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HIGHLIGHTS

» The system proposed can control amplitude and phase of each cavity.

» Rapid diagnostics are refreshed in milliseconds.

» Increasing control parameters will not increase consumed time neither complexity.
» IQ demodulation can be achieved thanks to the transformed values at driver level.
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ABSTRACT

The IFMIF-EVEDA (International Fusion Materials Irradiation Facility — Engineering Validation and Engi-
neering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be
a9MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options
of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials
performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor
to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor
(DEMO). The radio frequency (RF) power system of IFMIF-EVEDA consists of 18 RF chains working at
175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the ampli-
tude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency
of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI)
field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC.
For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A
software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

1. Introduction

Paper is organized as follows: firstly the introduction. The sec-
ond section, system architecture, consists of a description of the
hardware and software components and a discussion of the syn-
chrony. System operation, which describes the behavior of some
parameters, some system functionalities, initialization of the 10C
and the user interface, is located in the third section. The paper
ends with a summary and future work exposure.

The RF system is defined as the equipment necessary to con-
vert the high-voltage alternating current (AC) primary power to
suitably conditioned RF power for input to the LIPAc accelerator
cavities [2]. The quality of the RF delivered to the accelerator cavi-
ties is controlled to within +1 degree in phase and to within +1% in
amplitude, using a low-level RF-drive modulated control system.

* Corresponding author.
E-mail address: julio.calvo@ciemat.es (J. Calvo).

Each RF module local control system (RF module-LCS) is a device
that will monitor and control all physical parameters within the RF
chains located in the same RF module. Each RF module comprises 2
RF chains, so the 18 RF chains will be monitored and controlled by 9
RFmodule-LCS connected via Ethernet to the central control system
(CCS) [3]. This local control system (LCS) scheme is shown in Fig. 1.
The primary role of the low level radio frequency system is to mon-
itor and control the amplitude and the phase of each cavity voltage
(fast regulation) and to control the tuning of each cavity to keep
its resonant frequency constant. For doing so, the LLRF will gener-
ate the RF signals (RF drives) for the amplifiers feeding the cavities,
depending on their voltage and forward power. LIPAc LLRF system
has to work under both the CW mode operation and the pulse mode
operation (during the commissioning and tuning of the prototype
accelerator) [3].

The main element of the LIPAc LLRF system is based on a high
performance and commercial Lyrtech FPGA VHS-ADC board for fast
control that is installed in the cPCI bus of a Windows host com-
puter. The Virtex-4 FPGA of the VHS-ADC/DAC allows us to fulfill
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Fig. 1. LLRF local control system scheme.

our highest processing needs. If an interlock happens, FPGA card
is able to make an emergency stop in less than 10 s and it stops
sending RF power to the cavities. The Virtex-4 provides us a very
good logic, with one of the highest performance and density, and
the memory capacity allows us to make accuracy Fast Data Logger,
this FPGA board consumes only half the power needed by other
FPGA families. There are two Lyrtech FPGA cards per RF module-
LCS, one is called Loops and other Diagnostics. One is in charge of
the amplitude, phase and tuning loops (Loops board) another one
is in charge of the fast interlocks management and ancillary diag-
nostics (Diagnostics board). This paper presents a device support
for LIPAc LLRF system, managing different applications related to
control and monitor processes and data logging. Mainly, this device
support is in charge of sending the parameters set by the operator
to the Lyrtech board in order to modify its configuration. Commu-
nication from the device support to the board is through a bank of
registers.

The application interface (API) that comes with these boards
only runs under Windows operating system. Nevertheless, within
the LIPAc project and for historical reasons, main control system is
based on Linux OS and EPICS [4] as the main tool for the develop-
ment of the control systems. Successful examples of the use of EPICS
within the environment of control systems for fusion experiments
can be found here [5,6]. Therefore we could consider this local sys-
tem has significant differences from the model used for the main
control system for the LIPAc project. Consequently, another impor-
tant objective of this work is to allow a distributed control system,
developing EPICS device support on the host computer and permit-
ting the use of a different operating system thanks to properties of
EPICS Channel Access.

Some examples of RF systems with EPICS can be found in [7-9].
A solution based on a digital LLRF with the same commercial board
using EPICS with a JAVA IOC can be found in [10]. The work
presented here has significantly more functionality than that pre-
sented in [10], such as the Fast Interlock Module, DACs and ADCs
gain, system tuning, clock, VCXO programming or Fast Data Logger.
In addition, there is a fundamental difference between our work
and [10], namely what we present to the final user is an interface
where all internal processes related to control and monitoring are
transparent. In contrast, the work presented in [10], includes some
tools which require programming and configuration by the final

user. Thus, the work presented here is novel because no solutions
in the literature have been found with the features and functionality
of our software architecture for an LLRF system.

