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Resumen

El campo del reconocimiento de actividades realizadas por las personas recibe en la actu-
alidad una especial atencién debido a sus numerosas areas de aplicacién y al desarrollo de
las tecnologias que lo hacen posible. En los tltimos anos, se ha investigado mucho en este
area de la Inteligencia Artificial para tareas como el seguimiento de personas que presenten
algin tipo de dependencia. Por ejemplo, personas mayores con demencia senil o cualquier
otra discapacidad cognitiva. El reconocimiento de las actividades que estas personas llevan
a cabo podria permitir la monitorizacién inteligente de dichas actividades y, en caso de ser
necesario, asistir a estas personas para permitirles completar con éxito las tareas que deben
realizar.

En la actualidad, existen sistemas capaces de reconocer lo que los usuarios de dichos
sistemas realizan dentro de un entorno definido. La mayoria de estos sistemas tiene dos
problemas. El primer problema es que reconocen sélo estados parciales de cada actividad.
Es decir, en lugar de reconocer una actividad completa que comienza en el punto a y
termina en el punto b, estos sistemas dividen la linea temporal en ventanas de tiempo de
un tamano determinado que clasifican como pertenecientes a una actividad u otra. Estas
ventanas temporales tienen el problema de que muchas veces solapan dos actividades, lo
que hace muy dificil la correcta clasificacién de las actividades a las que pertenecen dichas
ventanas. Ademads, esto también dificulta la obtencién de los estados que anteceden y
suceden a las actividades. Dichos estados son necesarios a la hora de construir modelos de
comportamiento. El segundo problema es que reconocen actividades de alto nivel completas
como cocinar o preparar té pero no las actividades de bajo nivel o acciones, como coger el
tenedor o encender la tetera, que componen dichas actividades de alto nivel. Asi, salvo
unas pocas excepciones, la mayoria de los sistemas presentes en la literatura no pueden
ser utilizados para asistir a los usuarios durante la realizacién de las actividades ya que no
pueden saber como de completa estd la actividad.

Por todo ello, en esta tesis se plantean tres grandes objetivos. El primero es la
implementacion de un nuevo algoritmo de reconocimiento de actividades que
evite los problemas que provocan las ventanas temporales de longitud fija y pueda ser uti-
lizado también para extraer los estados por los que el usuario lleva al sistema a través de
sus acciones.

El segundo objetivo es la generacion automatica de un dominio de planificacion
automatica que represente el comportamiento del usuario a partir de las actividades re-
conocidas. Para ello se utilizard el algoritmo desarrollado en el paso anterior para reconocer
las acciones que componen las actividades y los estados que anteceden y suceden a cada
accion. Una vez que se tiene un sistema capaz de generar los estados y acciones realizadas
por el usuario, se genera un dominio de planificacién utilizando dicha informaciéon. En-
tonces, el dominio de planificacién podra ser utilizado por un planificador automaético ya
existente para generar secuencias de acciones a partir del estado actual, que podran ser

x1



utilizadas para asistir al usuario en determinadas situaciones.

El tercer objetivo es el de estudiar la utilizacién de los dominios de planificaciéon
generados para crear planes y guiar con éstos a los usuarios del sistema. Ademads, se quiere
comprobar si los dominios de planificacién generados por el sistema pueden ser utilizados
para reconocer actividades por si solo o junto con un sistema de sensores para conseguir asi
mejores resultados. También se quiere probar su capacidad para predecir futuras acciones.
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Abstract

Activity recognition is receiving a special attention because it can be used in many areas.
This field of artificial intelligence has been widely investigated lately for tasks such as
following the behavior of people with some kind of cognitive impairment. For instance,
elderly people with dementia. The recognition of the activities that these people carry on
permits to offer assistance in case they need it while they are performing the activities.

Currently, there are many systems capable of recognizing the activities that a user
performs in a specific environment. Most of these systems have two problems. First, they
recognize states of the activities instead of the entire activity. For instance, instead of
recognizing an activity that starts at the moment a and ends at b, these systems split the
time line in fixed-length temporal windows that are classified as belonging to an activity
or another. These windows sometimes overlap two activities which makes classifying the
activities more difficult. Also this prevents the system from detecting the states of the
system before and after each activity. These states are needed to build behavioral models.
Second, most of these systems recognize complete high-level activities such as cooking or
making tea but they can not recognize the low-level activities that compose the high-level
activities. For example, pick-up the fork or switch on the oven. For this reason, most of the
systems in the literature can not be used to assist people during the activities since they
recognize the activity itself and they can not provide the low-level activities that the user
has to execute to complete the high-level activity.

For these reasons, in this thesis we have three objectives. The first objective is the
development of a new activity recognition algorithm capable of overcoming the
problems that the fixed-length temporal windows cause and, also, capable of extracting the
states that the system can traverse.

The second objective is to automatically generate an automated planning do-
main able to represent the user behavior using the activity recognition system. In order to
do that, we will use the activity recognition system developed in the previous step to recog-
nize the activities and the states of the environment before and after the activities. Once
the system is capable of performing this task, the planning domain is generated using that
information. Then, the automated planning domain will be used by an automated planner
to generate sequences of actions to reach the goal of the user. That way, those sequences
will be used to assist users by telling them the next action or actions to accomplish their
goals.

The third objective is to use automatically generated planning domains for
guiding users to accomplish the task they pursue. In addition, we want to check whether
the generated plans can be used to recognize the activities alone or to help a sensors system
to improve its results. Also, the generated plans will be used to predict the next activities
that the user may perform. This way, we will test the planning domains and the plans
generated by the planner to check if they are capable of offering information to recognize the
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activity that the user performs or, at least, offering information for the activity recognition
system to improve its results.



Part 1

Introduction and State of the Art






Chapter 1

Introduction

This thesis work belongs to the areas of Human Activity Recognition and Automated Plan-
ning in Artificial Intelligence. More specifically, it approaches the task of generating plan-
ning action models from sensor readings through activity recognition methods.

1.1 Overview

From the beginning, research on Artificial Intelligence (AI) had the goal of automatically
solving problems. Among all the subdisciplines of AI we can find Automated Planning
(AP) and Activity Recognition (AR). AP has been successfully used in many domains like
robotics or transportation logistics. It aims at generating plans, or sequences of actions, for
the purpose of achieving a particular goal. Thus, given a goal state, an initial state, and a
planning domain, the actions that can be executed, an automated planner generates a plan
that, when executed, will reach a goal state from the initial state. However, building an
action model is a difficult and time-consuming task even for domain experts.

On the other hand, the field of AR is receiving great attention at the moment due to the
wide range of applications in many areas of science and engineering. AR aims to infer the
actions of one or more agents from a set of observations captured by sensors. The applicable
technology improves fast. Among other advances, it allows now wireless sensors.

Advances in miniaturization technologies and communications have led to the creation
of a new computing paradigm called Ubiquitous Computing (UC). The UC idea envisioned
by Mark Weiser [Weiser, 1995] is also described as Pervasive Computing or Ambient Intelli-
gence (Aml), where each term emphasizes slightly different aspects. Thus, UC pretends to
incorporate small, inexpensive, robust and networked processing devices in everyday life.
That way, a new human-computer interaction model is created where the processing power
is distributed in the objects of the environment. On the other hand, Aml refers to electronic
environments that are sensitive and responsive to the presence of people. In an Aml envi-
ronment, the devices work in concert to support people in carrying out their everyday life
activities using information that is hidden in the network connecting these devices [Ducatel
et al., 2001].

A system that uses such a computing model is based on a network of distributed pro-
cessing devices connected to a communication network composed of sensors and commu-
nication protocols capable of capturing, processing and distributing context information
about the users of the smart environment.

AR is closely linked to UC since it uses the information gathered by the sensor network
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as the starting point to recognize what the user is doing at a specific moment. It can be used
in a wide range of applications such as context-aware computing or real-time information
systems in order to assist people with some kind of impairment. Thus, it uses UC but also
it can be part of the UC system making the interaction between the user and the system
possible.

On the basis of these premises and using the principles of UC, this thesis proposes a
new use of the technologies described above in order to incorporate assistance into a smart
domestic environment. This thesis aims to use AR to automatically build AP domains
and employ such domains to assist people with some kind of cognitive impairment in their
homes. All the necessary algorithms will be implemented in an integrated system. Such
system should be capable of providing personalized assistance for users to perform domestic
everyday tasks. Specifically, in this thesis a system capable of detecting low-level and high-
level activities that users perform is developed. Once the activities have been detected and
recognized, they will be used to build an action model representing the user behavior. This
way, the system will overcome the problems that building an action model for AP entails.
Then, the system will be able to use the learned action model to assist the user, suggesting
the best activity or activities to accomplish the user’s goals. Also, it will be used to predict
the possible next activities that the user will execute.

There are many problems to solve in order to develop such a system. The main one is
the recognition of the activities that users perform in the environment. This is the axis this
thesis turns around. The system will monitor users and check if they are able to accomplish
the activities correctly. Otherwise, the system could show warnings in order for the users
to successfully reach their goals.

The system begins with the sensor network deployed in an environment and also worn
by the users. The sensor network will gather information of the actions of the user and
the changes in the environment to infer the activity that the user performs. There are
several types of sensors used to accomplish such a task and, besides, the readings of the
sensors contain noise. Data Fusion is the process of integrating multiple data, recorded
from a multiple sensors system, together with knowledge representing the same real-world
object into a consistent and useful representation. So, in the first phase of this thesis, some
data fusion techniques are used to process and filter the sensor data and solve the problems
caused by the noise of the sensors and also to fuse the data produced by the sensor network.
That way a unique source of data is generated.

Once the sensor data is processed, methods for time series analysis are used to extract
the most relevant features for AR. Then, these features will be employed by machine learning
techniques in order to infer the activities performed by the users. This way, a model of the
activities executed by the users is generated to infer the activities later on. In addition
to standard activity recognition, some researchers have differentiated a sub-area of the AR
that they call Activity Spotting. This sub-area of the AR tries to infer very short activities
or activities with no duration. These activities can be referred to as low-level activities or
actions. This sub-area will be considered as well since most of the activities that are going
to be recognized in this thesis have a very short duration or no duration at all. Specifically,
most of the activities that are going to be recognized by the system developed in this thesis
are actions that compose the activity of cooking a recipe.

The model generated in the AR step permits the system to know the actions that the
user performs at a specific moment. This allows the system to perceive the current state of
the user and the environment.

The next step of the thesis will be the generation of a user model, using AP, from the
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sequences of actions that the user performs and the state of the environment before and
after every action.

The generated AR user model will provide the state of the system at a specific moment
and the AP domain will be used to generate plans from every single state for the user to
accomplish his/her goal. This way, with a planning domain capable of reproducing the user
behavior, the developed system will be able to assist the user of the system by providing
the next action that the user should execute in order to reach his/her goal.

As final objective, this thesis will evaluate the created system to check if the generated
user action models coded as planning domains are capable of helping the system for
recognizing activities. This way, the activity recognition system and the automated plan-
ning system will compose a new activity recognition system.

Figure 1.1 summarizes the tasks that have to be implemented to develop the proposed
system as well as the technologies and the research fields involved.

Activity spotting

Analysis

Activity Recognition

Actions

Actions and State
Separator

Sequence of actions and states

User Model
Creator

Planning action model

Planner |

Plans

A A 4

| Recommending next Action | | Predicting next Action Action

Figure 1.1: Scheme of the research fields involved in the thesis and the modules that compose
the whole system.

1.2 Reader’s Guide to the Thesis

This document is organized in four parts: Part I introduces the thesis and describes the
state of the art. Chapter 2 reviews the literature about activity recognition and classical
planning. Part II details the objectives that this thesis pursues along with the evaluation
method employed to analyze the results obtained. Part III explains the work done along
the thesis research. Particularly, it describes work in activity recognition using a relational
model (Chapter 5); Chapter 6 analyzes a new way of segmentation and present models
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based on that idea; Chapter 7 presents a complete activity recognition algorithm employing
the segmentation method proposed in Chapter 6; and Chapter 8 details a method to learn
planning action models using the information provided by sensors through an activity recog-
nition system. This method integrates activity recognition and planning to build a system
capable of providing assistance for the user to reach a goal. Finally, Part IV summarizes
the contributions of this thesis and discusses some conclusions and future work.



Chapter 2

State of the Art

This chapter introduces the theoretical foundations that are the basis of this work as well
as a description of the main research areas involved in the development of the proposed
system. We begin with a section about AR and all the technologies used, including sensors
and temporal series analysis. Next, different modelling approaches for the classification
of the activities are presented. Then, AP is introduced along with some approaches for
automatically generating planning action models.

2.1 Activity Recognition

Activity Recognition aims to automatically infer the actions and goals of one or more persons
from a series of observations gathered by a sensor network. The sensor network may be
composed of one or more sensors of different types. So, the sensor network will capture
information of diverse nature depending on the types of sensors used. Thus, AR attempts
to infer high-level information about the activities that users perform using the low-level
data provided by the sensors. This research field is the centre of this thesis.

The first works in the field of AR started in the 1990s when the advances in electronics
technology enhanced the computer, communication and sensor equipment. This permitted
to develop equipment small and light enough to be integrated in mobile systems capable
of being worn by a person as any other piece of clothing during a long enough period of
time [Starner et al., 1999)].

Although the first relatively bulky prototypes were far from being integrated in the
environment as Mark Weiser predicted [Weiser, 1995], they kept the promise of making the
computer to perceive the user’s life in first person, permitting the creation of really personal
applications. The first works focused on text and were based on the use that users made with
a keyboard. Gradually, the systems explored new methods for gathering information and
new interfaces for users. For instance, small portable cameras [Schiele et al., 1999; Starner
et al., 1997] or microphones [Clarkson and Pentland, 1998]. Also, context information as
the location of users, the topic of conversation or the identity of the persons with whom
users spoke was incorporated. This information gave the user clues about his/her current
situation in real-time or just store that information to be used later on [Rhodes, 1997]

Measuring the physical activity of a person through the use of technology has been
the objective of part of the medical community for a long time; accelerometers have been
used with this purpose for decades [Montoye et al., 1983; Wong et al., 1981]. These not
very mature systems attempted to estimate measures such as energy expenditure or the
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oxygen consumption of the user while he/she was executing physical activities. At the
end of the past decade, some mobile systems incorporated inertial sensors and were able
to separate and recognize some specific physical activities stimulated by the technological
advances and the development of relatively inexpensive communication, computation, and
sensing devices. Such advances were produced in the equipment available in the marked but
also in the machine learning methods [Golding and Lesh, 1999; Randell and Muller, 2000;
Van Laerhoven and Cakmakei, 2000].

The current research in AR covers a wide range of applications. There are research
groups focused on recognizing Activities of Daily Living (ADLs) in the context of health
care and elderly care [Lester et al., 2006]. Others focus on performing automatic AR using
non-supervised or semi-supervised machine learning algorithms [Wyatt et al., 2005; Huynh
and Schiele, 2006; Minnen et al., 2007] to avoid the problem of labeling data. Also, there
are groups dedicated to combine different types of sensors to improve the results [Stiefmeier
et al., 2006; Wang et al., 2007).

Other terms related to AR and even sometimes considered the same task by the scientific
community are Plan Recognition and Goal Recognition. In the field of automated planning,
plans, goals and activities are words used to define different terms. Thus, the goals are the
states that the user wants to achieve, activities are the actions that users can execute to
transform the environment and the objects in it to modify the current state and plans are
sequences of actions that users execute to reach a goal.

From a practical point of view these terms could be divided into two groups depending
on the problem that they resolve and the methods used. On the one hand, AR starts from
the information gathered by a sensor network to infer the activities performed by users
and, on the other hand, plan and goal recognition start from a sequence of actions and they
attempt to infer the goals that an agent pursues and the next actions that this agent is going
to execute to reach the goal. For AR, the starting point is the sensorial information and
this data normally contains noise. So, in order to accomplish the recognition, techniques
to deal with noise have to be used to permit the use of the information provided by the
sensors. However, goal and plan recognition do not need to deal with the sensor noise so do
not use those techniques. They use higher level information, the actions executed. Anyhow,
some methods are shared by the three areas and, in the last years, the boundaries among
them are becoming very diffuse. The three terms are defined here to clearly differentiate
that they are different tasks and, therefore, they will be treated as different terms in this
thesis.

2.1.1 Sensors

The types of sensors used for AR are very diverse. At the beginning, most works used vision
sensor networks and audio sensors [Pentland, 1996; Gavrila, 1999] although the use of vision
sensor networks has continued up to the present [Junejo et al., 2011; Gémez-Romero et al.,
2012]. Later on, other types of sensors were gradually integrated. Thus, location sensors
started to be used. In [Liao et al., 2005], authors use GPS to detect activities performed in
the street while [Yin et al., 2004] use a WIFI network to infer the high-level goals of users
from the low-level signals of a device connected to the WIFI network of an office.

Physical activities require repetitive movements of the human body or a specific bodily
position. Therefore, in order to recognize this type of activities other types of sensors are
employed. So, works like [Bao and Intille, 2004; Kahn et al., 1999; Kasten and Langheinrich,
2001] use inertial and magnetic sensors as accelerometers, gyroscopes and magnetometers.
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These sensors were used previously in robotics to measure the movements of robots.

Accelerometers have the capability of measuring linear acceleration and deceleration.
A 3-axis accelerometer would ideally measure linear acceleration for the x, y, and z axes
which are separated by exactly 90 degrees relative to the platform or object where the
accelerometer has been installed. They also permit to know the relative position of an object
with respect to the gravity field of the Earth. Gyroscopes measure the angular velocity.
They are used currently, together with the accelerometers, to estimate the position and the
location of an agent when it is not possible to use other location systems like GPS or when
GPS does not provide accurate enough information. Magnetometers, however, used very
often along with accelerometers and gyroscopes, are employed to measure the magnetic field
of the Earth or magnetic fields near of the device. They are capable of determining the
relative position of an object with respect to the magnetic north pole.

Other types of activities can be easier to recognize through the objects involved in
the activity. For instance, the objects that the user touches or uses when executing some
activities as cooking or shaving may provide better information than the way the person
moves the arm. RFID technology provides remote data storage and retrieval systems that
use devices called RFID tags or transponders. The fundamental objective of the RFID
technology is to transmit the identity of an object (similar to a unique serial number)
through radio waves [Finkenzeller, 2010]. The RFID tags are small devices, similar to a
sticker in some cases, which may be attached to an object, animal or person. RFID tags
contain at least two parts: an integrated circuit for storing and processing information,
modulating and demodulating a radio-frequency signal, collecting power from the incident
reader signal, and other specialized functions; and an antenna for receiving and transmitting
the signal. Thus, this technology may permit the detection of the objects that a person
holds or even it could be used to locate people [Ni et al., 2004]. [Fishkin et al., 2004] use
RFID devices to detect motion and [Philipose et al., 2004; Fishkin et al., 2005; Patterson
et al., 2005] present AR systems that employ RFID sensors to identify the object that
the users handle. Then, the system uses that information to infer the activities that were
performed.

RFID sensors are not the only choice to detect the objects that a person uses. Other
types of sensor can be used as it is shown in [Tapia et al., 2004] where the authors employed
wireless accelerometers to know which objects were utilized by the user and how they were
employed. The accelerometers were attached to many objects and pieces of furniture to
monitor the interaction of the user with the environment. Other works like [Pham and
Olivier, 2009; Hoey et al., 2011] attached wireless accelerometers just on few objects, those
objects that the user could employ in order to perform specific activities. The accelerometers
along with other types of sensors were employed to recognize the rest of the activities.

Other types of sensors that do not appear in the literature as often as RFID or accelero-
meters but employed in some works include wearable plastic optical fiber sensors for moni-
toring seated spinal posture [Dunne et al., 2006, reed switch sensors to detect the state of
doors, furniture or lights [Kasteren et al., 2008], binary sensors that at any given time sup-
ply a value of one or zero like motion detectors, contact switches, break-beam sensors, and
pressure mats [Wilson and Atkeson, 2005], garment-integrated foam-based pressure sensors
used for monitoring the wearer’s respiration rate [Brady et al., 2005, wearable force sensors
placed on the muscle surface for detecting and interpreting muscle activity and several types
of physiological sensors like blood oximeter to monitor the user’s blood oxygen level and
pulse while sleeping [Oliver and Flores-Mangas, 2006], galvanic skin response, also known as
electrodermal response, which measures changes in electrical resistance across two regions



8 CHAPTER 2. STATE OF THE ART

of the skin [Westeyn et al., 2006], electrocardiogram sensors [Linz et al., 2006}, body tem-
perature, combinations of the other sensors [Gerasimov, 2003] and mobile phones [Kwapisz
et al., 2011; Blazquez et al., 2012].

Using the same type of sensors but in several places may improve the results. For
instance, several accelerometers [Bao and Intille, 2004; Huynh et al., 2008], integrating a set
of different sensors in one device [Choudhury et al., 2008] or using different types of sensors in
the same network [Junker et al., 2005; Kern et al., 2004]. Complementary sensors combined
in groups of two or more may also help to better recognize activities. For example, combining
sensors to measure movement and localization [Subramanya et al., 2006), movement and
audio [Lukowicz et al., 2004; Kern et al., 2004; Choudhury and Pentland, 2003], movement
and proximity [Stiefmeier et al., 2006], movement and RFID [Wang et al., 2007; Stikic et
al., 2008a] or many different types [Tapia et al., 2004].

The last examples show the combination of wearable sensors and sensors installed in
the environment, in this case RFID tags attached to some objects. The data employed in
their systems is part of a bigger data set introduced in [Logan et al., 2007] where authors
employed portable sensors combined with a big group of sensors deployed in the environment
to detect the use of the objects: motion sensors, magnetic sensors to detect changes in the
state of doors, windows, pieces of furniture, etc; and to detect the environmental conditions:
light, temperature, humidity, etc. [Logan et al., 2007] gathered the data in a laboratory
where a big set of different types of sensors were deployed to capture as much information as
possible from the environment and from the users, in a place that simulates an average flat.
In such flat-laboratory, a couple was living for several weeks [Intille et al., 2006] to provide
a data set as real as possible. In [Haya et al., 2004] authors presented a context-based
architecture to achieve the required synergy among the ubiquitous computing devices and
it was also implemented in a real environment; a living room and an office space. They
used sensors to detect presence, temperature, and luminosity, among other features.

2.1.2 Segmentation

The starting point of an AR system is the sensor network. From a set of sensor readings,
the system has to extract higher-level information, features or attributes, in order to classify
and match the sensors’ readings and the performed activities. Thus, sensors produce time
series that have to be processed in order to extract information.

A temporal serie may be defined as a time-ordered sequence of observations on a variable
taken over time. So, time series analysis comprises methods for analyzing changes of a
variable over time. In this thesis, time series analysis is important since the observations
gathered from sensors create time series and these time series are the starting point of the
system that is going to be developed.

AR systems extract relevant information from sensor time series in order to create action
models to classify the activities. This information depends on the type of sensors used. So,
there are systems that employ RFID readers and tags like [Philipose et al., 2004] which
generate as observations the identification of the RFID tags detected by the RFID reader.
Reed switch sensors [Kasteren et al., 2008] produce a two-states signal corresponding to
the two states in which reed switch sensors can be. These two types of sensors generate
readings with discrete values and events at specific moments of time.

Other types of sensors produce observations with continuous values. For that reason, the
extraction of relevant information is more difficult. For instance, the systems that employ
accelerometers or gyroscopes [Bao and Intille, 2004; Junker et al., 2005]. In these cases, the
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Figure 2.1: Temporal segmentation on time series of two sensors by the sliding window
method.

systems usually extract statistical values like the mean or the variance or even the energy
of the signal of an interval of values or the frequency after changing the readings from
the time domain to the frequency domain. This is done using the Fast Fourier Transform
(FFT) [Heideman et al., 1985]. The time domain shows how a signal changes over time,
whereas the frequency domain shows how much of the signal lies within each given frequency
band over a range of frequencies.

For the extraction of these features, researchers have employed different techniques
although the most widely used is the Sliding Window (SW).

A formal definition of an AR process can be defined as follows. Given a network of
N sensors and a set A of n activities A = ay,...,a, that the user might perform at each
time step, N sequences will be generated by an AR system where each sequence can be
represented as a vector X°® =< ..,x7,.. > of readings of sensor s. z; is the sensor reading
at time 4 of sensor s. So, the first task consists of defining a function f; that takes the N
sequences and returns Z vectors of features F;. Each vector is labeled with the activity a
that the user performed during the period of time from ¢ to ¢ + [ when the features in F,
were extracted. The second task is to learn a function fo that takes as inputs those vectors
F, produced by fi and builds a classifier to infer the activities performed.

2.1.2.1 Sliding Window

The static sliding window approach uses fixed-length temporal windows that shift to create
instances. Each window position produces a segment that is used to isolate data for later
processing. It uses two parameters: the windows length [ and the shift r. Figure 2.1 shows
an example of sliding windows where [ = r, i is the timestamp at which the first window
starts and ¢ 4 [ is the timestamp at which it finishes and the next temporal window starts.

So, using this method, the function f; may be defined as follows. Given a network of
N sensors, N sequences of data are generated. Each sequence is segmented in Z temporal
windows or time slices of [ seconds in length defined as W =< zj,...,z7 ; | > of contiguous
readings from the sensor s starting at time ¢. The window shift, r, defines the next temporal
window as W7 =<wxi ., ..,zf, ;| >. The segments that start at time i are grouped in
the matrix W; =< Wl-l, - WZ»N >. These temporal windows are represented in Figure 2.1.
Then, the features are extracted from W; to build the vector F; which is labeled with the
activity a € A = {ay,ag, ...,a,} that the user performed during W;. Thus, given a set of
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n activities A = {a1, ag, ...,a,} (classes), every temporal window W; generates a vector F,
that is labeled with an activity a € A. Then, the function fo builds a classifier to find the
mapping between F; and the activity in A that was performed by the user.

So, in order to use the SW method two parameters have to be defined: length of the
window [ and the shift of the window 7.

In [Kasteren et al., 2008] time series data are divided into time slices of constant length,
[ = 60 seconds, and r = [ and each slide is labeled with the activity. After that, probabilistic
models were used to capture the mapping between the time slices and the activities. The
authors of [Patterson et al., 2005] aim to infer the activity being performed each second,
r = 1 second, by using a window of data of [ = 74 seconds; in their case, [ was set to the
mean amount of uninterrupted time spent performing an activity. In this case, they used
overlapped windows shifting them one second.

[Bao and Intille, 2004] employ accelerometers to capture data about users’ movements.
They use a SW with [ = 512 and r» = 256. Given that the sensors were sampled at 76.25Hz,
the window size was 6.7 seconds. Mean, energy, frequency-domain entropy, and correlation
features were extracted from the SW signals for activity recognition. Others like [Tapia et
al., 2004] use SW with [ equal to the average duration for each activity computed from all
the activities and r was half of the duration of the quickest activity. In [Kern et al., 2007],
the authors employ SW of 0.5 seconds. In [Stikic et al., 2008a], the sensors used in [Bao and
Intille, 2004; Tapia et al., 2004; Kern et al., 2007) are combined. Each feature is computed
over a sliding window shifted in increments of 0.5 seconds. They evaluated the performance
of the features both individually and in combination, and over different window lengths
(0.5sec-128sec).

Other very different works that use the same method are [Bulling et al., 2009; Deleawe
et al., 2010]. Bulling et al. [2009] use temporal windows to recognize eye gestures and
Deleawe et al. [2010] use fixed windows of time of different sizes to predict COz levels as
an indicator of air quality in smart environments.

In [Huynh and Schiele, 2005], different features and window lengths are studied to
recognize some activities. They show that the best performance is achieved when different
window lengths and features are chosen separately for each activity.

2.1.2.2 Other Approaches

Although the static-length sliding-window is the most commonly used method, it is not
the only one. In [Amft et al., 2007] the authors split activities, that they call composite
activities, into actions, that they call atomic activities. First, they recognize the actions
through what they call detectors, autonomous sensors capable of recognizing some specific
actions. Every detector recognizes one of several actions and reports those actions as events
of the system. The events are used to recognize every activity. In [Junker et al., 2008], the
same authors also split activities in parts in a very similar way to [Amft et al., 2007]. They
use a two-stage method which consists of a pre-selection stage, which aims to localize and
preselect sections in the continuous signals, and a second stage that classifies the candidate
sections selected in the previous stage. The pre-selection stage looks for relevant motion
events which select intervals of sensor readings that are classified in the second stage.

Another approach based on events was used in [Modayil et al., 2008], where they used
all readings reported by the sensor, an RFID reader, and they generate temporal windows
using as boundaries the sensor readings. It is a kind of SW but using the readings to
establish the length and shift of the windows.



2.1. ACTIVITY RECOGNITION 11

A very different approach was presented in [Kerr et al., 2011] in which the authors
use finite state machines to recognize activities in virtual worlds. In this work, Kerr et
al. used boolean propositions. They represent activities as a propositional multivariate
time series task instead of a sensor reading task. Then, they try to find Allen’s temporal
relations [Allen, 1983] among propositions; finally, they build a finite state machine, using
as states the relations among propositions found in each activity to classify.

2.1.3 Algorithms for Activity Modeling

Once the segmentation has been performed and the features extracted from the sensor
readings, machine learning methods are employed to associate the features extracted and
the activities. Many are the machine learning methods employed for AR in the last few
years. Among them, generative models like Bayesian Networks and a wide variety of discri-
minative models like Decision Trees, k-Nearest Neighbor (kNN) or Support Vector Machines
(SVM), as well as sets of classifiers. In this section, we will describe some methods in the
literature.

2.1.3.1 Supervised Models
2.1.3.1.1 Probabilistic Models

Probabilistic models have been widely used in fields like speech recognition, signal coding,
computer vision or activity recognition. At present, the use of these models is increasingly
growing and they are, without any doubt, the most widely used techniques. This is due to
the fact that probabilistic models have the ability to naturally manage the randomness of
the activities performed by humans.

A probabilistic model (or stochastic) is represented by a distribution of probabilities
for all the possible results. They employ statistical techniques for estimation, testing and
prediction. These models are widely used in the field of AR since sensors produce significant
amounts of noise and the activities performed by users are executed in a non deterministic
way. Next, different probabilistic models present in the literature are discussed.

Dynamic Bayesian Networks

One of the most widely used methods for AR are Dynamic Bayesian Networks (DBNs).
DBNs are derived from Bayesian Networks to incorporate the temporal aspect of a process
in a more effective way [Singer and Warmuth, 1999]. DBNs are generally used to model
Markov processes. A Markov process is a discrete stochastic process in which the past is
irrelevant to predict the future given the current state. At each time step, only the variables
in the current time step are employed to calculate the state of the variables in the next time
step. Bayesian networks are directed acyclic graphs where the nodes represent variables,
and the arcs stand for relationships among the variables. The inference in this model can
be completed iteratively with only two sets of variables: one representing the beliefs at the
previous time step, and the other representing beliefs at the current time step.

