ADATE: Automatic Design of
Algorithms Through Evolution

L S

i Inductive Functional Programming

= R. Olsson. Inductive Functional
Programming Using Incremental
Program Transformation. Artificial
Intelligence Journal. 74:1. 1995

= ADATE: Automatic Design of Algorithms
Through Evolution

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Motivation

= Loops and recursion are hard for GP

= Crossover Is a very low-level program
transformation operator

= Unlike GP, exhaustive search, from
simple to complex programs

= Implicitely, it assumes Occam’s Razor:
simpler programs are more likely to be
correct

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Representation Language

= ML-ADATE: A functional language based
on ML

= Why a functional language?: no global
variables, effects of subexpresions are
local, and changes to them remain local

= Usually functional programs are smaller
than imperative ones (and the system
looks for simple programs)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i ADATE Lenguage

= Subset of ML
= Type definitions: tuples and lists

= Definitions of Functions (and
variables) (in let sentences)

= Case sentences (conditionals)
= It allows for recursion

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘L Case Definitions (boolean)

= If (A<B) then C else D

Case (A<B) of
False => D
| True =>C

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Case Definition (boolean
expressions)

rogra =
fun £ (V2 4] =
case Vo 4 of
nil = Vi 4
| cons(Vi aa, Vi &b | =>
let
fun ga diS4ed (Vi doded) =
case Wi dbdeld of
nil =» cons(V2 _aa, nil |
| consd M2 _cheSd NP _cheS2) =k
case |[(Va aa < Va chefl) |of

falEE';F'EEEET'?E:EEEEI, ga d8ded | V2 chefz | |
| true =:
cons i Ve aa, V2 dSdeld |

in
gae doded(£ V2 ab | |
end g Tutorial

Case Definitions (for types,

i like lists)

= If (A is the empty list) then B else C
Case A of

Nil => B

| ALl::AS1 =>C
= (Al::AS1 is a list made of an element Al and

a sublist AS1. A=[1,2,3], Al=1, AS1=[2,3])
= For data types, the branches in the case

must correspond to the type definition

= A list can either be:
= the empty list (NIL)

= or a list made ORTCQ(%%QL(@&’26%mgm£%§}duﬁﬁ/§;?2gramming Tutorial

Case Definition (list types)

rogram = A list can be either:
fun £ iHE_%] = _
case Vi 4 of *The empty list NIL
nil =» Vi 4 _
| cons{ VZ aa, VZ &b | =» A construction of an
let element and a list:
fun gE_Iﬂ.Ei"-IEE i‘i.FE_dB‘&EEJ] = cons(element, |iSt)
case HE_I:lEI‘&EB of

nil =» cons(V2 _aa, nil |
| cons(V2 chesl, Vi chedi | |=>
case (Ve aa < Va chedl) of

false => cons(Vi chedl, gi dSd4ed(Vi chedBi | |

| true =:
cons i Ve aa, V2 dSdeld |
in
gae doded(£ V2 ab | |
endc

g Tutorial

Function (subroutine)
‘L Definitions (local)

let
fun g(x) = 3*Xx
In

g(3)
end

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Function Definitions

rogram =
fun £ (Va2 4] =
case Vo 4 of
nil => Ve 4
| cons(Vi aa, Vi &b | =>
let
fun g2 dodes (V2 d34ed) =
= s
nil =» cons(V2 _aa, nil |
| cons(V2 chesl, Vi chedi | =>
case (Ve aa < Va chefl) of
false => cons(Vi chedl, gi dSd4ed(Vi chedBi | |
| true =:
cons i Ve aa, V2 dSdeld |

in
gae doded(£ V2 ab | |
end g Tutorial

i Specifications in ADATE

= A set of types

= Primitive functions / terminals

= Type of the program £ to be inferred
= Asetof inputs {l, I,, ..., |..}

= Well chosen, incremental difficulty and special
cases

= A fitness function (output evaluation oe) that
evaluates programs, taking into account the
iInput/output pairs