This work is based on the first paper published in [1]. The main
contribution with respect to this first work is related to the descrip-
tion of the system architecture and the system operation, which
becomes one of the fundamental cores of the control system.

2. System architecture
2.1. Hardware architecture

The LLRF system is composed by three main subsystems: a dig-
ital board with fast FPGA, the analog front end and a local timing
system. It is a similar scheme as [11].

e Digital board: The digital board contains one Virtex-4 FPGA, 8
ADCs and 8 DACs with 14 bits resolution and capable to work up
to 105 MHz. It is a commercial board with cPCI format provided
by Lyrtech and controlled by a Windows CPU. This board acquires
different kind of signals: RF control inputs (cavity voltage and
forward cavity power), RF interlock inputs, digital interlocks and
timing signals (gate and pulse signals). It also provides the control
outputs of the LLRF: DC signals to be modulated into RF to control
amplitude and phase of cavity voltage, interlock output to open
a pin diode switch to stop the RF when an interlock happens and
low voltage transistor-transistor logic (LVTTL) pulses to move a
motor that adjusts the resonance frequency of the cavity. The
cavity interlocks inputs controlled by the LLRF are: reflected power
of the cavity, vacuum pressure, arcs and multipacting. Furthermore,
the Machine Protection System (MPS) will be also connected to
the Fast Interlock utility of the LLRF to switch off the RF Drive
when required. A scheme of a LLRF module is shown in Fig. 2.
The front end: This is in charge of up-converting the DC control
outputs from the digital board into RF. For doing so, the LLRF
employs a quadrature IQ modulator.

The local timing system: It consists of a PLL board with a 100 MHz
VCXO (CDC-7005-EVM from Texas Instruments). This board pro-
vides 100 MHz TTL signal to clock the digital board. This signal
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Fig. 2. LLRF system general overview [12].

will be phase locked with an external 10 MHz signal provided by
the general timing system [13].

2.2. Software architecture

The presented architecture is developed using EPICS Base
3.14.11, Visual Studio 2008 C++Express Edition, asyn4-13-1, the
Application Programming Interface (API) for Lyrtech boards and
Control System Studio (CSS 3.0.2).

This solution consists of the following EPICS components:

e 10C (input/output controller): The IOC is any computer that sup-
ports the EPICS run-time components, including the database,
and its access routines, device drivers, record types for various
input and output and scanning and monitoring functionality [14].
Since the host computer system Lyrtech card is based on Win-
dows, we chose to run the EPICS IOC on a Windows host.

e Database: The EPICS database is a basic element in an I0C. The

database is a collection of records of various types. A record is an

object with:

- A unique name.

- A behavior defined by its record type (class).

- Controllable properties (fields).

- Optional associated hardware I/O (device and driver support).

- Links to other records [15].

In our LLRF control system, the records controlling the Lyrtech

boards have associated device and driver support.

Device support: We could define it as an interface between

records and hardware. A device support routine has knowledge

of the record definition. It also knows how to talk to the hardware
directly or how to call a driver which interfaces to the hardware.

Thus, device support routines are the interface between hard-

ware specific records in a database record and device drivers or

the hardware itself [16].

AsynDriver: It is the name of the original asyn package. It is writ-

ten in C and provides the functions needed to write asyn servers

(called asyn port drivers) and asyn clients (such as EPICS device

support). It provides asynManager, which is the core of asyn, as

well as a set of specific interfaces (asynInt32, asynOctet, asyn-

Float64, etc.). asynPortDriver is a C++class that is intended to

make it much easier to write asyn port drivers. It takes care of
most of the details of writing a port driver. It has a parameter
library, and a set of base class methods that can be used in many
cases. asynPortDriver simply calls the original asynDriver func-
tions, which are then more or less hidden from the derived classes
that are based on asynPortDriver [17].

LAN: Local area network. This is the computer network which
allows the communication between I0Cs and Operator Interfaces
(OPIs). EPICS provides a software component, Channel Access,
which provides network transparent communication between
Channel Access clients (e.g. Operator Interface, OPIs) and an arbi-
trary number of Channel Access servers (e.g. I0Cs) [4].

OPI: Control System Studio (CSS) is a combined effort of several
parties, including DESY (Hamburg, Germany) and SNS (Oak Ridge,
TN). It provides a collection of control system tools in a common
environment, based on Eclipse [18].

