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SUMMARY

This paper investigates the time series properties of partisanship for five political parties in Spain. It is
found that pure fractional processes with a degree of integration, d, between 0.6 and 0.8 fit the time-series
behaviour of aggregate opinion polls for mainstream parties quite well, whereas values of d in the range of
(.3 to (.6 are obtained for opinion polls related to smaller regional parties. Those results are in agreement
with theories of political allegiance based on aggregation of heterogeneous voters with different degrees
of commitment and pragmatism. Further, those models are found to be useful in forecasting the results of
the last general elections in Spain. As a further contribution, new econometric techniques for estimation and
testing of ARFIMA model are used to provide the previous evidence. Copyright @ 2003 John Wiley & Sons,
L,

1. INTRODUCTION

Over the last few years there has been a growing interest among political scientists in applying
time series techniques to analyse the statistical properties of aggregate political popularity data in
various formats such as approval levels and partisanship measures. For example, Box-Steffensmeir
and Smith (1996), Byers et al. (1997), Eisinga ef al. (1999) and various articles included in a recent
special issuc of Electoral Studies (2000) report cvidence for the United States, the United Kingdom
and several other OECD countries, indicating that the time series of poll ratings in those countries
are well modelled by fractionally-integrated processes which present high persistence but that
eventually revert to their mean. Those findings differ [rom the statistical implications ol previous
theories of political support which, upon the standard assumption that voters form rationally
their expectations about future events, argue that the effect on voting intentions of news about the
economy or the political environment is permanent. Statistically, this implies the presence of a unit
root in the process governing the time series of political opinion data; cf. Holden and Peel (1985)
and Chrystal and Peel (1987). By contrast, the above evidence on long-memory behaviour supports
theories of political allegiance based on the aggregation of heterogeneous voters with different
atiributes of commitment and pragmatism which help to provide explicit microfoundations of
aggregale-level measures of partisanship as a function of individual-level opinions and attitudes
(sce Achen, 1975).
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Within the extensive literature on the dynamics of aggregate partisanship, two papers have
been especially instrumental for our own research. First, Byers, Davidson and Peel (1997) (BDP
henceforth) present a model to characterize the time-series behaviour of aggregate opinion polls for
the Conservative and Labour parties in the UK. Their model links partisanship at the individual
and aggregate level by classifying volers into two broad categories: ‘commitied’ voters (either
insensitive to news or sluggish to change allegiance in the face of news) and ‘floating’ voters
(sensitive 1o news and performance of the different political parties). Assuming a certain type of
distribution for the attributes pertaining to both types of voters, they make vse of a statistical
result by Granger (1980) on the aggregation of helerogenous stationary first-order autoregressive
(AR(1)) processes to achieve long-memory and mean reversion in the time-series behaviour of
partisanship at the aggregate level, reconciling in this way the above-mentioned empirical findings
with the theory. Next, there is the work by Box-Steffennsmeier and Smith (1996) (henceforth BSS)
who vse a slightly different model for individual partisanship due to Franklin and Jackson (1983)
(K1 henceforth), in combination with the previous aggregation resull, to obtain [lurther evidence
in favour of long memory in the time-series behaviour of aggregate partisanship for Republicans
and Democrats in the USA.

In this paper, we use a slightly modified version of the intersection of the two previous
approaches to examine the extent to which the earlier results apply to Spanish poll data. The
use of this data set is particularly interesting since it includes information on the voling intentions
of both mainstream parties, like in the previous studies, and smaller regional partics whose political
support may behave according to a different pattern. To deal with this diversity of political parties,
our approach starts by allowing for the existence of two types of voter: those who hardly react
to ‘news’ (‘militants’) and those who react more often (‘non-militants™). It is within the latter
group that we follow BDP in distinguishing between "committed” and ‘floating” voters, according
to the degree of sluggishness in their voting intentions. The distinction between ‘militants’ and
‘non-militants’ is an important one since, as will be seen below, the small regional parties in Spain
have a voling intention which is fairly constant over time. In such a case, the time-series analysis
ol deviations of the partisanship series around their sample mean could give the wrong impression
that a majority of voters for these parties belong to the *floating” class, since persistence is low.
However, in our view, a more appropriate interpretation would be that a large fraction of their
electorate belongs to the “militant’ class, namely, that their voting intentions are governed by a
non-zero-mean process with a small variance relative to the size of the unconditional mean.

Besides studying partisanship for small regional parties, the analysis of political support for
Spanish mainstream partics is of some interest since Spain only regained democracy in 1977
after forty years of dictatorship in which political parties were illegal. In this sense, it should be
remarked that the length of the available political support series is shorter than in other countries
with a much longer and mature democratic tradition. Despile this shortcoming, however, il seems
interesting to study whether the statistical propertics of the opinion polls in Spain conform to the
patterns found for other countries.

From the econometric viewpoint, a further contribution of our work is the application of newer
and seemingly more robust techniques in finite samples to the estimation and testing of the degree
ol fractional dilferencing, d, in autoregressive [ractionally integrated moving average (ARFIMA)
modcls. As regards estimation, we usc a new minimum-distance estimator of d proposed by
Mayoral (2000) which, besides being computationally more tractable than most of the available
methods in the literature, can be used to implement a very simple test of the null hypothesis that
d is equal to unity versus the alternative that ¢ is less than unity that, according to the previous



discussion, arc the two hypotheses of interest in the theory of political popularity. This test, which
shares the spirit of the well-known Dickey—Fuller test for unit roots, has been recently developed
by Dolado, Gonzalo and Mayoral (2002) (DGM henceforth) in a companion paper. It turns out
to be easily implementable in the time domain and has both better size and power properties in
finite samples than many of the tests which are typically used in applied work.