= 1(15,1(1), (12:1(12)), ... (1,,1(1,))}

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Partially Correct Programs

= They can return:
= The correct answer
= Don’t know (?)
= The wrong answer
= Maximum number of calls reached

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

The Output Evaluation
i Function (oe)

= Let P the candidate solution (program) to be
evaluated

= Input to oe:
= list of [(1,, P(1,)), ..., (1., P(1.))]
= Output from oe:

= Number of correct (N.), wrong (N,,), and don’t
know answers

= List of grades / fitness [g4, J,, ..., ,]: list of real
values that measure the quality of the P’s

outputs.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Input/Output Pairs and Grades

= In some cases an |/0O specification is
adequate:

= Reverse list: ([1,2,3], [3,2,1]), ([2,1], [1,2])
= In other cases, a graded value Is better

= Pacman: [g, = number of points, g, = time
the Pacman survived]

= TSP: [g, = length of the path]
= Shortest path for robot navigation, etc.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Example of Specification: Sort.

i /0 pairs

- ([0, 1) .([0,2,11, [0,1,2])
* ([0], [0]) * ([1,0,2],[0,1,2])
* ([0,1],[0,1]) e ([1,2,0], [0,1,2])
* ([1,0], [0,1]) e ([2,0,1], [0,1,2])
- (10,1,2], [0,1,2]) e ([2,1,0], [0,1,2])

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Specification of Sort. Datatype

= datatype list = nil | cons of int * list

= That is, a list of integers can either be:
= An empty list (nil)

= A construction of an integer and another
list (like [1], [1,3], ...)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specification of Sort.

i Primitives

. Funs_to_use — [Ilfalsell, Iltruell, II<|I’ Ilnilll, llconsll]
= cons (a, (bc)) =(a, b, c)

= That Is, very primitive functions indeed. Sort
was built from scratch

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Specification of Sort. Output
i Evaluation Function (oeg)

= It just counts the number of correct and
wrong outputs predicted, from the 1/O set

= No grades are used (but they could be used,
by measuring the degree of disorder In the
output list or how far Is an element from its

final position)
= EX: ([3,2,1], [1,2,3]), but P([3,2,1]) =
[2,1,3].g,=1+1=2

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Components for the Heuristic

i Functions

= Output evaluation function (oe) (“fitness”):
= N., N,,, [grade,, ..., grade,]

= S: Syntactic complexity on the space of
syntactically correct programs (/N is the total
number of nodes and m;is the number of
possible symbols at node J):

. l!'lg _'.i_
T lewes., awa,.

- 2 - —

= T: Time Complexity:

= Number of recursive calls and “calls” to /ets for all
Inputs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘L ADATE Heuristic Functions pe;

= Absolute fithess values are not assigned to
programs. Instead, they are compared pairwise

= Pe, to minimize in lexicographic order (if draws
In the first component, compare the second, and

SO 0n)

! Value returned by pe;

| | =N, :: Grades @ [N, ,S,7"
21 =N, :: Grades @ [N,,T,5]
31 [N, ,=N.] @ Grades @ [S5,7"

g Tutorial

Atomic Transformations

= R (Replacement): Replacement changes part of the
iIndividual with new expressions. This is the only
transformation that changes the semantics of the
program

= REQ (Replacement without making the individuals
fitness worse): Does the same as Replacement but
now the new individual is guaranteed to have an
equal or better fitness (several R are made, and the
best of the non-worsening Rs Is chosen)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Atomic Transformations

= ABSTR (Abstraction): takes an expression in the
Individual and puts that expression in a function in
a /et...in block and replaces the expression with a
call to that function.

= CASE-DIST (Case distribution): takes a case expression
Inside a function call and moves the function call into each
of the case code blocks.