DBNs have been used to model human activities in various scenarios. For instance, the
work done in [Patterson et al., 2005] employs DBNs along with other probabilistic models.
It attempts to recognize routine activities performed normally in a kitchen like making tee
or setting the table. [Yin et al., 2004] uses DBN models with multiple layers to recognize
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similar activities, while [Patterson et al., 2004a] use DBNs to recognize (ADL), in the same
way as [Philipose et al., 2004).

Hidden Markov Model

Hidden Markov Models (HMMs) are statistical Markov models in which the system being
modeled is assumed to be a Markov process with unobserved or hidden states. The objective
is to determine the unknown or hidden parameters using the observable parameters. The
observed parameters can be used to execute further analysis, for instance in applications
like pattern recognition. A HMM can be considered as an instantiation of a DBN. HMMs
have so far been the most used model for activity modeling.

These models have shown excellent performance in applications such as speech recogni-
tion [Rabiner, 1989] and they have also been widely used in AR as shown in [Patterson et
al., 2005; Kasteren et al., 2008; Ward et al., 2006; Oliver et al., 2002] among many other
works. The most commonly used approach is to train a HMM model using the Baum-Welch
algorithm [Rabiner and Juang, 1993]. Another option for AR using HMMs is to use a HMM
where each node represents one of the activities to recognize [Kasteren et al., 2008]. In this
case, the sequences of activities can be inferred using the Viterbi algorithm [Rabiner and
Juang, 1993] or Particle Filters [Ristic et al., 2004]. [Patterson et al., 2005] shows an exam-
ple of the two possibilities plus a third possibility that uses the inner states of the HMM to
represent each activity along with the observation obtained in the state.

Conditional Random Fields

Conditional Random Fields (CRFSs) is a statistical modelling method very often employed
for labeling or parsing sequential data or extracting information from documents. In com-
puter vision, CRFs are often used for object recognition and image segmentation. In some
contexts they are also called Markov Random Fields.

[Kasteren et al., 2008] presented a comparison between the performance obtained using
HMMs and CRFs for ADLs recognizing. [Liao et al., 2007] used CRF to infer external
activities using GPS. Other related application but a bit far is the one shown in [Vail et al.,
2007] where CRFs are used to recognize the activities performed by robots.

Probabilistic Grammars

A probabilistic grammar is a grammar in which each rule has a probability assigned. So,
the probability of appearance of a phrase is the product of the rules used to form such
phrase [Suppes, 1970]. The simplest probabilistic grammars are the Context-Free Gram-
mars (CFG). Thus, Probabilistic Context-Free Grammars (PCFG) are employed in areas as
diverse as Natural Language Processing or the study of RNA molecules in Bioinformatics.

Standard algorithms for syntactic analysis can be used to infer the most likely plans
that explain the observed sequences. However, the validation of these algorithms is difficult
in practice due to the need of complete sequences for inferring. Incomplete sequences can
not be used and, normally, the sequences of observations are rarely complete. For that
reason, [Pynadath, 1999] solves the problem transforming the PCFG in a bayesian network
for recognition. Another problem present in PCFG is that they are very restrictive since
they do not keep the information about the current state of the agent. A way of solving
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the problem is the use of context-sensitive grammars but they rapidly lead to intractable
complexity. Another alternative presented in [Pynadath and Wellman, 2000] utilizes what
they called Probabilistic State-Dependent Grammars (PSDG). PSDG introduce variables
in order to represent the states of the world and the state of the agents and, at the same
time, they use structures to keep the inference process as simple as possible.

In the above mentioned cases, probabilistic grammars were used to recognize sequences
of actions, plan recognition. However, these models have also been used in [Bobick and
Ivanov, 1998] for AR, where authors used HMM to infer low-level events that were used
to form an alphabet. Such alphabet was the input for a PCFG employed for activity and
behavior recognition.

2.1.3.1.2 Non-Probabilistic Models

Although most works use probabilistic models, other works used different techniques to
address the problem.

Grammars

[Ryoo and Aggarwal, 2006] describe a general methodology for the recognition of complex
activities using context-free grammars to represent composite activities and their interac-
tions.

Decision Trees

[Lombriser et al., 2007] attempt to create a system for real-time activity recognition over
their sensor network platform. In order to evaluate their system, they generated several
models and one of them is based on decision trees. [Bao and Intille, 2004] developed an
algorithm for recognizing physical activities through five accelerometers. As in the previous
case, they used decision trees along with other models. Similarly, [Logan et al., 2007] also
used decision trees along with a bayesian network for AR in a laboratory where a flat was
built and provided with a huge and heterogeneous sensor network.

Logic Models

Actions models based on logic have a long history. The model of Kautz [Kautz, 1991] based
on events hierarchies was one of the first models used to infer action models. His model
employed first order logic to represent the relations between actions. However, the model
does not consider uncertainty.

In [Goldman et al., 1999], Goldman et al. formalized AR as a Probabilistic Horn Ab-
duction (PHA) problem [Poole, 1993]. PHA employs rules like those used in PROLOG to
distinguish among several hypotheses. In the field of AR, the hypotheses are possible ac-
tivities that explain the observations. They showed that it is capable of handling situations
that cause problems to other researchers using his method.

All these examples belong to the area of Plan Recognition. In AR, there are not many
references to the use of logic models. Among them, we can find [Landwehr et al., 2008,
where authors develop a labeling system based on the principles of the Inductive Logic
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Programming (ILP). Other work is presented in [Dubba et al., 2010], where a supervised
framework is developed to learn clausal event models from large datasets using ILP. They
used deictic spatial and temporal terms to provide positive and negative examples for an
event for learning their models. Logic is used for representing the tracking data using a tree
structured type hierarchy.

Hand-crafted Models

All models described above were learned automatically. Other researchers used hand-crafted
models. Among the works that employed this kind of models, [Fogarty et al., 2006] uti-
lized microphones to recognize home activities related with water consumption. This work
presents an inference system built from the activation patterns of the microphones. Such
patterns were handcrafted using training data captured for that purpose. Also, in [Hong
and Nugent, 2010] its authors show a model based on location sensors. This work proposes
an algorithm that detects the beginning and end of each activity from the locations of the
user captured by the sensor network. Once the boundaries of the activities were detected,
the activity was identified. This work employed an ontology to represent activities and the
interaction of the object with the environment in each activity.

Other Approaches

[Lombriser et al., 2007] and [Bao and Intille, 2004], in addition to decision trees, also
generated models using the kNN algorithm to compare both models. Furthermore, [Huynh
et al., 2007] utilized SVM to recognize high-level activities composed of a set of low-level
activities or actions. In addition to SVMs, Huynh et al. also generated other models such
as probabilistic models such as HMMs, clustering models employing the k-means and kNN
algorithms. These models were generated in order to compare the performance of the algo-
rithms in the framework that they proposed for AR.

2.1.3.2 Unsupervised Models

Supervised learning is the task of inferring a function from labeled training data. The
training data consists of a set of training examples. Supervised learning requires labeled
training data that is used by a machine learning algorithm. The algorithm is trained with
the labeled data in order to be able to classify new cases. However, unsupervised learning
tries to find hidden structures in unlabeled data. It generates a model through density
estimations or by pooling similar instances of data.

Although supervised learning has been the principal type of learning employed in AR
to date, some researchers have employed unsupervised frameworks due to the problem of
labeling the data to train supervised algorithms. Labeling the data is a tedious, difficult
and error-prone task. So, a method based on Kohonen Self Organizing Maps is presented
in [Krause et al., 2003] and [Clarkson and Pentland, 1999] they use hierarchies of HMM to
learn locations and activities such as walking in a supermarket from audio and video data.

The concept of Eigenspaces is used in [Huynh and Schiele, 2006] to learn physical ac-
tivities such as walking and juggling. They employed a multiple eigenspace algorithm, an
unsupervised method. However, the same authors utilize the k-means algorithm in [Huynh
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et al., 2007] and they compared it with other supervised algorithms.

[Patterson et al., 2004b; Liao et al., 2007] employ unsupervised learning based on
graphical models. Both works focused on generating models to infer means of transport
such as bus, car or walking as well as the destination of the users. [Wyatt et al., 2005]
represents activity data as a stream of natural language terms, and activity models were
then mapped from such terms. [Minnen et al., 2007) combines data search and exploration
with HMM classifiers to discover patterns of short duration movements. Accelerometers
were used to capture the data. This work attempts to detect and model body movements
to recognize soldier activities in the field.

A very different approach is presented in [Hamid et al., 2005] where activities are re-
presented as groups of n-grams (sequences of n consecutive characters) [Shannon, 1948,
grouping the classes and characterizing these classes by the frequency of the observed se-
quences.

2.1.3.3 Semi-supervised Approaches

The semi-supervised learning methods represent a third option. It can be applied when
part of the data is labeled and another part, possibly bigger, is unlabeled. Semi-supervised
learning is attractive for AR when the cost associated with the labeling is high but it is
possible to obtain a small amount of labeled data. There are not many works employing
semi-supervised methods until now. [Subramanya et al., 2006] utilizes a dynamic graphical
model developed by the authors to recognize the activities that users performed and also the
locations where such activities were executed. In [Guan et al., 2007] a new co-training style
algorithm in proposed. Furthermore, [Stikic et al., 2008b] analyzed two methods to re-
duce the amount of labeled data where one of the methods was a semi-supervised algorithm.

2.1.4 Activities

The list of activities that researchers have tried to recognize using sensor networks is very
large, which is not surprising since there are many types of applications and sensors. So,
this section presents activities that have been used by the AR community in the past.

As it has been shown in section 2.1, in the field of automated planning, plans, goals and
activities are words used to define different terms. Thus, activities are the actions that users
can execute to change the environment and the objects in it to modify the current state and
plans are sequences of actions that users execute to reach a goal. One of the objectives of
this thesis is to provide assistance for a user to reach a goal providing a sequence of actions.
Most of the activities in the literature, e.g. cooking or making tea, are the plans that our
system will have to find, the cooked recipe is the goal and the sequence of actions that a
user has to perform to make tea or to cook will be the plan.

In AR some terms may be considered equivalent to actions and plans, although there
is not a generally accepted definition of these terms in the activity-recognition community.
So, as we understand them, the term low-level activities may be considered equivalent to
AP actions and high-level activities may be considered equivalent to AP plans. As low-
level activities or actions we consider activities such as picking an object up, switching an
appliance on or short duration activities such as movements or gestures that may compose
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other activities and are hardly divided in simpler activities. As high-level activities we
consider activities that are composed of low-level activities such as cooking which may be
composed of the actions peeling potatoes and frying potatoes among many others. Since the
plans are composed of a sequence of actions, we consider high-level activities equivalent to
plans and low-level activities equivalent to actions.

Most of the activities in the literature are high-level activities. For that reason, from
now on we are going to refer to them as just activities and we will use the terms actions
or low-level activities to refer to activities that compose other activities or activities with a
short duration.

An important type of activities related with health and social care are the activities
of daily living (ADL). They were originally proposed in [Katz et al., 1963] and they have
became a standard set of activities employed by physicians and caregivers as a measure to
estimate the functional status of a person, particularly in relation to people with disabilities
and the elderly. The main set of these activities consists of: bathing, dressing, toileting,
functional mobility (moving from one place to another while performing activities), bowel
and bladder management (recognizing the need to relieve oneself) and feeding.

The set of activities is complemented with other activities in which some objects are
involved, as shown in [Lawton and Brody, 1969]. So, this second group of activities is called
Instrumental activities of daily living (IADLs) and is composed of: use of telephone or other
form of communication, shopping for groceries or clothing, housework, taking medications
as prescribed, managing money, using technology (as applicable) and transportation within
the community.

The recognition of specific subsets of these groups of activities is shown in [Kasteren
et al., 2010a; Philipose et al., 2004; Tapia et al., 2004; Chen et al., 2005; Kasteren et al.,
2008]. The recognition of the complete set of activities with sensors is still a challenge since
activities such as managing money are vaguely defined and others like toileting are very
difficult to recognize.

Walking, standing or dancing are physical activities that are correctly recognized using
inertial or movement sensors since these activities are defined by movements of parts of the
body of the user. Information about accelerations and limb positions have been successfully
employed for the recognition of these type of activities by several research groups [Huynh
et al., 2008; Kern et al., 2003b; Van Laerhoven and Gellersen, 2004; Ravi et al., 2005;
Ward et al., 2006; Junker et al., 2008].

In addition to the activities already mentioned, there are more activities that can be
recognized with portable sensors. They include martial arts movements [Sun et al., 2002;
Chambers et al., 2002; Kunze et al., 2006], cooking [Patterson et al., 2005; Pham and
Olivier, 2009], juggling [Huynh and Schiele, 2006], sporting activities such as biking, rowing,
running [Choudhury et al., 2008; Ermes et al., 2008; Tapia et al., 2007] or weight train-
ing [Chang et al., 2007; Minnen et al., 2006; Minnen et al., 2007] as well as activities in
an office environment [Yin et al., 2004; Wojek et al., 2006; Oliver et al., 2002; Begole
et al., 2003], carpentry [Lukowicz et al., 2004] and assembling tasks [Ward et al., 2006;
Stiefmeier et al., 2006; Stiefmeier et al., 2008]. Activities with a very short duration, also
known as gestures, such as using the hand-brake or pushing the brake pedal are explored
in [Zinnen et al., 2007; Stiefmeier et al., 2007; Benbasat and Paradiso, 2002].

Besides, part of the works in AR have been dedicated to recognize actions. So, [Amft
et al., 2007 split activities in a car assembly scenario into actions, that they call atomic
activities. A car body was used to record assembly and testing activities. They gather acce-
leration data from 47 atomic activities and 11 composite activities. Clarkson et al. [Clarkson
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and Pentland, 1999] present an unsupervised approach for the decomposition of the data
provided by on-body camera and microphone. They attempted to discover short duration
actions such as walking into a building or crossing the street and they grouped such actions
in high-level activities such as shopping for groceries employing HMM hierarchies. [Eagle
and Pentland, 2006] utilized location and proximity information through mobile phones in
order to detect daily and weekly behavioral patterns. Their work focused on groups of
people instead of just one person and they explored things such as the social networks of
the users and organizations. In [Amft et al., 2007], authors use a two-stage method to
classify arm gestures. Their method consists of localizing and preselecting sections in the
continuous signals to later classify the candidate sections selected in the previous stage.
Finally, Hoey et al. in [Hoey et al., 2011] present a system that recognized the actions that
compose the activity of making tea mapping the actions directly from the sensors.

2.1.5 Applications

Activity recognition has been applied in a wide range of applications. In the following we
outline application areas in which activity recognition has been employed successfully.

One of the main objectives that AR pursues is to enable the creation of new applications
related with healthcare. Longer life expectancy is increasing the proportion of the elderly
population worldwide. It is hoped that technology advances will help in solving problems
like, for instance, helping elderly people to live by themselves longer.

Detecting potentially dangerous situations by detecting vital body signs that indicate
imminent health threats is another type of system designed for elderly people [Anliker et al.,
2004; Van de Ven et al., 2009; Liszka et al., 2004; Villalba et al., 2006; Chmielewski et al.,
2011] as well as detecting when a person has fallen [Wang et al., 2008; Bourke et al., 2007;
Jafari et al., 2007]. [Sung et al., 2005; Paradiso et al., 2005] present applications for physical
therapy or recovery.

Dementia is a clinical syndrome characterized by the deterioration of a person’s cognitive
function and memory where the symptoms will gradually get worse. Alzheimer’s disease is
the most common form of dementia. A need for people with advanced dementia appears
from the difficulty they have completing activities of daily living (ADLs) described in 2.1.4.
So, [Boger et al., 2005] present a system to help people with dementia capable of monitoring
a user attempting a task and offering assistance in the form of task guidance. Audio cues
were used in [Boger et al., 2005] to guide the person in performing any missing steps as well
as in [Mihailidis et al., 2001] and in [Mynatt et al., 2000] a display can be used to show
images of the actions that need to be performed.

Another type of health-related applications promotes a healthier lifestyle. Thus, [An-
drew et al., 2007] used wearable sensors and used activity and location information to
suggest spontaneous exercises, e.g. to walk to the next bus stop instead of waiting at the
current one. [Maitland et al., 2006] estimate and summarize a person’s activity levels in
order to motivate on daily activities. [Patterson et al., 2004b] propose a system for men-
tally disabled people that analyzes location information to detect anomalies, e.g. when the
user is likely to have taken the wrong bus, and helps the user in correcting the anomalies,
e.g. by telling where to get off and which bus to take next.

The prevention of severe medical conditions or diseases before they happen is the
objective of other healthcare applications. They employ long-term monitoring to detect
changes or unusual patterns in a person’s daily life that may indicate early symptoms of
diseases such as Alzheimer’s. So, [Choudhury et al., 2006] present a system that accu-
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mulate and summarize statistics about daily activities and [Van Laerhoven et al., 2004;
Paradiso et al., 2005] perform continuous recordings of physiological parameters. These
applications can be valuable to estimate the physical well-being of a person but the detec-
tion of behavioral changes is still a challenge.

Other types of applications can be found in games and entertainment. The popu-
larity of game controls based on motion sensors, sparked by systems such as Nintendo’s
Wii platform [Nintendo, 2006] or other devices such as Playstation Move [Sony, 2009] or
Kinect [Microsoft, 2009] has made that a wide audience started to use the techniques that
AR research communities use since many years ago.

This way, [Medynskiy et al., 2007] presented a wearable RFID system implementing a
game interface. [Heinz et al., 2007] used wearable inertial sensors to recognize moves to
control martial arts games, [Crampton et al., 2007] created and tested a wearable sensor
network that detects body’s positions as input for video games, [Zhang and Hartmann,
2007] employed a motion-sensing clamp to control video games and [Ashbrook et al., 2005]
present a system to remove the plastic mat in dancing games.

Besides healthcare and entertainment applications, AR has also been employed for in-
dustrial applications. These applications can support workers in their tasks and help to
avoid mistakes. So, [Amft et al., 2007] presents an architecture that was evaluated in a
car assembly scenario using 12 sensor detector nodes to recognize 11 different composite
activities. [Stiefmeier et al., 2008] develops a system for tracking activities of workers in car
manufacturing plants using information gathered from wearable and environmental sensors.
[Ward et al., 2006] combines data from accelerometers and wearable microphones in order
to track activities such as sawing or hammering and [Koskimaki et al., 2008] evaluates a
system developed for optimization of the steel manufacturing processes. [Lukowicz et al.,
2007] investigates the use of wearable computing technology for scenarios in maintenance,
production, hospital and fire fighting. In these scenarios, AR and wearable technology were
employed for collaborative planning and interaction using wearable devices, integrating and
presenting information to assist new workers or context-detection to provide summaries of
the performed activities.

AR and wearable systems have been utilized in other areas apart from those already
mentioned. Thus, there are applications for dancing [Aylward and Paradiso, 2006; Enke,
2006], sports [Ermes et al., 2008; Minnen et al., 2006], learning of a foreign language vocab-
ulary [Beaudin et al., 2007], categorizing soldier activities [Minnen et al., 2007] or automatic
annotation of important events [Kern et al., 2003a; Kern et al., 2007].

2.2 Automated Planning

After the system has been able to recognize the user’s actions or activities, through the AR
system, some kind of technique is needed to find the next actions the user should perform
in order to accomplish his/her goals. In this thesis, automated planning is going to be used
to find the sequence of actions for the user to achieve his goal from his current state. The
current state will be computed by the AR part of the system and the sequence of actions
will be given by an automated planner using a planning domain and the current state. Next,
the main concepts about AP will be introduced.
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2.2.1 Introduction to Automated Planning

Planning is the process that chooses and organizes the actions required to achieve some
desired set of goals by anticipating the action’s outcomes. Automated Planning (AP) or Al
Planning is an area of Artificial Intelligence that studies this deliberation process [Ghallab
et al., 2004]. It is an important component of rational intelligent behavior. In this thesis
a system to assist people will be generated. Such system has to be able to, first, recognize
what the user has done and, second, provide the user the actions to be performed to achieve
his/her goal. Among all the techniques that can be used to solve the second problem, in
this thesis we will employ AP.
In this context, three elements can be identified:

1. Conceptual Model that describes the elements of a problem solving task.
2. Representation Language employed to describe the problems to solve.

3. Algorithms that are the techniques used to solve the problems.

There are different forms of planning depending on the characteristics of the conceptual
model. So, Classical Planning has complete knowledge of world. Planning Under
Uncertainty, however, works with incomplete models of the world where the outcome of
actions might be stochastic and/or there may be incomplete knowledge of the current state.
In Cost-based Planning actions have an associated cost which is taken into account to
obtain plans with minimum cost. Finally, Temporal Planning studies how to tackle
planning problems when actions might have delayed effects.

These AP subfields focus on solving problems in flat domains. Another subfield of
AP, that employs non-flat domains, creates plans by decomposing non-primitive tasks into
subtasks, until the decomposition results in primitive tasks which can be directly achieved
by executing the primitive actions. This type of planning is called Hierarchical Planning.

2.2.2 PDDL

In order to allow for the resolution of problems by a computer, we need to describe the
problem in some language. A planning representation language is a notation for the syntax
and the semantics of planning tasks. PDDL [Fox and Long, 2003] is the representation
language used nowadays by the planning community. It is an attempt to standardize the
planning representation languages and facilitate comparative analyses of the diverse plan-
ning systems. It was first developed by Drew McDermott and his colleagues in 1998 as
the planning input language for the International Planning Competition (IPC)!, and then
evolved with each competition. PDDL includes the STRIPS and ADL representations.

The representation languages such as PDDL separate the model of the planning problem
in two major parts:

1. Domain description: definition that describes the state space and the actions that can
be executed. The state-space definition contains a definition of object-type hierarchy,
a definition of constant objects and a definition of predicates and functions. The
actions are described by operator schemas with parameters, preconditions, adds and
deletes. Figure 2.2 shows an example of an action in the Depots domain. In this

"http://ipc.icaps-conference.org/
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(:action Lift
:parameters (7x - hoist 7y - crate 7z - surface 7p - place)
:precondition (and (at ?x ?7p) (available ?7x)
(at ?y ?p) (on 7y ?7z) (clear 7y))
:effect (and (not (at 7y 7p)) (not (available 7x))
(not (clear ?y)) (not (on ?y 7z))
(clear ?7z) )) (lifting ?x ?y)))

Figure 2.2: Example of part of a domain in PDDL.

domain, a set of containers (crates) have to be distributed in warehouses through the
use of trucks to move the containers between the different warehouses.

2. Problem description: describes the objects that exist in the problem, the initial con-
figuration of the objects and goals of the problem. Figure 2.3 shows an example of
problem definition in the Depots domain.

Thus, the domain and problem descriptions form the PDDL-model of a planning task
which will be the input of a planner software that will return a plan to solve the planning
task.

(define (problem depotprob0)
(:domain Depot)
(:objects depotO depotl - Depot
truckO - Truck
palletO palletl - Pallet
crate0 - Crate
hoistO hoistl - Hoist)
(:init (at palletO depotO)
(at palletl depotl)
(clear crate0) (clear palletl)
(at truckO depotl)
(at hoistO depotO) (available hoist0)
(at hoistl depotl) (available hoistl)
(at crate0 depotO)
(on crate0 pallet0))
(:goal (and (on crate0 palletl))))

Figure 2.3: Example of a problem in PDDL.

2.2.3 Generating Action Models

This section describes the most relevant works in the literature about the automatic gene-
ration of behavioral models (planning domain description). A behavioral model reproduces
the required behavior of the analyzed system, in our case a human, such as there is a
one-to-one correspondence between the behavior of the original system and the simulated
system.

We first describe works that generate models for classical planning. Then, we describe
other works that generate other types of models that range from HTN to Partially Obser-
vable Markov Decision Process (POMDP).
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2.2.3.1 Building classical planning action models

One of the goals of this thesis is to generate a model capable of representing the behavior
of a person. To do this, the language PDDL described in section 2.2.2 will be used. Such
a model will be built through a planning domain in which the actions of the person will be
modelled as planning operators and the goal of the person will be modelled in the planning
problem. This way, a planner will assist the person by generating the sequence of actions
that the person has to perform to accomplish his/her goal. Next, the most prominent works
to learn planning domains in the literature will be presented.

In [Wang, 1995], Xuemei Wang developed a system called OBSERVER that automati-
cally learns planning operators incrementally from plans traces provided by experts. It takes
as inputs the predicates, objects and the actions of the domain along with the plan traces.
Then, a simulator is used where the experts solve problems and, from the previous and
posterior states of each executed action, OBSERVER learns the preconditions and effects
of the actions of the domain. The model is refined by observation until the refinement is
sufficient to allow planning to take place.

Yang and co-authors presented ARMS in [Yang et al., 2005]. It learns a planning domain
from a set of plans consisting of sequences of action names, types, relations, the initial state
and the final state of each plan. It generates as output a domain model in the form of
STRIPS-type operator schema. The intermediate states of each plan were unknown. Thus,
ARMS automatically generated a planning domain, that could be partial, consisting of the
operators along with the preconditions, the add list and the delete list of each action.

In [Garcia-Martinez and Borrajo, 1997], its authors presented LOPE, a system that
integrated planning, learning and execution. It learned the planning operators from the
observations of the effects produced by the execution of the planned actions on the envi-
ronment.

In the approach presented in [Shahaf and Amir, 2006] action’s effects and preconditions
are learned in deterministic partially observable domains. It can output expressive operator
schema. It requires as input the specifications of fluents, as well as partial observations of
intermediate states between action executions.

In [Mourao et al., 2009], its authors presented a technique that learns partially observable
planning domains. It only learns the effects of the actions which are the transition rules
between states. They built on their previous work [Mourao et al., 2008] where the method
only applied to fully observable domains. Their system used deictic coding to generate a
compact vector representation of the world state, and learned action effects as a classification
problem. [Amir and Chang, 2008] also learned just the effects of actions in deterministic
partially observable domains.

In [Lanchas et al., 2007], Lanchas et al. learned the plan-action duration models through
regression. They extracted examples from plan executions that are used along with rela-
tional regression trees for learning the duration of the actions of a domain.

The LOCM system [Cresswell et al., 2009] automatically induces action schema from sets
of example plans. It does not have to be provided with any information about predicates
or initial goal or intermediate state descriptions. The example plans are a sound sequence
of actions. LOCM exploited the assumption that actions change the state of objects, and
require objects to be in a certain state before they can be executed. Planning traces are
the input of LOCM, where each action is identified by its name and the objects that are
affected or are necessarily present but not affected by the action execution are included.

Opmaker2 [McCluskey et al., 2007; McCluskey et al., 2009] inputs a domain ontology



22 CHAPTER 2. STATE OF THE ART

and a solution to a problem, and automatically constructs operator schema and planning
heuristics from training sessions. It requires only one example of each operator schema that
it learns and an ontology of objects and classes (called a partial domain model) as input.
Opmaker?2 is an extension of the earlier Opmaker system [McCluskey et al., 2002].

In [Pasula et al., 2007], its authors developed a probabilistic action model representation.
They explored the learning of relational rule representations in stochastic domains. In the
domain of first-order logic they learn rules that given a context and an action provide a
distribution over results.

In [Jiménez et al., 2013], the PELA architecture is presented. The architecture is based
on the integration of a relational learning component and the traditional planning and exe-
cution monitoring components. The learning component allows PELA to learn probabilistic
rules of the success of actions from the execution of plans and to automatically upgrade the
planning model with these rules. It automatically upgrades the deterministic domain that
is used at the beginning as it learns knowledge about the execution of actions. The upgrade
consists of enriching the initial STRIPS action model with estimates of the probability of
success of actions and predictions of execution dead-ends. The upgraded models are used
to plan in probabilistic domains.

2.2.3.2 Building other types of action models

Besides classic planning domains, HTN models can be used to represent the behavior of the
users. Due to their effectiveness in real problems, HTN’s may obtain better results for the
system to assist the user.

It is possible to generate a classical planning domain from sensors’ readings employing
the techniques presented in the previous section 2.2.3.1. The flat classical domain can be
used to generate hierarchical domains for HTN. In [Reddy and Tadepalli, 1997], its authors
used inductive generalization to learn task decomposition constructs, which relate goals,
subgoals, and conditions for applying goal-decomposition rules (d-rules). By grouping goals
in this way, the learned task models solve problems faster. Other works that learn HTN
models from plans and an action model are [Choi and Langley, 2005; Ruby and Kibler,
1991].

[Nejati et al., 2006] describes an approach that observes sequences of operators taken
from expert solutions to problems and learns hierarchical task networks from them. The
authors describe how they induce what they called “teleoreactive logic programs” that index
methods by the goals they achieve.

[Hogg et al., 2008] presents the system called HTN-MAKER which is capable of gene-
rating HTN domains from classical planning domains, a collection of plans and a set of task
definitions for the composed operators and generates a HI'N domain model. The authors
of ARMS and HTN-MAKER in [Zhuo et al., 2009] develop the HTN-learner algorithm that
builds constraints from given observed task decomposition trees to build action models and
method preconditions. Then, the constraints are solved employing a weighted MAX-SAT
solver. It does not depend on complete action models or state information.

Other different approaches utilize POMDP to generate plans instead of operators. Thus,
the authors of [Holmes and Isbell Jr, 2005] employ schema learning to discover probabilistic
action rules using discrete sensors. The system observed the action effects on the envi-
ronment and predicted the effects that such actions produced. It built what they called
schemas. A schema C' % R indicates that when the action a; is employed in the situation
C, the result R is produced.
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Finally, in [Hoey et al., 2011], its authors presented a system capable of learning a
POMDP also from sensor readings. The system is created mapping sensor readings directly
into actions. For instance, each time the sensor s is activated, the system detects that action
as is executed. Also, they used what they called “virtual sensor” in order to recognize
one of the actions using an accelerometer and employing a machine learning method for
recognizing such action. This way, the system created a mini AR system just for one action.
Once they have mapped the actions and the states, they build a POMDP. So, the entire
system recognizes the user actions and maps both belief states and action observations
into choices of actions. Hence, they build the POMDP that is used to monitor a person’s
progress in a task and it prompts the users whenever they get stuck in their activities. Our
overall objective is similar to this approach but we will generate action models based on AP
domains instead of a POMDP. A POMDP does not scale well in general. Also, domains
written in PDDL are easily readable and maintained by users. Finally, using PDDL models
allows us to build on top of current state of the art powerful domain-independent planners.
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Chapter 3

Objectives of the Thesis

This chapter describes the goals of this Thesis. The overall objective of this thesis is to
develop techniques for activity and action recognition in order to be used for the generation
of planning domains. The generated planning domains should model the behavior of the
users of the system in order to build an assistant for them. Such assistant has to be capable
of proposing the users the next action they have to perform to accomplish their goals whilst
they try to complete their activities by themselves in a smart environment. To that end, a
sensor network has to be built and installed in a domestic environment to gather information
about the actions that the user performs.
The specific objectives of this doctoral thesis can be detailed as:

1. To define and develop a sensor network for capturing the effects of users actions. Such
sensor network will be composed of the hardware (physical sensors, cables, batteries,
etc) and the software to control the sensors. The hardware will be composed of a
set of sensors capable of gathering relevant information to recognize users actions in
the domestic environment while he/she tries to accomplish his/her goal. Besides,
the employed hardware must permit users to perform their actions correctly without
interfering with them. The software will process the signals provided by the sensors,
filter them, correct them and recover incorrect data whenever it is possible; finally, it
will synchronize the data from the whole set of sensors employed. Thus, it will provide
the necessary information in a correct format to be utilized to learn the actions.