The rest of the paper is structured as follows. Section 2 summarizes the microfoundations of
the model of voling intentions proposed by BDP, using the model for partisanship proposed by
FJ. In this way we cmphasize the key assumptions which give rise to an ARFIMA process as an
appropriate model governing the time-series behaviour of aggregate poll series. Section 3 explains
both the estimation and testing approaches used in this paper. In Section 4, we report the results
concerning the voting intentions of Spanish volers about the five main political parties which have
remained active during the period 1978-99, out of which three are mainsircam partics and two are
regional parties. We discuss and interpret our key empirical findings in the light of the taxonomy
of voters described above and compare our results to those found for other countries with a longer
democratic tradition. Some [orecasting resulis, relevant for the last general elections held in March
2000, which were carried out before it took place, are also reported. Finally, Section 5 concludes.

2. A PARTISANSHIP-POLITICAL POPULARITY MODEL

Until recently, the conventional approach to modelling the lime series properties ol aggregate
political popularity was based on the following considerations (see e.2. Chrystal and Peel, 1987).
Let X; be the average propensity to support a given party which is assumed to depend linearly
on the expected present value of the benefits (V,) that the supporters would receive in case the
party wins the clections, i.c. X, = ¢V, + e, where ¢, is an ii.d. error term. If expectations are
formed rationally, then it is well known (as in the case of the Permanent-Income Hypothesis of
consumption) that the change in V,, AV, is an innovation, &, namely, that the best linear predictor
of V, is V,_,. Thus, AX, = @& + Ae,, implying that X, is an (1) process with a MA(1) error
term. The idea behind both the BDP and BSS approaches is to relax the (1) characterization
of X, to the more general class of fractionally-integrated, FI{d), processes, where d is fractional
number rather than an integer one. They do so by assuming that there is a continuum of voting
intentions that arc captured by AR(1) processes with different degrees of persistence. Despite the
existence of a continuum of voting intentions, it will be useful in the following discussion to focus
on those which have large, yet stationary, autoregressive roots and on those which have low roots.
The former pertain o ‘commilted” voters whilst the latter belong to the ‘floating’ type. Then,
application of an aggregation argument due to Granger for heterogenous AR(1) processes leads to
long memory in the aggregate poll series.

In our opinion, however, it is preferable to depart slightly from the previous analysis by defining
an initial taxonomy of voters in terms of two broader categories, labelled as ‘militants” and ‘non-
militants’, where the latter group includes the above-mentioned types of ‘committed” and ‘floating”
voters. Hence, overall, there will be three groups of voters. “Militants” are those voters with a strong
allegiance to a particular party such that their expected support for that party, conditional on past
actions, i8 basically time invariant. By contrast, ‘non-militant” voters do not have such a strong
identification with a specific political party. Therefore, they tend to change their expected support
over time in reaction to ‘news’ affecting the potential performance of the party, albeit in different
ways. ‘Commilied’ volers weigh the historical contexl almosl equally to current performance and



therefore possess a long memory of the performance of all parties. “Floating® voters, in turn, are
more pragmatic in outlook and discount the past fairly quickly. Moreover, their future voting
behaviour is typically more difficult to forecast than that of ‘committed voters’. Thus, the degree
of persistence on voling intentions at the aggregate level will hinge upon the distribution of these
types of voters in the total voting population.

To motivate the previous taxonomy of voters, it is convenient to assume, as is customary in
the political science literature (see FJ), that the individual partisanship (or *party identification’),
namely the strength of support for a given party, follows a dynamic model which is capturcd by
an AR(1) process, possibly with a drift. The different types of voters could be characterized in
terms of the sizes of the AR parameter and the drift. Accordingly, a political party with a large
share ol ‘militants’ will be one in which most individual series present a large drill relative to the
dispersion of the series and small persistence in the AR(1) process. In turn, a party with a large
share of ‘commiited’ voters implies that the individual series will have both high values of the
AR root and a small drift. Finally, a party with a large proportion of *floating” voters implies both
a low value of the AR root and a small drift in the individual series.

More specifically, following BSS, we define an unobservable latent variable Y! as the ith
individual's partisanship at time f. That variable can be thought of as being the sum of two
components, i.e. ¥} = C, + y.. On the one hand, C, can be interpreted as a common time-varying
component which is deemed lo capture the effect of some aggregate events like unemployment
or inflation. Further, it can capturc the effects of the “clection cycle’ since, in some countries
(particularly those with a long democratic history like the UK or the USA), there is evidence
that shifts in popularity tend to depend on whether a party is in power or in opposition, and
also on the timing of the poll, namely, whether it is close or far away from an election. On
the other hand, the unobserved latent variable y/ can be interpreted as the stochastic individual
component of partisanship. According to FJ, it can be defined as a continuous unidimensional
variable representable in the real number line, with the zero point representing indifference
between supporting a given party, (say) A, and the complement of A, (say) state B (i.e. voting for
another party or abstention). Increasing positive values of ¥/ represent monotonically increasing
partisanship for A, whereas increasingly negative values indicate greater preferences for B, ie.
greater dislike for A. Following the discussion above, it is assumed thal the stochastic component
of party identification at time f, ¥/, depends on last period’s partisanship, ¥'_,, some individual
fixed influence {(c’) and a random disturbance (&!), according to the stationary AR(1) specification