= EMB (Embedding): changes the return type of functions in
/et ... /n blocks, in order to make it more general

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘__L Example of Replacement

fun sort Xs = case Xs of nil => Xs | X1::X%s1 =}<:>

fun sort Xs =

!

fun sort A= =

case Xs of nil => ¥d=
| X1::¥X=s1 =>|case X=s1 of nil => X= | X2::Xs2 =

case MNs of nil => XKEs
| X1: . 1 ==

case<:ff>af] =
‘l’| X2: 1 Xs2 =>|case X2<X1 of true => 7 | false => X=

fun sort Xs =

case Ks of nil => K=

| X1::Xs1 =>

caselsﬂrt Isﬂ of mail => Xs

| X2::¥Xs2 => case X2<X1 of true => 7 | false => X=s

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Expression Synthesis for
‘L Replacement

= They are generated (enumerated) from
small to large, using case sentences,
and the primitives

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Restrictions In Expression
i Synthesis In Recursive Calls

= Let g(A;, A,) be a recursive call within g(V,, V,)
= Then some A, has to be smaller than V.

fun sort fs =
case Xs of nil => Xs Xs1 smaller than Xs = X1::Xs1

|l X1::Xs1|=>

case Enrﬂ Isllnf nil => iIs

| X2::X82 => case X2<X1 of true => 7 | false => Xs

= |t does not guarantee termination, and not all
possible forms of recursivity are included

= But the aim Is to reduce the number of
synthesized expressions anyway

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Restrictions In Expression
i Synthesis In Case Sentences

= More than one branch must be
activated, otherwise the case sentence
IS removed

s The number of branches in the case
expression depends on the type of the
variable. If A 1s a list:

Case A of
Nil => B
| Al::AS1 =>C

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Abstraction (Function
* Definition)

1.-
let fun g“l"’im : H(‘lsl";;‘:l) m g(flﬂ?[h) eﬂd,

i Example of Abstraction

fun sort Xs =

case Xs of nil => Xs
| X1::Xs1 =>
case sort ¥sl1 of nil => XK=
| X2::Xs82 => case X2<X1 of true => 7 | false =>

!

fun sort EKs =

case XKs of nil => Ks
| X1::Xs1 =>
let fun g V1 =
case V1 of nil => XK=
| X2::Xs2 => case X2<X1 of true => 7 | false => Xs
in
gisort Xs1)
and Tutorial

* Distribution Case

hAy,... ACcasb of Matchy => £y | ... | Madeh, = Ly Ay, 4y

!

case [+ of

Matchy => h{Aq, ... A By Aspqa ., AL

| J1-fﬂl!['lr|!-n == h{..-il., e ..-*1,:- -III—’-“- u4ﬁ+1 ------ 4 .I'|'I-:|

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Compound Transformation.
* Coupling Rules

l. REC} = K. The R is applied in the expression introduced by the REQ).

2. REQ) = ABSTR. The ABSTR is such that the expression introduced by the REQ occurs in
the H(EY, ..., Fy) used by the ABSTR but not entirely in H.

4. ABSTR — R. The R 1s applied in the the right hand side H(V,, ..., V) of the 1let-definition
introduced by the ABSTR.

1. (a) ABSTR — REQ!or (b) ABSTR — REQ! REQ!. The REQ(s) are applied in H{Vi...., Vy).
5. ABSTR = EMB! The let-function introduced by the ABSTR is embedded.

. CASE-DIST = ABSTR. The ABSTR is such that the root of H{Ey, . .., £,) was marked by
the CASE-DIST.

