ..., V) of the 1let-definition
introduced by the ABSTR.

1. (a) ABSTR — REQ!or (b) ABSTR — REQ! REQ!. The REQ(s) are applied in H{Vi...., Vy).
5. ABSTR = EMB! The let-function introduced by the ABSTR is embedded.

. CASE-DIST = ABSTR. The ABSTR is such that the root of H{Ey, . .., £,) was marked by
the CASE-DIST.

(. CASE-DIST = K. The R is such that the root of the expression Sub, which is replaced by
the R, was marked by the CASE-DIST,

3. EMB — R. The R is applied in the right hand side of the definition of the embedded function.
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22 Compound

i Transformations (forms)
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i Search in ADATE

= Basically, exhaustive, no randomization, but uses
some heuristics in expression synthesis and
program generation

= |t starts with the empty program ?

= Then program space is explored from small to
large programs (Occam’s Razor)

= New programs are generated by means of forms
(compound transformations)

= Search = two nested Iiterative deepening
processes
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Search in ADATE. Iterative
i Deepening.

= Work; = number of individuals to be
generated at iteration /

= Work, = 10000

= Every iteration, Work s increased
exponentially:
« Work,, , = 10000*a

= a = 3 from theoretical and practical
considerations
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Search in ADATE. Primary

‘L Iteration

= Iteration O: generate 10000 programs
= |teration 1: generate 30000 programs
= |teration 2: generate 90000 programs
s EtC.
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I[terative Deepening.
i Secondary lteration

= Work, it is divided equally among all
the forms (22 compound
transformations)

= That is, for every form, Work; /22
programs should be produced
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I[terative Deepening.

i Secondary lteration

1.

Selection: A program is picked from the
population

Generation: Generate children of that program
by performing one compound transformations of
each form. No form can generate more than
Work: /22 programs

Insertion: Check the children with the program
evaluation functions to see If they are to be
discarded or inserted into the population

Repeat step 2 and 3 for the forms until Work;
programs have been produced. Then, goto 1
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Increasing ?l « Empty program
work

Work = 10000%*32
< >

Number of programs generated




Increasing ?
work

Work = 10000%*32
< >

Number of programs generated




Increasing ?
work

Work = 10000%*32
< >

Number of programs generated




i ADATE’s Population

= The population is divided into:

= Classes: programs with the same number of case
sentences

= Subclasses: programs with the same number of let
sentences

= Each subclass (c,l) contains three programs, the best
one found so far according to pe;, pe, and pe,

= (Recent versions include the time complexity as well as
the syntactic one)
= The aim Is to maintain diversity, avoid large
programs eliminating small ones, and make sure
that small programs are expanded first
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i ADATE Population Structure

Number of
case
sentences

pPl, p2, p3
(0,2)

pPl, p2, p3
(1,2)

pPl, p2, p3
(2,2)

pPl, p2, p3
(3,2)

pPl, p2, p3
(0,1)

pPl, p2, p3
(1,1)

pPl, p2, p3
(2,1)

pPl, p2, p3
(3,1)

pPl, p2, p3
(0,0)

pPl, p2, p3
(1,0)

pPl, p2, p3
(2,0)

pPl, p2, p3
(3,0)
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Selecting the Next Program to
i be Expanded/Transformed

= A program is eligible for expansion, if it is better
than all the programs (c,l)-simpler than itself.
Better, according to at least one pe;

= The program to be expanded will be the most
(c,D-simple, among all the eligible

= No program is ever expanded, if it contains more
than 1.2 * case sentences than the best program
found so far

= Note:
F- (c1,11) < (c2,12) if ((c1<c2) or ((c1=c2) and (I11<l2)))
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‘L Program Selection

# Cases

>
In red, programs Simplel’ thanidhe AlgF GEML 00 A matic Inductive Prograrfiing Tutorial

A

pPl, p2, p3
(0,2)

pPl, p2, p3
(1,2)

pPl, p2, p3
(2,2)

pPl, p2, p3
(3,2)

pPl, p2, p3
(0,1)

pl, p2, p3

(1.1)

pPl, p2, p3
(2,1)

pPl, p2, p3
(3,1)

pPl, p2, p3
(0,0)

pPl, p2, p3
(1,0)

pPl, p2, p3
(2,0)

pPl, p2, p3
(3,0)




Inserting a New Program into
i the Population

= A program Is rejected If it is no better
than all its ancestors, for at least one
,08,-

= The program is inserted into its (c,l)
subclass, and replaces the /th program,
If It IS better than it, according to the
corresponding pe; function
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i Solved Problems by ADATE

= Simplifying a polynomial:
s (X*+3%x%) + (X3+2%x2) = x4+ x3+5x%2
= Intersecting two rectangles