Vi=d4dy_ +&. D<o <1 (&8

where ¢’ and ¢ arc assumed to be independent. A high value of ¢’ together with both a low
value of ' and low variance of & would be interpreted as being a ‘militant’, in the sense that,
apart from some minor random shocks, partisanship is basically a constant. When such is not the
case, ie. for ‘non-militants’, a value of ¢’ smaller but close to | is attached to a ‘committed’
voter whereas a value close to 0 corresponds to a ‘floating” voter. Thus, for the former type of
voter, partisanship is basically predetermined by their past preferences whilst, for the latter, it
changes more freely in the face of news. In sum, in the absence of large persistence, the relative
size of ¢’ with respect to the variance of & measures the degree of ‘militancy’ whereas, under
persistence, the size of o captures the degree of ‘commitment’ so that a high value (low) is a sign
of ‘committed” (‘floating”) voting behaviour. At this stage, it should be once more remarked that
although our previous discussion is framed in terms of three types of voters for heuristic reasons,



the statistical model underlying the propertics of the aggregation of individual partisanship relies
upon the existence of a continuum of types which are then aggregated according with some mixing
distribution for the o s.

Following BDP and BSS, in order to characterize the time-series behaviour of the aggregate
polls, the next step is to apply Granger (1980)’s result for the cross-section aggregation ol
heterogenous AR(1) processes, ic. ¥ = Zf yi. For that, it is assumed that the distribution of
attributes of commitment and pragmatism in the voting population, represented by the a's in (1),
is continuous on the support [0,1) in such a way that part of the probability mass is located near
1, but excluding it. Following Granger (1980), a class of distributions which accomplishes the
required characteristics is the modified Beta(p, ¢) distribution

dF(a) = 2La2‘ﬂ‘”(1 — ) ' da (2)
B(p.q)
with 0 < ¢ < 2, obtained from the standard Beta distribution dF (x) with the change of variable
x =a? and where B (p, g) denotes the Beta function. Notice that the shape of the distribution is
symmetric if p = g, convex if p, g < | and concave if p. g > 1. For alternative values of p and
g inside the unit circle, values of « close to 1 will yield a sizeable probabilistic mass near the
point 1 itself. It should be noted that the choice of mixing distribution is not restricted to the Beta
density function, as Lippi and Zaffaroni (2000) have recently proved. According to these authors,
the long-memory property of the aggregation of heterogenous stationary AR(1) processes still
holds il the mixing distribution belongs to the family B(a, #) ~ Co(1 — a)?®, where "~ stands
for asymptotic equivalence when « tends to 17 and b(0) is a function from @ TH' . s =1 to
(—1, 00). A particular case of this general family of mixing distributions is the Beta distribution.
In addition, these authors prove that the aggregate process remains [ractionally integrated when
the individual serics follow stationary ARMA processes instead of pure AR processes.
Since the power spectrum of y} is:

(3

filw) = 3167:,12‘ with z=¢ ™ (3)

where i = /=1, then, assuming independent components and that the &' s are also independent of

the o''s, we can get the following approximation for the power spectrum of the sum of the y!s,
e y = Z’? vi. denoted as f(w):

,t"(w_]:ﬂ (var(s‘) / T dF(a)) )

Hence, noting that

1 1 1 z 1 z
{ +a +a ] 5)
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where % is the complex conjugate of z and vsing (1 +@z)/(1 —ez) = 1+23 %(az), it follows
from (4) and (5) that the coefficient of z¥ in f(w) is:

1
(2/B(p. q)) [ P — )i e (6)
J0O



Next, from the standard definition of the power spectrum, it follows that (6) is the kth
autocovariance of y,, namely E(y,, y—). Then it is easy to check that:

2a2p—k—l(| _aijq—2 - az{p+k;‘2—lj(] _al)(q-lj—l

which yields
Blp+k/2.q—1)  Tg —DRp +4/2)
B(p.q) B(p.)Np +k/2+g—1)

since B(p, q) = lip)ig)/Mg + p) where I{.) is the gamma function. Using Sterling’s theorem,
namely §j +a)/Mj +b)is of order j2, it follows that, for k sufficiently large,

E(y. yi—) = ("

EQy, ye—k) = O(k'™9) (8)

It is well known (see Granger and Joyeux, 1980) that if x, is a fractionally integrated process
of order d, FI(d). then,
E(qx—) = O™ 9)

Therefore, comparison of (8) and (9) yields that y, ~ FI(1 — ¢/2). This implies that y, will be a
non-stationary, albeit mean-reverting, process if 0 < ¢ < 1 (ie. 1 > d = 1/2) and stationary with
autocovariances (hat decline at the hyperbolic rate k'~ if 2 > ¢ > 1 (i.e. 0 < d < 1/2). Notice that
the hyperbolic decay of the memory parameier of an FI(d) process, with 0 < d < 1/2, contrasts
with the exponential decay of the standard stationary ARMA of 7(0) process, enabling ARFIMA
processes to model dependence between observations at long range. Likewise, in contrast with the
I(1) process, FI(d) processes, with 0 < d < 1, exhibil eventual mean reversions (see Cheung and
Lai, 1993).