(. CASE-DIST = K. The R is such that the root of the expression Sub, which is replaced by
the R, was marked by the CASE-DIST,

3. EMB — R. The R is applied in the right hand side of the definition of the embedded function.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

22 Compound

i Transformations (forms)

| 54
54

<) 82

F-ANLES I 120 02

i<
i<

NS4
B 51
B S
N 51
N 51
51

L 1

i<

oNTES 12
IR0 ANI3ST112 125 €D
IR0 AI3S 112 125 €D
IT1€) NI 112

IRC2 NI3ST112 E NLI3
IR0 NI3ST112 E N3
IR0 AI3S112 12
IO ¥
CASE-IDIST ARSI
CASE-IDIST ARSI
CASE-IDIST ARSI
CASE-IDIST ARSI
CASE-IDIST ARSI
CASE-IDIST ARSI
CASE-IDIST 12
AIISER IR EICD KR
ARSI IR L0 B2 E)
AIIST IS FINLES ER 1€ %
ARSI FINLES BT 12
AIIST R FINLES B3
AIIST R 12

€2 1IRE2CD K2

21D ¥
T O IR 12
EONTES 12 E.CD K2
EONTER I2E-CD ELECCD
EoNTERL 2

L 51

Oy 12

i

|nming Tutorial

i Search in ADATE

= Basically, exhaustive, no randomization, but uses
some heuristics in expression synthesis and
program generation

= |t starts with the empty program ?

= Then program space is explored from small to
large programs (Occam’s Razor)

= New programs are generated by means of forms
(compound transformations)

= Search = two nested Iiterative deepening
processes

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search in ADATE. Iterative
i Deepening.

= Work; = number of individuals to be
generated at iteration /

= Work, = 10000

= Every iteration, Work s increased
exponentially:
« Work,, , = 10000*a

= a = 3 from theoretical and practical
considerations

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Search in ADATE. Primary

‘L Iteration

= Iteration O: generate 10000 programs
= |teration 1: generate 30000 programs
= |teration 2: generate 90000 programs
s EtC.

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

I[terative Deepening.
i Secondary lteration

= Work, it is divided equally among all
the forms (22 compound
transformations)

= That is, for every form, Work; /22
programs should be produced

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

I[terative Deepening.

i Secondary lteration

1.

Selection: A program is picked from the
population

Generation: Generate children of that program
by performing one compound transformations of
each form. No form can generate more than
Work: /22 programs

Insertion: Check the children with the program
evaluation functions to see If they are to be
discarded or inserted into the population

Repeat step 2 and 3 for the forms until Work;
programs have been produced. Then, goto 1

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Increasing ?l « Empty program
work

Work = 10000%*32
< >

Number of programs generated

Increasing ?
work

Work = 10000%*32
< >

Number of programs generated

Increasing ?
work

Work = 10000%*32
< >

Number of programs generated

i ADATE’s Population

= The population is divided into:

= Classes: programs with the same number of case
sentences

= Subclasses: programs with the same number of let
sentences

= Each subclass (c,l) contains three programs, the best
one found so far according to pe;, pe, and pe,

= (Recent versions include the time complexity as well as
the syntactic one)
= The aim Is to maintain diversity, avoid large
programs eliminating small ones, and make sure
that small programs are expanded first

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i ADATE Population Structure

Number of
case
sentences

pPl, p2, p3
(0,2)

pPl, p2, p3
(1,2)

pPl, p2, p3
(2,2)

pPl, p2, p3
(3,2)

pPl, p2, p3
(0,1)

pPl, p2, p3
(1,1)

pPl, p2, p3
(2,1)

pPl, p2, p3
(3,1)

pPl, p2, p3
(0,0)

pPl, p2, p3
(1,0)

pPl, p2, p3
(2,0)

pPl, p2, p3
(3,0)

Number @ta/@tA&em&mﬁlﬁ)matic Inductive Programming Tutorial

>

Selecting the Next Program to
i be Expanded/Transformed

= A program is eligible for expansion, if it is better
than all the programs (c,l)-simpler than itself.
Better, according to at least one pe;

= The program to be expanded will be the most
(c,D-simple, among all the eligible

= No program is ever expanded, if it contains more
than 1.2 * case sentences than the best program
found so far

= Note:
F- (c1,11) < (c2,12) if ((c1<c2) or ((c1=c2) and (I11<l2)))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘L Program Selection

