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Abstract----------------------------------------------------------------------------------------­
In this paper we introduce a general method for estimating semiparametrically the different 

components in weak or strong separable models. The family of separable models is quite 

popular in economic theory and empirical research as this structure offers clear interpretation, 

has straight forward economic consequences and often is justified by theory. As will be seen in 

this article they are also of statistical interest since they allow to estimate semiparametrically 

high dimensional complexity without running in the so called curse of dimensionality. 

Generalized additive models and generalized partial linear models are special cases in this family 

of models. The idea of the new method is mainly based on a combination of local likelihood and 

efficient estimators in non or semiparametric models. Although this imposes some hypothesis on 

the error distribution this yields a very general usable method with little computational costs and 

high exactness even for small samples. E. g. it enables us to include models for censored and 

truncated variables which are quite common in quantitative economics. We give the estimation 

procedures and provide asymptotic theory for them. Implementation is discussed, simulations 

and an application demonstrate its feasibility in finite sample behavior. 
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1 Introduction 

Separability plays an extremely important rule in economics and econometrics. Already 
Leontief (1947a,b) introduced and discussed in detail definition, interpretation and conse­
quences for different levels of separability (local, global, weak, strong). It is characterized 
by the independence of the marginal rate of substitution between a pair of inputs from 
changes in the level of another input, Le. a~k §:- = 0 or GjGik - GiGjk = 0 with Gi = g~, 
G ik = a:

i

2ffx
k

, where G : lRd -+ lR can be e.g. a production function and Xi, Xj, Xk inputs from 
(different) pairs, i,j, k = 1, ... , d. We speak of weak separability when Xi, Xj are from the 
same subset of inputs, but Xk from a different one. Strong separability is given when Xi, Xj 

can also to be from different subsets. The subsets are thought to be mutually exclusive and 
exhaustive. Imagine we have chosen r such subsets of inputs. Regarding the consequences 
for the functional form of G, well known results (see Goldman and Uzawa, 1964) are that 
weak separability is equivalent to G(x) = F(1}l , 1}2, ... ,1}p), where 1}s is a function of the 
elements Xk, k = 1, ... , ds of subset s, s = 1, ... ,p only. They further proved that strong 
separability is equivalent to (partial) additivity, Le G(x) = F(1}l + 1}2 + ... + 1}p). 

There exists an enormous amount of papers, discussing separability for production functions, 
e.g. Denny and Fuss (1977), Fuss, McFadden, Mundlak (1978), or in general for demand and 
utility functions, see Deaton and Muellbauer (1980). Pretty often it is considered in the 
context of problems of aggregation and substitution (Berndt and Christensen, 1973) and 
much more, especially also for the specification of flexible functional forms and separated 
testing. Testing separability in nonparametric context is still in development, see Sperlich, 
Tj0stheim, Yang (1999) who did this nonparametrically in the context of interaction analysis. 
Separability enables econometric analysis in terms of subsets of all possible inputs, stages 
or with aggregates of them. Consequently we can aggregate inputs into indices. It allows 
thus decentralization in analysis, optimization and decision-making. For more references see 
also Blundell and Robin (2000) which have extended the discussion to latent separability, 
i.e. grouping goods even without having weak separability or in other words, allowing some 
goods to be in different groups. 

From the statistical point of view, Stone (1985,1986) mentioned (partly we can say, added) 
the points flexibility, dimensionality and interpretability. So he proved that additive mod­
eling can circumvent the curse of dimensionality what in nonparametrics is of fundamental 
importance and at all makes these methods feasible for higher dimensional problems. This 
actually carries over to the more general case when the impact function can be decomposed 
in lower dimensional function at all. Flexibility we already discussed before, and the advan­
tage of interpretability is obvious since interpreting directly a higher dimensional function 
without the chance of separated (i.e. component wise) considerations is hardly possible. 

For nonparametric estimation in separable models, Le. combinig the above favorable prop­
erties and avoiding the curse of dimensionality, mainly two different methods are known 
though for both exist various modifications: the backfitting (see e.g. Mammen, Linton and 
Nielsen, 1999; Hastie and Tibshirani, 1990) and the marginal integration estimator (see 
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e.g. Tj0stheim and Auestadt, 1994; Linton, Nielsen, 1995). Their advantages, disadvan­
tages, different and common features are investigated and discussed in detail by Sperlich, 
Linton and Hardle (1999) and Nielsen, Linton (1997) but only one special version of each 
and only for the more simple additive model case. This is since e.g. for the backfitting little 
theory has been provided and still is lacking for generalized additive models. Nevertheless 
it is believable that the found and analyzed properties and behavior carries over for more 
complex situations if not even worse. Additionally there exist some articles based on series 
estimators, see e.g. Andrews and Whang (1990) or Newey (1995), but all of pure theoreti­
cal nature without discussion of feasibility, application or simulations. Recently, Horowitz 
(2000) presented a conditional moment estimator for generalized additive models with un­
known link function and discusses an extension to a trivial case of weak separability. As 
almost no structure is assumed, this is a nice approach for pure exploratory data analysis 
but this certainly pays with numerical deficiencies in performance. In practice, empirical 
researcher often prefer to impose at least some structure as well as procedures that allow for 
partly modeling. 