In the previous analysis we have assumed that the individual series were perfectly independent.
However, some of the events to which individuals react are bound to be common though allowing
for different individual responses. Other shocks, related to the individual well being, will be
idiosyncratic. Denoting the common shock by W, and the idiosyncratic shock by &, the series
will be partly dependent, being generated by:

Vi=cd+dy + W+ (10)

where the series W, and ! are assumed to be independent, & is a white noise, and the «’s and
the 8°s are drawn [rom independent distributions. Then, y; is #/(d) where d is the largest of two
terms (see Granger, 1980, scction 3): 1 — ¢/2 (from the & component) and 1 — g — d,, (from the W
component), where d,, is the degree of integration of W,. However, to the extent that W, represents
‘news’, conditional on an information set at t — 1, d,, = 0 and therefore, d = 1 — ¢/2. Thus, the
previous analysis remains valid and the null hypothesis that y; follows a pure [ractional process,
i.c. an ARFIMA(O, 4, 0), scems a plausible one. Indeed, as will be scen below, that specification
is the preferred one for all of the series examined in this paper. Hence, ¢ can be identified directly
from the estimated value of d. Once g is estimated, it is possible to obtain the value of p that
most nearly reconciles a pure fractional aggregate process with the theoretical autocovariances
represented in (7). Therefore, by estimating the parameters of the Beta(p, g) distribution, this
procedure will allow us to obtain the probability mass of electoral support for each political party
in the sample subject Lo analysis.



A final, yet crucial, issuc to be addressed before moving onto the following scctions, is how to
construct a proxy variable for the aggregate partisanship, ¥,. For that, we follow BDP in using the
log-0dds of the average propensities to vote for a given party (X, = ;X! /N) where, by the law of
large numbers, the probability limit of X; behaves in the limil as the average of the expectations
of the unobservable binary variable X! which takes a value of 1 if the ith voter supports a given
party in the poll and 0 otherwise. Note that the log-odds of the average propensity, defined as
Y, = L(X,) = log(X,/1 — X,) has support over (he whole real line (approaching +oc as X, tends
to 1 or 0), and is 0 when X, = 0.5, i.c. when the average propensity reflects the indifference of the
clectorate between supporting a given party or not. In this way, ¥, mimics the properties of the
partisanship indicator defined by FJ. At this stage, it should be emphasized that our approach differs
from the microfoundations provided by BDP where the variable capturing individual partisanship
is dircctly defined as the log-odds of the expectation of the unobserved binary variable X, i.c.
L(X;) =log(X;/1 — X;). As pointed out by one of the referees, the previous assumption is not
strictly correct since the probability limits of the average log-odds, N~!'%;L(X;), and the log-odds
of the average propensity, L(X,), do not coincide. Insofar as our approach dircctly relies upon
characterizing ¥, as the log-odds of the average propensity, leaving unspecified y/, we avoid that
problem. In effect, we are implicitly assuming that y/ is measured in such a way that its aggregated
value across individuals gives rise to L(X,) rather than imposing the log-odds transformation
for X!, as BDP do. However, to get a feeling about the extent to which the previous incorrect
assumption by BDP can be taken as a sufficiently good local approximation to characterize the
long memory properties, we carried out a small Monte Carlo experiment in order to check whether
long-memory in X, is translated into long-memory in L(X,). For that, we have simulated 1000
AR(1) processes with the AR parameters being drawn from a Beta(p,q) distribution with p = 0.9
and g = 0.6. According to (7)—(9), it can be shown that the choice of those parameters replicates
the persisience properiies of an ARFIMA(0, 0.7, 0) process which, as will be discussed below,
turns out to be a representative specification for our data. The sample size is T = 600. Then, for
each of those AR(1) processes, ¥, we have used the logistic transformation e*/1 + ¢*, to map
their original domain onto (0,1), as BDP assume for X}. Next, we computed the average of the
individual log-odds of the transformed series and the log-odds of the averages, and estimated d for
both series. The number of replications for this comparison is 500. We found the mean-estimated
value of d for the average of the individual log-odds was 0.701, in agreement with the choice
of ¢ = 0.6, whereas the estimate of d obtained from L(X,) is 0.442. From this experiment, we
conclude that, in spite of the fact that both estimates do not coincide, there is evidence that long
memory is present in both functions of X!. We also found that this property remains for other
values of p and 4. Thus, despite the presence of an incorrect step in the microfoundations of BDP
‘model of political popularity, their claim that the log-odds of the average propensities follows a
long-memory process seems to hold.

3. ESTIMATION AND TESTING PROCEDURES FOR FRACTIONALLY INTEGRATED
PROCESSES

To test whether the aggregale time series ol political support are well represented by a FI(d)
process, we make use of the Fractional Dickey—Fuller test (FD-F test) proposed by DGM (2002)
which allows us to test the null of /(1) against the alternative hypothesis of FI{(d), with0 < d =< 1.
This test turns oul to be easily applicable in the time-series domain and [lares betler in finite



samples, in terms of power and size, than many of the other tests available in the literature. It
can be interpreted as a Wald test in the time domain which provides a natural framework for
estimating the memory parameter 4 in a rather simple way.