This architecture is module based and it follows the LIPAc four
layers model, as shown in Fig. 3. At the client level we have used
CSS as software that allows PVs to be accessed and modified from
the network, using the second layer, the Channel Access, that is
the communication protocol used by EPICS to transfer informa-
tion through the network. The next layer is the record support one,
where the IOC and the database are located; here, we have the soft-
ware which implements PVs for the use with Channel Access. This
is the heart of the architecture and permits the communication
between records in the database and the device. The fourth level
corresponds with the equipment level, FPGA boards.

Regarding to the control flow using asynPortDriver, Fig. 4, we
assume that code runs from an application thread to a port thread.
Records have an associated hardware, Lyrtech boards, but they do
not access to this hardware directly; rather the device support layer
performs I/O operations on request calling the asyn port driver
layer. In our case, most of the records are analog inputs and ana-
log outputs. The device support provides I/O for a single record
type [15]. In every record, the DTYP (Device Type) field determines
which device type to use, in our case, the DTYP corresponds with
the asynPortDriver [17] functions (writelnt32, writeFloat64, ...).
From the record support level, the control goes to record device
support which calls asynPortDriver. This device support solution
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increases the modularity and it makes not necessary to learn a new
record type for each type of device.

One of the most interesting things about writing an asynDriver
is that it is much easier to extend in the future. For example, at
first it was thought necessary to use only analog input and analog
output records. But later it was necessary to add support for binary
output and multi output multi binary records that allow users to
choose some options from a menu. This addition in any other kind
of device support would have meant a new code rewriting. With an
asyn driver that addition was less than 10 lines of code. Similarly,
with asyn, if the users decide that they want to use a longout record
rather than an analog one, we do not have to change our driver at
all, changing the database file is enough. That is not true if one does
not use the generic asyn device support.

Asyn provides standard facilities for debug tracing. We just
add one line to our driver to use this feature. Then, when the
user enables AsynTraceloDriver at the EPICS shell for our driver
asynSetTraceMask(myDriver, 0, 9) this will turn on debugging

messages from the driver. Those messages have useful time stamps,
and they can be routed to a file, not just to standard output (stdout).

2.2.1. Synchronous and asynchronous device support

Because we are using asynPortDriver almost all of the details of
synchronous versus asynchronous are taken care of for us. Therefore,
the choice of using a simple synchronous device is not consid-
ered. The only thing we need to do to change from synchronous
to asynchronous is set the bit mask for AsynCanblock in the call
to the asynPortDriver constructor in our driver. Our current code
looks like this: (AsynCanblock =0, AsynMultidevice =1, autoCon-
nect=1)

That means we have created a synchronous driver as well, i.e.
one that is assumed to execute quickly (e.g. under 1 ms, so it does
not slow down EPICS record processing). If we find that our device
is slow and we need to create an asynchronous driver, then we just
change this to: (AsynCanblock =1, AsynMultidevice =1, autoCon-
nect=1).

The difference is all handled by asynManager and the standard
asyn device support.

If we do not set the AsynCanblock bit, then device support will
directly call our driver’s writeInt32, readInt32, etc. functions when
therecord processes from whatever thread is processing the record,
i.e. EPICS periodic scan tasks, Channel Access server tasks, etc. This
should only be done if our device is fast.

If we do set the AsynCanblock flag then asynManager will create
a separate port thread for our driver. When device support wants
to talk to our driver it will queue a request to communicate with it,
and when the driver is not busy, device support will call the driver
from that separate port thread. The driver is allowed to be slow in
this case, because it will not block record processing, which is OK
to be slow.

3. System operation

The traditional way to operate Lyrtech VHS-ADC/DACs boards is
carried out using the manufacturer utility included in the purchase.
The program communicates directly with the VHS-ADC/DACs, thus
it must run on the cPCI CPU board of the cPCI chassis that contains
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the platforms. Through this device support, operator can control
clock and trigger settings, FPGA designs, the four custom registers,
and the input/output gains of all the VHS-ADC/DACs. If the pro-
gram detects the proper modules within FPGA designs, operator
can control data recording, as well as data playback. The device
driver developed in this work is an extension and an improvement
of the utility provided by the manufacturer. Moreover, this devel-
opment offers the possibility to control and modify parameters that
are not accessible from the traditional utility (see Fig. 5).

The general operation of the device driver is based on the use of
certain functions of read/write registers in the Lyrtech card. These
functions are contained within some libraries provided by the man-
ufacturer. After two years of work, the driver code length is nearly
9000 lines and it is growing steadily thanks to the addition of new
features and improvements.