2. To develop a learning system that integrates the complete cycle of inference of the
performed actions. The learning system will use as input the information provided by
the sensor network described in the previous objective.

3. To define new methods for the analysis of temporal series as well as the inclusion of
new attributes on different activity recognition algorithms. These methods should be
able to help on the later steps of learning planning domain models. So, they should
focus on the recognition of the start and end of the activities.

4. To evaluate the performance of the new methods on data captured in a real environ-
ment where the previously defined sensor network is installed.

5. To develop computational models for the automatic generation of a planning model
capable of reproducing user behavior, using the information provided by the sensor
network.
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6. To develop computational models to predict the possible actions that the user will
perform using the planning domains generated in the previous objective.



Chapter 4

Evaluation

To evaluate the methods that will be developed in this thesis, we will compare the per-
formance obtained by our methods with other algorithms existing in the literature when
possible. Since this thesis has two parts related with two different research areas, activity
recognition and automated planning, we will use the criteria that the scientific community
employs for the evaluation of each discipline.

4.1 Evaluation of the Activity Recognition Algorithm

For the evaluation of the performance of the AR methods, we will use the criteria employed
by the AR community. They usually employ two metrics: precision and recall. They are
computed as follows:

. _l C tpc
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where tp. are the true positives of class ¢, fp. are the false positives of class ¢, fn. are
the false negatives of class ¢ and C' is the number of classes. Precision is the fraction of
the whole instances that are correctly classified, while recall is the fraction of the instances
belonging to one class that are correctly classified.

These metrics are used very often in the literature [Kasteren et al., 2010c; Chawla,
2010]. However, there are no standard metrics to evaluate AR systems and there are some
publications where these metrics are not used.

With regards to the datasets to be employed to validate the methods, again there are
no defined standards. The community has not specified a minimum number of tests to be
executed nor a number of persons to perform the activities or plans to be validated. Most
of the literature utilizes datasets specifically built by the researchers to test the addressed
problem in the publication and, with a few exceptions, the datasets employed are not made
public for the rest of the community. Therefore, whenever possible, we will utilize public
datasets captured by other researchers to validate the developed techniques.

Two datasets will also be generated in this thesis for the validation in cases where
there are no public ones with the needed characteristics. The first dataset will be captured
employing a simulator in order to imitate the behavior of a sensor network. A second
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dataset will be gathered using some sensors, given that none of the previously published
datasets is adequate for the validation of our work.

So, in [Ortiz et al., 2008] we report on a dataset using a simulator to validate the
proposed system. In [Ortiz et al., 2011] we employed public datasets. Such datasets are
described in [Kasteren et al., 2008; Patterson et al., 2005]. In Chapter 7 we employed the
public datasets described in [Huynh et al., 2008; Kasteren et al., 2008; Patterson et al.,
2005]. Finally, in Chapter 8 we generated a new dataset.

4.2 Datasets

This section describes the datasets we have used to evaluate this thesis.

4.2.1 Publicly Available Datasets
4.2.1.1 Kasteren Dataset

This dataset was recorded and used by Kasteren and colleagues in [Kasteren et al., 2008].
The sensor network consists of wireless network nodes to which simple off-the-shelf sensors
can be attached. Each sensor sends an event when the state of the digital input changes
or when some threshold of the analog input is reached. The dataset was recorded in the
house of a 26-year-old man living alone in a three-room apartment where 14 state-change
sensors were installed. Locations of sensors included doors, cupboards, refrigerator and a
toilet flush sensor. Sensors were left unattended, collecting data for 28 days in the apart-
ment. The dataset contains 2638 sensor events and 245 activity instances. Activities were
annotated by the subject himself using a bluetooth headset as described in [Kasteren et al.,
2008]. Seven different activities were annotated, namely: Leave house, Toileting, Showering,
Sleeping, Preparing breakfast, Preparing dinner and Preparing a beverage. Times where no
activity is annotated are referred to as Idle. The dataset is public and can be downloaded
with its annotations from https://sites.google.com/site/tim0306/datasets.

4.2.1.2 Patterson Dataset

This dataset was used and described in [Patterson et al., 2005]. The experiments performed
with this dataset focused on routine morning activities which used common objects and
are normally interleaved. The 11 activities which were observed are: Using the bathroom,
Making oatmeal, Making soft-boiled eggs, Preparing orange juice, Making coffee, Making tea,
Making or answering a phone call, Taking out the trash, Setting the table, Fating breakfast
and Clearing the table. To create the dataset, one of the authors performed each activity
12 times in two contexts: twice in isolation, and then on 10 mornings all of the activities
were performed together in a variety of patterns.

In order to capture the identity of the objects being manipulated, the kitchen was
outfitted with 60 RFID tags placed on every object touched by the user during a prac-
tice trial. Data is in the form: <objectID> <activitylD>. This dataset is more cha-
llenging than the previous one; most tasks were interleaved with or interrupted by others
during the 10 full data collection sessions. In addition, the activities performed shared
objects in common. This made interleaved AR much more difficult than associating a
characteristic object with an activity. The dataset is public and can be downloaded from
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http://www.cs.rochester.edu/u/kautz/Courses/577autumn2007/abdata.zip.

4.2.1.3 Huynh Dataset

This dataset was recorded and used by Huynh and colleagues in [Huynh et al., 2008]. They
recorded 34 activities using two sensors with a 3D accelerometer. The sensors were worn
on a wristband and into the subject’s pocket to record the subject’s daily life over a period
of sixteen days. In total, this dataset consists of 164 hours of recordings. Of these, they
had to discard 28 hours due to failures in the sensor hardware. The activity set consist of
the following activities, along with the unlabeled class: sitting / desk activities, lying while
reading / using computer, having dinner, walking freely, driving car, having lunch, discussing
at whiteboard, attending a presentation, driving bike, watching a movie, standing / talking on
phone, walking while carrying something, walking, picking up cafeteria food, sitting / having
a coffee, queuing in line, personal hygiene, using the toilet, fanning barbecue, washing dishes,
kneeling / doing sth. else, sitting / talking on phone, kneeling / making fire for barbecue,
setting the table, standing / having a coffee, preparing food, having breakfast, brushing teeth,
standing / using the toilet, standing / talking, washing hands, making coffee, running, and
wiping the whiteboard.

This dataset does not provide the raw data; instead, it provides subsampled data con-
taining the mean and variance of each accelerometer over a sliding window of 0.4 seconds
of the raw data. That way they reduce the sampled rate from 100Hz to 2.5Hz. The dataset
is public and can be downloaded from http://www.d2.mpi-inf.mpg.de/datasets.

4.2.2 Datasets Generated in this Thesis

In this section we present the datasets we have captured in order to test some of the methods
developed in this thesis.

4.2.2.1 Simulator Dataset

A dataset was generated for testing the first learning algorithm for AR that we will des-
cribe in section 5. The simulator is composed of a server, a client and a compiler. The
server simulates a world in two dimensions, defined declaratively in a file that contains the
configuration of the simulated home. The information that the file contains is: the home
size, layout, which objects it contains, where they are, which tags there are, what readers
it contains, and where they are. Once the server is running, any client can connect to it
and issue commands. Currently, those commands are: move, pick-up objects or put-down
objects. The server simulates the environment and generates a log with the sensor readings
produced by the user’s interaction with the environment. This can be done in two ways:
logging the sensor periodically; or recording the sensor readings when they change their
value (event-driven).

On the other end, there is a client to simulate a user performing activities of daily
living. It performs some preprogrammed high-level actions or plans composed of low-level
actions or primitive tasks. The client randomly chooses the durations of those actions. The
order of execution of some low-level actions is also changed randomly. For instance, in the
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high-level action of “brushing teeth” the client can pick up first either the toothpaste or
the toothbrush.

In this dataset we have chosen some high-level actions that need to use objects placed
in the same area, to provide more sensor readings with no low-level actions associated,
thus obtaining more false positives. A total of eight high-level activities have been se-
lected: brushing teeth, combing hair, shaving, throwing out the safety razor, throwing out
the toothpaste, using the vacuum cleaner, ironing and sweeping. For instance, both brushing
teeth and throwing out the toothpaste are defined in terms of the low-level action “pick-up
toothpaste”.

The dataset is composed of traces of a client connected to the server. In order to
provide more realistic data, such client was programmed with behaviors taken from real
persons observed in a flat. Those persons were performing some daily activities at home
and all the low-level actions the persons performed were annotated. The actions executions
observed from humans behavior did not take always the same time. So, given that we
generated random example traces that modelled how those human subjects behaved, we set
the range of potential values of the actions duration by observing how long it took those
actions in the real world. Also, some activities were performed always in the same order, so
we changed the order of some low-level actions randomly in order to obtain more variety.

The server can simulate both false negatives and sensor failures. So, the server was
executed with a 0%, a 5% and a 10% level of each kind of noise (false negatives and sensor
failures). False positives are present in all cases. The client has been executed during four
simulation days. All high-level actions were performed in different ways every day and some
of them were performed more than once in the same day. A total of 12 activities and 40
actions were performed. The simulated person executed eight different plans to accomplish
eight kinds of goals (represented by the previously mentioned eight high-level activities).
An example of a plan could be: mowve to the bathroom, pick-up the toothbrush, pick-up the
toothpaste, put-down the toothpaste and put-down the toothbrush after a while.

From the execution of those plans we obtained between 278 instances in the case of no
noise, to 410 instances in the case of 10% noise levels.

4.2.2.2 Kitchen Dataset

In order to test the whole system, a dataset has been generated with the task of making
an omelette and the actions that compose this activity. The actions are open, close, get-
out, put-away, pick-up, put-down, crack-eqq, transfer, switch-on, switch-off, fry, beat and
null. null is assigned to the events not involved in any action. Activities performed in a
kitchen have been studied and included in many works in the past like in [Hoey et al., 2011;
Patterson et al., 2005] and some of them are in public datasets like [Patterson et al., 2005).
However, none of the public datasets is suitable to test our complete system, since they do
not provide enough information to classify the actions that compose the activities stored in
the datasets. For instance, in the case of [Patterson et al., 2005], the data is labeled with
the name of the activities; e.g. Making Coffee or Setting the table; but not the labels of
the actions that compose those activities; e.g. switch on the coffee maker or put down a
plate; which is what we need. For that reason we have designed a sensor network focused
on getting that information.

The sensor network employed to record the data is composed of several types of sensors.
We have used magnetic sensors, RFID sensors, and cameras. Magnetic sensors have been
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used to monitor the state (opened or closed) of the cupboards, drawers, and the fridge of
the kitchen. Two RFID receivers are used to track the objects that the user holds in both
hands through two RFID gloves similar to the ones used in [Medynskiy et al., 2007]. The
RFID readers employed operate at 125 kHz frequency and the antenna attached to the
glove detects tags within 2-10 centimeters of its center. 125 KHz tags are not affected by
water or metals, what makes them very appropriate for the environment in which we used
them. Finally, we used four cameras to detect the state and location of the objects in the
kitchen. The objects used are: a bowl, forks, plates, a fry-pan, an oil bottle, and a salter.
All of them have RFID tags attached to be detected. The ingredients are eggs, salt, and
oil. Also, there is a cooktop as appliance, the kitchen top as working surface, and a sink.

Figure 4.1: (a) kitchen; (b) sink and part of the kitchen top with some objects (c) cooktop,
glove with the RFID reader and some objects with RFID tags.

Figure 4.1 shows three pictures. The first one in Figure 4.1(a) shows the kitchen where
the user cooks. Figure 4.1(b) shows the view of one of the cameras. In this case, the camera
focused on the sink and part of the kitchen top where some objects have been placed.
Finally, Figure 4.1(c) shows the view of another camera focused on the cooktop. Also, this
picture shows one of the RFID gloves used by the user and some objects with RFID tags. A
third camera is focused the same place than 4.1(c) but from a different angle. The fourth
camera is placed in the left edge of the kitchen top where the cooktop is.

We used the OpenCV library [Bradski, 2000] to recognize the objects. First, our system
removes the background using an initial photo. Then, part of the shadows of the objects is
removed using the initial photo but darkened. Finally, color and shapes are used as features
to recognize the objects and their states using a classifier. Each object has a different color
to facilitate the recognition. Before recording the dataset, the computer vision system was
trained taking photos of all the objects of the kitchen in many situations. In each photo,
the background is removed and the color and shape are extracted using contours. This
way, a classifier was generated. Some of the algorithms provided by OpenC'V were tested:
Support Vector Machines (SVM) [Platt, 1999], k-nearest neighbor (kNN) [Aha et al., 1991]
and Random Forests (RF) [Breiman, 2001]. The best results were achieved using SVM,
which obtained a recognition rate of 98% of the objects. Inside some objects ingredients
can be found in different states: oil in the fry-pan, raw egg in the bowl, beaten egg in the
bowl, beaten egg in the fry-pan, omelette in the fry-pan and omelette on the plate. Each
ingredient in each state in each object has been recognized as if they were different objects.
The recognition rates were 63% for the fry-pan classifier, and 71% for the bowl classifier.
The best algorithms were employed to recognize objects and situations in order to generate
the logs that were part of the dataset.

In order to avoid problems caused by occlusion, there is more than one camera focusing
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on the working surface. Also, no changes are reported by the cameras until detecting an
object and its state. So, if the user hides an object during some seconds, the cameras will
not report any information about that object, and the system will consider that the object
is in the same location and state previous to be hidden. Cameras work together with the
RFID’s, so, whenever an object is detected by an RFID, the cameras try to find that object.
The system also searches for specific information in specific places (e.g. the eggs just can
be fried in the fry pan or beaten in the bowl). To determine the state of the appliances we
use the area of the images where a display indicates the state of the appliance. Then, using
the difference of the colors in that area, the state is computed. Finally, the initial state of
some elements is defined since the system does not have sensors to detect such information.
For instance, objects that are initially inside some cabinet or inside the fridge. In addition,
we have attached some RFID tags to the cabinets, drawer, fridge and surfaces in order to
have some information about the place where the user is.

The task of preparing the omelette has been performed by two different users ten times
each, from beginning to end. The task was performed by two users to avoid the possible
bias caused by a single user. The task was performed ten times by each user in order to
obtain enough instances of each action to test the models. Also, parts of the task have been
recorded in order to get more instances of some of the actions that compose the task. For
instance, beating the eggs and putting the mix in a fry-pan or picking an egg up from the
fridge and cracking it.

The sensor network used has some limitations. The user must use RFID gloves in order
to recognize the object that he (she) picks up. Also, different objects cannot have similar
colors. Both limitations could be solved using accelerometers like in [Amft et al., 2007;
Hoey et al., 2011] to detect the object that is being used. That way, the system could infer
the actions performed using each object as well as its locations and state.

4.3 Evaluation of the Algorithm to Generate Planning Do-
mains

To generate planning domains, we need a dataset that includes information about the high-
level activities (e.g. cooking, cleaning) carried out by the user and the low-level activities
(e.g. picking fry-pan up, closing cupboard) that compose high-level activities. After ana-
lyzing most of the publicly available datasets, none of them was found suitable for our needs.
Consequently, for the evaluation of this part of the thesis a new dataset has been generated.
The description of the dataset captured for this purpose can be found in Section 4.2.2.2
named Kitchen Dataset.

Our AR system is capable of recognizing the low-level activities that users perform while
they cook; that is, it recognizes the actions that compose the high-level activity “cooking
an omelette”. Once the actions are known, the system will be able to propose the next
action or actions to be performed by the user to complete the recipe through the plan or
plans generated by a planner. The planner will employ the planning domain automatically
generated from the sensorial information and the actions recognized by the AR system in
the previous phases. The dataset generated, “cooking an omelette”, permits us to evaluate
the generated planning domains and also the performance of the overall system.

The standard method to evaluate the automatically generated planning models is to
create a number of problems using a generator in several domains. Then, the problems are
solved using the automatically generated planning domain and a baseline planning domain.
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Finally, the numbers of solved problems are compared. This is the approach used in [Yang
et al., 2005; Mourao et al., 2009]. In our domain, we can not use a generator to create
problems and the only available problems are those in the datasets. So, we select part of
the dataset to generate the domains and the other part to generate planning problems to
test the domains. The planning problems are generated selecting randomly states present
in the part of the dataset employed for testing as initial and goal states.

4.4 Evaluation of the Generated Domains

After generating the planning domains, these are used to predict and recognize actions. In
order to evaluate the predictions and the recognition of the actions using the generated
domains, part of the dataset is used to generate the domains and the other part to evaluate
the predictions.

To evaluate the predictions of the generated domains, from every state of the part of
the dataset employed for testing, a planning problem is generated where the initial state
is the current state and the goal state is to have the omelette cooked. Then, the planner
is executed to solve the problem and the first action returned by the planner is compared
with the action that the user executes after the current state.

To evaluate how the generated domains recognize actions, from every state of the part
of the dataset employed for testing, a planning problem is generated where the initial goal is
the current state and the initial state is the state before the current one. Then, the planner
is executed to solve the problem and the first action returned by the planner is compared
with the action that user executes between both states.

The main difference between both tests is that the action has already occurred to re-
cognize actions. Then, the last states are used and the action between those states is used
for the evaluation. On the other hand, to predict an action, just one state is needed since
the goal state is known (to have the omelette cooked) and the state after the action and
the action are not known since they have not occurred yet.
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Chapter 5

Relational Learning Algorithm for
Activity Recognition

This chapter presents an algorithm to infer the actions that people perform in order to
accomplish activities of daily living starting from sensory inputs. The approach is based on
using relational learning to infer predictions about which action has just been executed. A
model is learned for recognizing executed actions based on the state changes detected from
sensor readings. The experiments were executed using an environment simulator feeded by
data gathered from real human behavior [Ortiz et al., 2008].

The principal motivation for the development of this algorithm was to use relational
learning for recognizing the actions. Relational learning uses a representation based on
predicates and AP also uses a predicate logic representation. This way, once the information
from the sensors has been represented using predicate logic, it can be used for AR and the
automatic generation of a planning domain.

5.1 Introduction

Understanding activities performed by humans has been recognized as a capability with
a wide range of applications. Those applications include tracking activities [Fishkin et
al., 2005; Bao and Intille, 2004; Tapia et al., 2004], behavioral monitoring [Mihailidis et
al., 2001], prompts to help in completing activities [Boger et al., 2005], detection of failu-
res [Lindner et al., 2005] or surveillance [Niu et al., 2004]. Many systems address the
problem of activity recognition from different points of view. Some approaches use sensors
placed in the body (e.g. [Bao and Intille, 2004; Kahn et al., 1999; Kasten and Langheinrich,
2001]), sensors installed in home environments [Tapia et al., 2004; Fishkin et al., 2004] and
other approaches use both, sensors installed in home environments and sensors placed in
the body of the user [Logan et al., 2007].

In this work, this last approach is used in order to obtain as much information as possible
from the sensors. Within this work, a software simulator of a real home has been built. In
such system, different kinds of sensor devices (RFID, Infrared, etc) can be modelled. They
will provide information about the objects that the user interacts with. The system logs
the inputs of the sensors and analyzes them in order to obtain a model of user behavior.
Although any number of sensors can be used and placed anywhere, in this work we used a
simulation of RFID readers placed in the user, like the ibracelet in [Fishkin et al., 2005].
Those readers can detect RFID tags up to 10 cm. Also, all “interesting” objects are tagged
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with passive tags. The simulator generates noise as false negatives, sensor failures and false
positives in order to provide realism. The false negatives are produced when a tagged object
is picked up and the reader cannot detect it. The sensor failures are generated when the
reader is detecting a tag, and then the reader fails changing the signal detected to inactive.
The false positives are yielded by tags placed close to the reader that the user does not
grab.

The overall aim of this thesis is to apply task planning [Ghallab et al., 2004] to recognize
actions, plans, and goals. To achieve this goal, we are interested as a first step in learning
first-order logic action models from sensor readings and recognize actions. Some actions can
be mapped directly from sensor readings depending on the type of sensor that the system
uses, but others have to be learned because the information that the sensor provides is not
enough. Therefore, our goal in this work is to build a system (composed of a set of sensors,
a compiler and a machine learning system) to learn the actions that users perform in order
to carry out activities of daily living (ADLs). The employed sensors are capable of sensing
which tagged objects are closer than 10 centimeters, but they are not able, for instance,
to sense moving tags. Therefore, the challenge of this work is to detect when an object
has been picked up or put down to perform a high-level action and during how long those
objects are typically held.

5.2 System’s Architecture

The system is composed of a server, a client and a compiler. The server simulates a world
in two dimensions, defined declaratively in a file that contains the configuration of the
simulated home. The information that the file contains is: the home size, layout, which
objects it contains, where they are, which tags there are, what readers it contains, and where
they are. Figure 5.1 shows the environment simulated by the server where the sensors are
indicated with small black circles. Once the server is running, any client can connect to it
and issue commands. Currently, those commands are: mowe, pick-up objects or put-down
objects. The server simulates the environment and generates a log with the sensor readings
produced by the user’s interaction with the environment. This can be done in two ways:
logging the sensor periodically; or recording the sensor readings when they change their
value (event-driven).

We have also developed a client to simulate a user performing activities of daily living.
It performs some preprogrammed high-level actions or plans composed of low-level actions
or primitive tasks. The client randomly chooses the durations of those actions. The order of
execution of some low-level actions is also changed randomly. For instance, in the high-level
action of brushing teeth the client can pick up first either the toothpaste or the toothbrush.

Once the server has generated a log, we use the compiler to detect the state changes of
the sensors and to generate a learning file that contains instances to be used by the learning
component. Independently of the way the server uses to produce the log, the compiler
generates always the same learning file. Figure 5.2 shows the architecture of the system.

We use the ACE Data-Mining System as the machine-learning component [Blockeel et
al., 2006]. It is a machine-learning tool that provides a common interface to a number
of relational data mining algorithms. Among others, ACE includes Tilde [Blockeel and
De Raedt, 1998], that we have used in our experiments. Tilde builds relational decision
trees from relational instances.



5.3. GENERATION OF LEARNING INSTANCES 41

SEeNsors

Figure 5.1: Simulated house.

Server Client

Compiler

~— Machine Relational Model
Learning . S
{ Inout File Li Learning of Activities
P Technique Recognition

Figure 5.2: High level view of the system architecture.

5.3 Generation of Learning Instances

From the log that the server generates, state changes have to be mapped into low-level
actions. We define state change as any change produced in the state of any sensor. In order
to carry out this task, first the log has to be filtered in order to detect these changes. This
is the task of the compiler. It reads the server log and generates learning instances. In the
log, each reading includes information about the time, date and the sensors readings. If the
reader detects no tags, it logs the “inactive” signal. Figure 5.3 shows an example of the
log. In the example, the first reading means that the user reader does not detect any tag.
The second reading means that the user reader started to detect the toothpaste and the
toothbrush.

The predicate used in the logs is:
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06:15:15 15.02.08
sensor (readerUser_userl,inactive,0)

06:15:16 15.02.08
sensor (readerUser_userl,toothbrush,0.0)
sensor (readerUser_userl,toothpaste,0.0)

06:15:16 15.02.08
sensor (readerUser_userl,toothbrush,0.131)
sensor (readerUser_userl,toothpaste,0.131)

18:50:31 16.02.08
sensor (userReader_usuariol,comb,0.0)
sensor (userReader_usuariol,shavingfoam,3.105)

Figure 5.3: Example of a log.

sensor(Id,Reading, Duration): information on the sensor at that time step. The argu-
ments relate to the sensor id, the actual reading, and how long the sensor has been activated

Algorithm 1 shows how the AR model is built. Actions are modelled in terms of
two states (before and after) involved in each action, so the compiler searches for diffe-
rent consecutive readings to detect state changes. Function readLog(log,counter) re-
turns the reading of the log indicated by counter. When the compiler detects a state
change in the sensor readings (done by the function isStateChange(stateAfter)), it cre-
ates a learning instance using the two states (before and after) involved. RFIDs pro-
vide information about the objects that start and stop being detected. When an object
starts being detected (detectedNewObject(stateAfter)), the system searches in the log
(searchDuration(log, state After)) to find when the object stops being detected in order
to detect how long the object has been detected. This way, when an object starts being
detected, the created instance has the amount of time (duration) that the object is going
to be held. The sensors are not able to distinguish between picked up objects and objects
close to the hand. This information, the duration, is used to help the system to differentiate
these two situations. Each reading in the log has the action that is being performed. Thus,
when the instances are created (feature Extraction(stateAfter, stateBefore)), stateAfter
contains the class of the instance that is going to be created.

The instances are composed of the predicates sensorBefore(X,Y,Z) and
sensorAfter(X,Y,Z) where X is the identifier of the instance, Y is the identifier of the
objects detected by the RFIDs, and Z is the time that the object is detected. The predicate
sensorBefore is used to indicate the objects that are detected before the state change and
sensorAfter is used to indicate the objects that are detected after the state change. More
than one object can be detected at the same time so, in each instance there can be more
than one of both predicates. Every time a state change is produced, the simulator generates
a learning instance that automatically labels. The predicate action(X,C) is used to label
each instance indicating the class in Z.

Figure 5.4 shows an example of three relational learning instances. Instance ej6 shows
that the userl sensor detects the toothbrush after the state change, and it is detected during
40 seconds. Also, the toothpaste is going to be detected during five seconds. Both objects
have been picked up. Instance ej15 shows when the user puts down the toothpaste that
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Algorithm 1 Model creation algorithm.
Input: log
Output: learning model

counter < 0
instances < empty
stateAfter < empty
stateBefore < empty
stateAfter < readLog (log, counter)
counter <— counter + 1
while stateAfter # null do
if (isStateChange (stateAfter)) then
if (detectedNewObject (stateAfter)) then
duration < searchDuration (log, stateAfter)
stateAfter «— update(stateAfter)
end if
instance « featureExtraction (stateAfter, stateBefore)
instances < instances + instance
end if
stateAfter < readLog (log, counter)
counter <— counter + 1
stateBefore < stateAfter
end while
mlModel +— TILDE (instances)
return mlModel

was detected in instance ej6. And, instance ej22 shows an example of a false positive;
the userl sensor detects the toothbrush just during 0.1 seconds. Such instance is generated
when the user mowves next to the toothbrush and the RFID detects it for an instant. In that
moment the user is holding a razor in the other hand.

action(ej6,pickup) .
sensorBefore(ej6,inactive,0).
sensorAfter(ej6,toothbrush,40) .
sensorAfter(ej6,toothpaste,5).

action(ej15,putdown) .
sensorBefore(ej15,toothbrush,40) .
sensorAfter(ejl15,inactive,0).

action(ej22,move) .
sensorBefore(ej22,razor,7.721) .
sensorAfter(ej22,razor,7.721).
sensorAfter(ej22,toothbrush,0.1).

Figure 5.4: Three training instances generated by the compiler.
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5.4 Learning Action Models

Once the compiler generates all training instances using the events, we use Tilde to learn
a model of the relation between actions and states. Generating high-level representations
from low-level data, as sensor readings, is a well-known problem in Al, as shown, for ins-
tance, in robotics [Fox et al., 2006]. In our case, we have defined seven extra predicates
to perform this step. The predicates increase and decrease tell if, in the state change,
the number of objects detected by the user reader increases or decreases with respect to
the previous reading. When an RFID changes its state from no detecting anything to de-
tect an object, Tilde could use that information since the state changes from “inactive” to
“objectDetected”. But, when a second object is detected by the sensors, a second predi-
cate is created. Without the predicate increase Tilde could not use this extra informa-
tion. The predicate decrease helps when the objects detected decrease but still there are
objects detected. In addition, the predicates durationLessAfter, durationLessBefore,
durationMoreAfter and durationMoreBefore define whether the object has been detected
longer than a given period of time in the state before and in the state after the instance.
The period of time is automatically found by Tilde. Each predicate is defined as a Prolog
rule as Tilde allows background knowledge to be specified intentionally. Figure 5.5 shows
the corresponding rules.

length([],0):-!.
length([inactive|B],N):- !, length(B,N).
length([A|B],N):- length(B,N1), N is Ni+1.

objectsBefore(A,N):- findall(X,sensorBefore(A,X,_),Bag),length(Bag,N).
objectsAfter(A,N):- findall(X,sensorAfter(A,X,_),Bag),length(Bag,N).

increase(A):- objectsBefore(A,N1), objectsAfter(A,N2), N1<N2.
decrease(A) :- objectsBefore(A,N1), objectsAfter(A,N2), N1>N2.

durationLessAfter(A,D):- sensorAfter(A,_,C),C<D.
durationLessBefore(A,D) :-sensorBefore(A,_,C),C<D
durationMoreAfter(A,D) :- sensorAfter(A,_,C),C>D.
durationMoreBefore(A,D) :-sensorBefore(A,_,C),C>D

Figure 5.5: Background knowledge used for learning actions models.

As with respect to the target concept, we are trying to infer the low-level action that
the user has applied from the two consecutive perceived states (before and after). We are
using the three low-level actions: mowve, pick-up and put-down. Taking as input the training
instances, the background knowledge and the target concept, Tilde builds a relational de-
cision tree. Using instances like those in Figure 5.4 and the predicates in Figure 5.5, Tilde
generates a tree like the one in Figure 5.6.

Using the classification tree in Figure 5.6 every future example can be classified by
following the corresponding tree branch. For instance, first, it checks if decrease(A) is
true. If so, it checks whether durationLessBefore(A,0.1) is true, and then whether the
predicate durationMoreBefore(A,2) holds. If it is false, it predicts the action performed
to be move. Otherwise, it checks whether durationMoreBefore(A,0.5) holds, and so on.
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action(-A,-B)
decrease(A) 7
+--yes: durationLessBefore(A,0.1) 7
|  +--yes: durationMoreBefore(4,2) ?
| +--yes: [move]
| +--no: durationMoreBefore(A,0.5) 7
[ +--yes: [pickup]
| +--no: [move]
+--no: durationLessAfter(A,0.1) ?

+--yes: durationLessBefore(A,4) 7

| +--yes: durationLessBefore(A,1) 7
| +--yes: [putdown]
| +--no: durationLessBefore(A,3) ?
| +--yes: durationLessBefore(A,2)?
| | +--yes: [putdown]

| | +--no: [putdown]
| +--no: [putdown]
| +--no: [putdown]
+--no: [putdown]

--no: durationLessAfter(A,0.1) ?