Cases

>
In red, programs Simplel’ thanidhe AlgF GEML 00 A matic Inductive Prograrfiing Tutorial

A

pPl, p2, p3
(0,2)

pPl, p2, p3
(1,2)

pPl, p2, p3
(2,2)

pPl, p2, p3
(3,2)

pPl, p2, p3
(0,1)

pl, p2, p3

(1.1)

pPl, p2, p3
(2,1)

pPl, p2, p3
(3,1)

pPl, p2, p3
(0,0)

pPl, p2, p3
(1,0)

pPl, p2, p3
(2,0)

pPl, p2, p3
(3,0)

Inserting a New Program into
i the Population

= A program Is rejected If it is no better
than all its ancestors, for at least one
,08,-

= The program is inserted into its (c,l)
subclass, and replaces the /th program,
If It IS better than it, according to the
corresponding pe; function

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Solved Problems by ADATE

= Simplifying a polynomial:
s (X*+3%x%) + (X3+2%x2) = x4+ x3+5x%2
= Intersecting two rectangles

= Permutating a list: generate all permutations of
a list

s Container: move small boxes inside a container
(http://www-ia.hiof.no/~geirvatt/)

s Other: Reversing a list, List delete min, Intersecting two
lists, Sorting a list , Locating a substring, Binary search
tree insertion, Transposing a matrix, Binary search tree
deletion, Path finding in graphs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Primitives Used to Solve the

i Problems

Sorting a List

[llfalsell lltruell ll [lln Ill ll(:or]S]
o Slmpllfylng a Polinomial
- ll+ll m__ni llfalsell "true" "term" llnIIIl llconsll]

= Intersection of two rectangles

= ["<", "point”, "rect"”, "none", "some"]
= Inserting/deleting in binary trees

= ["<","bt_nil", "bt _cons", "false", "true"]
= Reversing/Intersection/Deleting in lists

[llfalsell Iltruell m__n lln Ill "COHS]
= Permutation Generation
[Ilfalsell lltruell Iln IIII llconsll llappendll]

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

‘L Results (200MHz PentiumPro)

Problem Run tame in days-hours
Polynomial simphfication 0:7
Rectangle intersection 1:18
BST deletion T:12
BS'l insertion 35
l.ist reversal O:10
[.ist Intersection 653
l.ist delete miin NN
Permutation generation 9:5
l.ist sorting 1:12
l.ist sphtting (7

ial

i Sort Program

program =
fun £ (Va 4) =
case Wa 4 of
nil == WVa 4
| cons(Va aa, Va ab | ==
let
fun ga doded (Va dodeld) =
case Wa doded of
nil => cons(Va aa, nil |
| cons(Va chedl, Va cheda | =>
case [(Va aa < Wa chedl) of
false => cons(Va chedl,
| true ==
cons | Va aa, Vo dSded |
in
ga dBded | £ Va2 ab |)
end

gz _dS4es | V2 _chesz

)

)

‘L Sort Program (O(n?))
f(x) =

case x of
0 =>x
A:AS =>
a(y) =
case y of
[=>IA]
B:BS => if (A<B) then B:g(BS) else A:y
INn g(f(AS))

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Intersection of Two

‘L Rectangles

fun £
()
[W2 5 as rect |
[W2 6 as pointc{ W2 TV, WEZ 8
[VW2 2 as point{ VW2 &, VI b g
| I
[VW2 o a=s rect |
[W2 d a= point(VI =, WZz T g
[WE_ 10 &= poinc(W22 11, W= 1=
I
1=
case (W2_a o W2 =) ot
false => |
case (W2 7 o WE 11) oX
fal=se => none
| LCrue ==
case (W2 8§ < W2 12) of
false => none
| Erue ==
case (VZ2 kb o WZ Ff)] of
fal=e => =Sarn= |
recit |
point |
case (W2 = W2 V) of false
case (W2 5 W2 F) of false
1
point |
case (VW2 oa W2 11) of false
case (W2 I W2 12) of false
1
1
1
| true ==

normnes

==
==

w2 = |
w2 8 |

== W=z _ 11
=> Wz _ 1=

truse => W2 7,
truse => W2 £
| crue =>x> WI a.,
| true => WZ I

i Program Space Size

= Sorting program:
= 96 bits -> 2796 programs
» 2720 = 1048576

= Intersection of Two Rectangles:
= 239 bits ->27239 programs

= Huge program spaces!