A second point is that it is not clear so far how to estimate both, parameter and the lower 
dimensional nonparametric components in non additive but weak separable models. Espe­
cially for frequent problems as Tobit models, e.g. for censored or truncated variables or in 
simultaneous equation systems, nonparametric weak separable models can not yet be esti­
mated. Apart from Horowitz (2000), also Pinske (2000) considers a special (trivial) case 
of weak separability but both do not consider Tobit models. For some approaches to non­
or semiparametric estimation of special Tobit models we refer to Newey, Powell and Vella 
(1999), Lewbel, Linton (2000), or Ai and Chen (1999) from which only the latter one con­
siders semiparametric separable models but only estimates the parametric part and is more 
of theoretical nature. We are looking for a computational not intensive procedure that can 
handle these problems and allows to provide asymptotic theory. Therefore we have chosen 
the (conditional) weighted or local Likelihood approach developed in Staniswalis (1989). A 
problem when considering conditional moment estimators for simultaneous equation systems 
is usually the identification, e.g. if having two simultaneous equations, maybe both with se­
lection bias problems and maybe even nested etc. For more discussion and examples about 
those typical problems of non identifiability, see Rodriguez-P60, Sperlich, Fernandez (1999) 

or compare Ai and Chen (1999), Newey, Powell and Vella (1999). Certainly, maximum or 
quasi likelihood procedures need more distribution assumptions than the conditional expec­
tation estimators but can be more generally used and usually perform better in finite sample 
estimation. We developed our method for both, likelihood estimation under strong distri­
bution assumptions and the quasi likelihood approach. For semi- or nonparametric ways to 
relax the conditions in likelihood context, see among others Severini and Stanisvalis (1994) 

and Heckman and Singer (1984). Actually, often errors in likelihood estimation caused by 
violation of distribution assumptions often are less serious as sometimes believed. Instead, 
for models typical in economic research, the errors due to a misspecification of the Link 
is negligible in comparison to misspecification in the index functions, see e.g. Fernandez 
and Rodriguez-P06 (1997). So usually, switching from a generalized linear models (GLM) 
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to a single index model (SIM) with unknown link does not really change the final results 
whereas modeling the index flexible does a lot. For this reason testing functional forms of 
the index, often revealing nonlinearities, is becoming more and more a topic. Among other 
reasons this explains the popularity of generalized additive models (GAM), compare also 
Hardle, Huet, Mammen, Sperlich (1999), Burda, Hardle, Miiller, Werwatz (1998) or Hardle, 
Sperlich, Spokoiny (1997). 

The organization of the rest of the paper is as follows. In Section 2 we introduce and motivate 
the model. We also present some examples for typical applications in empirical economics. 
The estimator and its asymptotic properties are given in Section 3. In Section 4 we discuss 
implementation and illustrate the finite sample behavior by simulations and applications to 
different models and different real data sets. Section 5 concludes and gives further discussion, 
e.g. how to test the correct choice of the link or likelihood function. The assumptions, its 
discussion, proofs and computational details are postponed to the Appendices. 

2 The statistical model and motivation 

In order to introduce our estimation procedure, let us establish formally some statistical 
framework. Suppose we observe random variables Y E IR, X EX, T E I, being X and 1 
compact sets X C IRd, 1 C IRk, such that the conditional density of Y given X and T is of 
the form 

f (., T; TJI, ••• , TJp; e) 

where e is a parameter vector and TJI," ',TJp are also parameters that depend on X. The TJ 
parameters might be nonparametric functions that depend on subsets of X, and it is allowed 
also to consider a parametric component, e. In order to simplify our work, we will assume 
that the conditional density of T given X does not depend neither on the parameter vector 
e nor on the parameters TJI, ••• , TJp. Therefore, the log-likelihood for a single observation can 
be written as 

log f (Y, T; TJI, ... , TJp; e) + logf (TIX) + log f (X) , 

and we can concentrate our analysis in the first term. Being more precise about this expres­
sion let 