+--yes: increase(A) ?

| +--yes: durationMoreAfter(4,0.1) 7

| +--yes: [movel

|
|
|
|
|
|
|
| I
| |
| I
| |
| |
| |
|

|

+

|

| | +--no: [move]

| +--no: durationLessBefore(A,0.1) ?
| +--yes: [move]

| +--no: [putdown]

+--no: durationMoreBefore(A,0.1) ?

+--yes: [pickup]
+--no: durationLessAfter(A,4) ?
+--yes: durationMoreAfter(4,3) 7
| +--yes: [move]
| +--no: durationMoreAfter(A,2) 7
| +--yes: [pickup]
| +--no: durationLessAfter(A,1)7?
| +--yes: [pickup]
| +--no: [pickup]
+--no: [pickup]

Figure 5.6: Example of relational decision tree generated by Tilde.

5.5 Experimental Results

In the experiments, we have used the dataset described in 4.2.2.1. For estimating the
accuracy 10-fold cross-validation was used. Table 5.1 shows the results obtained from the
nine configurations tested in the experiments. As it can be seen, the accuracy in detecting
the right action performed is quite high in the case of no noise, and it degrades as instances
have more noise. It is still in acceptable accuracy levels even with the combined levels of
noise of sensor failures and false negatives. It can also be seen that it degrades better with
increasing percentage of false negatives than with increasing levels of sensor failures. The
explanation for this behavior is that while each false negative affects always two examples,
the sensor failure can affect more than two. When a sensor failure is simulated, the sensor’s
time counter is reset. This simulates that an object stops being detected just for a moment
and then is being detected again. This behavior is common when holding an object and
the object moves. In these cases, the RFID stops detecting the object for a moment. For
that reason, the counter is reset. This is done automatically by the simulator. This counter
holds the time that a tag was being detected, and it is used by the background knowledge
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to provide more information in order to create a better tree to classify.

Table 5.1: Average accuracy of the system.

false negatives 0% 5% | 10%

sensor failures

0% 97.8 | 98.1 | 96.5
5% 84.0 | 86.6 | 84.4
10% 74.0 | 80.0 | 76.8

When false negatives increase from 0% to 5%, the performance improves. This increment
produces more variety in the examples that help to deal better with the other kind of noise.
As expected, the tree created in this case is bigger than the one created without false
negatives. When the noise goes up to 10%, the performance degrades again. In this case,
the noise affects the system performance, because it generated too many bad examples,
making classification task harder. Table 5.2 shows the confusion matrix of the best case
and Table 5.3 shows the confusion matrix of the worst case, both marked in bold in Table 5.1
that corresponds to the cases that obtained the highest and lowest accuracies. These good
results show that the approach is a promising one.

Table 5.2: Test with no sensor failures and 5% of false negatives. It obtained the best
results.

classified as — move pick-up put-down

move 49.85 0 0
pick-up 0.62 24.45 0
put-down 0.62 0 24.45

Table 5.3: Test with 10% of sensor failures and no false negatives. It obtained the worst
results.

classified as — move pick-up put-down

move 43.45 3.79 6.12
pick-up 6.70 16.62 0
put-down 9.62 0 13.70

In both cases the classifier fails mostly when it predicts class move and it really was
one of the other two actions. When the user picks up an object and then the sensor fails
right after the object is picked up, the reported time by the sensor is so short that the
learning system cannot differentiate between this instance, and another one in which a user
is moving and passing close to the object (the detection time would be similar). In the
case of put-down, the situation is similar, though the sensor failure occurs at the end of the
action. The other kind of errors in classification come when the learning system classifies
as pick-up or put-down, when it really was a move action. In these cases, the sensor failures
occur while the user is moving around holding an object. If enough time has passed from
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the moment it picked up the object, the classifier will believe that the user has put-down the
object in the moment that the sensor failed to detect the object. Also, if enough time has
passed since the moment the sensor worked again and the moment in which the user has
put-down the object, the classifier will label the instance in which the sensor works again
as pick-up.

5.6 Discussion

This chapter presented an algorithm for activity recognition that uses relational learning in
order to map changes in sensor readings to user’s actions (low-level actions). The novelty
of this approach relies on the fact that the algorithm does not try to recognize the activity
(high-level activity) itself. Instead, it recognizes the low-level actions that the user performs
to accomplish the activity (goal). The results show that our approach is a viable alternative.
The classification of the low-level actions permits to recognize the high-level activities that
users perform by grouping the actions.

The next step to reach our goals is to use the proposed system to recognize activities
employing real data. To that end, we will use public datasets. Although the proposed
approach in this chapter is promising, the learning system used (Tilde) has a limitation. It
can not manage large amounts of data. After trying Tilde, we had to change the method
in order to manage large datasets. For that reason, in the next chapter we change the
approach and, instead of using a learning system based on a relational representation, we
use a learning system based on a propositional representation to build an AR system capable
of managing large amounts of data.
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Chapter 6

Segmentation Algorithm Based on
Events

Generally speaking, human activity recognition (AR) can be defined as the automatic recog-
nition of an activity or a state of one or more persons based on observations coming from
sensor readings. Usually, this is performed by following a fixed length sliding window
approach for the features extraction where two parameters have to be fixed: the size of the
window and the shift. In this chapter we describe a different approach using dynamic win-
dows based on events. Our approach adjusts dynamically the window size and the shift at
every step. Using this approach some models were generated to compare both approaches.

This segmentation method has been developed in order to find an approach capable of
dividing the sequences of sensors’ readings like planning operators would do it. Since the
overall objective of this thesis is to generate a planning domain, in this work a different
method for segmentation is explored considering that human actions behave like planning
operators because, in the planning domain, the operators will represent human actions. As
it was mentioned in Section 2.2, planning operators produce changes in the state of the
world. Thus, with this approach the method proposed tries to find the changes produced
by the actions of the user that we want to model as planning operators [Ortiz et al., 2011].

In this chapter we take an alternative way to the one taken in the previous chapter. We
set apart the relational model developed in the previous chapter since it can not manage
large datasets and we start a new algorithm using real data and propositional models capable
of learning on large amounts of data.

6.1 Introduction

Usually, AR problems are tackled as a machine learning problem where the observations
collected by the sensors are the inputs, the performed activities are the classes, and the
learning techniques generate classifiers. These classifiers will take as input new sensor
readings and generate as output the predicted action the user just executed. Sensors produce
data streams that can be seen as simple time series, a collection of observations made
sequentially in time. So, the recognition system must process the inputs to extract the
learning instances, their feature values and the classes. The features depend on the available
sensors. Thus, in [Patterson et al., 2005] RFID sensors are used and the features extracted
are the RFID tags detected by the RFID reader. In [Kasteren et al., 2008], two-state
sensors are used and the features are the states of all sensors. Other types of sensors like
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accelerometers produce continuous data streams and the features must be extracted from
those. For instance, the features extracted in [Bao and Intille, 2004] are the mean, energy,
frequency-domain entropy, and correlations of the other features. In [Huynh and Schiele,
2005], they use similar features as well as the magnitude of the mean, variance, energy,
spectral entropy, and the discrete Fast Fourier Transform (FFT) coefficients.

Independently of the sensors used, in the feature extraction step most AR systems use a
sensory sequence segmentation based on a fixed-size sliding window [Bao and Intille, 2004;
Tapia et al., 2004; Stikic et al., 2008a]. In those cases, many of the classification errors
come from the selection of the sliding window length [Gu et al., 2009]. For instance, an
incorrect length may truncate an activity instance. In many cases, errors appear at the
beginning or at the end of the activities, when the temporal window overlaps the end of one
activity and the beginning of the next one. In other cases, the window length may be too
short to provide the best information for the recognition process. In [Huynh and Schiele,
2005], the authors studied different features and window lengths. They showed that the best
performance is achieved when different window lengths and features are chosen separately
for each activity.

Besides, the static sliding window approach generates many identical consecutive tem-
poral windows with exactly the same features and the same activity performed when the
user executes the same activity during a long period of time. Those repetitive instances
do not contribute to solve the problem better. Instead, they produce higher classification
scores of the activities during which those instances are generated. But they do not help to
recognize other activities, and the systems have to classify the identical instances over and
over again.

For those reasons, we hypothesize that a different segmentation approach based on non-
fixed length windows may achieve better results. Thus, we propose an approach based on
events to generate dynamic sliding-windows to infer the activities. So, instead of defining a
static fixed-length window, we define the events that will be used to define the boundaries
of the dynamic windows employed to extract the features. Hence, when a specific event
in the sensors readings is detected, we extract the features to classify what the user did
between that event and the previous one. Those features are always the same, but the size
of the windows changes based on when the events happen. So, the size of the window is
dynamically established by the events. Thus, the windows are dynamic in time although
the number of events in a window is always the same. In addition, our method does not
create any temporal window if no events are detected.

The events we use are sensor dependent and domain-independent. In the case of RFID
or reed switch sensors, an event could be any sensor state change. That is the case of the
datasets used in this thesis. Using sensors producing continuous data like accelerometers,
magnetometers, gyroscopes or GPS’s, one or several thresholds could be set in order to
detect the events.

The goal of this chapter is to learn the actions that users perform, using the dynamic
window method based on state changes on public datasets, and to compare the results with
other approaches. For our experiments, we used data from two different sources. The first
dataset used was presented in [Kasteren et al., 2008]. It uses a set of two state sensors
deployed in a house. The second dataset is the one used in [Patterson et al., 2005]. In
this dataset, RFID readers and a set of RFID tags installed in the environment are used to
detect the activities. Models are built using some state-of-the-art algorithms for classifying
the activities, including also the models used by the authors of the datasets in order to
compare their models and ours.
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Figure 6.1: Temporal segmentation on a time series of two sensors by the dynamic window
method.

6.2 Dynamic Windows Based on State Changes

The static sliding window approach uses fixed-length temporal windows that shift to create
instances. Fach window position produces a segment that is used to isolate data for later
processing. A detailed description of the sliding window approach can be found in 2.1.2.1.

In contrast, our approach generates the learning instances, given by f1, from a temporal
window created by using as boundaries what we call significant events. So, it uses the last
m significant events to generate the learning instances. Also, instead of sliding, it uses the
next events to fix the boundaries of the next instance. Hence, the approach relies on the
events detected by the sensors that the system uses instead of the window length. Figure 6.1
shows an example of our method using as significant events e; all the changes in the values
of the sensors.

Thus, our method does not set temporal values for [, the size of the window, and r,
the shift. These values change over time. The function f; can be formulated as follows.
Given N sequences of sensors readings as above, X?®, we generate one sequence of significant
events £ =< eg, €1, ..,€;,.. > that are detected at time steps T' =< 1o, 11, ..,t;,.. > where
t; is the timestamp of event e;. The events are detected from all sensors readings, but
they are merged into F. Then, the sequences of all sensors are segmented by the events
e; € F, from all sensors. Those events will divide the sequences in Z temporal windows
Wg =< aj,..xj ,_, > where W¢ will contain all the readings of sensor s from ; to
tj+m—1, being m the number of significant events used to create the windows. The next
window will be defined as Wtsj o =< fo L xfj t1em_y > SO the shift at every step will be
set dynamically as rj11 = t;41 — t;. Then, W, =< thj, o Wtjj\,] > will be the segments of
the N sensors at time ¢;. Figure 6.1 shows these segments W;, where m = 2. Events will
divide the sequences of all sensors, even the sequences of the sensors that did not detect
such event.

Once the temporal windows are delimited, the features FZ are extracted and they are
labeled with an activity a; € A. The activity that will label the window W;, will be the
activity that the user performed between the last two events t;,,—2 and t;1,,—1. So, we
are assuming that all changes in activities are detected by at least one sensor. Thus, the
user can not be performing two activities in the same window. Finally, the function f5 is
executed.

One of the main differences between the two methods is that our approach generates
a new window just when a new event is detected, whereas the other approach continues
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creating new windows even when the sensor readings do not change; temporal windows
created when there are no changes in the sensors are identical. It can be seen in Figure 2.1
where the window W;3, does not contain any event, so the vector Filgr will be identical
to the vector Filgr generated by the previous window W, ;.

6.3 Evaluation

In order to test the segmentation method, we generated models based on the sensors used
to record the two selected datasets [Kasteren et al., 2008; Patterson et al., 2005]. These
datasets were selected since they are well known and used by the community. Each dataset
employed different sensors and the method is sensor dependent. For that reason, we chose
different significant events to generate the classification instances. We first generated models
following the dynamic window approach. Then, we compared our models with the fixed-
length sliding-window approach employed by the authors. Next, we describe the models
generated for our experiments in detail.

6.3.1 Kasteren Models

Three configurations were tested with this dataset. In the first one, we reproduced the
model that achieved the best results in [Kasteren et al., 2008]. They employed temporal
probabilistic models and divided the data in slices of constant length, 60 seconds, without
overlapping. So, the parameters used were [ = 60 seconds and r = 60 seconds. A vector
of features was generated for each slice. The vector contained one entry for each sensor,
where the values of the sensors could be 0 or 1. They tested four configurations. We will
focus on the one that got better results. In that configuration they used two representations
in parallel that they called change point and last. In the change point representation the
sensor gives a 1 to time slices where the sensor reading changed. In the last representation
the last sensor that changed its state continues to give 1 and changes to 0 when a different
sensor changes state. In our experiments we recreated this in the first configuration but we
used a Dynamic Bayesian network (DBN) equivalent to the Hidden Markov Model (HMM)
used by them. To do so, we added the id of the last activity performed to the vector of
features.

In order to test our approach, we built some models using the same representation over
the same dataset, but generating the instances using the dynamic window approach and
using a different representation. To use this approach, we considered as a significant event
any change in the sensor readings. That is, when a sensor changes its state from 1 to 0
or vice versa. Since we used changes in the sensors readings instead of slices of constant
length, we generated our instances from the last 10 changes, m = 10. A way to select the
length of the temporal window is using the average time spent performing an activity in
the data, as in [Patterson et al., 2005]. Instead of using the time, we used the events. So,
we divided the state changes of the dataset, 2638, by the number of activities 245 and we
obtain m = 10.

There were 14 sensors, so the features were a vector FT{J. =< Fjl, e, F j14 > for the event
ej where FJ' € {0,1}. The F ;' was set to 1 if the sensor n changed its state at least once
between ¢; and tj19 (m = 10). Also, we kept to 1 the last sensor that changed its state.
This way we reproduced the representations change point and last used by the author.
Additionally, we added the id of the last activity performed to the vector of features to
learn activity transitions like the HMM does. This configuration was called DSW-1-K for
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Dynamic Sliding Window using Kasterens dataset. For the last configuration, DSW-2-K,
we created a new model using a different representation and features. Instead of using the
state of all sensors during the temporal window, whether the sensor changes its state or not,
in this model we construct the vector using the identifier of the sensors that produced the
last 10 events. So, the features of the segment that starts in e; are Ej =< Stjy ey Styg >
where s;, € {1,...,14} since there were 14 different sensors. s;1g9 is set to the identifier of
the sensor that produced the event e;19 and s, is the identifier of the sensor that produced
the event e;. If a sensor is not responsible for any event in the last 10, it is not included.
Also, if a sensor produced k events, the identifier of that sensor is included k times. So,
for example, if in the current temporal window W, the sensors that changed its state were
1,2,3,4,1,2,3,4,5,6 then the features used would be F{J. =<1,2,3,4,1,2,3,4,5,6 >.

Then, we tried to reduce the number of features extracted from the sensors performing
a feature selection method by computing the Information Gain Ratio [Hall and Smith,
1998] for each of the features and then ranking them from highest to lowest. Afterwards,
we created and tested a model using all the features. The worst feature according to the
ranking was eliminated and a new model was generated and tested with the remaining
features. All the features were progressively eliminated until none is left. All generated
models are compared and the features employed in the best model were kept. Using this
feature selection method, we reduced the size of the vector from 10 to the last two sensor
state changes Fz. =< St; 5> Stj1e > being St;.s and s¢;  the id of the sensors that detected
the last 2 events. Finally, we added the id of the last activity performed like in the other
models.

Since we are interested in comparing probabilistic models with others models more
easily readable by humans, DSW-1-K and DSW-2-K were generated using PART [Frank
and Witten, 1998], an algorithm that generates rule sets, and J48 [Quinlan, 1993], a decision-
tree learning algorithm, instead of a DBN.

6.3.2 Patterson Models

We also tested three configurations using this dataset. In the first configuration we used
the fixed-length sliding-window approach used by the authors of this dataset. We also used
their features and representation. They divided the data in slices of constant length, where
the mean length of each uninterrupted portion of the interleaved tasks was 74 seconds. At
each second they generated a vector of features with the data of the last 74 seconds. So,
the parameters used were [ = 74 seconds and r = 1 seconds. The vector contained 74
entries, one for each second, where the values of each entry could be object-X-touched when
an object was detected or no-object-touched when no objects were detected. They used
temporal probabilistic models too. They tested four different models. We have reproduced
one of the most accurate models they generated; a HMM equivalent to the one used by
Kasteren in the previous dataset. So, in order to replicate the results we created a DBN
equivalent to the HMM used by the authors as with the Kasteren dataset.

In DSW-1-P, we used our approach with the same representation. We used a vector
with the last 74 significant events to recognize the activity that was performed between the
last two events. In this case, we considered as significant event when the RFIDs change
the detected object or no objects are detected. So, the features used were the id of the
new object detected or no-object. The dataset just provides information about the objects
detected and the timestamps. Therefore, to detect the no-object state we assumed that
when two readings are found in the dataset and the time interval between them is one
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second or more there is at least a state with no objects detected.

We also generated a new model using a simpler representation in DSW-2-P. We used
a vector of features composed of the last 74 events like in the previous setup. Then, we
applied the same feature selection method that we used in the previous dataset to find the
optimal combination of features. That way we obtained a very accurate model using just
the last two events instead of 74.

Like in the other dataset, we generated the models that use our approach, DSW-1-P
and DSW-2-P, employing the J/8 and PART algorithms. We added the activity performed
previously to the vector of features used in this experiment to learn activity transitions like
we did in the previous dataset.

6.4 Experimental Results

In summary, we have tested six configurations, using the models described in the previous
section. We used two metrics to evaluate the models using 10-fold cross-validation for
estimating the error: precision and recall averaged over all activities. We have used these
two metrics instead of accuracy, used by the authors of the datasets, because the datasets
are unbalanced. So, accuracy is not a good metric as described in [Chawla, 2010]. Hence,
we have used precision and recall as recommended in [Kasteren et al., 2010c; Chawla, 2010].
What we call precision was used as a metric by Kasteren but he called it Class Accuracy.

The learning algorithms we used were DBN to learn the models that replicate the models
used by the authors of both datasets and J/8 and PART to learn our models.

Table 6.1 shows the average precision and recall obtained by each setup, and the number
of instances generated by each model. The best results have been marked in bold. In
addition, we have included a column with the percentage of times that the temporal window
generated by the segmentation method contains at least one event able to change the state
of the sensors and produce an instance different from the one produced in the previous
window. That is, any change in the sensors readings that generates one instance different
from the previous one. This counter measures the diversity of the temporal windows from
which the instances are created since the values of the sensors in the temporal windows
without state changes will be the same as in the previous window.

Table 6.1: Precision, recall, number of instances and diversity for all setups.

Precision Recall N. Instances Diversity

Kasteren DBN 80.55 80.08 40003 3.16%
DSW-1-K J48 92.16 91.15 2638 68.35%
DSW-1-K PART 92.28 90.85 2638 68.35%
DSW-2-K J48 93.05 91.34 2638 68.35%
DSW-2-K PART 92.61 91.38 2638 68.35%
Patterson DBN 78.90 86.57 16280 27.16%
DSW-1-P J48 94.80 94.48 5408 100%
DSW-1-P PART 97.72 96.76 5408 100%
DSW-2-P J48 94.80 94.49 5408 100%
DSW-2-P PART 97.69 95.32 5408 100%

As we can see from the results of both datasets, the precision and recall of the static
sliding-window approach, Kasteren DBN and Patterson DBN, are much lower than the re-
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sults using a dynamic window, DSW-1-K, DSW-2-K, DSW-1-P and DSW-2-P. The table
shows that the different models generated using the dynamic window approach obtain simi-
lar results. The feature selection improved slightly the results in the first dataset, though
not in the second dataset. The precision of Kasteren DBN is 80.55%, quite similar to the
result reported by Kasteren in [Kasteren et al., 2008] which is 79.4%. The DBN we used
needs some parameters to be defined, so the difference probably is due to dissimilarities in
those parameters settings. We can not compare our results with those reported by Patterson
in [Patterson et al., 2005] since they do not report on precision and recall.

The table shows as well that the number of instances created by each method is very diffe-
rent. The static sliding-window approach creates many more instances than our approach
in both datasets. Our method creates an instance just when a specific event is detected,
while the static sliding-window approach creates instances for every time slide even when
the user is not at home, or is sleeping and no events are detected. That is the case of the first
dataset. The behavior in the second dataset is similar; many instances are created when
the system does not detect any event, since one instance is created every second. So, most
of the instances are generated without changes in the sensor readings. This fact is shown
in the last column of the table where our models generated higher percentages of different
temporal windows. Notice that the diversity of the dynamic window in the first dataset is
not 100% like in the second dataset because some of the significant events produced the
same feature. When a sensor changed its state from 1 to 0 or vice versa the value of the
feature extracted was 1 in both cases because of the change point representation. Thus,
some consecutive generated instances were identical. In any case, using near 5% of the
instances generated by the sliding window approach, we obtain better precision and recall.

A deeper analysis of the models shows that the sliding window fails more often when
the activity changes. Comparing the Kasteren DBN and DSW-2-K PART we see that the
first one fails in a 96.37% of the instances when the activity changes, whereas the second
one fails in 48.12%. The results are similar in the second dataset, so Patterson DBN fails
in 86.58% whereas the DSW-2-P PART fails in 42.13%. Thus, the activities with fewer
instances reach a lower precision and recall, whereas the activities with many instances like
leave house and sleep in the first dataset and Making soft-boiled eggs in the second obtain
better results.

The experiments show that the different classification algorithms obtained similar re-
sults. Although experiments with the Pattersons dataset show that PART obtained better
results than J48, the differences are small in both datasets.

6.5 Discussion

In this chapter we have presented a different approach to create the learning instances for
AR. The novelty of this approach relies on the fact that our system uses the changes in
the information captured by the sensors to create the instances for classification instead of
the temporal sliding-window approach. We have compared our approach in public datasets
used in the past by other researchers and we have shown very good performance. The
results show that the approach obtains higher scores in precision and recall in the datasets
used to test it.

The main advantage of the dynamic window approach is that it provides accurate models
using much lower number of learning instances and features. This makes this approach
suitable to be used online and in situations where computation times are important, since
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fewer instances would be evaluated and the instances will be processed faster.

One limitation is that instances depend on the sensors accuracy. So, whenever the
sensors do not capture a significant change in the environment, the system does not detect
the state change and it does not create the corresponding instance. Anyway, this case is
equivalent to the case when the temporal window is too long and contains two activities
instead of just one. In [Logan et al., 2007] the authors have shown some of the limitations
of RFID in extensive use. However, other sensor modalities like accelerometers or motes
can be used to recognize the activities.

We have described how models can be used for AR employing this method to extract the
information from the sensor readings. The generated models are able to predict transition
probabilities better by recording the last objects observed in each activity. So, good results
can be obtained by using just the last two objects detected by the RFID or the last two reed
switch sensor that changed the value. While there are still technical challenges to overcome,
this work shows that AR using dynamic windows to generate the instances and just some
of the changes in the states of the sensors as features can be a good choice.

The method is inspired in the way planning operators work. When a planning operator
is executed, the world changes. For that reason, the changes in the sensor readings are
used for segmenting the sensor data. Using significant events, we tried to match the events
produced by the sensors and the execution of planning operators. That way, the segmenta-
tion would prepare the data from the beginning to be used to generate planning operators.
Unfortunately, the activities performed by humans usually generate many changes in the
sensor readings during a short period of time and not all the events produced during that
period of time belong to a single activity.



Chapter 7

EBAR: Event Based Activity
Recognition

In this chapter a new algorithm for the recognition of human activities called EBAR (Events
Based Activity Recognition) is introduced and evaluated. The starting point of the process
is the event based approach to extract features from time series of sensors presented in the
chapter 6. This segmentation method, in contrast to the commonly used sliding-window
method, allows EBAR to use new features to improve the results of the recognition process.
These features provide information about the boundaries of the activities and are used along
with common features to obtain a better recognition of the activities particularly in those
instances placed in the boundaries of the activities. Experiments with public datasets show
that our algorithm is able to: accurately recognize the activities using less instances than
other approaches; recognize the boundaries of the activities better than other approaches;
and also adapt itself to changes in the user behavior, and still obtain good results.

7.1 Introduction

We are interested on building an AR algorithm able to particularly recognize the start
and end of activities, because its output will be used to automatically learn user behavior
models. In this chapter a complete algorithm for activity recognition is presented. We
build on our prior work presented in Chapter 6 and extend it by studying more deeply the
segmentation methods and including new features to better classify activities.

Usually, the events that enclose the activities occur also during the activities. For that
reason, we propose to use a pre-classification step to determine whether a significant event
bounds or not an activity. Once a boolean class is assigned to the significant event, the result
is added as a new attribute to the rest of features extracted and generated in the previous
steps to recognize the user activities in the final step. In this work, a new algorithm is also
proposed to integrate the features described above into a framework to learn the actions
that users perform. The resulting algorithm is called EBAR. The results are compared with
other approaches using public datasets. We build models that use state of the art algorithms
for classifying the activities. In addition, we also present results on how the shift and the
length of the temporal windows affect the recognition task.

o7
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7.2 The Activity Recognition Algorithm: EBAR

Our approach covers the entire recognition process from receiving sensor readings to the
final matching between the time series temporal window and the activities performed in
such intervals. The following sections describe the steps EBAR takes that are different from
previous works. Figure 7.1 shows the system’s architecture where the input are the sensors’
readings and it outputs the model to classify activities.
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Figure 7.1: EBAR’s architecture.

7.2.1 Algorithm Description

EBAR employs temporal windows created by using as boundaries significant events to gene-
rate the learning instances. It uses the dynamic windows approach (Section 6.2). Figure 7.2
shows an example representing the dynamic window approach using as significant events all
the events produced by sensors 1 and 2, and sliding-windows without overlapping. In this
case, we define as significant event every time a sensor changes its state from the lower level
to the upper one or vice versa and m = 1. In the example our method generates six tem-
poral windows that will be used to extract the classification features for fs. It adapts each
window length to the events produced by the sensors. Instead, the static sliding-window
method generates eight windows, all of them of the same size, even when nothing happens
(windows 2, 5 and 6).

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6
Dynamic K_H—)%K_H A
Windows

Sensor 1 | ‘

Sensor 2

Static Sliding A A A A A A A A
Windows

Window 1 Window 2 Window 3 Window 4 Window 5 Window 6 Window 7 Window 8

Activities I I
Activity 1 Activity 2 Activity 3

Figure 7.2: Dynamic windows versus static windows.

The significant events must split the whole dataset in n or more temporal windows,
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where n is the number of performed activities. For example, if a subject executes four
different activities, a significant event approach for this dataset should split the data into
four or more temporal windows. For each of the four activities, our approach would find
one of these events at the beginning and another one at the end. It might also find one
or more in between. Thus, the perfect significant events for this dataset will generate four
temporal windows to classify. The worst case would be the one where an activity does not
generate any event. In this case, EBAR would create, using the next significant event, a
temporal window which would contain two activities. Thus, less than 4 temporal windows
may be created. Then, it would behave like the fixed-length sliding-window method when
a temporal window contains two or more activities.

For instance, using a sensor network composed of RFID sensors, the events the system
would use could be defined as any change in any sensor reading. So, every time the sensors
report a new reading, it is compared with the previous reading reported by the same sensors.
If the two readings are different, a new event is found and a new temporal window is created,
associated to the event. As another example, using the same sensor network, the significant
events could be defined as specific readings, such as when the sensors detect a given object.
Every time this object is detected is considered as an event and a new temporal window
is created. Any event that occurs at the beginning and at the end of every activity is
suitable to be used. Thus, the way to define the events is to select one of these. In our
approach the significant events are not defined arbitrarily. Instead, training data is used to
find out those events. Consequently, the training data is used for two purposes: to train
a classifier to recognize activities; and to learn to detect significant events. For example,
using the Kasteren dataset described in Section 4.2, it can be found that every time the
user changes the activity a sensor fires up. That is, it changes its state from 0 to 1. In this
case, those changes can be used as significant events or alternatively all the changes can be
used, since both match the boundaries of the activities. In the case of analog sensors, like
in the Huynh dataset, a threshold is calculated empirically. We first compute the difference
in the sensors readings when the user changes the activity. Then, the minimum value in the
difference is used as a threshold. A value higher than the minimum one would skip some of
the significant events.

Significant events divide the sequences of all sensors, even the sequences of the sensors
that did not create such event. For instance, two of the three datasets used for evaluating
the algorithm, the Kasteren [Kasteren et al., 2008] and Huynh [Huynh et al., 2008] datasets,
employ more than one sensor. In the case of the Huynh dataset, there are two accelerometers
and the sequence of an accelerometer would be divided by the significant events produced
by the other accelerometer. Kasteren uses binary sensors, and, whenever a sensor generates
a significant event, the states of all sensors are used to generate the features that compose
the instances. This is not new since the fixed-length sliding-window method also includes
the information of all sensors in every temporal window. That way, we provide as much
information as possible to the algorithm. Later, the attribute selection and ML algorithms
will select the best features to classify the activities.

Once the temporal windows are delimited, the features are extracted and labeled with
an activity. The activity that will label the temporal window will be the activity that the
user performed between the last two significant events of that temporal window. Next,
EBAR reduces the number of features and includes a new one in order to obtain the best
recognition rate. Finally, a machine learning algorithm is used to learn a classifier. The
whole process is described in Algorithm 2.