The FD-F iest is based on the following unbalanced regression model which generalizes the
one used in the standard Dickey—Fuller (D-F) approach by encompassing the hypothesis that a
series x, is either /(1) or FI(d) with 0 < d < 1,

Axr=.‘ﬂdxx—l+ur (1)

where p <0 and u; is a linear covariance stationary process which, lor simplicity, will be
taken to be white noise in what follows. As in the D-F approach, deterministic terms, like a
constant or a linear trend, can be appended to the previous regression. It is easy to prove that for
=274 < p< 0,x isa FI(d) process with 0 < d < |, since the [..H.S. of (11) can be rewritten as
(A" — d)A “x, (with L denoting the lag operator) where the polynomial [1(z) = (1 —z)' ™ — g
has all its roots outside the unit circle. Thus, under the alternative hypothesis of p< 0, it follows
that A%x, = e,, where ¢, = TT1(L) 'it;. On the other hand, under the null of p = 0, it becomes
an [ (1) process; indeed a random walk. Therefore the null hypothesis of /(1) corresponds to
the case p =0 versus the alternative of FI(d),0<d < 1, when p< 0. Being a Wald test, the
intuition for the FD-F test is that, under the alternative hypothesis the appropriate filter of Ax;
will be (1 =Ly, namely Ax,; = A", =e,— (1 —d)em + (1/2)(1 —d)(—d)er—z — ... =
M “x,y +a, so that the coefficient on A%x,_; in (11) can be interpreted as (d — 1), i.e. the
distance between the values taken by d under Hg and H, respectively. Further, if e; happens to
be i.i.d, it will be uncorrelated with A%x,_; (= e,_,), so that OLS yields a consistent estimator of
p. On the other hand, if u, happens to be a more general linearly autocorrelated process, DGM
prove that (11) can be rewritten as:

Axy = A Yy + L (L)AX - + & (12)

where £,(L) is a lag polynomial of order p, where p = o(T"/?) and &, is white noise. As in the
earlier case, p =0 and p< 0 correspond to the 7(1) null and the F/(d) alternative, respectively.
That version of the test, in line with its counterpart in the D-F setup, is denoted as the Augmenied
FD-F (AED-F) test. As in the D—F approach for /(1) against /(0) processes. a simple test of
Hy: p =0 can be obtained from either the normalized OLS estimator of p in (12) or from its
associated f-ratio. In the sequel, we will concentrate on the properties of the latter test statistic
while details on the properties pertaining to the normalized coefficient test can be found in DGM.
Hence, application of OLS 1o (12) yields the following asymptotic distribution for the r-ratio of
Pors (denoted in short as ¢) under the null hypothesis:

/. Bi—4(r)dB(r)

1 1/2
([ soor)
o

SNO.1) if 1/2<d <1

—

it 0<d<1/2,

where B (r) and B._afr) arc standard Brownian and standard fractional Brownian motion,
respectively, and 2 denotes weak convergence. If a constant or a linear trend is included in



the model, the Brownian motions will correspond to their demeaned or detrended versions. Note
that what matters in determining the asymptotic behaviour of the tests is the distance between the
null and the alternative hypotheses. When this distance is large (0 < d < 0.5), the distribution is
non-standard while when it is small (0.5 <d < 1), il is standard, i.e. asymplotically Gaussian.
Also note that when d = 0, the asympiotic distribution derived by Dickey and Fuller (1979, 1981)
is obtained. Critical values for the non-standard case for various sample sizes and a wide range
of values of d have been tabulated by DGM (2002, Table I), allowing for the presence of a
conslant/trend in the model.

Obviously, it is often the case in practice that an estimated value of d would be needed in order
to implement the test. In principle, any /T-consistent estimator of d € D = [0, 1) could be used
in regressions (11) or (12) to make the FD-F test feasible. Among them, the most popular ones
are the maximum-likelihood estimator (MLE) due to Sowell (1992) and the minimum distance
estimator (MDE) due to Tieslau er al. (1996). However, those estimators present shortcomings
either due to their computational complexity or to just being defined for some subsets of D. In
order Lo overcome those difficulties, we prefer to use the MDE of d proposed by Mayoral (2000)
for the case where u, is an ARMA (r, 5) process, ie. u, = ®,(L)'©,(L)&,, where ®,(L) and
®,(L) are lag polynomials with all roots outside the unit circle. The process is assumed to have an
unknown mean (z4) after being differenced an integer number (mp) of times. Hence, x; follows
the ARFIMA (r, dy, s) process

D (L)AP(A™x; — o) = B(L)g (13)

such that ¢g € (=3/4,1/2).dy = @g+ my and my is the integer part of (dy + 1/2). Thus,
dp € (—3/4. c0), i.e. a sel that contains D. For example, if dg = 0.7, then my = 1 and ¢y = —0.3,
whereas if dy = 0.3, then my = 0 and ¢y = 0.3.

Let ¥ = (¢..¢,,0,..6;) be the vector containing the AR and MA parameters, 4 = (d, ¥
and Z;(). j =0...0c, be the coefficients associated with the expansion ®,(L)O (L)' A% Then,
given the observations xy, ..., xr, we can define the mean-adjusted residuals:

t—m—1|

ey = > &Ml j(m) —Z(m)] (14)

j=0

where z,(m) = A™x, and Z(m) = (1T — m)™" ZLmH z;(m). Notice that e,(Ay) = &,. Also, since
z;(myp) is stationary and ergodic, the sample mean z(myg) is a consistent estimator of pig.