{f(.,T;TJI,"·,TJp;e): TJI E H1,"',TJp EHp,e E 8} 

denote a family of conditional density functions. Assume that 8 is a compact subset of IRk. 
Moreover, assume that HI,' .. , Hp are respectively compact subsets in IR. The parameters 
TJl, TJ2, ... , TJp are functions of x, i.e. TJl = TJl(X1),TJ2 = TJ2(X2), .. ',TJp = TJp(xP), and the vectors 
Xi E Xdo i = 1,' " ,p, are subsets of x such that X = Xd1 X ••• Xdp and L~=l dj = d. Finally, 
TJ'S are assumed to be unknown smooth functions TJj : Xdj -+ Hj , that take values in a set rj 

rj = {cl> E 0 2 (Xdj) : cI>(xi) C Hj for all x j E Xdj}' 

For the ease of presentation we always will speak of densities of X, T and treat X in the future 
as a continuous variable on a compact support. Note that this is by no means necessary; 
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we could also include discrete or even dummy variables, especially for T, but replacing the 
densities by point measures respectively probabilities. For the variable X which will enter 
in the nonparametric estimation part we refer to Delgado and Mora (1995). They showed 
that the impact of discrete variables can be handled nonparametrically in the same way and 
do even not affect the rate of convergence. 

In order to motivate more our considerations, let us present two standard examples from 
economics. 

Example 1 Gronau (1973) considered the housewife's decision to work or not and how 

much to work ending up with a so called Tobit 2 model (see Amemiya, 1985). Let WO be the 

offered wage given to each housewife independently of hours worked, wr the reservation wage, 

and w the actual wage. With x, z being properly chosen explanatory variables we observe 

(1) 
o of 0 r Wi = wi • wi > wi , 

Wi = 0 if w?::; w[ , i = 1, 2, ... , N. 

To be able to estimate such a complex structure, the random errors (Ui' Vi) are assumed to 

be i. i. d. bivariate normal with mean zero, variances O"~, 0";. Often, they are additionally 

assumed to be independent what actually is not necessary to identify the system. Then it is 

recommended to estimate the parameters of interest through maximum likelihood techniques 

with the likelihood 

(2) 

where F is the cumulated standard normal distribution function and f the corresponding 

density. Here, TIo is the product over all observations without job, TIl the product over all 

having one. 

By incorporating a set of alternative assumptions, it is also possible to estimate the param­

eters of interest by using a two step method proposed by Heckman (1979). 

These well known estimation procedures present as a main drawback that in order to obtain 

consistent estimators for the parameters of interest it is necessary to assume that both the 

conditional distribution is known, and the index function falls within the class of a known 

parametric function. 

If we relax the model assumption of known index in both equations of (1) and thus allow for 

nonlinear relations 
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with 7]1, 7]2 being arbitrary smooth functions, and set () = (O"u,O"vV we would replace the 

corresponding expressions in the likelihood equation (2). We can model the 7] 's even to be 

constructs of lower dimensional components, compare Example 2. 

This estimation problem is by far not trivial and to our knowledge so far unsolved. Certainly, 
in the much more simple when the model can be written (and identified) as a conditional 
expectation, and even having a generalized additive model, i.e. E[YIX] = G {L:17]j(Xj )} , 
several approaches are done. Under them, the probably most general is due to Horowitz 
(1999) who proposes a kernel smoothing method to estimate both nonparametrically, the 
link G(·) as well as the index functions 7]jO. Huet, Hfu-dle, Mammen and Sperlich (1999) 

proved bootstrap and constructed tests on the 7]jO and G(·) when Y is taken from an 
exponential family. Furthermore, Ai and Chen (1999) propose a (more theoretical) semi­
parametric estimator based on conditional moment restrictions but concentrate only on the 
estimation of the parametric part. The assumption of weak separability is much weaker than 
the additivity. Mainly it allows for combinations and thus interaction terms between the 
components and many other nonlinear relationships between the different groups of vari­
ables, recall the discussion in Section 1. As indicated in the introduction, making the strong 
assumption of knowing the likelihood function is due to the aim of estimating also Tobit 
models what the abovementioned methods can not. As discussed before, there exists an 
increasing amount of articles that are concerning about censored and truncated models, but 
as indicated are pure nonparametric approaches without parametric part nor allowing for 
any structure as separability. Finally, our new method yields reasonable performance for 
small Ureal) data sets. 

Example 2 Let us consider a typical Tobit 1 model with truncated variables. Imagine we 

are interested in a labor supply model looking on the hours of work y. Then we observe only 

y, = { ~(X;' t,) + u, if h(Xi' t i ) + Ui > 0 

otherwise 

where ti E IRd are some dummy and Xi E IR3 other explanatory variables. Further, U is a 

normal distributed error with variance 0"2. We could model h(·) e.g. in the following form 

what would be additivity, i. e. strong separability, or alternatively 

being thus a weak separable model. In both, the 7]j, j = 1, 2, 3 are arbitrary smooth functions 

with the only restrictions E[7]l] = E[7]3] = 0 for identification. The Likelihood to maximize 

would be 
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Setting () = (, .. ?, (J V we again could apply directly our method. For this, compare also our 

application on Section 4. 