Our AR algorithm is composed of two main stages. The first one, fi, captures, cleans,
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Algorithm 2 EBAR Algorithm.
Input: m, mlAlgorithmy, mlAlgorithms
Output: mlFinalModel (Activities classifier)

numberEvents < 0
buffer < empty
instances < empty
sensorR < sensorAction ()
while sensorR # null do
sensorRCleaned < preprocess (sensorR)
buffer < buffer 4+ sensorRCleaned
if (isSignificantEvent (buffer)) then
numberEvents <— numberEvents 4 1
if (numberEvents = m) then
numberEvents < 0
instance <« featureExtraction (buffer)
instances < instances + instance
buffer + sensorRCleaned
end if
end if
sensorR < sensorAction ()
end while
instances’ «— featureSelection (instances,mlAlgoritms)
mlModel « learn (instances’, mlAlgoritm)
instances” < eventClassification (mIModel,instances’)
//End of f; and Beginning of f5
mlFinalModel «+ learn (instances”, mlAlgoritms)
return mlFinalModel

segments and processes sensors data to create the instances to be classified. The second
stage, fa, uses these instances to predict the activity the user is performing. The first stage
begins with capturing raw data from sensors as well as the action (class) sensorAction().
Incomplete and erroneous readings are removed from the raw data in preprocess (sensorR) to
generate clean data, sensorRCleaned. The results of this step are sensor time series ready to
be processed. In the case of public dataset, like the datasets we are going to use for testing,
the data has already been cleaned so this step is skipped. Next, these sensor time series are
segmented using a dynamic sliding-window method, presented in Section 6.2. The method
uses isSignificantEvent(buffer) to compare the current reading, sensorRCleaned, which is
the last element in buffer, with the previous readings, rest of buffer, in order to detect
significant events. Then, if the number of significant events equals m, which is the number
of significant events making up a segmentation window, a temporal window is used to
extract features, featureExtraction(buffer), where buffer contains the data of the temporal
window. As a result one instance is created. The value of m is determined empirically as we
will describe in Section 7.3. Once the segmentation process has generated all the instances
from the sensor data, the set of features is reduced by an attribute selection algorithm
in the next step, featureSelection(instances). A wrapper method is employed [Kohavi and



7.3. EVALUATION SETUP 61

John, 1997] along with the machine learning algorithm that is going to be used to learn the
activities classifier. This way we get a feature subset tailored to the data.

Next a double classification process is performed. The first classification, learn(instances’,
mlAlgoritm; ), generates a model, miModel, to determine whether a significant event bounds
an activity or not. Once that model is obtained, it is used to assign a boolean class to each
instance and the result is added as a new attribute to the rest of attributes of the instance.
Then, the activity recognition process is executed, learn(instances”, mlAlgoritms), to ge-
nerate the AR model. At learning time, the sensor reading captured by sensorAction() has
two classes associated, whether the readings correspond to a boundary event and the acti-
vity performed. The difference between the two ML processes is that the first one does not
use the activity class, so it uses one less attribute, and the last one uses one more attribute,
the boolean class that is the result of the previous process. Both steps can be executed
using any supervised machine learning algorithm.

7.2.2 Events Classification

Nothing prevents significant events from appearing also inside activities. Once a significant
event is detected, a classification step is performed to determine whether the event really
bounds an activity or not. The result of this classification is a series of boundary events,
significant events that really enclose an activity. These boundary events could be used to
segment the sensor data, but experimental results using this segmentation are not good.
As it will be shown in Section 7.4.2 the accuracy obtained in the event classification is not
good enough to rely on it to generate the windows. Instead, we use any significant event to
generate the windows, and add a new feature, whether we believe the last significant event
is a boundary event or not, to help in classification.

Figure 7.3 shows an example where the significant events that enclose the activities occur
when a sensor changes its state from the lower level to the upper one. In this example, three
significant events would be detected and used for segmentation. Notice that there are two
events where the sensor changes its state from the upper level to the lower one. These two
events are not considered significant since none of them enclose an activity, thus we selected
only the opposite state change. The three significant events generate four windows using the
dynamic window approach. It can be seen that Fvent 1 does not happen between activities
unlike Event 2 and Fvent 8 do. Thus, in order to classify complete activities, EBAR tries
to classify the events to separate the good ones, Fvent 2 and Event 3, from the bad ones,
those that occur during the activities, like Fvent 1. Once the significant event is classified,
the result is included in the instance created by such event as a new attribute.

7.3 Evaluation Setup

In order to test EBAR, some models have been generated using the three public datasets
previously presented [Kasteren et al., 2008], [Patterson et al., 2005] and [Huynh et al.,
2008]. These datasets include different types of sensors.

In the first dataset the same representation and features presented by the authors were
used, but the instances were generated following our segmentation method. The results
have been compared with the fixed-length sliding-window approach used by the authors. In
addition, the representation and the attributes were changed to test other options in order
to obtain even better results. In the second dataset the dynamic sliding-window approach
was also used with two different representations, one of them being the one used by the
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Event 1 Event 2 Event 3
Window 1 Window 2 Window 3 :
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Figure 7.3: Example of segmentation.

author of the dataset. For the third dataset, models were generated using EBAR and results
were compared to a fixed-length sliding-window approach using the same features.

In addition to the algorithm used by the authors, other classifiers were used: PART [Frank
and Witten, 1998], J48 [Quinlan, 1993], k-nearest neighbor (kNN) [Aha et al., 1991], Ran-
dom Forest (RF) [Breiman, 2001], Support Vector Machines (SVM) [Platt, 1999], Naive
Bayes (NB) [John and Langley, 1995], Hidden Naive Bayes (HNB) [Zhang et al., 2005],
Additive Logistic Regression (ALR) [Friedman et al., 2000], and Decision Tables (DT) [Ko-
havi, 1995]. These algorithms have been chosen in order to test the performance of EBAR
employing different types of ML algorithms although any other algorithm could be used.
Their implementation in the Weka toolkit [Witten et al., 1999] has been used with their
default parameters.

7.3.1 Kasteren Dataset and Models

A detailed description of this dataset can be found in Section 4.2. Three configurations
were tested using this dataset. For the first configuration the fixed-length sliding-windows
is used and for the other two configurations, models were generated using the dynamic-
sliding window. The first configuration is a replication of the original one and it is the same
we described in Section 6.3.1. The second and third configurations use the same attributes
and representation described in Section 6.3.1 in the configuration we called DSW-2-K. The
second configuration Kas-EBAR shows the final results obtained by EBAR. The third one
Kas-EBAR W-FEv shows the results of using the algorithm without including the step of
classifying events. Thus, the results are shown with and without the events classification in
order to test the usefulness of such step of the algorithm.

7.3.2 Patterson Dataset and Models

A detailed description of this dataset can be found in Section 4.2. Three configurations
were tested using this dataset too. In the first one, Patterson DBN, the fixed-length sliding-
window approach used by the authors of this dataset was employed. Also, the same features
and representation of the authors were used and it is the same we described in Section 6.3.2.
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In the next two configurations, Pat-EBAR and Pat-EBAR W-FEv, EBAR was used with
the same representation and attributes described in Section 6.3.2 in the configuration we
called DSW-1-P. As in the other dataset, in Pat-EBAR W-Ev the results obtained without
including the classified event as an attribute are shown. In Pat-EFBAR all phases of EBAR
were used. The id of the last activity performed was added to the vector of all these setups
to create the DBN of the author of the dataset and to learn the activity transitions. For
all setups, the models were generated using the ML algorithms described in 7.3 and all of
them were used in all the setups with the same features for each setup.

7.3.3 Huynh Dataset and Models

A detailed description of this dataset can be found in Section 4.2. In Chapter 6 we tested
our segmentation method. In this chapter, we are testing a complete AR algorithm to
be used to recognize the actions that we want to model as a planning domain. For that
reason, in this chapter we include a new dataset to better test EBAR using continuous data
in addition to the other two datasets.

Two experiments were executed. The first one replicates what the authors of the dataset
did. It contains configurations using the static sliding-window approach for segmentation
using different sizes for the windows. From the acceleration signal they computed the mean
and variance of the three axes of the accelerometers over sliding-windows of sizes between
0.4 and 4 seconds. Also, they added the timestamp of the last reading of the temporal
window as an attribute. A DBN equivalent to their HMM was used in this experiment in
order to replicate the results of the authors of the dataset.

EBAR was used in the second experiment. We used as features the same ones as in the
original experiment; the mean and variance of the three axes of the accelerometers and the
timestamp of the last reading of the temporal window. This dataset contains continuous
data, so defining the significant events was more difficult. We defined a threshold and a
reading was compared with the next one, and each time the difference between the values
of the data of the two readings was higher than the threshold, a temporal window was
generated. Several configurations were tested using different thresholds over the values of
the data provided by the dataset. This experiment used between 2 and 20 sensor readings,
comparing the difference between the maximum and the minimum value of the readings.
The best results were achieved with three sensor readings (m = 3). We also tried different
thresholds. The results can be seen in Table 7.11. The ML algorithms described in 7.3 were
used to generate models in this experiment.

7.4 Experimental Results

This section presents the experimental results of applying the two phases of the algorithm.
First, we present the results obtained classifying the instances in the boundaries. Next, we
show the results of the event classification. Then, we present the final results obtained after
applying the complete algorithm.

7.4.1 Results Classifying the Instances in the Boundaries

As it was said before, the main objective of this chapter is to generate models able to
more accurately recognize the instances generated in the boundaries of the activities. The
instances where the activity changes are the most difficult to classify. Also, the correct



64 CHAPTER 7. EBAR: EVENT BASED ACTIVITY RECOGNITION

classification of these instances is very important in order to detect all the effects the
activity produces to correctly create planning domains. In these cases, an analysis of the
models shows that the sliding-window approach fails more often when the activity changes.
While Kasteren DBN obtains a precision of 11.73% when the activity changes, Kas-EBAR
achieves precisions from 16.04% using NB to 87.03% using kNN (k=1 which is the default
value in Weka). The results are similar in the second dataset, where Patterson DBN obtains
a precision of 13.42% and Pat-EBAR obtains results ranging from 26.85% using NB to the
89.35% reached by HNB. In all cases, and independently of the ML algorithm used, EBAR
obtains better results than the fixed-length sliding window approach.

For the third dataset, Huynh DBN achieves a precision of 32.68% while EBAR obtains
results ranging from 0.76% using J48 to the 99.34% reached by kNN. Huynh DBN obtained
slightly better results than the worst model generated by EBAR. However, EBAR achieved
a precision higher than 99% with one of the models. In this case, the segmentation of
both configurations is equivalent, so the same temporal windows were generated. Both
segmentations are equivalent because the threshold used by EBAR is so small that all readings
generate significant events and the size of the windows used by Huynh is so small that all
readings are used as different temporal windows as well. In this case, the attribute selection
and the event classification do not help EBAR to classify the boundaries better. For that
reason, the results obtained by Huynh DBN and EBAR DBN are the same.

Table 7.1: Boundaries classification results obtained using the author’s models.

Models Precision
Kasteren DBN 11.73
Patterson DBN 13.42
Huynh DBN 32.68

Table 7.2: Boundaries classification results obtained using EBAR.

DBN PART J48 HNB NB LB DT RF kNN SVM
Kas-EBAR 16.38 58.70 61.77 65.87 16.04 41.63 59.38 85.66 87.03 61.09
Pat-EBAR  45.37 57.87 60.18 89.35 26.85 62.03 64.35 87.96 88.42 84.72
Huy-EBAR 32.68 5.97 0.76 - 23.01 - 69.16 95.00 99.34 -

Table 7.1 shows the results obtained by the author’s DBNs and Table 7.2 shows the
results obtained by EBAR. Both tables show the precision obtained. The best results are
marked in bold. In the third dataset, three of the algorithms could not be executed due to
the size of the dataset. It can be seen that the best results obtained in the three datasets are
achieved by different ML algorithms. Results vary depending on the ML algorithm used.
The differences in the ML algorithms are very big. Thus, choosing the right ML algorithm
is very important in order to obtain the best results although algorithms like kNN or RF
achieved very good results in all datasets.

7.4.2 Results of the Events Classification Phase

As we have said before in Section 7.2.2, we are especially interested on detecting the events
that enclose activities in order to determine when an activity begins and ends. Tables 7.3
(Kasteren dataset), 7.4 (Patterson dataset) and 7.5 (Huynh dataset) show the confusion
matrix obtained in the events classification phase of EBAR using the HNB algorithm with
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the first two datasets and kNN with the third one, which obtained the best results. The first
row shows the instances of the significant events that bound the activities and the second
row shows the rest of significant events. The first column indicates the instances that are
classified as boundary events and the second column the instances classified as other type
of events.

Table 7.3: Confusion matrix using the Kasteren dataset.

Boundary Events Other Events <— classified as
154 139 Boundary Events
45 2299 Other Events

Table 7.3 shows that good results were obtained, with an accuracy of over 93%. However,
EBAR misclassified 47.44% of the events that we are interested in; those that occur at the
beginning or end of activities. We have called Boundary Events to these events in the tables
and the rest of the events are represented as Other Fvents. Table 7.4 presents better results
than Table 7.3, but EBAR still misclassified 25% of the boundary events. Table 7.5 shows
the confusion matrix of the third dataset that obtains the best results, with an accuracy
of over 99.8%. However, it classified correctly less than 1% of the significant events in the
boundaries. This is due to the high number of Other Events contained in that configuration.

Table 7.4: Confusion matrix using the Patterson dataset.

Boundary Events Other Events <— classified as
161 55 Boundary Events
2 5190 Other Events

Table 7.5: Confusion matrix using the Huynh dataset.

Boundary Events Other Events <— classified as
2 919 Boundary Events
26 772870 Other Events

As we said, we are interested on these events, because we want to find the boundaries
of the activities in order to recognize entire activities, instead of pieces of activities as most
of the AR literature does. Thus, the over-segmentation that occurs when the temporal
windows of data are extracted from the sensors readings should be reduced. Also, detecting
the beginning and end of one activity allows computing the duration of the activity, which
in turn may help in the recognition process. In [Kasteren et al., 2010b; Mckeever et al.,
2010] the authors show that modeling the duration of the activities improves the results
obtained in the classification. The classification of the boundaries of the activities of our
algorithm is far from being perfect. Hence, we included it as an attribute for the final
classification step of recognizing actions. Next Section 7.4.3 shows that this attribute may
help classifying the activities.
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7.4.3 Classification Results Using Discrete Data

The first two datasets were generated using sensors that provide discrete data, while the
third one included sensors that generate continuous data. In this section the results obtained
using only the first two datasets are shown. Summarizing, six configurations were tested
with the first two datasets: Kasteren DBN, Kas-EBAR, Kas-EBAR W-Ewv, Patterson DBN,
Pat-EBAR and Pat-EBAR W-Ewv. For the experimental evaluation, the models described
in Section 7.3 were generated. Two metrics have been used to evaluate the models using
10-fold cross-validation for estimating the error: precision and recall.

The novelty of EBAR is the addition of the classified significant event to the process along
with the use of a dynamic sliding-window segmentation method. So, the performance of the
models generated just before the addition of the classified significant event was tested to see
if it is useful. Table 7.6 shows, for each algorithm, the average precision and recall obtained
by the models in each configuration. It also shows the number of instances generated by
each model. In addition, a column measuring the percentage of instances created that are
different from the precedent one was included (diversity).

As it can be seen from the results in Table 7.6, the precision and recall of the static
sliding-window approach, Kasteren DBN and Patterson DBN, are worse than those of EBAR
in all cases but in NB for Kasteren DBN. Also, it shows that most of the instances created by
the sliding-window approach are repetitive, showing a lower number of different consecutive
instances. So, most of the created instances are repeated many times. This helped Kasteren
DBN and Patterson DBN to obtain better results in terms of accuracy as it will be shown
below. Comparing the configurations using the type of events as attribute, FBAR, and
those without the events, FBAR W-Euv, it can be seen that the addition of the classified
events as a new attribute improves the results. The improvements are more noticeable
in the second dataset. However, in some cases like Pat-EBAR DBN the inclusion of this
attribute does not affect the results.

If the number of instances is analyzed, a huge difference can be seen between the number
of instances generated using static or dynamic windows. Using near 5% of the instances
generated by the static-window approach, EBAR obtains much better results.

The experiments show that the right selection of the classification algorithm is important
since the results obtained can be very different. DT is the best algorithm and NB obtains
the worst results.

A deeper analysis can be seen in Table 7.7. It shows the precision of each class obtained
by the best algorithm of the first dataset (DT), the instances or temporal windows created
for each class and the real number of instances of each activity. The real number of instances
is calculated counting the number of times the user is performing each activity in the
dataset. For example, for the activity Leaving EBAR generates few instances, 353, since
353 significant events where found. Instead, the sliding-window creates a huge amount of
them, 22582. Both methods are far from the real number of instances, 33. The activity
Leaving activates just few sensors, since it represents the activity performed by the user
when leaving the house. The sliding-window setup generates many instances even when the
user is not activating any sensor. So, most of the instances generated during the time the
user is out of the house are identical whereas the state-change approach does not create
any. The same happens with Idle and Sleeping, where the accuracy is slightly better in
Kasteren DBN. On the other hand, activities with a shorter duration such as Breakfast
or Drink generate more instances using the state-change approach because more sensors
are activated during the activity. For these shorter activities the precision of our models
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Table 7.6: Models, precision, recall, number of instances and diversity of all configurations.

Models Precision Recall N. Instances Diversity
Kasteren DBN 80.55 80.08 40003 3.16%
Kas-EBAR DBN 86.77 86.11 2638 68.35%
Kas-EBAR PART 93.93 93.01 2638 68.35%
Kas-EBAR J48 92.89 92.07 2638 68.35%
Kas-EBAR HNB 91.05 91.11 2638 68.35%
Kas-EBAR NB 74.62 79.99 2638 68.35%
Kas-EBAR LB 92.79 91.70 2638 68.35%
Kas-EBAR DT 94.59 91.64 2638 68.35%
Kas-EBAR RF 91.75 91.27 2638 68.35%
Kas-EBAR kNN 83.04 81.65 2638 68.35%
Kas-EBAR SVM 93.17 91.89 2638 68.35%
Kas-EBAR W-Ev DBN 86.44 85.86 2638 68.35%
Kas-EBAR W-Ev PART 92.02 90.72 2638 68.35%
Kas-EBAR W-Ev J48 92.12 90.85 2638 68.35%
Kas-EBAR W-Ev HNB 90.10 89.27 2638 68.35%
Kas-EBAR W-Ev NB 74.35 79.66 2638 68.35%
Kas-EBAR W-Ev LB 93.12 91.35 2638 68.35%
Kas-EBAR W-Ev DT 92.87 90.59 2638 68.35%
Kas-EBAR W-Ev RF 91.50 91.04 2638 68.35%
Kas-EBAR W-Ev kNN 82.37 81.17 2638 68.35%
Kas-EBAR W-Ev SVM 92.94 91.72 2638 68.35%
Patterson DBN 78.90 86.57 16280 27.16%
Pat-EBAR DBN 93.67 96.92 5408 100%
Pat-EBAR PART 97.71 95.57 5408 100%
Pat-EBAR J48 98.37 94.83 5408 100%
Pat-EBAR HNB 99.22 97.74 5408 100%
Pat-EBAR NB 92.43 94.11 5408 100%
Pat-EBAR LB 97.56 98.42 5408 100%
Pat-EBAR DT 99.34 94.66 5408 100%
Pat-EBAR RF 96.05 97.3 5408 100%
Pat-EBAR kNN 99.30 98.15 5408 100%
Pat-EBAR SVM 97.01 97.4 5408 100%
Pat-EBAR W-Ev DBN 93.67 96.92 5408 100%
Pat-EBAR W-Ev PART 97.69 95.32 5408 100%
Pat-EBAR W-Ev J48 94.81 94.50 5408 100%
Pat-EBAR W-Ev HNB 97.97 96.51 5408 100%
Pat-EBAR W-Ev NB 93.80 92.42 5408 100%
Pat-EBAR W-Ev LB 97.54 98.42 5408 100%
Pat-EBAR W-Ev DT 99.34 94.66 5408 100%
Pat-EBAR W-Ev RF 96.05 97.3 5408 100%
Pat-EBAR W-Ev kNN 97.96 97.42 5408 100%
Pat-EBAR W-Ev SVM 96.51 97.40 5408 100%

is better. The results obtained in recall are very similar. So, our models obtain better
precision and recall in average, because they recognize better activities that create fewer



68 CHAPTER 7. EBAR: EVENT BASED ACTIVITY RECOGNITION

instances and they recognize just slightly worse the activities that generate a huge amount
of instances using the sliding-windows method.

Table 7.7: Model, precision/number of generated instances, and real number of instances
per class for the first dataset.

Model Idle Leaving Toileting Showering  Sleeping  Breakfast  Dinner Drink
Kasteren DBN ~ 92.5/4868 99.8/22582 58.9/218  89.2/223  99.8/11662  74.7/77  96.2/343  33.3/30
Kas-EBAR DT 86.4/540 97.7/353  86.5/610  100/131 96.7/377  97.9/243  98/264 93.5/119

Real N. Instances 86 33 80 23 23 20 10 19

Table 7.8 shows the precision of each class obtained by the best algorithm of the second
dataset and the instances created for each class. This table shows that Patterson DBN
creates more instances for all the activities than the other setup. However, the precision
of Pat-EBAR is better in many classes. As in the first dataset, the activities with fewer
instances created are better classified by our model and vice versa.

Table 7.8: Model, precision/number of generated instances, and real number of instances
per class for the second dataset.

Model Clear Table Eat Breakfast Front Door Make Vanilla Make Juice Make Oatmeal
Patterson DBN 87.2/504 96.2/2731 43.8/296 95.5/4517 84.2/847 95.6/2626
Pat EBAR DT 100/367 98.9/666 100/42 96.3/1282 100/316 99.3/1064

Real N. Instances 10 17 10 51 11 22

Model Make Eggs Make Tea Set Table  Use Bathroom Use Phone
Patterson DBN 83.7/1472 80.2/1532 87.9/715 36.1/422 77.5/618
Pat EBAR DT 99.0/496 99.2/649 100/331 100/161 100/34

Real N. Instances 32 32 11 10 10

Also, EBAR reduces the features used in both datasets to just four: the last two sensors
that generated the last two significant events, the previous activity and the event classifica-
tion attribute. So, the models created by EBAR are quite simple, and the experiments show
that they obtained better results.

7.4.4 Analysis of the Number of Created Windows

In this section, we briefly review how the results obtained with the first two datasets are
affected by the number of generated windows. Hence, some configurations were tested
generating models using the static sliding-window method for segmentation. In those con-
figurations the parameters [ and r, the length and the shift of the sliding-window, were
changed in order to generate more instances. We are going to change one of the parameters
in each dataset in order to show how the results change. In the next section, we are going
to show how the results are affected changing [, the length of the window (Tables 7.11 and
7.12) using continuous data. In Table 7.9 the results obtained using the Kasteren dataset
with [ being 60, 30 and 15 seconds and [ = r are shown. The original configuration is
marked in bold.

Table 7.10 shows the results obtained with the Patterson dataset using as values for r:
2, 1 and 0.5 seconds; and | = 74 seconds, the same ones used by Patterson. The original
configuration is marked in bold.

Both tables show that as we decrease r, more instances are generated and better results
are obtained. The number of generated instances also increases. The time intervals at
which the activities are difficult to classify due to the sensor readings are always the same,
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Table 7.9: Model and size of the window in seconds, precision, recall, number of instances
generated, number of misclassified instances and percentage of significant events correctly
classified using the Kasteren dataset.

Model Precision Recall N. Instances Misclassified I. S.Events
DBN-60 80.55 80.08 40003 599 11.73%
DBN-30 89.71 89.97 80005 647 2.5%
DBN-15 94.32 94.73 160009 609 0.2%

Table 7.10: Model and shift of the window in seconds, precision, recall, number of instances
generated, number of misclassified instances and percentage of significant events correctly
classified using the Patterson dataset.

Model Precision Recall N. Instances Misclassified I. S.Events

DBN-2 76.33 82.43 8140 1389 18.98%
DBN-1 78.9 86.57 16280 2390 13.42%
DBN-0.5 80.91 89.26 32560 4493 10.18%

mostly at the beginning of the activities or when sensors fail. However, the number of
instances generated increases. So, most of the new instances generated decreasing [ and
r belong to periods of time at which nothing happens and are mostly correctly classified.
The instances affected by those moments that are difficult to classify do not increase in
the same proportion as the number of generated instances. So, for instance, in Table 7.9
the misclassified instances increase as we increase the number of generated instances, but
not in the same proportion. Thus, the results improve. However, in the Kasteren dataset
the number of misclassified instances does not change in the same way as in the Patterson
dataset. The time instants at which the activities are difficult to classify affect to almost
the same number of instances in the three configurations. This is due to the value of [ which
is much bigger than in the second dataset. So, the instances affected by the beginning of
the activities are similar in all configurations. Hence, [ = 15 generates a model, DBN-15,
that is slightly better than the others, since it misclassifies less instances. As it generates
many more instances, it also obtains better results in the metrics. Although increasing the
number of instances improves the results, the classification of the significant events decrease
as the number of instances augment. Table 7.11 shows the results obtained with the Huynh
dataset using different windows lengths.

7.4.5 Classification Results Using Continuous Data

This section presents the results obtained using the third dataset. The results have been
separated into two sections because the experiments use different types of data. In addition,
in this set of experiments an analysis about how the number of created instances affects
the results has been performed. For the experimental evaluation, the models described in
Section 7.3.3 were generated. Precision and recall were used to evaluate the models using
10-fold cross-validation for estimating the error. Table 7.11 shows the size of the temporal
window in seconds, the precision and recall and the instances created using the fixed-length
sliding-window approach. The sizes of the windows are the sizes used by the authors of the
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dataset.

Table 7.11: Size of the windows, precision, recall and number of instances.

Size of W. Precision Recall N. Instances

0.4 73.03 94.32 773817
0.8 69.71 92.54 386907
1.6 67.27 90.95 193453
2.4 65.92 89.17 128967
3.2 65.24 88.04 96725

4 65.68 88.46 77378

In the second experiment performed, the same ML algorithms described in 7.3.1 were
used. Table 7.12 shows the best results using the algorithm DT that obtained the best
result. Table 7.12 reports the threshold used to detect significant events, the precision
and recall of the setups of the third dataset and the instances created using EBAR and
the segmentation based on significant events. The thresholds that generate a number of
instances similar to the ones on Table 7.11 are shown.

Table 7.12: Threshold, precision, recall and number of instances generated using EBAR for
the Huynh dataset.

Threshold Precision Recall N. Instances

<1 99.39 99.57 773817
1.0 98.83 98.54 203595
1.5 98.91 97.48 138444
2.0 98.54 96.49 121425
3.0 98.36 94.65 100748
5.0 97.63 95.34 76919

Both segmentation algorithms generate the same number of instances when the threshold
and windows’ size used are the lowest ones. In such cases, both segmentation methods are
equivalent. However, the results obtained by EBAR are better. It can be seen that there is a
correlation between the number of instances created and the results obtained in all but the
last row of the two tables. So, generating more instances can be a good way to improve the
results. Nevertheless, to increase around 2% of precision and 4% of recall, the number of
instances has to be augmented more than 10 times. The best results are achieved also using
DT. In this dataset, the classification of the significant events does not affect the result
since, as it has been shown in Section 7.4.2, the classification of the significant events is not
good.

7.4.6 Adapting EBAR to Improve the Results

The results offered in Section 7.4.4 could imply that the fixed-length sliding-window could
behave better by modifying its parameters and improve its results by generating more
instances. EBAR also permits to improve the results generating more instances. To do that,
more significant events have to be used in the segmentation phase. One experiment was
performed to show this behavior with the Patterson and the Huynh datasets. Table 7.12 in
Section 7.4.5 shows that by lowering the value of the threshold, more instances are generated
and the results are improved.
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In order to test this behavior with the Patterson dataset, models were generated with
EBAR using as significant events all the readings of the RFID. Table 7.13 shows the results
obtained with the second dataset. The results obtained by the best and the worst algorithms
are shown.

Table 7.13: Precision, recall, number of generated instances and percentage of significant
events correctly classified using the Patterson dataset and all events.

Model Precision Recall N. Instances Significant events
Pat-EBAR kNN 99.80 99.45 23138 87.96%
Pat-EBAR NB 97.80 99.21 23138 34.72%

Section 7.4.5 shows that by increasing the number of generated instances, the results
improve. On the other hand, comparing the results of Table 7.13 and Table 7.6 it can
be seen that both algorithms improve their performance. Also, Table 7.13 shows that the
classification rate of the significant events slightly varies, obtaining better results in the
worst algorithm and worsening the best results less than 2%. So, the experiment shows
that augmenting the number of generated instances improves the overall results. But, the
classification rate of significant events does not vary significantly or even worsens.

The segmentation used to generate the results of Table 7.13 is the same as was used
in [Modayil et al., 2008]. In order to show the performance with respect to this work the
simple HMM has been replicated, through an equivalent DBN, used by Modayil et al. and
a precision of 74.96 and a recall of 85.54 were obtained, which are quite similar to the
results obtained by the Patterson DBN in Table 7.6 but far from the results presented in
Table 7.13.

7.5 Discussion

This chapter presented a new algorithm for human activity recognition from sensor data. It
uses the events produced by sensors to create the instances for classification, instead of using
fixed-length sliding-windows. From those events a new feature is generated performing a
previous classification to determine if the detected events enclose an activity. This permits
EBAR to improve the performance over other approaches.

It has been shown in Section 2.1.2 that other approaches also use events for segmentation
and, in some cases, the segmentation can be equivalent depending on the significant events
used by our models. Although others have used events before, the main difference with
our approach lies on how those events are selected. Although any event could be used,
we try to find the boundaries of the activities to detect when the user switches from an
activity to another in order to detect how the activities change the environment. Hence,
the AR system can be used to automatically generate a model of the activities that the
user performs. This model could be used to replicate the behavior of the user in order to
provide assistance or even predict the next action through the generation of sequences of
activities to reach a goal. Such a system will be presented in the next chapter.

While other approaches select the events only to obtain better recognition rates, our
method tries to obtain better recognition rates but, at the same time, EBAR detects the
boundaries of the activities to correctly generate action models able to replicate the user
activities. In Section 7.4.1, it is shown that the correct selection of significant events obtains



72 CHAPTER 7. EBAR: EVENT BASED ACTIVITY RECOGNITION

better results recognizing the instances where the boundaries of the activities are. This is
the key aspect of EBAR, since bad recognition rates of these instances do not permit to
correctly learn how each activity modifies the environment. It would cause part of the
changes in the environment produced by one activity to be assigned to another activity.

Good performance in public datasets used in the past by other researchers has been
shown. EBAR obtains better precision and recall than other approaches in average. Although
other approaches may obtain better results in some activities, the main advantage of our
algorithm is that it can provide reasonably accurate models for all the activities and obtain
better recognition rates in the boundaries of the activities.

It has been seen that augmenting the number of instances may improve the results.
However, the recognition rates of the instances in the boundaries of the activities may
decrease using the fixed-length sliding-window or does not vary significantly employing
EBAR. In any case, this may not be feasible for some applications because it also augments
the computational cost. For instance, in [Amft et al., 2007; Hoey et al., 2011] their authors
present distributed systems in sensor networks where each node contributes to the activity
recognition by processing its data and recognizing some activities. So, in applications where
the data is processed with low computational power, generating too many instances may
prevent the system from working. In addition, generating fewer instances may help to save
battery consumption.

In addition, our approach is independent of the time granularity since it uses events to
build temporal windows in contrast to the sliding-window approach where the user usually
has to modify the windows length according to the activities temporal duration.