Nexlt, define V.(A) = ZL 1 538{1) where ., is the sample i th-order autocorrelation associated
with the residuals ¢, (1), where k = 0,(T). In practice, k = T'/* is a good choice. Then, the MDE
of A is defined as:

A =argmin V() (15)
AEA

Notice that, since ¢,(A9) = &, the population autocorrelations are zero and V(&) has a unique
minimum. Moreover, it can be proved that 2. turns out to be a /T-consistent, asymptotically
normally distributed and efficient estimator of A which has several advantages over other available
estimators in the literature. First, when compared to estimators based upon the minimization of a
weighted distance between the estimated and theoretical autocorrelations of the original series, x;,
as in Tieslau ef al. (1996), it has the advantage of not being restricted to the stationary range of
d,—1 < d < 1/2, for which only the autocorrelations of x, exist. This is so since the proposed



MDE is based on the autocorrelations of the residuals which always exist. Secondly, relative to and
the MLE proposed by Sowell (1992), it has the same asymptotic variance but is computationally
much simpler and 4 is not restricted to lie in the stationary range.

Mayoral (2000) presents Monte Carlo evidence showing that the proposed MDE provides very
accurate cstimates of d even for T' = 100, a sample size similar to the one used in this paper.
For example, having simulated 500 replications of an ARFIMA (1,1,0) process with ¢ = 0.6
and d = 0.4(0.8) the average estimated value of d is 0.401(0.789) and that of ¢, is 0.57(0.58)
for that sample size. Morcover it has two desirable propertics. First, being d a +/T-consistent
estimator of dg € (—0.5, 1.5), an interval that includes D, the fratio of p in (11) and (12) will
behave asymptotically as a standardized normal variate. This is so since T-consistency implies
that the distance between d and dy will be small, as happened lo be the case when a hypothesized
value of d, with 0 < 1 —d < 0.5, was being used in implementing the FD-F test. Thus, when 4 is
pre-estimated with the MDE, the asymptotic distribution is always a standardized normal variate.
Second, the power of the test based on (12), for d = d, is larger than the power obtained using
other popular tests for fractional integration available in the literature, such as the non-parametric
test developed by Geweke and Porter-Hudak (1983) or the frequency-domain one by Robinson
(1994). For instance, for T = 100 and 4 = 0.7, the power of the FD-F test (with an estimated d)
is 86%, against the 24% and 73% obtained for Gewcke and Porter-Hudak’s test and Robingon’s
test, respectively.

4. RESULTS

We examine the time series of percentage support of the five main Spanish political parties which
have continued being active over the whole sample period. The data has been obtained from
de Centro de Investigaciones Socidlogicas (CIS) and it represents the answer to the following
question: Which party would you vote for if there were to be a Parliamentary Election tomorrow?,
which is posed once every quarter o a stratified sample of about 2500 individuals. Table I lists the
names of the parties, their acronym, mean support (MS), the coefficients of variation (CV) and the
max—min range over the sample period which runs from 1978(3) to 1999(4). Thus there are 87
quarterly observations, a sample size which is smaller than those used in other studies in this line
of research. For example, the time series analysed by BDP (2000) for several OCDE countries have
lengths ranging from 150 to 480 monthly observations. Before discussing the results, however, it
should be noted that the total average support for the five considered parties only adds up to 48.7%
of the total. The reason for this seemingly low coverage is thal, on average, around 40% of the
interviewed persons cither did not declare support any given party or directly intended to abstain
from voting. Moreover, before 1982, the party with the largest support was UCD, a centre party

Table 1. Political parties and mean support

Party (acronym) MS(%) cv Max—min (%)
Partido Socialista Obrero Espaiiol (PSOLE) 26.44 0.41 13.2-454
Alianza Popular/Partido Popular (AP-PP) 13.44 0.53 31-264
Partido Comunista Espafiol/Tzquierda Unida (PCE-IU) 5.36 D.46 2.0-123
Partido Nacionalista Vasco (PNV) 1.05 0.21 0.4-2.2
Convergencia y Unidn (CTU) 241 0.24 0.8-5.1
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led by Prime Minister Sudrcz which won the first two general elections with an overall support
close to 20%, and which suffered a severe defeat in 1982, to the point of causing its disappearance.
Since the sample size for UCD only covers the 19781982 period (20 quarterly observations), it
was excluded from the study.

It is worth noticing that the standard deviations of the voting intentions lor the two small
partics (CIU and PNV), which only present candidates for gencral clections at their regional
constituencies (Catalonia and the Basque Country, respectively), are around one-fifth of their
mean support and the range is fairly narrow. That indicates (see below) that a large proportion
of their electorate belongs to the ‘militant’ class. For the three large parties (AP-PP, PSOE,
PCE-1U) the share of ‘non-militants’ is larger, ranging from 7 percentage points for PCE-1U
to about 20 percentage points for PSOE. Accordingly, our interpretation below of the degree
of persistence in the poll time series for all parties would correspond to the fractions of
their voters who react to unexpected changes in the information set. This fraction, in absolute
terms, 15 of course much larger for the three large parties that for the other two smaller
parties.