Note again, that whereas the other above mentioned methods can not be applied here, ours 
can. 

3 The estimator 

Suppose we have a sample of N independent replicates {(Yi, Xi, 7i) h=l,. .. ,N; our goal is to 
estimate the sequence of parameters 1]1,· •• , 1]p, () from the sample information. We remind 
that the 1]'S are unknown functions evaluated locally, i.e. at point Xo = (xh,···, xg), re­
spectively 1]~ = 1]1 (xh), ... ,1]~ = 1]p(xg). The estimation procedure is based in the weighted 
local likelihood approach developed in Staniswalis (1989). The proposed method consists 
in approximating the likelihood function locally. However, under certain hypothesis on the 
likelihood function we also develop an estimator which is based on maximizing a local quasi­
likelihood function (See McCullagh and Nelder, 1989 and Severini and Staniswalis, 1994). 
The main advantage of the method based on the quasi-likelihood function is that there is 
no need to assume the knowledge of the conditional density function. However, its draw­
back is that the underlying conditional density must belong to the family of exponential 
functions. This rules out the possibility of considering some econometric problems that are 
typical in standard micro econometric analysis. On these grounds we present both alternative 
estimating approaches. 

Let us denote the estimators of the different curves at point Xo by ill = ill (xh), ... ,ilp = 

ilp(xg). Then, the estimation is implemented through a three step procedure. The steps are 
the following: 

1. For a given value Xo = (xh, ... , xg) and fixed (), we estimate 1]1,1]2, ••• , 1]p as the solution 
to the problem 

where the weighted likelihood is 

N (xo - Xi) W (1]1, ..• , 1]p, ()) = t; K h logf (Yi, Ti ; 1]1,· •• , 1]p, ()) , 

where K(·) d-variate kernel function and h is the corresponding bandwidth. Note also 
that all estimators depend on (). 
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2. Given the previous estimates for the nonparametric part, we perform a simple likelihood 
for estimating (), i.e. 

(3) 

and set T]j = T]j,ON for all j = 1,2, ... ,p. 

3. Now, with the estimators obtained in steps 1 and 2, we re-estimate the nonparametric 
part as follows 

for allj = 1,···,p. 

In this method, the first two step are derived from the profile likelihood approach proposed 
in Severini and Wong (1992) and extended according our aims, e.g. to a vector structure for 
the nonparametric part. However, we must emphasize that this two steps provide a root-N 
consistent semiparametric efficient estimator of ()o, but the nonparametric components are 
estimated with the problem of curse of dimensionality. In order to avoid this, and to take 
advantage of the weak separable structure we introduce additionally the third step. We will 
see that the resulting estimators form the third step avoid the problem mentioned above 
and also yield fully efficient estimators. For the nonparametric part we speak of efficient in 
the sense of being equivalent to an estimator based on knowing the other components of the 
regression function. More details and discussion about the procedure can be found in the 
next section whereas in this section we focus more on the theoretical part. 

As it was previously remarked, the knowledge of the conditional likelihood function in some 
situations is a strong assumption than necessary. It is possible to relax this by taking into 
account the following setting: 

The conditional density log.e (Y, T; 'f}l, ••• , 'f}p; ()) is an exponential family distribution.i.e . 

.e (Y, T; 'f}l, ••. ,'f}p; ()) = exp {Y b - b(c5) + c(Y)} 

where c5 = ('f}l, ... ,'f}p, ()). In this case, by the properties of the exponential density function 

E (YIX = x, T = t) 
V(YIX = x,T = t) 

g(t,'f}I(XI ), .. . ,'f}p(xP),()o) 

- a2V (g(t, 'f}l (Xl), ••• ,'f}p(XP), ()o)) , 

where g(.) and V(·) are known functions. Note that in both cases heteroscedastic models are 
included. However, to estimate the functional effect of heteroscedasticity is often a question 
of identification, moreover than a question of the algorithm. 

In this case, it is possible to substitute in steps 1, 2 and 3 the log-likelihood log.e(.) by the 
quasi-likelihood function r (., g(t, 'f}l (Xl), ••• ,'f}p(XP), ()o)) that is defined as 

{Y (s - y) 
r (y,g) = J

g 
V(s) ds. 
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This quasi-likelihood function has been motivated by many ways; one is to interpret it as a 
weighted least squares as T(Y, p,) is equal to -.5(p,- y)2v- 1 where v-1 is a weighted average 
of 1 IV (s). We will study first the asymptotic behavior of the local maximum likelihood 
estimators and later the quasi-maximum likelihood estimators, but before to do so we intro­
duce some notation and terminology that will be used in the remainder of the paper. Let 
us denote by p(X) the marginal density of X = (Xl, ... , XP). Furthermore Pj(xj) is the 
marginal density of xj. a2 (x) = E [Y21X = x] and a; (xj) = E [y2lxj = xj]. 