= Permutating a list: generate all permutations of
a list

s Container: move small boxes inside a container
(http://www-ia.hiof.no/~geirvatt/)

s Other: Reversing a list, List delete min, Intersecting two
lists, Sorting a list , Locating a substring, Binary search
tree insertion, Transposing a matrix, Binary search tree
deletion, Path finding in graphs
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Primitives Used to Solve the

i Problems

Sorting a List

[llfalsell lltruell ll [ lln Ill ll(:or]S ]
o Slmpllfylng a Polinomial
- ll+ll m__ni llfalsell "true" "term" llnIIIl llconsll ]

= Intersection of two rectangles

= ["<", "point”, "rect"”, "none", "some" ]
= Inserting/deleting in binary trees

= ["<","bt_nil", "bt _cons", "false", "true" ]
= Reversing/Intersection/Deleting in lists

[llfalsell Iltruell m__n lln Ill "COHS ]
= Permutation Generation
[Ilfalsell lltruell Iln IIII llconsll llappendll]
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‘L Results (200MHz PentiumPro )

Problem Run tame in days-hours
Polynomial simphfication 0:7
Rectangle intersection 1:18
BST deletion T:12
BS'l insertion 35
l.ist reversal O:10
[.ist Intersection 653
l.ist delete miin NN
Permutation generation 9:5
l.ist sorting 1:12
l.ist sphtting (7

ial



i Sort Program

program =
fun £ (Va 4) =
case Wa 4 of
nil == WVa 4
| cons( Va aa, Va ab | ==
let
fun ga doded (Va dodeld) =
case Wa doded of
nil => cons( Va aa, nil |
| cons( Va chedl, Va cheda | =>
case [(Va aa < Wa chedl) of
false => cons( Va chedl,
| true ==
cons | Va aa, Vo dSded |
in
ga dBded | £ Va2 ab | )
end

gz _dS4es | V2 _chesz

)

)



‘L Sort Program (O(n?))
f(x) =

case x of
0 =>x
A:AS =>
a(y) =
case y of
[ =>IA]
B:BS => if (A<B) then B:g(BS) else A:y
INn g(f(AS))
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Intersection of Two

‘L Rectangles

fun £
()
[ W2 5 as rect |
[ W2 6 as pointc{ W2 TV, WEZ 8
[ VW2 2 as point{ VW2 &, VI b g
| I
[ VW2 o a=s rect |
[ W2 d a= point( VI =, WZz T g
[ WE_ 10 &= poinc( W22 11, W= 1=
I
1=
case (W2_a o W2 =) ot
false => |
case (W2 7 o WE 11) oX
fal=se => none
| LCrue ==
case (W2 8§ < W2 12) of
false => none
| Erue ==
case (VZ2 kb o WZ Ff)] of
fal=e => =Sarn= |
recit |
point |
case (W2 = W2 V) of false
case (W2 5 W2 F) of false
1
point |
case (VW2 oa W2 11) of false
case (W2 I W2 12) of false
1
1
1
| true ==

normnes

==
==

w2 = |
w2 8 |

== W=z _ 11
=> Wz _ 1=

truse => W2 7,
truse => W2 £
| crue =>x> WI a.,
| true => WZ I



i Program Space Size

= Sorting program:
= 96 bits -> 2796 programs
» 2720 = 1048576

= Intersection of Two Rectangles:
= 239 bits ->27239 programs

= Huge program spaces!
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i Conclusions ADATE

= Incremental program construction is
nossible

s Heuristic functions work well in such
nuge spaces

= ADATE designed for synthesis of
algorithms, not for the synthesis of
numerical functions (lots of GP work
belongs to this class)
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i Conclusions

= Different approaches to Automatic
Inductive Programming:

= Synthesis-based (functional, logic):

= Search-based (GP, PIPE, ADATE, OOPS)
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i Conclusions

= Synthesis-based:
= Algorithms with conditionals and recursion
= Mostly, structural tasks

= Use input/output pairs but no performance
measure

= Require few training instances, and few
computational effort
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i Conclusions

= Search-based:
= Generality, all kinds of tasks but ...
= High computational effort
= |/O pairs & performance measures

= GP: can evolve all kind of structures
(mathematical expressions, and even circuits and
antennaes), but recursion is hard

= PIPE: Very similar

= ADATE: more algorithmically orientated, deals well
with recursion, higher level operators
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i Conclusions

= Already some remarkable results

= Computer power keeps growing, so much
more Is to be expected

= Heuristically guided incremental generation of
programs is possible

= Why not combining synthesis and search
pased techniques? (suggested by U. Schmidt)

= Focus on the fact that it is computer
orograms that are to be generated, study
petter the space of useful computer programs
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Generality / Computing Effort
Tradeoff

.| Math.
Computlnq R S o Synthesis-
Effort eXpreSS'OnS{ \ functional
6 .~ performance @ Synthesis-

logic

/ measure

Algorithms @ ADATE
o
. GP
@ <«— |/O pairs ®
PIPE

>

Generality
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