Figure 1(a) and (b) shows the raw data and the logistic transform of the series in deviations from
its sample means. It should noticed that an intercept was the only deterministic term which turned
out to be significant when trying to fit an election cycle. Thus, the estimated models correspond
to the specification in (13). Other variables such as the inflation and unemployment rates, and the
length of the term in power, were also tried as controls but were never statistically significant.
This result is in agreement with those reported by BDP (2000) who do not find an election cycle,
except for the UK, in their study of partisanship data in eight major OCDE economies. Given that
our sample only covers six general elections and three parties in power (UCD, from 1978 o 1982,
PSOE from 1982 to 1996, and AP-PP from 1996 to the present), it scems natural that it will be
difficult to capture those effects.

Table 11 reports standard tests of the hypotheses that the series are 7(0) and /(1). We present
the results for the Augmented Dickey—Fuller (ADF) and the Phillips and Perron (P—P) tests, for
which the null hypothesis is /(1), both with and without a deterministic trend, and also for the
KPSS test which considers /(0) as null hypothesis. If the series were FI(d), with 0 < d < 1, then
both null hypotheses should be rejected, although it should be borne in mind that unit root tests
have low power against non-stationary F/(d) alternatives, particularly when sample sizes are not
too large as it happens in our case. An asterisk indicates rejection at a 5% significance level.
In general, it is found that both tests reject their respective null hypotheses, indicating that the
presence of long-memory is quite embedded in the data.

Table 111 reports the values of the BIC information criterion for six alternative ARFIMA models
estimated with the MD procedure described above. In all cases the preferred model was an ARFIMA
(0, d, 0), a result which agrees with interpretation of the disturbances in (10) as innovations
capturing ‘news’.

Table IV, in turn, presents the result of applying the FD-F test (regression (11) with a constant
term) to the poll data, together with the estimated value of d (second column) and the Box-Ljung
@ (k) statistic for kth-order autocorrelation in the residuals of the fitted model (third column),
which are depicted in Figure 1(c). Note that in all cases the null of unit root is rejected against an
FI(d) with 0 < d < 1. Moreover, the null hypothesis of uncorrelated residuals cannot be rejected,
giving further support to the pure fractional noise process as an appropriate representation of
the series at hand. For comparison, we also report the maximum likelihood (ML) estimator
(&m,) of d implemented in Sowell (1992) (fourth column). This estimator is only valid when
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Figure 1. (a) Original series. (b) Log-odds transformation. (¢) Fractionally differenced series

—0.5 < d < 0.5 and hence the reported estimates were computed by adding 1 to the estimate of

d obtained with the first-differenced data. The results obtained with both methods are strikingly
similar, a fact which offers further support to our use of the computationally simpler MD estimation
method.
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From the results in Table IV, it follows that in all cases, except for the PNV, the estimates
of ¢ are in the range 0.5 < d < 1, giving rise to non-stationary, yet mean- reverting, Fl(d)

processes. The highest value of d is found for AP-PP whilst the lowest value pertains to the
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PNV. Except for the latter case, the resulis do no contradict the findings by BDP (2000, Table 3)
who obtain estimates of ¢ around 0.7 for the partisanship aggregate-level data in eight major
OECD economies.



Table TI. Stationary and unit root tests

P-P, P-P, ADF,, ADF, KPSS.
AP-PP -1.59 -3.67* —1.80 —3.65* 4.67*
PSOE —3.28 —4.05* —3.25* —3.98* 453"
PCE-IU -1.59 =343 —1.49 -263 578"
CI1u -3.79* —6.80* -287 —4.09* 3.2
PNV —4,29* —7.05* —3.98* —4.19 302
Tahle M. BIC values
(0.d.0 (1,d.0) 2,40 (1,d,1) (0.4,1) 10,d.2)
PSOE =277 —269 =267 —264 —-269 —264
AP-PP =234 =224 =219 =219 =226 =217
PCE-IU =292 =272 =230 =210 =273 =252
U —208 -276 =270 =265 —-276 =280
PNV =450 =964 =953 =962 =964 =949
Table TV. FD-F test
¢ d Q9 dui
AP-PP —2.43* .83 3.56 0.81
PSOE =267 0.69 6.82 0.71
PCE-IU —3.09* 0.74 12.78 0.72
CIu —4.90* .59 8.67 0.60
PNV —3.84* 0.33 10.73 0.31

As BDP (1997, p. 487) claim “il seems that political commitment across the voting population
might be a relatively stable sociometric constant that does not depend on factors such as lefi-right
political orientation, etc.”. Thus, despite Spain’s younger democracy and that the value d =2 0.7
just represents an empirical regularity with no theoretical underpinning, our previous results for the
three major Spanish parties clearly support the conventional findings in the literature. However,
our finding that the long-memory parameter for the smaller regional (nationalistic) partics is lower
than for the mainstream parties is an interesting result, since it may imply the existence of some
significant differences in the behaviour of both types of supporter. Next, following the discussion
in Section 3, we report those values of p which most nearly reconcile the Beta ( p, ¢) distribution
with uncorrelated shocks. We distinguish four cases corresponding to the rough estimates d = 0.8
(for AP-PP), d = 0.7 (for PSOE and PCE-TU), d = 0.6 (for CIU) and 4 = 0.3 (for PNV). For
each case, the values of p that yield uncorrelated shocks, i.e. a pure [ractional model, lurn out
to be 1.0, 0.9, 0.63 and 0.25 respectively. Figure 2 plots the shapes of the densities in cach
case. Assuming, for illustrative purposes, that a value of @ above or equal to 0.8 corresponds
to a committed voter, we can compute the probability masses associated to both types of voter
from the above densities. In this way, we find that the proportion of committed voters is 50%
for the political party (AP-PP) with the highest value of d, while it is 35% for those of an
intermediate value (PSOE, PCE-IU), and 20% and 5% for those with the lowest values (CIU and
PNV, respectively).
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Figure 2. Beta (p.q) density function