(4) 

(5) 

In i (y, t; 'T}l, ••• , 'T}p, 0) 
a 

-a IF(y,t;'T}l,···,'T}p,O) j = 1,···,p; 
'T}j 

Where FjO can be respectively i j (·), <pj(.) or Tj(·). Then, if ON is the solution to the 
optimization problem (3), in Step 2, the following result is proved in Appendix I 

Theorem 1 Under assumptions (A.i)-(A.2), (B.i)-(B.3), (K.i) and (H.i), stated in the 

Appendix, then as N tends to infinity 

where 

= E [;o<p(Y,T;'T},O) {)~T<P (Y,T; 'T}, 0)] - E [;o<p(Y,T;'T},O) {)~T<p(y,T;'T},O)] 

and 

a ( a a )T ao<P (Y, T; 'T), 0) = a0
1 

<P (Y, T; 'T}l,···, 'T}p, 0),···, aO
k 

<P (Y, T; 'T}l,···, 'T}p, 0) 

a ( a a - )T 
a'T) <P (Y, T; 'T), 0) = a'T}l <P (Y, T; 'T}l, ••• ,'T}p, 0) , ... , a'T}p <P (Y, T; 'T}l, ••• ,'T}p, 0) 

As it can be observed from this result, the semiparametric estimator achieves the semipara­
metric efficiency bound (see Chamberlain, 1992 or Newey, 1990, 1995). Further note that the 
asymptotic variance can be approximated with the aid of the Hessian matrix, something we 
get automatically out from the procedure, e.g. when using the Newton-Raphson algorithm. 

In order to show the asymptotic behavior of the nonparametric estimators obtained in Step 
3, we need some further assumptions on bandwidths, kernel functions and identification of 
the 'T}j, j = 1, ... ,p. 
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(C.I) Nh;j ---+ 00 and Nh;j+4 ---+ 0, for j = 1,· .. ,p, as N tends to infinity. 

(C.2) The support of kernel K j is compact and JtKj(t)dt = 0, for any j. 

(C.3) For all j = 1,·· . ,p 

E [<py) (Y, T; 711(X1), ... , 71j(xj), .. ·, 71p(XP») Ixj = xj] = 0 

All previous assumptions are standard in nonparametric regression literature. For example, 
condition (C.1) makes variance and bias tend to zero when the sample size increases. Con­
dition (C.3) is an identification condition that is similar, in additive models under gaussian 
errors to the backfiting algorithm (see Hastie and Tibshirani, 1990). Then, it it shown in 
Appendix I that 

Theorem 2 Under the conditions of Theorem 1 and assumptions (C.l) to (C.3) we have 

for any j 

i) 

ii) 

where 

(6) 

(7) 

as N tends to infinity. 

J Nhdj (~ (xi,) ( i») j 71j 0 - 71j Xo N(O 1) 
V}/2 (~.(xi,) 0) ---+d " 

J 71J 0, N 

J KJ(t)dt 

Pj(xt)Jj (71j) , 

[ 
(1) ( 1 . ) 21 . j] E <Pj Y, T; 711 (X ), ... , 71j(XJ),· .. , 71p(XP) , (}o XJ = Xo 

As it can be remarked from this theorem, all nonparametric components are estimated at 
the minimum possible rate overcoming the curse of dimensionality. This achievement agrees 
with the results found by Stone (1986) for additive models, but we remark that the same 
result is now achieved with a weaker restriction as the weak separability. Also, as indicated 
before, we reach the same asymptotics as if the other components in the model would have 
been known. Finally, again the (pointwise) asymptotic expressions can be drawn out from 
the algorithm and not much calculation, or even plug-in estimation, is necessary. 
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Quasi-likelihood estimation 

If we replace in all steps of our estimation procedure the log-likelihood function by the 
quasi-likelihood function, then it is shown in Appendix I that the previous results still hold, 
although as it could be expected there is an efficiency loss if the specification is not equivalent 
to the real distribution. 

Theorem 3 Under assumptions (B.l')-(B.3'), (K.l), (H.l) and (Q.l)-(Q.3), stated in the 

Appendix, then as N tends to infinity 

where 

xE [~g(T; 1], ( 0 ) a!Tg(T; 1], ( 0 ) r1 
E [~ ~g(T; 1], ( 0 )] , 

where 

8 ( 8 8 )T 80 g(T; 1], 0) = 80
1 
g(T; 1]1," " 1]p, 0), .. " 80

k 
g(T; 1]1,' ", 1]p, ( 0 ) 

and 

8 ( 8 8 )T 81]g(T; 1], 0) = 81]1 g(T; 1]1,' .. ,1]p, 0), .. " 81]k g(T; 1]1,' .. ,1]p, ( 0 ) 

As it can be expected the quasi-maximum likelihood estimator of 0 is not always efficient. 
However, if the model is correctly specified both criterion function coincides and therefore 
we obtain the efficient estimator that was shown in Theorem 1. 