3.1. Parameters to FPGA

Device server and GUI will be used to control the LLRF of two RF
plants. In order to do so, the operator will set some working param-
eters. All these settings are gathered in different groups. These
groups and the number of parameters are increasing continuously:

e Amplitude and phase loop parameters.
e General configuration parameters.

e Tuning loop.

e Manual tuning.

¢ Conditioning.

e Interlocks.

When the user writes a new parameter in the GUI, this parame-
ter is sent to the FPGA through Register 0. The device server applies
the right transformation to the parameter value. These registers
allow to the user sending 32 bits words to the FPGA. The 16 MSBs
are employed as the address of the word, while the 16 LSBs are
used to send the data or value of the parameter. The MSB bit will
be set to 1 when sending a parameter to cavity A and set to 0 when
sending a parameter to cavity B. Both cavities will have the same
number of parameters, but their values could be different. Besides,
every parameter is sent twice in two different addresses in order to
avoid communications problems. In case the data sent by the two
addresses are not coincident, a diagnostics error bit will be asserted
and stored in another register. Bits 30-17 are identical in these two
addresses, and bit 16 will be set to O for the first address and set
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to 1 for the second address. Some examples of this operation are
shown in Fig. 6.

After writing a new parameter, the driver reads instantly the
new information from the FPGA once it has been written. To do so,
the driver writes the parameter address in Register 1 and then it
reads back the value of Register 1.

On the other hand, all the parameters will not be taken into
account by the FPGA until the word 1 (MSB = 0) for cavity A or word
2,147,483,649 (MSB = 1) for cavity be sent to the Register 3. This is
done every time a new parameter is set and after that, Register 3 is
set to zero again [20].

3.1.1. Relations between GUI parameters and FPGA parameters

Some of the values displayed in the GUI are not exactly identical
to the values that should be in the FPGA. The digital IQ demodula-
tion [11] is carried out at FPGA level. For doing so, the RF inputs
will be under-sampled and digitally demodulated. Since the CPU
is used to send-read configuration commands to-from the FPGA
board, some of the values displayed in the GUI will need to be
transformed. These special parameters are cavity voltage, cavity
phase and IQ components. The challenge of these transformations
is to make the board understand values that the operator can easily
manage and to get values introduced by the operator. Hence, the
first step to control amplitude and phase components of the cavity
voltage, is to transform the cavity voltage set points introduced by
the operator through the GUI from polar coordinates (amplitude
and phase) to rectangular coordinates (I and Q). The device support
performs these operations as shown in Fig. 7.



3.2. Device support functionalities

The device driver has several functionalities and hundreds of
signals. Here we show a few examples achieved in the presented
development:

3.2.1. Gain

The applicable gain range of the VHS-ADC Virtex-4 ADC and DAC
channels is 0-15 (i.e. 4-bit gain values). Device support allows the
user modifying the values of these gains to the required setpoint.

3.2.2. Clock

All the operations carried out by the Lyrtech board should be
synchronized with a clock. The source of this clock could be internal
or external.

Next list shows the available clock sources of the VHS-ADC/DAC.
The device support allows the user choosing any of these clock
sources:

e External source.

¢ Fixed onboard clock (105 MHz).
e FPDP Receive Clock.

e RapidCHANNEL Receive Clock.

* FPGA Generated.

¢ Fixed Divided by Two.

For the LLRF internal test at Ciemat we will always use the clock
option: external source from front panel. So before starting sending
parameters, the Lyrtech board is configured to work with this clock.

3.2.3. Voltage Controlled Crystal Oscillator (VCXO0)

The function of the VCXO is to synchronize Lyrtech card clock
with master oscillator signal in order to properly perform the IQ
demodulation of RF signals. Without the VCXO, the phase of the RF
signals could not be read. Main properties of this functionality are:

e Synchronizes frequencies up to 800 MHz.
e Each output frequency is selectable by x1, /2, /4, /8, [16.
e All outputs are synchronized.

In order to check if the VCXO has been well programmed, the
driver read the status of the four diagnostic signals with addresses
50-53 as shown in the next table. The way to read these bits is
the same employed to read any diagnostics signals, i.e. writing the
address of the corresponding signal at user defined register 2,
offset 0x0074, and reading back the register value [21].

OPICSS
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Generator

Lyrtech Boards — Loops & Diagnostics

Fig. 8. LLRF system test bench at Ciemat.

hardware or software. By default it will be set to hardware, but
this parameter can be changed through the LLRF GUI. When the
user presses the button Save Acquisition, the TriggerSource sets to
software and a software trigger is released [21].