Chapter 8

Generating Planning Action
Models

Automated planning has been successfully used in many domains like robotics or trans-
portation logistics. However, building an action model is a difficult and time-consuming
task even for domain experts. This chapter presents a system, ASRA-AMLA, for automati-
cally generating planning action models from sensor readings. Activity recognition is used
to extract the actions that a user performs and the states produced by those actions. Then,
the sequences of actions and states are used to infer a planning action model. In this chap-
ter, we build on the previous work presented in Chapter 7 where the EBAR system for AR
was presented. With this approach, the system can automatically build an action model re-
lated to human-centered activities. It allows us to automatically build an assistance system
for guiding humans to complete a task using Automated Planning. To test our approach,
a new dataset from a kitchen domain has been generated. The tests performed show that
our system is capable of correctly extracting actions and states from sensor time series and
creating a planning domain used to guide a human to successfully complete a task.

8.1 Introduction

Activity recognition (AR) systems have been widely used in the past to detect activi-
ties of daily living (ADL) [Lawton and Brody, 1969], but most of the literature describes
approaches that detect the whole activity like in [Patterson et al., 2005; Logan et al., 2007;
Kasteren et al., 2008; Kasteren et al., 2011; Dernbach et al., 2012]. In order to provide
assistance for the user to complete an activity or task, it would be desirable to detect the
subtasks or actions (e.g., opening/closing cabinets) that compose an activity (e.g., preparing
an omelette) and the effects that these actions have (omelette cooked). So, recognizing such
actions and their effects while a user tries to accomplish a task could be used to check if
the user is completing the task correctly. This way, a correct sequence of actions can be
generated for a user to accomplish the task successfully. With the purpose of generating
the sequence of actions, Automated Planning (AP) tools could be used, but they require
having an action model. Such model could be generated by experts manually, but usually
this is a time-consuming and error-prone process.

Hence, the goal of the work presented in this chapter is to build a system capable of
guiding users while they are completing an activity. The system will be able to recognize,
from sensor time series, the actions performed by a user, and the states of the system
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produced by those actions. Using that information, the proposed system generates a user
action model represented as a STRIPS (Stanford Research Institute Problem Solver) [Fikes
and Nilsson, 1971] planning domain in the standard language PDDL (Planning Domain
Definition Language) [Mcdermott, 2000]. Then, the generated planning domain will be
used by an automated planner to generate plans (sequences of actions) to accomplish a
task. These plans can be used to provide assistance to people in daily activities.

This chapter describes a system, called ASRA-AMLA(Action and States Recognition Al-
gorithm - Action Model Learning Algorithm), that automatically learns a user action model
to assist users while they cook a recipe. Also, this action model could be used for plan recog-
nition, as it is shown in [Ramirez and Geffner, 2009]. The proposed system goes beyond
other works presented in the literature like [Yang et al., 2005; Mourao et al., 2009] on the
automatic generation of planning domains since it is capable of learning the AP domain
using traces of information from sensors instead of traces provided by humans.

In order to automatically generate the planning action model, the preconditions and
effects of each action have to be learned from sensor readings. For that reason, the seg-
mentation of the time series is a key issue since the typical method used, the temporal
sliding-windows, may overlap several actions. Instead, this chapter describes work that em-
ploys the method based on events described in Chapter 6. The events produced by changes
in the environment, like the actions do, are used to split the sensor time series. A segmen-
tation method based on events may produce better results for generating planning action
models than a method based on fixed-length sliding-windows as it was shown in Chapter 6.
Once the sensors time series are segmented, two different models to recognize actions are
compared employing different features in order to obtain the best classifier. We used ten
different machine learning algorithms in the experiments. The best model is then used to
generate the sequences of actions employed to build the action model in PDDL.

8.2 ASRA-AMLA System Description

ASRA-AMLA is composed of two modules. The first one, ASRA (Action and States Recogni-
tion Algorithm), extracts actions and states from the sensor readings, creating a sequence of
interleaved actions and states. The second one, AMLA (Action Model Learning Algorithm),
builds an AP domain from the sequences generated by ASRA.

The system has three modes of operation. Using the first mode, called Phase 1, ASRA
learns the classifier that will be used to classify new sensor data. Figure 8.1 shows how the
system works in this mode.
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Figure 8.1: Phase 1 working mode of ASRA-AMLA.

Once the action classifier has been build, ASRA-AMLA is used to build planning domains.
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This is the second working mode of the system and is called Phase 2. Figure 8.2 shows a
schema of ASRA-AMLA working in this mode.
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Figure 8.2: Phase 2 working mode of ASRA-AMLA.

The third working mode is the Run-time mode. After learning an AP domain, AMLA
creates AP problems using the states provided by ASRA and, using the AP problems and
the AP domain, executes a planner to generate plans. Figure 8.3 shows how ASRA-AMLA
generates plans to guide the users through the actions that compose the task. Both modules
are described in the next sections.
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Figure 8.3: Run-time mode of ASRA-AMLA.

8.2.1 AsrRA: Action and States Recognition Algorithm

The objective of ASRA-AMLA is to learn a planning action model, an AP domain in PDDL.
So, in order to accomplish such a task, the ASRA module recognizes the actions the user
performs and also provides enough information to learn the preconditions and effects of
each action recognized by the system. It recognizes the state of the environment before and
after every action. In order to recognize states, the sensors should detect the changes that
the actions produce. For instance, an accelerometer in an arm can provide information to
recognize certain activities [Pham and Olivier, 2009] (e.g., peeling), but it does not provide
information about the effects of those activities (e.g., potatol is peeled). In our setup three
types of sensors are used: magnetic sensors, RFID’s and cameras. Those sensors are going
to gather information while the user cooks a recipe in a kitchen where the sensors have
been installed. The magnetic sensors provide information about the state of the furniture
of the kitchen; this way, they capture the effects that the actions of the user have on the
furniture. The RFID’s are used to detect the objects that the user is using. The cameras
are used to detect the location and state of the objects and appliances. Thus, the cameras
detect the effects that the actions of the user cause on the objects. For instance, when the
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user opens a drawer to pick up a fork and leaves it on the kitchen top, the magnetic sensors
detect that the drawer has been opened and closed, RFIDs detect that the fork has been
picked up and put down, and the cameras detect that the fork has been left on the kitchen
top.

Once the sensors are able to detect the effects of the actions through the states, the ASRA
module defines what an event is to be used for segmentation. The segmentation method
based on events presented in Chapter 6 is used.

When the user performs an action, it produces some changes in the environment and
those changes may generate none or several changes in the sensor readings. For example,
when a user picks up an object, the object changes its location. Thus, an RFID sensor
placed near the hand of the user may change its reading from not detecting anything to
detecting the object. We are interested on detecting those kinds of changes in the sensor
readings since they are connected with the effects of the action pick-up. An event is defined
as any change in the readings of any sensor. For example, when the user opens a cabinet,
an RFID detects the cabinet and generates an event. Also, the magnetic sensor changes its
value from closed to open.

The events are used for the segmentation of the sensor time series to extract the actions
and states. When an event is detected, the system recognizes the action to which it belongs
and its effects. If the action generates more than one effect, it may also generate more than
one event. Also, one event may be generated by more than one action, even for actions we
are not interested in.

For magnetic sensors or RFID’s, the events are easy to define since they provide discrete
values. For both sensors, all the changes in the values of the readings they report will be
considered as an event. For cameras, the detection of the events is not so direct since they
provide richer information, and such information may not be discrete. They are used to
detect the state of some appliances (on and off) and objects (e.g., cracked for an egg) and
the location of some objects (e.g., fry-pan on the burner). So, cameras will report in every
frame the state of the appliances that they are monitoring, the objects that they can detect,
and the state of those objects. Hence, the changes in the location or state of any object
detected by the cameras are considered as events.

Once the events have been defined, the next step is to build a classifier that recognizes
the action the user has performed. The action recognition task is formally defined in
Section 6.2.

After learning the action classifier in Phase 1, the Phase 2 is used to learn planning
domains. In Phase 2 the classifier is used to classify the instances. Then the states recogni-
tion is performed. When activities are recognized, sensors readings are segmented in pieces
of data called temporal windows. These temporal windows do not usually match a com-
plete activity from the beginning to the end of the activity. Instead, they normally split an
activity into pieces that contain data that belongs to some parts of the activity. Actions
have the same problem. Thus, in order to recognize complete actions, we assign to each
temporal window an action. Next, we group consecutive temporal windows classified with
the same action. Then, ASRA extracts the states between two different actions.

Algorithm 3 shows how ASRA works in Phase 2 mode. S contains the states and A
the actions that the module extracts. CurrentState(cont) obtains the state given by the
parameter cont. It returns the state of the system given by the sensor readings after
cont events. Notice that the system is working obtaining the sensor readings from a log
file. EventDetector() is a function that returns the next event of the sensors time series,
FeaturesExtraction(e, s, S) extracts the features from the sensor readings after the event
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Algorithm 3 Action and States Recognition Algorithm (ASRA).
Input: logF'ile
Output: StatesandActionssequence

A+ null
a’ + null
cont < 0
S < CurrentState(cont)
s + null
e < FEventDetector()
while e # null do
s <= CurrentState(cont)
i < FeaturesExtraction(e, s, S)
a « ActionClassifier(i)
if (a # d’) and (@’ # null) then
S+ S+s
A+ A+d
end if
cont < cont + 1
a+—a
e < EventDetector()
end while
S+ S+s
A+ A+d
sequence < Merge(A,S)
return sequence

e contained in s and the sensor readings before e contained in S and creates an instance
that is classified by ActionClassifier(). ActionClassifier() is the function built by f;
in Phase 1 mode. It uses the algorithm EBAR presented in Chapter 7. For each event,
ActionClassifier returns a class (action). If the class is different than the previous one,
the past action and state are saved in A and S. Finally, A and S are merged to generate a
sequence of interleaved states and actions: (state — action)* — state.

As an example, suppose the user performs three consecutive actions, a,b and ¢, that
generate the following sequence of events detected by the system e; —es —e3 —eq — e5 — €5
where a generates the events e; and ez, b generates e3, eq, and e; and c generates eg.
If the initial state is sy, the sequence of actions and states input to the action classifier is
Sy—e]—81—eg— 89 —e3—S3—ey4—S4—e5— S5 —eg— Sp and the events could be classified as
S;—a1—81—ag—Sg—bg—83—by—S4—bs—s5—cg—sp. Then, consecutive events classified as
belonging to the same action are grouped, generating the sequence s;—a—so—b—s5—c—sp.
This sequence is the input for the AMLA module.

Next, we are going to show an example about how the system works using real data.
First, the sensor data is segmented using events. Table 8.1 shows an example with two
events and the states that they produce. The first event is produced when the user opens
drawerl. The second event is produced when the user picks up forkl.

Then, a change of representation is performed. AP domains generally use predicate
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Table 8.1: Sensor data segmentation.

rfid rfidl null

rfid rfid2 null

reed drawerl closed
reed fridge closed
reed dcupl closed event 1
reed dcup?2 closed
reed ucupl closed
reed ucup?2 closed

cameraState cooktop off

rfid rfidl null

rfid rfid2 null

reed drawerl opened
reed fridge closed
reed dcupl closed event 2
reed dcup?2 closed
reed ucupl closed
reed ucup?2 closed

cameraState cooktop off

rfid rfidl null

rfid rfid2 forkl

reed drawerl opened
reed fridge closed
reed dcupl closed
reed dcup?2 closed
reed ucupl closed
reed ucup?2 closed

cameraState cooktop off

logic as representation paradigm, so the states obtained from sensor readings have to be
translated into predicates. We have created a mapping from low-level features (sensor
readings) to predicates. This mapping is applied to sensor readings to automatically obtain
corresponding predicate formulae. The information that sensors provide is related to the
location and the state of the objects (e.g., opened cupboardl, fry-pan on the burner). The
state of the objects is represented with a predicate with the same name as the fact in the
state and one parameter, the object. For example: (opened cupboardl), (beaten eggl). For
the location of objects we use the predicate (in paraml param?2) where paraml is the place
where the object param2 is. RFIDs are used to detect the objects that the user is holding,
so they generate the predicate (holding obj, ) when an RFID detects the object obj,,.

Table 8.2: Mapping from sensor readings into predicates.

rfid rfidld object holding object)

. opened container)
reed furniture opened

closed container)

(

(

(

(on object)

(off object)
cameraState object state (raw object)
(cracked object)
(beaten object)
(
(
(

omelette object)

) ) in location object)
cameraPlace object location

inside recipient ingredient)

Table 8.2 shows how the system translates sensor readings into predicates. RFID sensors
generate the reading rfid rfidld object where rfidld is the identifier of the RFID and object
is the object detected. These sensors produce the predicate (holding object) where object
is the object that the user is holding. In states in which no objects are detected by the
RFIDs, no (holding object) predicates are included. reed furniture state shows the state of
the cupboards, drawer and fridge indicated by the magnetic sensor in each piece of furniture.
The states can be opened or closed. Cameras generate two types of readings: cameraState
object state and cameraPlace object location. cameraState object state indicates the state
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Table 8.3: Example of translation from sensor readings into predicates.

rfid rfidl null

rfid rfid2 forkl (holding fork1)
reed drawerl opened (opened drawerl)
reed fridge closed (closed fridge)
reed dcupl closed (closed dcupl)
reed dcup2 closed (closed dcup2)
reed ucupl closed (closed ucupl)
reed ucup? closed (closed ucup2)
cameraState cooktop off | (off burner)

of the objects detected by the cameras. The appliances can be in the states on or off and
the eggs can be in the states raw, cracked, beaten or omelette when they are fried. There is
no other object that changes its state in our experiments. cameraPlace object location can
generate two predicates. Both predicates indicate the location of the object. The difference
between both predicates is that the predicate in is used to indicate a location of the kitchen
and the predicate inside is used to indicate the location of an object inside another object.

Table 8.3 shows an example of how the system translates the sensor readings of a state
into predicates. In the example, the user is holding the fork! and the drawerl is opened.
The rest of the state is extracted from the initial state. In the beginning, the objects are
located inside the cupboards, drawer or fridge and the sensors are not capable of detecting
them. For that reason, an initial state is used to specify the location of the objects and it
is used to complete the current state. In the example, rfid2 is detecting fork! and rfid1 is
not detecting anything. drawerl! is opened and the rest of furniture is closed. The cameras
detect that the cooktop is off.

Table 8.4: Example of sequence with three states and two events produced by one action.

(holding fork1) (in kitchentop forkl)
(opened drawerl) (opened drawerl) (opened drawerl)
(closed fridge) (closed fridge) (closed fridge)
(closed dcupl) (closed dcupl) (closed dcupl)
(closed dcup2) (closed dcup2) (closed dcup2)
(closed ucupl) (closed ucupl) (closed ucupl)
(closed ucup2) (closed ucup2) (closed ucup2)

(off burner) (put—dovg;i(nglvlzirftchentOp) (off burner) (put—dog;llrlfs;:1El‘<riotilent0p) (off burner)

(in frypan dcupl) (in frypan dcupl) (in frypan dcupl)
(in platel ucup2) (in platel ucup2) (in platel ucup2)
(in bigbowl ucupl) (in bigbowl ucupl) (in bigbowl ucupl)
(in oilbottle dcup2) (in oilbottle dcup2) (in oilbottle dcup2)
(in eggl fridge) (in eggl fridge) (in eggl fridge)
(inside oil oilbottle) (inside oil oilbottle) (inside oil oilbottle)
(raw eggl) (raw eggl) (raw eggl)

After performing the mapping, the segmented sensor data is composed of sequences of
events and states described using predicates. Table 8.4 shows an example of a sequence
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composed of three states and two events produced by one action. The example shows a
user holding a fork in the first state. Then, the user puts the fork down and it is detected
on the kitchen top. The first event is produced when the RFID stops detecting the fork.
The second event is produced when the cameras detect the object on the kitchen top.

Table 8.5: Pre-operator structures.

put-down put-down

ADDS: ADDS:

DELS: (in kitchentop forkl)
(holding fork1) DELS:

PRECONDITIONS: | PRECONDITIONS:

holding fork1) opened drawerl)

opened drawerl) closed fridge)

closed fridge) closed dcupl

closed dcupl

closed ucupl

)

closed dcup?2)

closed dcup2 )
)

closed ucupl closed ucup2

)
)
)
closed ucup?2) off burner)
in frypan dcupl) in platel ucup2)
in platel ucup2) in bigbowl ucupl)
in bigbowl ucupl) in oilbottle dcup2)
in oilbottle dcup2) in eggl fridge)
in eggl fridge) inside oil oilbottle)

inside oil oilbottle) | (raw eggl)

( (
( (
( (
( (
( (
( (
( (
(off burner) (in frypan dcupl)
( (
( (
( (
( (
( (
( (
(

raw eggl)

When the first event occurs, the predicate (holding fork1) disappears. After the second
event, the predicate (in kitchentop fork1) appears. So, when one event occurs, we know the
predicates whose value remains equal (true or false), the predicates that appear (their values
were false and they are true) and the predicates that disappear (their values were true and
they are false). Actions effects are learned using the difference between the state before the
action s, and the state after it s,. Thus, the adds list of the operator a is: add(a) = sq4 \ sp
(set difference of state after a and state before a) and the deletes list is: del(a) = sp \ Sq-
Before learning the final operators we used what we called pre-operator which contains the
adds, deletes and preconditions that will be used to build the final operators. Table 8.5
shows an example of two pre-operators used to save two events produced by the action put-
down. They are also used to build the learning instances to classify the actions that the user
performs. Each structure is composed of three parts. The first one, ADDS, contains the adds
list. The second one, DELS, contains the deletes list. The third part, PRECONDITIONS,
contains the predicates that compose sp.
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Table 8.6: Pre-operator structure after merging actions.

put-down

ADDS:

(in kitchentop forkl)
DELS:

(holding fork1)
PRECONDITIONS:
(holding fork1)
(opened drawerl)
(closed fridge)
(closed dcupl)
(closed dcup?2)
(closed ucupl)
(closed ucup?2)
(off burner)
(in frypan dcupl)
(in platel ucup?2)
(in bighbowl ucupl)
(in oilbottle dcup?2)
(in eggl fridge)
(inside oil oilbottle)
(

When the actions classifier has to be built, in Phase 1, the action that generates these
structures is also included. In the example, action would be put-down in both events. In
Phase 2 or in Run-time, when the classifier is already available and the actions have to be
classified, action is substituted by the action provided by the classifier.

After the classification, consecutive events classified as belonging to the same action
are grouped. Then, when two or more events have been classified as the same action,
in this case put-down, the two pre-operators are merged in just one as Figure 8.6 shows.
The way the pre-operators are merged is joining the ADDS and DELS and taking the
PRECONDITIONS of the first pre-operator. Thus, given two consecutive pre-operators p,
and pn+1 generated by the events n and n+1 and classified as the same action a, then a new
pre-operator p’ is generated merging p, and p,4+1 where ADDS,y = ADDS,,, UADDS,, ..,
DELS,y = DELS,, UDELS,, ,, and PRECON,; = PRECON,,. Then, p, and p, 1 are
substituted by p’. After this step, the sequences are ready to be used by the AMLA module.

8.2.2 AMLA: Action Model Learning Algorithm

This module builds an AP domain from the sequences generated by the ASRA module.
These sequences are traces of a user performing an activity in the form of pre-operators.
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Table 8.7: Types, predicates and actions used.

staticobject moveable - object
surface furniture - staticobject
appliance worktop - surface
ingredient utensil - moveable
types
container normalutensil - utensil
cookingcontainer normalcontainer - container

specialcontainer - normalcontainer

liquidcontainer - normalcontainer

raw 7x - ingredient)

in 7x - moveable 7y - staticobject)

closed 7x - staticobject)

opened 7x - staticobject)

holding ?x - object)

predicates inside 7x - ingredient 7y - container)

on ?x - appliance)
ff 7x - appliance)

raw 7x - ingredient)

cracked 7x - ingredient)

beaten 7x - ingredient)

pick-up 7x - moveable 7y - surface)
put-down ?x - moveable 7y - surface)
get-out 7x - moveable ?y - furniture)
put-away 7x - moveable 7y - furniture)
open 7x - furniture)

actions close 7x - furniture)

switch-on 7x - appliance)

switch-off ?x - appliance)

transfer 7x - ingredient ?y - container 7z - container)

fry 7x - ingredient 7y - cookingcontainer 7z - appliance)
beat 7x - ingredient 7y - normalutensil 7z - container)

(
(i
(
(
(
(
(
(o
(ra
(
(
(omelette 7x - ingredient)
(
(
(
(
(
(
(
(
(
(fry
(
(

crack-egg 7x - egg 7y - specialcontainer)

AMLA is given the following inputs for learning: (1) object types and generic predicates
defined manually, as in Table 8.7; (2) state-action sequences automatically generated by
ASRA and (3) the type of the objects involved in each action (parameters of the actions)



8.2. ASRA-AMLA SYSTEM DESCRIPTION 83

defined manually. Table 8.7 shows the object types, generic predicates, and actions defined.

Also, some standard assumptions are made. First, it is assumed that actions are de-
terministic. Thus, actions are going to have always the same effects. When the user
performs an action, the sensors’ noise or unexpected effects affect the system mainly when
the AP domain is learned. Once a domain has been learned, in Run-time, the sensors’ noise
affects the system only when it is going to generate the initial state of the AP problem. A
non-deterministic domain could be used to incorporate into the model the unexpected effects
of some of the actions or the noise of the sensors but these domains are more complex. Ins-
tead, we have used a deterministic domain because it is capable of providing guidance for
the user to reach his/her goal, which is one of the goals of this thesis, even when they do
not model the noise of the system.

Second, it is assumed that the preconditions are conjunctive; all the preconditions have
to be true for the action to be executed. Also, a threshold (error rate) is used to eliminate
the sensors’ noise. This threshold indicates a minimum percentage of times that a predicate
has to appear before/after an action to be used for building the corresponding planning
operator. The goal is to learn the preconditions and effects (adds and deletes) of the actions.
This threshold allows us to deal with situations in which the action fails (i.e., the effects
are not correct); or the sensors fail (i.e., the preconditions or effects are not correct). In the
experiments, we have varied the values of the threshold in order to evaluate its impact.

Algorithm 4 Algorithm for parameters assignment.

Input: operatorParametersTypes , pre — operator, ontology
Output: parameters

parameters < ()
adds < ExtractParameters(pre — operator.adds)
dels < ExtractParameters(pre — operator.dels)
possible Parameters < adds U dels
for each parameter in operator ParametersTypes do
index < 0
object + ElementAt(possible Parameters,inder)
type < TypeO f(object, ontology)
while (parameter # type) and (index < (size(possibleParameters) — 1))
do
index < index + 1
object < Element At(possible Parameters, index)
type < TypeO f(object, ontology)
end while
if (parameter = type) then
parameters <— parameters + object
else
parameters < parameters + ”unknown”
end if
end for
return parameters

Before learning the operators, the parameters have to be provided for each action. These
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parameters are the arguments given to each planning operator. In this case, they are the
objects involved in each action performed by the user. In the last step of ASRA, the actions
are merged and the effects are joined. In order to provide the parameters, the ADDS and
DFELS of the pre-operators are used. Then, among the parameters of the predicates that
are contained in the ADDS and DELS of each pre-operator, those that are of the same type
that the parameters of the action that was assigned to the pre-operator are used. If none
of the parameters of the predicates that are contained in the ADDS and DELS belong to
the type of a parameter of the action, then the parameter is assigned as unknown.

Algorithm 4 shows how the parameters are assigned to a pre-operator. First, all objects
are extracted from the ADDS and DFELS using the function EztractParameters. Next,
the algorithm goes over each of the parameters of the operator to which the pre-operator
belongs. The parameters of each operator are defined by the user and are provided to
the algorithm. Then, the algorithm searches an object in possible Parameters with the
same type as the parameter of the operator. ElementAt returns the object in the position
given by index and TypeO f returns the type of object indicated in ontology. ontology is
the definition of the object types hierarchy. Then, type is compared with the type of the
parameter of the planning operator.

Table 8.8: Pre-operator structure with parameters.

put-down fork1 kitchentop
ADDS:

(in kitchentop forkl)
DELS:

(holding fork1)
PRECONDITIONS:
holding fork1)

opened drawerl)

(
(
(closed fridge)
(closed dcupl
(
(

)
closed dcup?2)
closed ucupl)
(closed ucup?2)
(off burner)

(in frypan dcupl)
(in platel ucup?2)
(in bighowl ucupl)
(in oilbottle dcup?2)
(in eggl fridge)
(inside oil oilbottle)

(raw eggl)
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Keeping on with the previous example shown in Table 8.6, Table 8.8 shows a
pre-operator with its parameters. The ADDS contain the predicate (in kitchentop forkl)
and the DELS contain the predicate (holding fork1). Then, the possible parameters would
be kitchentop and forkl. In Table 8.7, we can see that the action put-down has as parame-
ters 7 moveable ?y - surface. kitchentop is a surface and forkl is a moveable. Then, the
final name of the action would be put-down forkl kitchentop. If the fork would have not
been detected on the kitchen top, the predicate (in kitchentop fork1) would not be in the
pre-operator. In such case, the action and parameters would be put-down forkl unknown.

Algorithm 5 Algorithm for learning preconditions.

Input: pre — operators , threshold
Output: preconditions

predicates < ()
preconditions < ()
for each pre — operator in pre — operators do
for each predicate in pre — operator.preconditions do
counter < 0
parameters < ExtractParams(predicate)
for each parameter in parameters do
if parameter € pre — operator.params then
counter < counter + 1
end if
end for
if counter > 0 then
predicate’ < ChangeParameter(predicate, pre — operator)
predicates < predicates + predicate’
end if
end for
end for
for each predicate in predicates do
counter < Count(predicate, predicates)
counterTotal < Size(pre — operators)
limit < Percentage(counterTotal, threshold)
if counter > limit then
preconditions < preconditions + predicate
end if
end for
return preconditions

After assigning the parameters to each pre-operator, the domain is learned. All the
pre-operators that have been classified as the same operator are put together. Then, for
each of these pre-operators Algorithm 5 is executed to learn the preconditions. For each
pre-operator, the predicates where the parameters of the pre-operator are not present are
removed. So, pre — operator.preconditions are the predicates that compose the precon-
ditions of a given pre-operator. FExtractParams(predicate) returns the objects that are
in the parameters of predicate. The algorithm verifies if each parameter of the predicate
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is in the parameters of the pre-operator pre — operator.params. If at least one of the
parameters of the predicate is part of the parameters of the pre-operator, the predicate is
saved. Before being saved, the predicate is modified by Change Parameter(predicate, pre —
operator) as follows: given the pre-operator preo(objectA, objectB, objectC) and the pre-
dicate pred(object B, objectD), the predicate is modified into pred(param?2, objectD) since
objectB is the second parameter of preo. The predicate pred2(objectA, objectC') would be
modified into pred2(paraml, param3).

Once all the predicates, where at least one of the parameters of the pre-operator
is present, have been saved, these predicates are counted: Count(predicate,predicates).
Then, the threshold indicates the minimum percentage of times that a predicate must appear
to be part of the preconditions of the final planning operator. So, the number of times that
a predicate must appear is calculated by the function Percentage(counterT otal,threshold)
given the total number of pre-operators Size(pre — operators).

For example, suppose we want to learn the operator a, which has 10 instances in the
input sequence, and we had set a threshold of 70%. Any predicate containing any parameter
of the action, which is present in the previous state of the action a at least 7 out of 10 times
would be included as a precondition for that action.

The threshold is also used for the effects in the same way as for the preconditions. To
be part of the effects, a predicate has to appear in the effects a percentage of times greater
than or equal to the threshold. Algorithm 6 shows how the ADDS are learned. DELETES
are learned identically. The only difference is that none of the predicates that are part of the
ADDS are removed before comparing the number of times they appear and the threshold.

Algorithm 6 Algorithm for learning effects.
Input: pre — operators , threshold
Output: adds

predicates < ()
adds + ()
for each pre — operator in pre — operators do
for each predicate in pre — operator.adds do
predicate’ < ChangeParameter(predicate, pre — operator)
predicates < predicates + predicate’
end for
end for
for each predicate in predicates do
counter < Count(predicate, predicates)
counterTotal < Size(pre — operators)
limit < Percentage(counterTotal, threshold)
if counter > limit then
adds < adds + predicate
end if
end for
return adds

Once a domain has been learned, ASRA-AMLA is used in Run-time mode 8.3. This
working mode builds planning problems using the current state given by the sensors. So,
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when an event is detected, a learning instance is built and the action that generated the
event is classified. Then, the values of the sensors after the event (the current state) along
with the goal state (omelette cooked) are used to generate a planning problem. Finally, the
planner is executed using the new planning problem and the generated planning domain
to generate a sequence of actions that the user should execute to achieve his/her goal.
That way, the system provides assistance to the users generating a plan from every single
state. Algorithm 7 describes how the system works in Run-time mode. Notice that the
classification of the actions is not needed but it is included to let the system monitor the
user actions at the same time that it provides assistance generating plans.