Before we give the next result we need to incorporate the following assumption 

(C.3') For all j = 1,· .. ,p 

E [J7 - g(T;1]l()(l),' '.,1]j()(j)", ',1]p()(P),Oo) 
V (g(T; 1]1()(1)," " 1]j()(j) , .. " 1]p()(p) , ( 0» 

what is the same as the identification condition (C.3) but now in terms of the quasi likelihood 
function. In the next result we also show that the nonparametric estimators of the additive 
components avoid also the curse of dimensionality. 
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Theorem 4 Under the conditions of Theorem 3 and assumptions (C.l), (C.2) and (C.3') 

we have for any j 

i) 

ii) 

where 

as N tends to infinity. 

For discussion of efficiency and other remarks we refer to the detailed statements above. A 
careful check of the proof reveals that the same statements can be done for time series data 
with some strong mixing conditions. However for transparency of the ideas, especially in the 
proof we have restricted ourselves on the independent case and instead refer to Vieu (1991). 

4 The Procedure, Simulations and Applications 

In this section we first discuss some questions in practical application including computa­
tional remarks and give some simulation results. Secondly we present a real data example 
reflecting the aforementioned items and demonstrating the feasibility and performance of 
our method in empirical economic research. 

The implementation of the procedure can be done in various ways. Among them, slight 
modifications yield the same numerical results but could be more attractive from the compu­
tational point of view. For the maximization of the (log-) Likelihood the Newton Raphson or 
Fisher Scoring are popular methods but need the Hessian matrix. This,if Tt := (1}1, ... , 1}pf 

is a vector of not additively combined functions, can be very tedious what can be easily seen 
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in Appendix. Further, often you want to separate the functions more detailed than it is 
possible in the first step without running in problems of identification. An obvious modifica­
tion is to let TJ a lower dimensional vector then Tt or even be the multidimensional function 
IRq t---+ IR, replacing then Tt by TJ and first get this way 0 and f]. In the third step, with 
appropriate initials for TJI, ... ,TJp, given 0, f] we can estimate Tt as suggested in Theorem 
2. In the case of separating, say TJI from the first step into TJI,1 + TJI,2 in the third step. 
This demands a solution of two lower dimensional maximization equation, i.e. maximizing 
Vl=l, ... ,n 

-:::- (Xl,l) 
TJI,1 l 

-:::-(X I,2) TJI,2 l = 

An iteration over this second step can be performed to improve numerically the final result. 
Further advantages of this implementation are that the result of () does not depend on the 
modeling of the nonparametric part and consequently, when comparing different combina­
tions for Tt, only the second step has to be modified and repeated. For more details see also 
Appendix. 

The problem of bandwidth choice is not that problematic in practice as could be expected. 
On the one hand the optimal bandwidth could be estimated with plug-in methods as we 
give explicit expressions for the asymptotics of the estimators of () and Tt. The necessary 
rate is given in condition (H.1). On the other hand, in practice all we need is smoothing the 
nonparametric part sufficiently to reach convergence for the Newton Raphson algorithm. A 
small simulation study confirmed this strongly. In general we chose the smallest bandwidth 
that yield convergence. For questions of weighting or trimming we refer to the application 
part as for simulated data the estimator worked perfectly without any trimming. 

When considering weak separability but not additivity and allowing for arbitrary smooth 
functions, a rather sophisticated problem in practice can be the proper model specification 
that identifies uniquely the components of Tt. Consider e.g. Example 2. The nonparametric 
part is equivalent to 

(8) 

Note that the restrictions 

a) E[TJI (xd] = E[TJ2(X2)] = 0, TJ3 arbitrary, 

b) E[TJI(xd] = E[TJ3(X3)] = 0, TJ2 arbitrary, 

c) E[TJ2(X2)] = E[TJ3(X3)] = 0, TJ1 arbitrary, 

can lead to different results, not only" different up to a constant". Thus, whereas it is a 
minor problem from the mathematical or statistical point of view, this is a much harder 
point for the practitioner, especially as for him this problem so long never appeared in this 
form. 
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To demonstrate the performance we present two simulation results for Example 2: Consider 
a typical Tobit 1 model with truncated variables. We simulated the model 