3.3. Testbench

The LLRF testbench, Fig. 8, consists of a RF generator and the
LLRF itself. The RF generator provides a 175MHz, 18 dBm signal
to upconvert the DC control outputs of the digital board. The RF
upconverted outputs are sent to a filter and a splitter, and from
there, the RF signals are sent to the ADCs of the digital board to
test the acquisition, the loops and the communications of the sys-
tem. The reference output of the RF generator (10 MHz) is used to
synchronize the LLRF with the RF generator employing a PLL board
installed in the front end of the LLRF.

To measure latency time we have used different parameters. In
all measurements we have found that this time is almost negligible.
A measure of cavity voltage set parameter is shown in Fig. 9. We
define latency time as the time from entering a new value through
the interface toread it back. Once the card has recognized the value,
acquired it and shown it, we can claim to have crossed all layers of
the system. Looking at the next Latency Time table of the cavity
voltage set parameter, we can conclude that the system works on
the scale of microseconds.

Latency time

VCXO Cavity voltage set Cavity voltage readback LT
Power (50) Ref(51) Locked (52) Cable(53) Message to display 50 49.99 42 s
1 CXO cable di q 100 100.01 157 ps
;< (>)< (>)< . xcio cable 1;c0nnecte 150 150.00 44ps
P"f""ere 200 199.99 38 us
1 1 0 0 VCXO reference 250 250.00 54us
1 1 1 0 VCXO locked
Any other combination of bits Error

3.2.4. Fast data logger

Lyrtech boards, Loops and Diagnostics, have a 128 MB RAM
which is storing data continuously. After an interlock happens, the
LLRF will send a trigger to stop the acquisition of signals and all the
data stored in the RAM will be transferred to a binary file in the
Windows CPU that controls both boards.

There is afile called CellsDataRecorder.ini where two parameters
can be set: ChannelsSource and TriggerSource. The FirstChannel-
Source should be always set to 1 and the SecondChannelSource
should be always set to 0. The TriggerSource can also be set to

3.4. EPICS IOC initialization

An EPICS IOC [14] starts by loading the binary software image
and then a database definition file containing a description of all
the data records and enumerated types used in the in-memory
database. Our st.cmd file is short and simple, it uses macros for PVs
names that follows the naming convention within IFMIF-EVEDA
project. During initialization, the driver detects the boards assign-
ing them a handle that will be the main identifier. During this
initialization, a.bit file is loaded into the boards memory, which
has been written properly for the special feature of the system.
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Fig. 10. OPI developed using CSS.

3.5. User Interface

The graphical user interface shown in Fig. 10 has been designed
using CSS. To insure a consistent look and feel between the pan-
els developed with a graphical user interfaces (GUI) development
tool, basic rules have been followed. These rules are based on the
previous experience of the European Union (EU) team. This aspect
must be taken in consideration because GUI panels will be the most
important way to interact with the different subsystems. A uniform
way to represent information is very important and will avoid the
Christmas tree effect. So to avoid unnecessary additional work when
the LCSs will be integrated at the final stage in Rokkasho, these basic
rules have to be adopted from the beginning of the development.
The more intuitive the user interface the easier it is to use, and the

easieritis touse and the more efficient to use it [22]. We expect that
the operator and the machine engineer can easily tune the system,
control the parameters and program Lyrtech boards through the
set of designed pages. Following the EPICS philosophy, the whole
logic involved has not been implemented at the client level (CSS,
but rather on the 10C), thus they are available from anywhere in
the control system using any client.

4. Summary and future plan

The LLRF control system based on a Lyrtech FPGA card has been
solved in a new way, using the architecture explained in this paper.
One of the inherent characteristics of the system is the indepen-

dence of the hardware at the time of accessing the Lyrtech board
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from anywhere in the distributed control system. This was one of
the main challenges of the presented architecture.

The power of the class asynPortDriver has made it possible to
develop a large amount of functionalities in less than two years of
work. In addition to the functionalities shown, automatic condi-
tioning of the cavities, rapid diagnostics of RF, a proprietary system
of warnings and some other features have been integrated as well.

This solution will be used to control and monitor the LLRF sys-
tem of two plants in the final accelerator prototype which is being
built in Rokkasho, Japan. Thanks to CSS and EPICS Channel Access,
process variables can be seen in any remote computer of the LIPAc
Central Control System. The EPICS based characteristics of the sys-
tem makes it useful because of its modularity and it can be easily
upgradeable and modifiable. The choice of EPICS as a control toolset
was very important to achieve this success.

The further work line moves toward adding more functionalities
to the system and carrying out the testing of the system within the
overall prototype accelerator. Else, adapting the warning system to
the Best Ever Alarm System Toolkit (BEAST) [23] could be another
choice.
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