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Conclusions ADATE

= Incremental program construction is
nossible

s Heuristic functions work well in such
nuge spaces

= ADATE designed for synthesis of
algorithms, not for the synthesis of
numerical functions (lots of GP work
belongs to this class)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Conclusions

= Different approaches to Automatic
Inductive Programming:

= Synthesis-based (functional, logic):

= Search-based (GP, PIPE, ADATE, OOPS)

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Conclusions

= Synthesis-based:
= Algorithms with conditionals and recursion
= Mostly, structural tasks

= Use input/output pairs but no performance
measure

= Require few training instances, and few
computational effort

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Conclusions

= Search-based:
= Generality, all kinds of tasks but ...
= High computational effort
= |/O pairs & performance measures

= GP: can evolve all kind of structures
(mathematical expressions, and even circuits and
antennaes), but recursion is hard

= PIPE: Very similar

= ADATE: more algorithmically orientated, deals well
with recursion, higher level operators

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

i Conclusions

= Already some remarkable results

= Computer power keeps growing, so much
more Is to be expected

= Heuristically guided incremental generation of
programs is possible

= Why not combining synthesis and search
pased techniques? (suggested by U. Schmidt)

= Focus on the fact that it is computer
orograms that are to be generated, study
petter the space of useful computer programs

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

Generality / Computing Effort
Tradeoff

.| Math.
Computlnq R S o Synthesis-
Effort eXpreSS'OnS{ \ functional
6 .~ performance @ Synthesis-

logic

/ measure

Algorithms @ ADATE
o
. GP
@ <«— |/O pairs ®
PIPE

>

Generality

Ricardo Aler. ICML’06 Automatic Inductive Programming Tutorial

	ADATE: Automatic Design of Algorithms Through Evolution
	Inductive Functional Programming
	Motivation
	Representation Language
	ADATE Lenguage
	Case Definitions (boolean)
	Case Definition (boolean expressions)
	Case Definitions (for types, like lists)
	Case Definition (list types)
	Function (subroutine) Definitions (local)
	Function Definitions
	Specifications in ADATE
	Partially Correct Programs
	The Output Evaluation Function (oe)
	Input/Output Pairs and Grades
	Example of Specification: Sort. I/O pairs
	Specification of Sort. Datatype
	Specification of Sort. Primitives
	Specification of Sort. Output Evaluation Function (oe)
	Components for the Heuristic Functions
	ADATE Heuristic Functions pei
	Atomic Transformations
	Atomic Transformations
	Example of Replacement
	Expression Synthesis for Replacement
	Restrictions in Expression Synthesis in Recursive Calls
	Restrictions in Expression Synthesis in Case Sentences
	Abstraction (Function Definition)
	Example of Abstraction
	Distribution Case
	Compound Transformation. Coupling Rules
	22 Compound Transformations (forms)
	Search in ADATE
	Search in ADATE. Iterative Deepening.
	Search in ADATE. Primary Iteration
	Iterative Deepening. Secondary Iteration
	Iterative Deepening. Secondary Iteration
	ADATE’s Population
	ADATE Population Structure
	Selecting the Next Program to be Expanded/Transformed
	Program Selection
	Inserting a New Program into the Population
	Solved Problems by ADATE
	Primitives Used to Solve the Problems
	Results (200MHz PentiumPro)
	Sort Program
	Sort Program (O(n2))
	Intersection of Two Rectangles
	Program Space Size
	Conclusions ADATE
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Generality / Computing Effort Tradeoff