(9) Yi = { ~(Xi' ti) + Ui if h(Xi' ti) + Ui > 0 
otherwise 

with ti fV U[O, 2], Xi fV U[-l, lP, first additively 

but then 
h(x, t) = tT'Y + 171(xd + 172 (X2) + 172 (X2)173(X3)· 

We set in both cases f3T = (-1.5,2), 171(X1) = 2sin(2x1), 172(X2) = 4x~, and 173(X3) = 2X3+C, 
where c = 0 in the additive model and c = 1 in the other one. The error distribution was 
standard normal. We draw about 600 observations to end up always with 400 uncensored 
observations. For the estimation we used the identification condition E[17d = 0, E[173] = 1. 
It turned out that in our simulations for the non additive model we had a slight identification 
problem, probably due to the small sample size, and often overestimated both, the slopes 
of the functions and the variance (see also Figure 1 right side), what cancels in the index. 
Nevertheless, for large samples these numerical effects vanish. For the additive model we got 
after 150 replications for 0 = (131, /32, (J)T in the mean (-1.51,1.99, 1.59)T with the standard 
deviation (0.155,0.156, 0.056)T. In Figure 1 we give the bands yield after the 150 replications 
for all functions in both models only skipping the two worst estimates. This corresponds 
approximately to 99% confidence bands. The dashed lines are the data generating functions. 

Figure 1 about here. 

We used for estimating () bandwidth h = 2.25 for all directions. This was the smallest 
possible without running to often into numerical problems as we did no trimming! Because 
of the construction of the second model it is recommended to smooth the last component 
more than the other ones. For a better comparison we did this also in the additive model. 
Thus, in step 3 we used h1 = h2 = 0.75, but h3 = 1.25. It can be seen that in both cases the 
estimator works pretty well for such a complex structure. 

4.1 Female labor supply in West and East Germany 

We aim to apply our method on a typical limited dependent variable problem. Consider 
female labor supply measured in real hours of work for married woman. Note that this 
variable accounts for the number of hours per week that the woman has declared to work 
and not the number of contracted hours. The hours are assumed to be generated by equation 
(9), Example 2. The difference to Example 2 will be that now x E 1R6 and we try more than 
only 
(10) hweak(t, x) = tT'Y + 171 (Xl) + ... + 175 (X5) + 175 (X5)176 (X6) 

but will also consider the additive case 

(11) 
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Figure 1: 99% Confidence Bands for all functions in both models based on 150 replications. 

Dashed lines are the data generating functions. 

To make them comparable we restrict in both cases E[1]j(Xj)] = 0, j = 1,2,3,4,6 but nothing 
for 1]5. If by this separability assumption the model is well identified and specified, X5, X6 
are more or less independent, we should get out the same estimates for both specifications, 
up to a multiplying constant c = E[1]5(X5)] for 1]6' Here, equation (10) is a trial to model 
possible interaction. 

Many different (parametric) specifications have been tried to model the hours function in 
this context. A most famous one is the study about the sensitivity against economic and 
statistic assumptions by Mroz (1987). We concentrate on a comparison of specifications 
(11) and (10) as well as of possibly different behavior of maFried woman in East and West 
Germany three years after unification, i.e. in 1993. Those comparisons became quite popular 
as, due to completely different political, economic and social systems before 1990, the levels 
of employment of woman where quite different also; in 1993 in the East still about 65%, in 
the West about 54%. The studies consequently concentrated on participation at all. Among 
them, Kempe (1997) tried a semiparametric analysis and found clear differences in behavior, 
not only in slopes but even in functional forms of the (additive) impact functions. For more 
motivation and discussion see also HoIst, Schupp (1991,1994) or Merz (1990). 

We use the same data as Kempe (1997), taken from the Social Economic Panel of Germany, 
wave 1993, cleaned for persons with missing values in the relevant questions and skipping 
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East Germans living in West, West Germans living in East. As the Likelihood runs only 
over the employed (married) woman, we have just 681 observations for West and 611 for 
East Germany. We chose the explaining variables along the aforementioned articles and took 
the number of children (Ch1= n. {one child}, Ch2= n. {more children}), education (Edu1= 
n. {high school}, Edu2= n. {academic degree}) and unemployment rate of the country the 
person lives in (Urate) for the linear part (tT ,). Note, that in East Germany there are only 
5 countries. For the nonparamertic part T}(x) we have age of woman (Age), net wage per 
real hours (Wage), prestige index of their job (PI) and number of years of interruption of 
professional career (off). For further main income and expenditures we included also the net 
income of partner per month (Income), and the expenditures for flat minus net income from 
letting flats (R & L = rent-let). As indicated before, by modeling (10) we want to allow for 
some interaction between Income and rent-let. 

Table 1 about here. 