Algorithm 7 Run-time Algorithm.
Input: logFile, domain, goalState
Output:

cont < 0
s < CurrentState(cont)
e < FEventDetector()
while e # null do
i < FeaturesExtraction(e)
a < ActionClassifier(i)
problem < ProblemGenerator(s, goalState)
plan < planner(problem, domain)
show(plan)
cont < cont + 1
s « CurrentState(cont)
e < EventDetector()
end while

8.3 Experimental Setup and Results

Activities performed in a kitchen have been studied and included in many works in the past
like in [Hoey et al., 2011; Patterson et al., 2005] and some of them are in public datasets
like [Patterson et al., 2005]. However, none of the public datasets are suitable to test the
system developed in this thesis, since they do not provide enough information to classify
the actions that compose the activities stored in the datasets. For instance, in the case
of [Patterson et al., 2005], the data is labeled with the name of the activities, Making Coffee
or Setting the table; but not the labels of the actions that compose those activities, switch
on the coffee maker or put down a plate; which is what we need. For that reason we have
designed a sensor network focused on getting that information. So, in order to test the
system, a dataset has been generated with the task of making an omelette and the actions
that compose this activity. The actions are open, close, get-out, put-away, pick-up, put-
down, crack-egq, transfer, switch-on, switch-off, fry, beat and null. null is assigned to the
events not involved in any action. A detailed description of this dataset can be found in
Section 4.2.
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8.3.1 ASrRA. Experiment Description

The ASRA module generates sequences of actions and states. Since the states are generated
directly from the sensor readings, in this section we are going to test the capability of ASRA
to recognize the actions that the module will generate later. In order to test this module,
we considered two different models. In the first configuration, called SingleValues, we
generated a vector where all its positions except for the last one are binary. The positions
represent the values of each sensor that appeared in the dataset. So, there is a position
for each magnetic sensor and a position for each of the objects that the RFID readers can
detect. Also, there is a position for every location of each object detected with the cameras
(the hand of the user is not considered a location, because it is detected with RFIDs) and
also a position for every different state in which an ingredient can be. Finally, there is
a position for each RFID tag placed in a piece of furniture. A last element is included,
indicating the index of the last position that changed. The generated vector contained 141
elements. It was computed as (10 places) + (10 places x 9 objects) + (2 RFID’s x 9
objects) + (2 eggs x 4 states) + (1 salt x 2 states) + (1 oil x 2 states) + (10 RFID places)
+ 1 = 141 elements. But some of the elements never change. For instance, the fry-pan
or the eggs are never placed in the drawers. So, those never-change values were removed
and the final vector used for the classification contained 59 positions. Next, an example is
shown: 0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0, 1,1, 1,1, 1, 0, 0, 0, 0, 0, 0O,
1,0,0,0,1,1,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0, 0, 0, 1, 19, open

So, the inputs of this configuration are instances composed of 59 components: the first
57 positions contain binary values; the 58th position has a value between 1 and 57 to
indicate the last position that changed; and the last component contains the class, the
executed action. The outputs are the actions executed at each event. For example, consider
a magnetic sensor placed in a cabinet, one RFID reader and two objects (e.g., two eggs)
that can be in two states (e.g., raw and cracked) in an environment with two locations
to place the object (e.g., a cabinet and a working surface) and n cameras to monitor the
objects. Notice that the number of cameras is irrelevant; one camera could be enough but
any number of cameras could be used to detect the location and the state of the objects.
Then, the vector generated for the event that was detected by a camera when the object
was dropped on the working surface would be < 0,0,1,0,1,0,0,0,1,0,1,0,5, putdown >.
In the example, the first element would represent the value of the magnetic sensor (cabinet
closed), the second and third positions indicate the location of one egg, and the next two
positions are the location of the other egg. The next three elements, the sixth, seventh
and eighth, represent whether the RFID detects the object (no object is detected) or the
cabinet. In the example, both eggs are in the second location (working surface) and the
cabinet is not detected by the RFIDs. The ninth and tenth elements indicate the state of
one egg and the next two elements indicate the state of the other egg. Both eggs are raw.
Finally, the last numerical position indicates that the fifth element of the vector was the
last one that changed during the event that generated the instance. So, the second egg was
put-down on the kitchen top.

We try to use the same information that the planning operator would contain in order
to recognize the action associated to the operator.

The second configuration, called ObjectInvolved, uses just the objects involved in the
event that created the instance. So, whenever an event is detected, the sensors readings
related to the objects involved in the event are kept and the rest are discarded, set to zero.
Thus, when a specific object is picked up, a vector is generated like in the SingleValues
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configuration, but the rest of information in the vector about other objects is set to zero.
For example, when a plate is put down on the kitchen top, an event is generated when the
RFID stops detecting the plate. Then, the objects involved are the plate, which changes
from being hold to be on the kitchen top, the kitchen top, and the RFID that changed
from detecting the plate to detecting nothing. The kitchen top never changes, so none of
the positions have specific information about it. So, the vector would contain a “1” in the
position of the vector that indicates that the plate is on the kitchen top. When an RFID
detects nothing, all the positions of the vector that contain information about that RFID
are set to zero. Thus, the vector generated would contain just the “1” that indicates that
the plate is on the kitchen top. Therefore, we focus the learning process on the objects
currently used, eliminating the information about the rest of them. Similarly, planning
operators have parameters where the objects affected by the operator are defined.

We have included an attribute to indicate the index of the position that was changed by
the previous event. So, the vector is similar to the one generated for the SingleValues con-
figuration but for the penultimate element, which indicates the element that was changed
by the previous event. The machine learning algorithm could use the position that changed
in the past event and in the current event to classify the actions. So, the inputs of the
second configuration are instances composed of 62 positions: the first 59 positions contain
binary values; the 58th position has a value between 1 and 57 to indicate the last posi-
tion that changed; the 59th position has a value between 1 and 57 to indicate the position
that changed in the previous instance; and the last position defines the class, the exe-
cuted action. The outputs are the same as in the first configuration; the actions executed
at each event. For example, given the previous example, the generated vector would be:
< 0,0,0,0,1,0,0,0,0,0,1,0,5,7, putdown >. The differences in the third and ninth posi-
tions are due to the fact that those elements do not represent information about the object
involved in the current event. The last numerical position indicates that the element that
changed in the previous event was the seventh.

After generating all the instances, we used the classifiers described in 7.3: PART, J48,
kNN, RF, SVM, NB, bayesian network (BN), HNB, ALR, and DT. We have used their
implementation in the Weka toolkit.

ASRA uses the algorithm EBAR presented in Chapter 7 to classify the actions with m = 1
since the actions that we are classifying have a short duration and many of them generate
only one event.

8.3.2 ASRA. Experimental Results

In summary, we have performed experiments to check the performance of the ASRA module.
The dataset generated for testing was composed of 1720 instances. Both representations
generated the same number of instances since the segmentation method employed was the
same in both cases. We have used two metrics to evaluate the models using 10-fold cross-
validation for estimating the error: precision and recall averaged over all activities.

Then, we selected the best classifier according to the employed metric to build an AP
domain. Table 8.9 shows the precision and recall of every generated model and the time in
seconds that it took to classify all the instances of the dataset employing the models. The
time is an important measure since it shows whether the model is fast enough classifying
instances to be used in real time. The best model is marked in bold.

As it can be seen, the differences between ObjectInvolved and SingleValues are
significant in most models. Results obtained by the ObjectInvolved configuration are
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Table 8.9: Precision, recall and time performances in seconds of the learning algorithms
used in ASRA.

Precision
PART J48 kNN | RF | SVM NB BN | HNB | ALR DT
SingleValues 94.71 95.65 72.01 | 93.03 | 95.14 | 65.93 | 68.08 | 90.60 | 94.93 | 94.14
ObjectInvolved | 98.49 99.09 | 98.12 | 98.16 | 98.90 | 97.20 | 97.45 | 98.84 | 98.85 | 98.70
Recall
PART J48 kNN | RF | SVM NB BN | HNB | ALR DT
SingleValues 92.95 93.19 | 58.16 | 90.47 | 91.73 | 78.77 | 80.48 | 91.73 | 87.90 | 83.43
ObjectInvolved | 94.33 94.59 | 95.07 | 94.40 | 95.33 | 96.48 | 92.37 | 93.35 | 94.83 | 92.21

Time Performances

PART J48 kNN | RF | SVM | NB BN | HNB | ALR DT
SingleValues 0.016 | <0.001 | 2.000 | 0.031 | 0.281 | 0.125 | 0.141 | 1.828 | 0.015 | <0.001

ObjectInvolved | <0.001 | <0.001 | 0.812 | 0.015 | 0.641 | 0.093 | 0.125 | 0.953 | 0.016 | <0.001

better in most cases, and are more consistent since all the results are over 97.00. So,
focusing the data just on the objects involved in the last event permits the system a better
recognition of actions in average. The model that obtained the best result, J48, is the one
we selected to generate the action sequences used to build the planning action model. In
addition, the chosen model is one of the fastest models tested. It is important to consider
the time performances because it can prevent the system to be used in real-time. In any
case, the showed times belong to the classification of all the instances of the dataset. The
classification time of a single instance is even lower. So, all generated models are fast enough
to be used in the system.

8.3.3 AMLA. Experiment Description

After generating sequences of actions and states with ASRA, the AMLA module is executed
to generate an AP domain using all the sequences. Then, the domain is tested to check
if it is able to generate valid plans and provide assistance for users to complete a task.
So, in order to test AMLA, some models were generated using different thresholds. First, a
threshold of 100% was used. Then, the threshold was iteratively decreased by a 5%, until
it takes the value of 0%.

A common methodology to test generated domains is to use a set of available plans
selecting a subset for training and the rest of plans for testing [Wang, 1995; Yang et al., 2005;
Mourao et al., 2009]. In [Yang et al., 2005] a problem generator from the IPC is used
to generate problems and the MIPS planner [Edelkamp and Helmert, 2001] is used to
create the plans. Then, these plans are used for training and testing. In [Mourao et al.,
2009], sequences of random actions and resulting states were generated from PDDL domain
descriptions using a random action generator. Problems used in [Wang, 1995] are randomly
generated by the author. In order to test the domains generated by AMLA we select part of
the dataset to generate the domains and the other part to generate planning problems to
test the domains.

We applied a two-fold cross-validation by dividing the dataset into two parts of equal
size. We selected one part to generate the planning domain and used the other part to
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test the domain. The testing part of the dataset was used to generate 400 problems. Each
problem was generated using two non-consecutive states randomly selected from the testing
part of the dataset. A hand-written planning domain was created with all the actions

the system has to learn automatically for comparison purposes. This domain is shown in
Annex A.

The AP problems have been executed using the MetricFF [Hoffmann, 2003] planner.
The next section presents the results.

8.3.4 AMLA. Experimental Results

The best model for ASRA was selected and used to generate the sequences of actions and
states that feed the AMLA module. Then, the AMLA module was used to generate AP
domains. Figure 8.4 shows the percentage of solved problems by each domain generated
using different thresholds. The hand-written domain was capable of solving 100% of the
problems. Figure 8.5 shows the number of learned operators identical to the hand-written
domain that contains 12 planning operators.
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Figure 8.4: Percentage of solved problems by each domain.

As we can see in Figure 8.4, the domains generated using as threshold values from 85%
to 50% are capable of solving all the problems generated. However, the number of identical
operators ranges from 9 to 11. The 12 operators are never learned together.

When the threshold has a too high value, in many cases the predicates included in the
preconditions let the operators be used in circumstances in which they should not. For that
reason, many problems are solved even when some operators are not correct since not all
preconditions that the operators need are included. For example, frying the omelette when
the burner is off or beating the egg when it still has the shell.

On the other hand, when the threshold has a value too low, lower than 50%, the gene-
rated operators included too many predicates in the preconditions of some operators to be
executed. For that reason, the domains generated using as a threshold values between 45%
and 5% do not solve any problem.
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Figure 8.5: Number of learned operators identical to the hand-written domain.

The best generated domains were those with a threshold between 80% and 65% which
learn all but one operator identical to the hand-written operators and solve all problems.
The only action which is not learned correctly is put-away which is learned with less effects
and less preconditions. This is due to the fact that the action put-away is erroneously
classified as put-down in many cases and some of those cases are needed to learn the whole
preconditions and effects. The action put-away is the one that the user takes when placing
something in the cabinets or drawers. This action is not learned correctly because the action
is very similar to put-down. The action put-down is executed when the user leaves something
on the kitchen top or the cooktop. The only difference between the two operators is the
place where the object is left. So, the readings of the sensors are very similar and some of
the events produced during the actions are identical. Since there are many more instances of
put-down, those identical events are always classified as performed by the put-down action.

Using a classifier with a slightly better recall like SVM, the action is correctly learned
when the threshold is set to 50% but the other operators are correctly learned between 80%
and 65% as with the other classifier. Then, not all the actions were learned correctly using
the same threshold. For instance, the action transfer is correctly learned when the threshold
has values from 65% to 85%. So, if we want our system to learn the transfer action, put-
away is not correctly learned and vice versa. However, using a threshold between 80% and
65% the generated domains can guide the user through the task since the action put-away
is not needed to complete it. This is due to the fact that it is used to replace the objects in
their original places and that is not needed to cook an omelette.

The results of the learning process change as the threshold is modified like in similar
approaches [Yang et al., 2005; Zhuo et al., 2008]. Using a different threshold for each activity
solves the problem and permits us to learn the complete planning action model correctly.
However, the drawback is that it requires providing more inputs for the system to work
and that is what we want to reduce. Another solution to the problem is to change the
domain and join the actions put-down and put-away in just one action. This can be done
changing the operator in order to permit it to leave objects in any place. We have included
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Figure 8.6: Number of learned operators identical to the hand-written domain after joining
put-down and put-away.

a new configuration to test this solution in order to learn a complete domain. Figure 8.6
shows the number of learned operators identical to the hand-written domain After joining
the operators put-down and put-away, it contains 11 operators.

As we can see, joining the actions permits the system to learn the entire domain when
the threshold has values from 65% to 80%. Also, the generated domains can solve all the
problems.

Figure 8.7 shows an example of a plan generated by a domain created by AMLA. As it
is shown, the plan provides all the steps to cook an omelette. However, the plan has some
minor problems. It closes the fridge at the end of the plan, leaving the door open since the
beginning. Also, it leaves the door of the cabinets open until the end of the plan. This
could be solved generating all the plans capable of solving the problem and using just those
in which the cabinets and fridge are closed after picking up the objects from inside.

An example of learned domain can be found in Annex B. It is a domain generated with
a threshold of 65% and 12 operators. The only difference with the hand-written domain
is in the put-away operator where the precondition (holding ?param1) and the effect (not
(holding ?param1)) are missing.

Annex C shows the put-down operator after being joined to the put-away operator.

8.4 Recognizing and Predicting Actions Using Planning

In this section we are going to study the capability of the generated planning domains
to recognize and predict the actions performed by the system’s users. This was the last
objective of this thesis. In order to use the planning domains for AR, we are going to check
if the planning domains can recognize the actions by themselves and along with the features
extracted from the sensors. The same tests are going to be executed to predict actions.
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(OPEN UCUP1)

(OPEN FRIDGE)

(GETOUT BIGBOWL UCUP1)
(GETOUT EGG1 FRIDGE)
(PUTDOWN BIGBOWL KITCHENTOP)
(OPEN DCUP1)

(CRACKEGG EGG1 BIGBOWL)
(OPEN DCUP2)

(OPEN DRAWER1)

9: (PICKUP BIGBOWL KITCHENTOP)
10: (GETOUT FRYPAN DCUP1)

11: (PUTDOWN FRYPAN BURNER)

12: (GETOUT FORK1 DRAWER1)

13: (BEAT EGG1 FORK1 BIGBOWL)
14: (GETOUT OILBOTTLE DCUP2)
15: (TRANSFER OIL OILBOTTLE FRYPAN)
16: (TRANSFER EGG1 BIGBOWL FRYPAN)
17: (SWITCHON BURNER)

18: (CLOSE UCUP1)

19: (CLOSE DCUP1)

20: (CLOSE DCUP2)

21: (CLOSE DRAWER1)

22: (CLOSE FRIDGE)

23: (FRY EGG1 FRYPAN BURNER)
24: (SWITCHOFF BURNER)

0 N U WN - O

Figure 8.7: Example of a generated plan.

8.4.1 Performing AR Using Planning Domains

In this section we want to test the capabilities of AP for recognizing actions. To that end we
generate planning problems using the state before and after each event. Then, we execute
the planner and check if the first action that the plan contains is the executed action that
produced the event.

After generating the planning domains, three configurations have been tested in order
to check if the generated domains are able to recognize actions or at least to improve the
results obtained by the ASRA system.

First, we have tested the planning domain alone. So, being s, the current state of the
system, s, 1 the state previous to the current one and e,, the event that changed the system
state from s,_1 to s,, AR is the process of recognizing the action that produced the event
en and the transition from s, 1 to s,. To that end, the information of the sensors in the
state s, and before can be used. So, for each instance created by ASRA, we generate a
planning problem in which s,_; is used as initial state, s, as the goal state, and n would
take the number of the event that produced the state change. In Annex D an example of
one of the generated problems can be found. Then, MetricFF was used to generate a plan
and the first action of such plan was the action employed to recognize the user’s action.
This configuration was called Total-order.

Next, in a configuration called Partial-order, we employed a partial-order plan to
recognize actions instead of using a total-order plan. As opposed to total-order plans,
partial-order plans are partially ordered structures of actions so the total-order plans can
be obtained by linear ordering of the actions respecting the partial-order. The planning pro-
blem was generated as in the previous configuration, and the planner MetricFF was used
to solve it since a variation of MetricFF is capable of generating a partial-order plan. Fig-
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ure 8.8 shows an example of a partial-order plan. The number before the actions indicates
the order in which the actions should be executed. In this example, five actions could be
executed in the first place and there is no specific order in which the five actions should be
executed. Note that a partial-order plan is different from a parallel plan, where actions in
the same time step could be executed in parallel. In partial-order plans, the order in which
actions in the same time step are executed is irrelevant. But, they might not necessarily be
executed in parallel (as in this example).

(OPEN FRIDGE )

(PUTDOWN BIGBOWL KITCHENTOP )
(OPEN DCUP1 )

(OPEN DCUP2 )

(PICKUP FORK1 KITCHENTOP )
(GETOUT EGG1 FRIDGE )

(GETOUT FRYPAN DCUP1 )

(GETOUT OILBOTTLE DCUP2 )
(CRACKEGG EGG1 BIGBOWL )
(PUTDOWN FRYPAN BURNER )
(TRANSFER OIL OILBOTTLE FRYPAN )
(CLOSE DCUP1 )

(CLOSE DCUP2 )

(CLOSE FRIDGE )

(PICKUP BIGBOWL KITCHENTOP )
(BEAT EGG1 FORK1 BIGBOWL )
(SWITCHON BURNER )

(TRANSFER EGG1 BIGBOWL FRYPAN )
(FRY EGG1 FRYPAN )

AP WWWNNNNMNNMNNERERPREPROOOOO

Figure 8.8: Example of a generated partial-order plan.

Then, the first action or group of actions of the partial-order plan was or were employed
for the action’s recognition. In order to prepare an omelette, the order in which many
actions are executed is not important. For example, before beating an egg it does not
matter whether the user first picks up the bowl where the egg is going to be beaten or the
fork that is going to be used to beat the egg.

The last configuration added the first action of the plans generated by the planner to
the features employed by ASRA in order to check if the action was able to improve the
classification results obtained by ASRA without the help of the planner. This configuration
was called ASRA+AP.

Table 8.10 shows the percentage of correctly classified instances obtained by each confi-
guration in the corresponding column. A fourth column has been added showing the result
obtained by ASRA for comparison. We used the ML algorithms described in Section 8.3.1,
but the results shown in the columns corresponding to the third configuration and ASRA
are the results obtained by the SVM algorithm which obtained the best results.

Table 8.10: Results obtained performing AR.

Total-order Partial-order ASRA+AP ASRA
Accuracy 61.24 62.37 97.73 97.73

Table 8.10 shows that the results of the first and second configurations are quite similar.
This is due to the fact that the planning problems are built using the states before and after
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the event. So, the differences between the two states are very small and, in most cases, the
partial-order plans and the regular plans are identical. In any case, the results are far from
those obtained using the standard ML algorithms shown in the third and fourth columns
of the table.

In the third configuration we put together the AR method using ML and the recognition
performed using AP and check if AP can improve the results obtained employing only ML.
Comparing the results of the last two columns we see that the action provided by the planner
added as an attribute in ASRA-+AP does not improve the results obtained using only the
information coming from the sensors in ASRA.

The main reason for the difference between the results obtained by the planner and
ASRA is that the 20.39% of the events are produced by the action null which is assigned to
the events not involved in any action. These events are produced by the RFIDs attached
to the pieces of furniture and fridge. When the user grabs a handle to open a cabinet, the
RFID of the door is detected and one event is produced. But, no action is associated to
the event, since the door has not been open yet. These actions are never classified correctly
by the planner, because the action null is not included in the domain. Even including an
action null, it would never be used to generate a plan, since it does not help the user to
accomplish the plan. Also, the planner fails in actions that take some time to execute, such
as beating. The planner does not use it, since the effects of the action are already present in
the initial state. For instance, when the cameras have detected that the egg is beaten but
the user is still beating it. Another common situation in which the planner fails is when the
user performs an action that is not needed to accomplish the plan. For instance, picking
up an object that is not needed or that has been already used but it is picked up in order
to be moved to other place.

Once the sensors detect the effects of an action the planner does not use that action in the
next generated plan since the effects produced by such action are not needed. However, the
user sometimes performs the same action twice. Thus, we have tried another configuration
in which we have included the action that produced the previous event in the actions
returned by the partial-order plan. That way, we could recognize those repetitive actions
that the planner does not use. The results improved from 62.37% to 67.25%. This new
configuration permitted the system to recognize consecutive repetitive actions, but it still
can not recognize an action that is repeated after performing another action. The events
that produced the action null can be removed, since the sensors that produced it are not
needed by the system. Then, removing such events, we have tested another configuration
to improve the performance. The results obtained are shown in Table 8.11.

Table 8.11: Results obtained performing AR without the action null.

Total-order Partial-order ASRA+AP ASRA
Accuracy 76.93 84.48 97.50 97.50

As we can see, if we remove the null events the results obtained by the planner improve
a lot, because all those events were misclassified. On the other hand, the accuracy obtained
using ML decreases a bit, since ML could classify correctly many of those events and without
those events the total amount of well-classified events decreases.
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8.4.2 Predicting Actions

In this section we want to study the capability of AP for predicting the actions of the user.
AP is capable of generating a plan in order to guide the user to reach his/her goal. In this
case, we want to check if the generated plans are able to match the real behavior of the
users beforehand. When AR is performed, the state after the action is available. In this
section we predict the next event that will take place, so the information about the state
after the event will not be available. So, being s, the current state of the system, s,11
the future state to which the system will change and e, the event that will produce the
transition from s, to s,11, this section predicts the action that will produce the event e, 1.

In the previous section, we defined an experiment to recognize the last action that the
user executed. The difference between both experiments is that, to predict actions that
have not happened yet, we use the last known sensors state. In the previous section, we
used the last two states to recognize the action between those two states. So, the event has
already happened. This is the last objective pursued in this thesis. Next, the experiment
performed in order to predict the user’s actions using AP is described.

Four configurations have been defined in order to test the capabilities of the generated
domains for predicting actions. So, for each event found by ASRA, a planning problem was
created where the initial state was the state s,,, n was the number of the event that produced
the transition to s, the goal state was to have the omelette prepared, and the action that
will produce the event e, 41 is the one that has to be predicted. Then, a planner was used
to generate a plan employing the generated problem and a planning domain generated by
AMLA and the first action of such plan was the action employed to predict the next action to
be executed by the user. We called this configuration Total-order. In Annex E an example
of one of the generated problems can be found.

In the second configuration we use partial-order plans to predict the action instead of
using total-order plans. The first action (or group of actions) of the partial-order plan was
(were) employed for the action’s prediction. We tested whether the action that will be
performed is one of the actions proposed by the partial-order plan in the first place in the
configuration called Partial-order.

In the next configuration, called Sensors-ML, we use the information of the current state
to generate ML instances. This way, we employ the information provided by the sensors to
predict the next action. Thus, for each state of the dataset we generate one instance just
like in the SingleValues configuration described in Section 8.3.1, but without the attribute
that describes the position that was changed by the event. The event has not occurred yet,
so we can not use that information. In order to build the classifying instances, we employ
the information of the sensors in the state before each event where the action that modifies
the state will be the class.

In the last configuration called Total-order-sensors-ML, we added the action provided by
the planner in the first configuration to the Sensors-ML configuration, generating instances
with one attribute more than the previous configuration.

We applied a two-fold cross-validation by dividing the dataset in two parts of equal
size. One part was used to train the ML algorithms and the other for testing. Table 8.12
shows the percentage of correctly classified instances obtained by each configuration in the
corresponding column. For the third and fourth configurations we used the ML algorithms
described in Section 8.3.1. But we only show the results obtained by the J48 algorithm
which obtained the best results.

Table 8.12 shows that the accuracy obtained using a total-order plan is quite low. This
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Table 8.12: Results obtained predicting the next action.

Total-order Partial-Order Sensors-ML  Total-order-sensors-ML
Accuracy 19.83 45.60 84.47 84.75

was expected since, from each state, the user can achieve his/her goal following different
plans. Using partial-order plans the predictions improve, but still with results below 50%.

However, in Sensors-ML, the ML algorithms used just the information from the sensors
and obtained a better result. The last configuration shows that the action provided by the
plans improves the results obtained using only sensors although the difference is very small.

Like in the previous section 8.4.1, the low results obtained by the planner are due to
actions that are executed several times, actions executed by the user that are not needed to
accomplish the goal and events produced by the action null. Including the previous action
to the partial-order plans, the results improve from 45.60% to 55.92%. Removing the events
produced by the action null, just like in the previous section, we obtained the results shown
in Table 8.13.

Table 8.13: Results obtained by the planner performing AR.

Total-order Partial-order Sensors-ML Total-order-sensors-ML

Accuracy 24.91 70.24 95.87 96.08

We can see that all the results improve and the Total-order-sensors-ML configuration
almost reaches the results obtained in the recognition task. Thus, we can conclude that, in
order to predict actions, it is better to use the information provided by the sensors along
with the action provided by the planner and, under some conditions, the results can be
close to those obtained recognizing actions.

8.5 Discussion

In this chapter, we presented a system for building AP domains from raw sensor data. The
system called ASRA-AMLA is composed of two modules that can recognize actions and states
from raw sensor data (first module), and use the sequence of actions and states generated
by the first module to build an AP domain (second module).

In the process of building the system, a working environment was created in a kitchen.
Two persons performed a task, cooking a omelette, and a sensor network recorded the data
produced by the users performing the task. Several AP domains were modeled to assist
people in the task. However, using just one threshold does not permit to learn the entire
domain. To model the AP domain successfully, more than one threshold has to be used.
An alternative method would be to improve the sensor network in order to recognize the
actions better or even code the domain in a different way joining two actions. This last
alternative permits the system to correctly learn the complete domain.

The results of the learning process change as the threshold is modified and the results
may change depending on the ML algorithm used. The results are also affected by the AR
system, ASRA, since using SVM instead of J48, which obtained a better precision, permitted
the system to learn the action put-away correctly.
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The AP domains generated can be used, along with a planner, to find a sequence of
actions that can be used to assist people in the environment where it was built. The
AP domains have also been used to predict actions and recognize actions. Although the
recognition rates obtained using just AP are far from the AR system, when predicting
actions, the planning domain tested showed a promising result of 70.24% when the correct
events are selected. Anyhow, it is still lower than the result obtained using directly the
information coming from the sensors. However, adding the action provided by the planner
to the sensor data may improve the predictions. The events used by the system affect
the results since, removing some events that are not needed, the accuracy of ASRA slightly
decreases. But the results of the planner in the recognition process and all the results
predicting actions showed a considerable improvement.

The system is easily extendible. In order to include more recipes or actions, the sensorial
system has to be extended to recognize the new actions and to detect the effects that the
new actions would produce. Also, the new sensor readings would have to be included and
how these readings are translated into predicates. That way, the new actions would be
learned and included in the planning action model.

The presented system goes beyond other works in the literature on the automatic ge-
neration of planning domains since it is capable of learning the AP domains using traces
of information from noisy sensors. Systems like [Yang et al., 2005; Mourao et al., 2009]
need the right name and parameters of each operator to be learned correctly. ASRA-AMLA
uses the actions provided by a classifier and the parameters are deduced from the sensor’s
information. This permits our system to on-line modify the generated domains. If the user
decides to change how the recipe is prepared, the system can modify the domains in order
to include the changes without manual intervention, in case the sensor network is prepared
to detect such changes. For instance, in case the user changes the omelette and starts to
prepare a fried egg, the system would modify the action fry where one of the preconditions
forces the egg to be beaten before being fried. This is possible if the computer vision system
is trained to detect the fried egg. In addition, the system ASRA-AMLA has been tested in a
real environment instead of using theoretical domains like the other approaches.
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Chapter 9

Conclusions

This chapter presents the conclusions extracted from this thesis. This chapter is composed
of two sections. The first section summarizes the findings obtained in each chapter of the
thesis. The second section describes the contributions made by this thesis to the areas
involved.

9.1 Summary

Progress on wireless sensor networks and AR, made it possible to improve the quality of
life of people with disabilities. Ambient assisted living (AAL) use pervasive computing,
ambient intelligence or ubiquitous computing, among other technologies, to support people
with special needs stay active longer, remain socially connected and to live longer periods
in their preferred environment.

In the last years AP has experimented important advances and, nowadays, automated
planners are capable of generating plans of hundreds of actions in a variety of domains.
Nevertheless, the manual design of planning domains is time-consuming and error-prone.

In this thesis it is argued that AR can be used to automatically generate planning do-
mains to avoid the problems entailed by the manual design of planning operators. Moreover,
it is argued that AP used along with AR can help AAL overcome the challenges it faces
generating sequences of actions for providing guidance and detecting the assisted person’s
activity.

This thesis presents ASRA-AMLA, an architecture for integrating AR, planning domains
generation and AP in real-world environments to assist people in a complete system for
AAL. ASRA-AMLA starts generating user models for AR with an event based approach for
the segmentation of the sensors’ data. Next, a sequence of actions and states is generated by
the ASRA module, and it is fed to the AMLA module, which generates the planning domains.
The whole system is able to monitor the user’s actions, and to offer assistance in order to
complete the activities. Additionally, the system can also predict the next action to be
performed by the users from each state.

Chapter 5 describes, to the best of our knowledge, one of the few AR systems that use
relational learning for classifying activities using simple sensors. This system employed a
representation based on first-order logic to generate a relational tree to classify activities
obtaining good results. That system was a first approach to learning basic actions. Then,
we tried to test the relational algorithm with public datasets and we discovered that the
utilized ML algorithm did not support large datasets. For that reason, in Chapter 7 we
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presented EBAR, a different AR algorithm, also based on the same segmentation method.
EBAR employed a propositional representation. The algorithm was tested using public
datasets showing, on average, better performance than other algorithms. Chapter 6 shows
a comparison between the segmentation used and the common approach showing that, in
some domains, our segmentation method can obtain better results, on average. Chapter 7
went deeper into the segmentation and analyzed the effects of changing the parameters
of the segmentation methods over the results. In Chapter 8, the ASRA-AMLA system was
described. We have shown that ASRA-AMLA is capable of inducing operators in a real-
world domain from the information provided by a sensor network. The key aspect of the
system was the events-based segmentation method employed, which was similar to the way
planning operators work. From that segmentation, the AR algorithms were developed and
the planning operators generated. Our integration of AR, AP, and learning the planning
operators has been evaluated in a new dataset generated for this thesis. Experimental
results showed that the ASRA-AMLA system is able to generate planning domains to guide
a person through the task that is used for testing. Also, the experiments showed that the
system can predict actions and even to improve the recognition rates using the generated
planning domains.

One of the advantages of ASRA-AMLA is that, to the best of our knowledge, it is the
first system capable of learning planning operators in a domain where all the information
provided to the generator may contain errors, in the preconditions, in the effects, and even
in the name of the operators since all that information is provided by an AR system. Other
systems are capable of learning operators in partially observable domains or with errors in
the preconditions and effects but none of them accept errors in all the inputs, especially in
the name of the operators to be learned.

We have shown the power of the developed system capable of automatically building and
utilizing its own operators from sensor readings. An autonomous system that recognizes
user’s actions, creates operators and generates plans capable of assisting the users.