Lastly, we have used the ARFIMA (0, d, 0) models estimated above for prediction purposes.
Multistep model forecasts for the period 1999(3)-2000(4) are shown in Table V. They have been
computed using Ox version 2.10 (see Doornik, 1998) and the ARFIMA package version 0.95
(Doornik and Ooms, 1998) based on results by Beran (1994). The mean forecast errors for the
period 1999(1)-1999(4), are 1.0%, —1.0%, 0.1%, 0.0%, —0.1% and 0.0% for AP-PP, PSOE,
PCE-IU, CIU, and PNV, respectively.

Using the previous forecasts (adjusted by the mean forecast error for the previous election held
in 1996) an admittedly bold exercise was undertaken to predict the number of seats in parliament
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Table V. Forecasts

AP-PP PSOE PCE-TU cIu PNV
99+(3) 2523 21.50 469 270 0.83
99*(4) 24,98 21.78 479 267 0.86
00(1) 25.29 21.69 375 264 0.88
00(2) 25.07 21.86 189 262 0.59
00(3) 24.87 22.00 3.99 2.60 0.90
00(4) 23.07 22.11 4.06 259 0.90

in the last general elections called for 12 March 2000, at the time when the first draft of this
paper was wrillen, restricting the analysis to the three major parties. The number of seats in the
1996 general clection was 156, 140 and 21 for AP-PP, PSOE, and PCE-IU, respectively, with
the total number of seats in the Spanish parliaments being 350. Their mean support during the
quarter preceding that election was 24.1%, 23.0% and 10.3% respectively, whereas the forecasts
for 2000(1) were 25.3, 21.7 and 3.8, as shown in Table V. Thus, given the forecast for 00(1) and
its associated standard crror, we used a simple linear interpolation method to map mean support
onto parliamentary seats. For example, since the mean forecast error for AP-PP was 1%, the point
forecast lor the number of seats of that party would be 170 (= 26.3*156/24.1). A confidence
interval lor the point forecast can also be constructed along similar lines mapping the standard
error of the forecast on the political support onto seats. Using that approach for the other two
parties yields the following distribution of seats: between 165 and 175 for AP-PP, between 123
and 129 for PSOE and between 6 and 10 for PCE-IU. Since overall majority is achieved with
176 seats, our predictions therefore were that: (i) AP-PP would win the elections being close to
rcaching overall majority, and (ii) a potential coalition between PSOE and PCE-IU would not be
enough to reach victory in the elections.

The results of the general elections turned out to be 183, 125 and 8 seats for AP-PP, PSOE
and PCE-1U, respectively. Thus, except for AP-PP, which got overall majority by a margin of 7
scats, the remaining outcomes almost coincided with our point estimates and were well within
the confidence intervals. Hence, fractionally integrated processes seemingly provide a powerful
tool in predicting election ontcomes. Nonetheless, the absence of a completely proportional rule
in the Spanish elecloral sysiem, where D'Honlt’s rule applies, ought to put some dose of caution
on the use of the above simple methodology for forccasting the outcomes of general clections. A
deeper analysis of the specific characteristics of the electoral system at hand, in order to improve
forecasting, will be the subject of further research.

5. CONCLUSIONS

The resulis in this paper support the view that ARFIMA processes with a value of the fractional
differencing parameter, d, between 0.6 and 0.8 provide an appropriate characterization of persis-
tence in the time series of opinion polls for mainstream political parties in Spain. This result is
in broad agreement with the findings for opinion polls for major parties in countries with longer
democratic traditions than Spain. The fact that d is fairly similar across countries seemingly sup-
ports the idea that such a distribution might represent a stable constant of mass political behavior
in democratic societies. By assuming a certain distribution of the attributes of committed and prag-
matism in a voting population, we are able to interpret d as a measure of the relative size of the
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‘committed” and ‘floating” populations of supporters for cach party. In particular, we find that the
current party in power (PP) has the largest proportion of ‘committed” voters, around 50%, whereas
the main opposition party (PSOE) only has 35%. It should be noted, however, that those shares
are larger than the ones obtained for the smaller regional parties (CIU and PNV) whose estimated
ds arc between 0.3 and 0.6, giving rise to sharcs of committed voters of between 5% and 20%.
Our interpretation of the latter result is that those small shares only pertain to the ‘non-militant’
[raction of their supporters, being their *militant’ populations much more important than lor the
mainstream parties.

Finally, the estimated ARFIMA models perform well in forecasting the results of the last
general elections in Spain, held in March 2000, using information on the opinion polls up to the
previous quarter.
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