9.2 Contributions

The main contribution of the thesis is the definition of a general architecture for integrating
processes of activity recognition, learning planning action models and automated planning.
This architecture is based on some off-the-shelf components (Al planners and ML tools) and
automatically captures knowledge from the sensor readings. The architecture can learn AR
user models [Ortiz et al., 2008; Ortiz et al., 2011] and planning action models. Additionally,
the thesis work resulted in the following set of contributions:

1. A review of the state of the art in AR [Ortiz et al., 2011]. Chapter 2 of the thesis de-
scribes the main works in AR. The different works are reviewed according to different
criteria such as models, sensor and applications.

2. A review of the state of the art in leaning action models for deterministic and non-
deterministic planning showed in Chapter 2 of this thesis.

3. A method to segment temporal series for AR based on the events produced by the
sensors.  |Ortiz et al., 2011] describes the method where dynamic temporal win-
dows are generated to recognize activities. Chapter 7 employs the same segmentation
method and shows examples using different types of sensors. Both works show that
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the segmentation method does not present some of the limitations of the commonly
used sliding-window algorithm.

4. An algorithm for AR using a relational learning model. Most of the models used
for AR in the literature employ statistical models although other machine learning
techniques such as SVM or J48 have been utilized in the past. To the best of our
knowledge, the algorithm presented in [Ortiz et al., 2008], and described in Chapter 5,
is one of the first algorithms for activity recognition based on first-order logic. It
employed relational decision trees learned using Tilde [Blockeel and De Raedt, 1998]
and obtained good results.

5. An algorithm for AR employing attribute selection and a new attribute extracted from
the events, described in Chapter 7. This new feature, the classification of the events,
gives information about the boundaries of the activities. Usually, AR algorithms
classify pieces of activities instead of the whole activity. With this attribute, we
attempted to find the boundaries of the activities in order to classify the whole activity
at once. Experiments show that it improves the classification results of some machine
learning techniques.

6. The analysis of different types of segmentation methods for AR. Most of AR literature
focuses on obtaining better models for the recognition of activities. In this thesis,
we focus on improving the algorithms using a different type of segmentation and in
Chapter 7 we showed a comparison of the commonly used sliding-window method and
our method based on events. The study described how changes in the size and shift
of the temporal windows affect the classification results.

7. An algorithm for automatically learning planning action models using the information
provided by an AR system. The system is described in Chapter 8 and it uses the AR
algorithm developed in Chapter 7 to extract the actions and states from the sensor
readings. Then, the actions and states are grouped into sequences that are used to
create the planning domain.

8. The analysis of the use of AP for predicting and recognizing user’s actions. The
planning action models built in Chapter 8 were used to predict actions and also to
improve the recognition results obtained by the system. This represents a new way
to predict actions and to perform AR.

9. During the realization of this thesis, a sensor network was developed and used to
record a new dataset. The dataset contains the data generated by some users cooking
arecipe. It was generated in order to test the algorithm for generating planning action
models. The dataset will be made available to the research community, so that it can
be used by other researchers.

Next, we show the international conference and journal papers where part of the contents
and results of this thesis have been presented:

Lecture Notes

1. Authors: Javier Ortiz, Angel Garcia-Olaya y Daniel Borrajo
Title: A Dynamic Sliding Window for Activity Recognition
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Conference: User Modeling, Adaptation and Personalization (UMAP’11)
Booktitle: Lecture Notes in Computer Science (LNCS)

Location: Girona, Spain

Date: 2011

Contributions in Conferences

1. Authors: Javier Ortiz, Angel Garcia-Olaya y Daniel Borrajo

Title: A Relational Learning Approach to Activity Recognition from Sensor Readings
Conference: IEEE Conference on Intelligent Systems (IEEE 1S’08)

Booktitle: In Proceedings of the 4th IEEE Intelligent Systems conference
Location: Varna, Bulgaria

Date: 2008

Journals with impact factor

1. Authors: Javier Ortiz, Angel Garcia-Olaya y Daniel Borrajo

Title: Using Activity Recognition for Building Planning Action Models

Journal: International Journal of Distributed Sensor Networks. Special Issue on
Intelligent Systems in Context-Based Distributed Information Fusion

Date: 2013

Publisher: Hindawi Publishing Corporation
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Future Work

1. As far as activity recognition is concerned, it is still an open problem. Consequently,
the learning techniques and whole framework employed are suitable for improvements.
Thus, next we enumerate some of the ideas that arose during the realization of this
thesis:

(a)

To develop a more appropriate sensor network. In this work, we used a sensor
network to observe the behavior of the users. The sensors used are RFID’s, reed
switch sensors and cameras. Due to technical and temporal restrictions, cameras
are employed to substitute other types of sensors. For example, cameras are
used to detect the state of the appliances. This could be done more efficiently
by current sensors that are capable of monitoring whether the appliances are
consuming energy or not. Since this type of sensor is binary it would save com-
putational time. In addition, the use of accelerometers can be studied in order
to improve the results. Something that probably would benefit the system is the
use of depth sensors, like Kinect [Microsoft, 2009], to track the user. This sensor
could avoid the user to wear any type of sensor, which is one of the major limi-
tations of our system. However, it is important to keep the computational and
economical costs of the system to a minimum and adding more sensors would
increase the cost and perhaps the computational requirements to process all the
data.

To extend the system for recognizing more everyday activities. The system
has been tested through the task of cooking an omelette. Although the system
is easily extendable for cooking more recipes and more activities, it needs the
sensors to detect the effects of each action to be recognized and generated as a
planning operator. To do so with some of the ADL enumerated in Section 2.1.4
such as bathing or feeding is a challenge, since, to our knowledge, there are not
sensors capable of detecting the effects of those actions directly.

To make the system capable of dealing with more than one person in the same
environment. All the models and experiments performed in this thesis assumed
that the user of the system is a single person. For a realistic application in a
real world environment, an activity recognition system should be able to deal
with people visiting the user and with environments in which multiple people
live. Performing multi-person activity recognition is a challenge because the
users may perform different activities at the same time and in the same place, in
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different places or the same activity may be carried out cooperatively.

To employ automated planning to fill the gaps in the action sequences. In a
real environment, the ingredients are used and replaced constantly. In order
to track when those ingredients are taken out, the current system needs RFID
tags to produce events. Adding an RFID tag to all the new ingredients would
be inconvenient. This problem could be solved with other types of sensors.
Although, sensors may stop working or fail and not produce events during long
periods of time. Planning could be used to fill the activities performed between
events. So, every two events, a planning problem can be created and executed
by a planner to find one action or a sequence of actions. That way, the sequences
generated could be evaluated to check the performance of planning reproducing
human behaviors.

To change the system to be capable of working in real-time. The system works
simulating real-time behavior, but it uses the logs saved during the dataset
recording. The system could be modified in order to be tested in real-time.
This way it could check if the instances’ creation and evaluation and the crea-
tion of plans are fast enough to be used to offer assistance to the users of the
system in a real-world environment.

The use of unsupervised algorithms to recognize the activities. The machine
learning algorithms employed for activity recognition require annotated data to
estimate the model parameters. This is a time consuming and error prone task
and one of the biggest problems in the AR community. The use of unsupervised
or semi-supervised techniques would eliminate this requirement and it would
make ASRA-AMLA completely automatic avoiding the problems.

2. As far as automated planning is concerned, there are some changes that could be done
in order to eliminate some of the limitations to enhance and complement the system.

(a)

To generate the planning domain from decision trees or rules generated by the
activity recognition system. In order to classify activities, the AR module of
the system uses several machine learning algorithms; decision trees and rules
are among them. These algorithms can be employed to generate the operators
using the information about the sensors contained in the models. This way the
preconditions and effects of each operator may be learned from the models built
to classify activities.

To generate non-deterministic domains. ASRA-AMLA generates a deterministic
domain to create plans reproducing the user behavior. However, a domain in
which the actions would not always success or produce different effects in different
situations could be more suitable to reproduce human behavior for predicting and
recognizing activities.

To build a HT'N to generate plans. From the deterministic planning domain gene-
rated, a HTN could be built using some algorithms such as HTN-MAKER [Hogg

et al., 2008]. That way a HTN planner could be employed in order to solve more
complex problems and offering assistance in more complicated domains.

To learn some of the inputs of the algorithm to generate the action model. The
module that builds the planning operators needs as inputs: (1) the object types
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and generic predicates, (2) state-action sequences automatically generated by
ASRA and (3) the objects involved in each action (parameters of the actions) in
the sequences. (1) and (3) are handcrafted. Learning these inputs would benefit
the system by making it completely automatic.

Since plans are generated to assist the user, any improvement in this sense would
benefit the system. So, for example, employing different search algorithms in
different situations. Plan repairing and plan reuse for domains in which planning
from scratch is expensive could be used to reduce computational time.
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Chapter 11

Conclusiones

This chapter is a translation of Chapter 9 into Spanish and it has been included in this
document as requirement for obtaining the International Doctor Mention.

Se ha incluido este capitulo en espanol como requisito para la obtencion de la mencién de
Doctor Internacional.

Este capitulo presenta las conclusiones extraidas durante la tesis. El capitulo estda compuesto
por dos secciones. La primera seccién resume las conclusiones obtenidas en cada capitulo
de la tesis. La segunda seccién describe las contribuciones realizadas durante la realizacién
de la tesis en las areas de investigacién implicadas.

11.1 Resumen

Los avances realizados en redes de sensores y reconocimiento de actividades (AR) han hecho
posible la mejora en la calidad de vida de algunas personas, como por ejemplo, personas
con minusvalias o personas mayores. Ambient Assisted Living (AAL) o vida asistida por
el entorno utiliza la computacion pervasiva y ubicua ademas de la inteligencia ambiental,
entre otras tecnologias, para asistir a personas con necesidades especiales y que éstas puedan
permanecer activas durante més tiempo, permanecer en contacto con otras personas y poder
vivir periodos més largos en su propia casa.

En los tultimos afnos la Planificacién Automética (AP) ha experimentado avances im-
portantes y, hoy en dia, los planificadores automaticos son capaces de generar planes de
cientos de acciones en una amplia variedad de dominios. Sin embargo, el diseio manual de
dominios es una actividad que consume mucho tiempo y es propensa a errores.

Por ello, en esta tesis se propone la utilizacién del reconocimiento de actividades para
generar automéaticamente dominios de planificacion y evitar los problemas derivados del
diseno manual de los mismos. Ademas, se demuestra que la AP utilizada junto a AR puede
ayudar a superar los retos a los que se enfrenta la AAL permitiendo la deteccién de las
actividades que los usuarios de un entorno realizan y generando secuencias de acciones para
proporcionar asistencia a dichos usuarios.

Esta tesis presenta el sistema ASRA-AMLA, una arquitectura que integra AR, generacién
de dominios de planificacién y AP en entornos reales para asistir a los usuarios de un AAL.
ASRA-AMLA comienza generando modelos de usuarios para reconocer sus acciones con una
aproximacion basada en eventos para la segmentacién de los datos proporcionados por los
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sensores. Después, una secuencia de acciones y estados es generada por el médulo ASRA
que sirve de entrada al modulo AMLA para generar dominios de planificacién. Finalmente,
el sistema completo es capaz de monitorizar las acciones que el usuario realiza dentro del
entorno de prueba y ofrecerle asistencia para completar la actividad realizada. El sistema
propuesto también es capaz de predecir la siguiente accién que el usuario realizard desde
cada estado.

El capitulo 5 describe, hasta donde sabemos, uno de los pocos sistemas de reconocimiento
de actividades que utiliza aprendizaje relacional para clasificar actividades utilizando sen-
sores simples. Este sistema emplea una representacion basada en logica de primer orden
para generar un arbol relacional y clasificar actividades, obteniendo buenos resultados. Este
sistema fue la primera aproximacién para aprender acciones basicas. Mas tarde, intenta-
mos probar el algoritmo relacional con conjuntos de datos publicos y descubrimos que el
algoritmo relacional utilizado no soportaba grandes cantidades de datos. Por ello, en el
capitulo 7 presentamos un nuevo algoritmo llamado EBAR basado en el mismo método de
segmentacion pero que utilizaba una representacién proposicional. El algoritmo fue probado
utilizando conjuntos de datos publicos obteniendo mejores resultados que el resto de algo-
ritmos probados. El capitulo 6 muestra una comparativa entre el método de segmentacion
basado en eventos desarrollado y el método comunmente utilizado mostrando que, en al-
gunos dominios, el método propuesto puede obtener mejores resultados. El capitulo 7
estudia mas profundamente la segmentacién analizando los efectos producidos por el cam-
bio en los valores de los parametros utilizados por los diferentes métodos de segmentaciéon
sobre los resultados obtenidos.

El capitulo 8 describe el sistema ASRA-AMLA propuesto para la generacién automatica de
dominios de planificaciéon. Se ha demostrado que el sistema desarrollado es capaz de generar
dominios de planificacién en un dominio real utilizando informacién proporcionada por una
red de sensores. El aspecto principal del sistema es el método de segmentacién basado en
eventos empleado, el cual funciona de forma similar a la manera en la que los operadores
de planificacién operan. Utilizando dicha segmentacién, se ha desarrollado el algoritmo
empleado para el reconocimiento de las acciones de los usuarios asi como para la generacién
de los operadores de planificacién. La integracién de AR, AP y el aprendizaje de los dominios
ha sido evaluada utilizando un nuevo conjunto de datos generados expresamente durante
esta tesis para probar el sistema desarrollado. Los resultados experimentales muestran
que el sistema ASRA-AMLA es capaz de generar automdaticamente dominios de planificacion
que pueden ser utilizados para guiar a los usuarios del sistema para completar la tarea
utilizada durante las pruebas. Los experimentos también muestran que el sistema es capaz
de predecir acciones e incluso mejorar los resultados del reconocimiento de acciones a través
de los planes generados utilizando los dominios creados por el sistema.

ASRA-AMLA es, por lo que sabemos, el primer sistema capaz de aprender operadores
de planificacién en un dominio en el que toda la informaciéon proporcionada al generador
proviene de un sistema de reconocimiento de actividades, por lo que puede contener errores
en las precondiciones, efectos e incluso en el nombre de los operadores. Otros sistemas son
capaces de aprender operadores en dominios parcialmente observables o con errores en las
precondiciones y efectos de los operadores pero ninguno de ellos acepta errores en todas las
entradas, en especial en el nombre del operador que se aprende, que debe ser el correcto.

Hemos mostrado la potencia del sistema desarrollado capaz de construir y utilizar ope-
radores de planificacién automaticamente a partir de las lecturas proporcionadas por una
red de sensores. Un sistema auténomo que reconoce las acciones realizadas por el usuario
del entorno inteligente, crea operadores de planificacién que modelan el comportamiento del
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usuario y genera planes utilizando dichos operadores para asistirle en caso de necesitarlo.

11.2 Contribuciones

La principal contribucién de esta tesis es la definiciéon de una arquitectura general para in-
tegrar procesos de reconocimiento de actividades, planificacién automatica y el aprendizaje
de los modelos de acciones que utilizard la planificacién automatica. Esta arquitectura esta
basada en componentes ya disponibles (planificadores automaticos y herramientas de apren-
dizaje automdtico) y automaticamente captura conocimiento a partir de las lecturas de una
red de sensores. La arquitectura puede aprender modelos para el AR [Ortiz et al., 2008;
Ortiz et al., 2011] y modelos de acciones para AP. Adicionalmente, el trabajo realizado en
esta tesis contribuye en el campo del reconocimiento de actividades y en el de la planificacién
automatica proporcionando los siguientes puntos:

1. Una revisién del estado del arte en AR [Ortiz et al., 2011]. El capitulo 2 de la tesis
describe los principales trabajos en AR. Los diferentes trabajos son revisados segun
distintos criterios tales como modelos existentes, sensores utilizados y aplicaciones en
las que se han utilizado.

2. Una revisién del estado del arte en aprendizaje de modelos de acciones utilizados en
Planificaciéon Determinista y Planificacién con Incertidumbre mostrado en el capitulo
2.

3. Un método de segmentacién de series temporales para AR basado en los eventos
producidos por una red de sensores. [Ortiz et al., 2011] describe el método por
el cual ventanas temporales dindmicas son generadas utilizando eventos para el re-
conocimiento de actividades. El capitulo 7 presenta un algoritmo que emplea el mismo
método de segmentacién y muestra ejemplos de su utilizacién utilizando distintos tipos
de sensores. Ambos trabajos muestran que el algoritmo de segmentacién utilizado no
presenta las mismas limitaciones que el algoritmo de la ventana deslizante.

4. Un algoritmo de AR utilizando un modelo de aprendizaje relacional. La mayoria
de los modelos utilizados en la literatura utilizan modelos estadisticos aunque hay
unos pocos modelos més que utilizan otro tipo de algoritmos tales como SVM o J48.
El algoritmo presentado en [Ortiz et al., 2008] y descrito en el capitulo 5 es uno de
los pocos algoritmos de AR basados en logica de primer orden. Utiliza arboles de
decisién relacionales generados por el algoritmo Tilde [Blockeel and De Raedt, 1998],
obteniendo buenos resultados.

5. Un algoritmo de AR que utiliza selecciéon de atributos y un nuevo atributo extraido
de los eventos utilizados, descrito en el capitulo 7 de esta Tesis. Este nuevo atributo,
una clasificacién de los eventos encontrados, aporta informacién acerca de los limites
de las acciones indicando si un evento marca el final o principio de una actividad.
Normalmente, los algoritmos de AR clasifican pedazos de actividades en lugar de
la actividad completa. Con este atributo intentamos encontrar el momento en el
que las actividades comienzan y terminan para clasificar la actividad al completo de
una sola vez. Los experimentos realizados muestran que el nuevo atributo mejora
los resultados de la clasificacién de las actividades utilizando algunos algoritmos de
aprendizaje automatico.
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El andlisis de distintos tipos de segmentacién para AR. La mayoria de los trabajos
presentes en la literatura se centran en obtener mejores modelos para clasificar las
actividades. En esta tesis nos hemos centrado en mejorar los algoritmos de AR uti-
lizando un tipo distinto de segmentacion. Asi, el capitulo 7 muestra una comparacion
del método de la ventana deslizante y el método de la ventana dinamica propuesta en
esta tesis. El estudio muestra como cambios en los parametros de tamano y despla-
zamiento de las ventanas utilizadas pueden afectar significativamente los resultados
obtenidos utilizando los mismos algoritmos de aprendizaje automatico.

Un algoritmo para aprender autométicamente dominios de AP utilizando informacién
proporcionada por un sistema de AR. El sistema es descrito en el capitulo 8 y utiliza
el algoritmo EBAR descrito en el capitulo 7 para extraer las acciones y estados de las
lecturas de los sensores. Las acciones y estados extraidos son agrupadas en secuencias
para aprender los dominios de AP a partir de las acciones clasificadas y las lecturas
de los sensores que componen cada estado.

Un método de prediccion y reconocimiento de acciones utilizando AP. Los modelos de
acciones de AP construidos en el capitulo 8 son utilizados para predecir y reconocer
acciones asi como para mejorar los resultados obtenidos por el médulo de AR. Esto
representa una nueva forma de predecir acciones y realizar AR.

Para probar el algoritmo de generaciéon de modelos de planificacién se ha tenido que
desarrollar una red de sensores y grabar un conjunto de datos nuevo. El conjunto
de datos generado recoge informacién de un usuario cocinando una receta de cocina,
una tortilla francesa. Dicho conjunto de datos se ha tenido que grabar para poder
probar el algoritmo de generaciéon de dominios de planificacién. Esto es debido a que
no se ha encontrado en la literatura ningiin conjunto de datos adecuado para probar el
sistema desarrollado. El conjunto de datos sera puesto a disposiciéon de la comunidad
cientifica para ser utilizado por otros investigadores.
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Appendix A

Hand-written Domain

This appendix shows the hand-written domain used as baseline in the tests performed to
ASRA-AMLA.
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(define (domain Kitchen)
(:requirements :strips :typing )
(:types

staticobject moveable - object

surface furniture - staticobject

appliance worktop - surface

ingredient utensil - moveable

container normalutensil - utensil
cookingcontainer normalcontainer - container
specialcontainer - normalcontainer
liquidcontainer - normalcontainer

egg - ingredient)

(:predicates
(in 7?x - staticobject 7y - moveable)
(inside 7x - container ?y - moveable)
(closed 7x - staticobject)
(opened 7x - staticobject)
(holding ?x - object)
(on 7x - appliance)
(off ?x - appliance)
(raw ?x - ingredient)
(cracked ?7x - ingredient)
(omelette ?x - ingredient)
(beaten 7x - ingredient))

( :action close
:parameters ( ?paraml - furniture)
:precondition
( and
( opened ?parami))
reffect
( and
( not ( opened 7paraml ) )
( closed 7paramil)))

( :action putaway
:parameters ( 7paraml - moveable
?param2 - furniture)
:precondition
( and
( opened 7param?2)
( holding 7?paraml ))
reffect
( and
( not ( holding ?paraml ) )
( in ?param2 ?paramil)))

( :action pickup
:parameters ( ?paraml - moveable
?param2 - surface)

:precondition

( and
( in ?param2 7paraml))

ceffect

( and
( not ( in ?param2 ?paraml ) )
( holding 7paramil)))
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( :action fry
:parameters ( ?paraml - ingredient
?param2 - cookingcontainer
?param3 - appliance)
:precondition
( and
( inside ?param2 oil)
( inside ?param2 7paraml)
( beaten ?parami)
( in ?7param3 ?7param?2)
( on ?param3))
reffect
( and
( not ( beaten 7paraml ) )
( omelette ?paramil)))

( :action transfer
:parameters ( ?paraml - ingredient
?param2 - container
?param3 - container)
:precondition
( and
( holding 7param?2)
( inside ?param2 ?paraml))
reffect
( and
( not ( inside ?param2 7paraml ) )
( inside ?param3 ?paraml)))

( :action switchon
:parameters ( ?paraml - appliance)
:precondition
( and
( off ?paraml)
( in ?paraml frypan))
:effect
( and
( not ( off 7paraml ) )
( on ?paraml)))

( :action switchoff
:parameters ( ?paraml - appliance)
:precondition
( and
( on ?paraml)
( in 7paraml frypan))
:effect
( and
( not ( on ?paraml ) )
( off ?paraml)))

( :action putdown
:parameters ( ?paraml - moveable
?param2 - surface)
:precondition
( and
( holding 7paraml))
:effect
( and
( not ( holding ?paraml ) )
( in ?param2 ?paraml)))
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( :action open
:parameters ( ?paraml - furniture)
:precondition
( and
( closed ?parami))
ceffect
( and
( not ( closed 7paraml ) )
( opened ?parami)))

( :action beat
:parameters ( ?paraml - ingredient
?param2 - normalutensil

?param3 - specialcontainer)
:precondition

( and
( cracked 7paraml)
( inside ?param3 ?paramil)
( holding ?7param2))
ceffect
( and
( not ( cracked ?paraml ) )
( beaten ?paramil)))

( :action crackegg
:parameters ( ?paraml - egg

?param2 - specialcontainer)

:precondition
( and

( raw 7paraml)

( holding ?paraml)

( in kitchentop ?7param2))
ceffect
( and

( not ( raw ?paraml ) )

( not ( holding ?parami ) )

( inside ?param2 ?paraml)

( cracked ?paramil)))

( :action getout
:parameters ( ?paraml - moveable
?param2 - furniture)
:precondition
( and
( opened ?7param?2)
( in ?param2 ?paraml))
ceffect
( and
( not ( in 7param2 ?paraml ) )
( holding 7paramil)))

APPENDIX A.

HAND-WRITTEN DOMAIN



Appendix B

AMLA Generated Domain

This appendix shows a domain generated by ASRA-AMLA.
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(define (domain Kitchen)
(:requirements :strips :typing )
(:types

staticobject moveable - object

surface furniture - staticobject

appliance worktop - surface

ingredient utensil - moveable

container normalutensil - utensil
cookingcontainer normalcontainer - container
specialcontainer - normalcontainer
liquidcontainer - normalcontainer

egg - ingredient)

(:predicates
(in ?x - staticobject 7y - moveable)
(inside 7x - container 7y - moveable)
(closed 7x - staticobject)
(opened ?x - staticobject)
(holding ?x - object)
(on ?x - appliance)
(off 7x - appliance)
(raw ?x - ingredient)
(cracked 7x - ingredient)
(omelette ?x - ingredient)
(beaten ?x - ingredient))

( :action close
:parameters ( ?paraml - furniture)
:precondition
( and
( opened ?parami))
ceffect
( and
( not ( opened 7paraml ) )
( closed ?paraml)))

( :action putaway
:parameters ( ?paraml - moveable
?param2 - furniture)
:precondition
( and
( opened ?7param2))
reffect
( and
( in ?param2 ?paraml)))

( :action pickup
:parameters ( ?paraml - moveable
?param2 - surface)

:precondition

( and
( in ?param2 ?paraml))

:effect

( and
( not ( in ?param2 ?paraml ) )
( holding 7paramil)))
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( :action fry
:parameters ( ?paraml - ingredient
?param2 - cookingcontainer
?param3 - appliance)
:precondition
( and
( inside ?param2 oil)
( inside ?param2 7paraml)
( beaten ?parami)
( in ?7param3 ?7param?2)
( on ?param3))
reffect
( and
( not ( beaten 7paraml ) )
( omelette ?paramil)))

( :action transfer
:parameters ( ?paraml - ingredient
?param2 - container
?param3 - container)
:precondition
( and
( holding 7param?2)
( inside ?param2 ?paraml))
reffect
( and
( not ( inside ?param2 7paraml ) )
( inside ?param3 ?paraml)))

( :action switchon
:parameters ( ?paraml - appliance)
:precondition
( and
( off ?paraml)
( in ?paraml frypan))
:effect
( and
( not ( off 7paraml ) )
( on ?paraml)))

( :action switchoff
:parameters ( ?paraml - appliance)
:precondition
( and
( on ?paraml)
( in 7paraml frypan))
:effect
( and
( not ( on ?paraml ) )
( off ?paraml)))

( :action putdown
:parameters ( ?paraml - moveable
?param2 - surface)
:precondition
( and
( holding 7paraml))
:effect
( and
( not ( holding ?paraml ) )
( in ?param2 ?paraml)))
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( :action open
:parameters ( ?paraml - furniture)
:precondition
( and
( closed ?parami))
ceffect
( and
( not ( closed 7paraml ) )
( opened ?paraml)))

( :action beat
:parameters ( ?paraml - ingredient
?param2 - normalutensil

?param3 - specialcontainer)
:precondition

( and
( cracked 7paraml)
( inside ?param3 ?paramil)
( holding ?7param2))
ceffect
( and
( not ( cracked ?paraml ) )
( beaten ?paramil)))

( :action crackegg
:parameters ( ?paraml - egg

?param2 - specialcontainer)

:precondition
( and

( raw 7paraml)

( holding ?paraml)

( in kitchentop ?7param2))
ceffect
( and

( not ( raw ?paraml ) )

( not ( holding ?parami ) )

( inside ?param2 ?paraml)

( cracked ?paramil)))

( :action getout
:parameters ( ?paraml - moveable
?param2 - furniture)
:precondition
( and
( opened ?7param?2)
( in ?param2 ?paraml))
ceffect
( and
( not ( in 7param2 ?paraml ) )
( holding 7paramil)))
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Put-down operator after being
joined to put-away

This appendix shows the put-down operator after being merged with the put-away operator.

( :action putdown
:parameters ( ?paraml - moveable
?param2 - staticobject)
:precondition
( and
( holding ?paraml))
reffect
( and
( not ( holding ?paraml ) )
( in 7param2 ?paraml)))
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Appendix D

Generated Planning Problem for
Activity Recognition

This appendix shows a generated planning problem used to recognize actions using planning.
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(define (problem Omelette)
(:domain Kitchen)
(:objects

ucupl ucup2 dcupl dcup2 drawerl fridge - furniture
burner - appliance
kitchentop sink - worktop
oil salt - ingredient
eggl - egg
cookingcontainer normalcontainer - container
specialcontainer - normalcontainer
liquidcontainer - normalcontainer
knifel forkl - normalutensil
platel salter - normalcontainer
oilbottle - liquidcontainer
bigbowl - specialcontainer
frypan - cookingcontainer

~

:init
(closed
(closed
(closed
(closed
(closed
(closed
(in
(in
(in
(in
(in

drawer1)
dcupl)

fridge)

dcup2)

ucupl)

ucup2)

dcupl frypan)
kitchentop platel)
kitchentop salter)
kitchentop forkl)
kitchentop bigbowl)
(in dcup2 oilbottle)
(in fridge eggl)
(inside salter salt)
(inside oilbottle o0il)
(off burner)

(raw eggl)

(:goal
(and

(closed
(closed
(closed
(closed
(closed
(opened

drawer1)
dcup1)
fridge)
dcup2)
ucupl)
ucup2)

(in
(in
(in
(in
(in

dcupl frypan)
kitchentop platel)
kitchentop salter)
kitchentop fork1)
kitchentop bigbowl)
(in dcup2 oilbottle)
(in fridge eggl)
(inside salter salt)
(inside oilbottle oil)
(off burner)

(raw eggl)



Appendix E

Generated Planning Problem For
Predicting Actions

This appendix shows a generated planning problem used to predict actions using planning.
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(define (problem Omelette)
(:domain Kitchen)
(:objects

ucupl ucup2 dcupl dcup2 drawerl fridge - furniture
burner - appliance
kitchentop sink - worktop
0il salt - ingredient
eggl - egg
cookingcontainer normalcontainer - container
specialcontainer - normalcontainer
liquidcontainer - normalcontainer knifel forkl - normalutensil
platel salter - normalcontainer
oilbottle - liquidcontainer
bigbowl - specialcontainer
frypan - cookingcontainer

:init

(closed drawerl)
(closed dcupi)

(closed fridge)
(closed dcup2)

(closed ucupi)

(closed ucup2)

(in dcupl frypan)

(in kitchentop platel)
(in kitchentop salter)
(in kitchentop forkl)
(in kitchentop bigbowl)
(in dcup2 oilbottle)
(in fridge eggl)
(inside salter salt)
(inside oilbottle oil)
(off burner)

(raw eggl)

(:goal
(and

(closed ucupl)
(closed ucup2)
(closed dcupl)
(closed dcup2)
(closed drawerl)
(closed fridge)
(omelette eggl)
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Publications

Next, we show all the international conference and journal papers that were published
during the development of this thesis; some of them not related with the thesis:

Lecture Notes

1. Authors: Ortiz, J.; Garcia-Olaya, A.; and Borrajo, D.
Title: A Dynamic Sliding Window for Activity Recognition
Conference: User Modeling, Adaptation and Personalization (UMAP’11)
Booktitle: Lecture Notes in Computer Science (LNCS)
Location: Girona, Spain
date: 2011

Contributions in Conferences

1. Authors: Ortiz, J.; Garcia-Olaya, A.; and Borrajo, D.
Title: A Relational Learning Approach to Activity Recognition from Sensor Readings
Conference: IEEE Conference on Intelligent Systems (IEEE IS’08)
Booktitle: In Proceedings of the 4th IEEE Intelligent Systems conference
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