West East 
bounds: lower upper lower upper 

Wage 50.0 30.1 
PI 0.0 70.1 0.0 75.0 
off 36.6 12.5 

Income 11.0 5.45 
R&L -12.5 -1.4 1.4 

Table 1: Trimming for x to calculate o-Xi' j = 1, ... ,6 and the convergence criteria. Age is 

skipped here as it was not trimmed at all. X5, X6 in 1000 DM. 

For the semiparametric estimation, we used trimming for input x in two steps; when calcu­
lating standard deviations for each Xj and when calculating the convergence criteria (for the 
Newton Raphson). The standard deviations were used to determine the bandwidths. For 
West Germany we took always hj = 1. 25O-Xi , j = 1, ... ,6, for East Germany hj = 1.5O-xi as 
we had less data. We trimmed as given in Table 1. 

Table 2 about here. 

We first consider the comparison of the different specifications and focus for presentation on 
the West German data. In Figure 2 and Table 2 (left side for West Germany) we see the 
results for the additive case, equation (11). In the table are given additionally the results 
for a pure parametric linear model (first two columns), all with its standard deviations in 
brackets. In the parametric model we introduced Age**2, used In(Wage) instead of Wage 
and tried different models but give only results for this model which was the best. This 
parametric analysis was only done to compare with the the parameter estimates 0 = (~?, 0-) 
in our semiparametric model. It can be seen that, apart from Edu2 for East Germans, 
the coefficient estimates do hardly change but as well the error variance (a) as well as the 
variances of the estimates could be reduced a lot using semiparametric methods. These 
findings are in accordance with those made in Rodriguez-P60, Sperlich, Fernandez (1999). 
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West Germany East Germany 

Ch1 -7.847 (1.087) -6.913 (.7850) -2.702 (1.054) -2.152 (.9910) 

Ch2 -11.91 (1.221) -10.84 (.9549) -2.313 (1.178) -2.040 (1.130) 

Edu1 -.1027 (1.777) .5738 (1.383) 1.670 (1.300) 1.318 (1.180) 

Edu2 .1403 (2.070) 2.125 (2.084) 1.575 (1.610) 4.868 (1.562) 

Urate .2003 (.2254) .0925 (.1587) -.5204 (.3242) -.4256 (.2934) 

Age 1.351 (.4662) - ( - ) 1.460 (.4034) - ( - ) 

Age**2 -.0184 (1.E-6) - ( - ) -.0186 (1.E-6) - ( - ) 

In (Wage) -7.431 (1.067) - ( - ) -4.126 (.9695) - ( - ) 

PI .2673 (.0436) - ( - ) .0820 (.0300) - ( - ) 

off -.3485 (.0616) - ( - ) -.7367 (.1741) - ( - ) 

Income -.1206 (.0245) - ( - ) -.1200 (.0316) - ( - ) 

R&L .0188 (.0141) - ( - ) .1092 (.0469) - ( - ) 

a 10.21 (.2961) 6.955 (.1145) 7.828 (.2241) 6.303 (.1803) 

Const 24.06 (9.317) 32.44 ( - ) 30.16 (9.118) 47.25 ( - ) 

Table 2: Results for parametric linear model (columns 1,2 and 5,6) and the semiparametric 

model (columns 3,4 and 7,8). The standard deviations are given in brackets. In the last line, 

for the semiparametric model Const refers to E[7]5(X5)] = ~I:i 175 (Xi5)· 

We want to emphasize that we could reduce a a lot. This is a good indicator for a real 
improvement in the empirical part of economic research. 

Figure 2 about here. 

Figure 3 about here. 

Compare now figures 2 and 3. In Figure 3 are given the results for the two last component 

estimates from the specification (10), 7]5 also given after centering to zero for a better com­
parison. On the bottom of all graphs are given crosses for each observation to indicate the 
density of the corresponding variable. Surprisingly, up to a multiplying constant c for 7]6, 

they are all the same. For this reason the other components for model (10) are not shown 
as they are exactly the same as we see them in Figure 2. Moreover, c = Const from Table 

2. Note that further corr(x5, X6) = .106. This could be taken as a good sign that our model 
is very well specified and thus the results quite robust against slight modifications. 

Figure 4 about here. 

Now we look on a comparison between the West and the East. As said in the beginning, they 
come from completely different political, social and economic systems, and though in 1993 
at least the political and the economic systems were the same, there were still differences in 
the economic and political environments. We want to mention only some specials from the 
East: the unemployment rate was much higher in the East (in 1993), a higher willingness 
and motivation of women to search a job, partly based on the lower salaries (compared to 
the West) of their husbands, a much wider provision of kinder gardens and other possibilities 
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6000 8000 10000 -10000 ->lOO """ x 

Figure 2: West German women. Results for specification (11) for the non trimmed range. 

Here, TJ5 is centered to zero. Crosses stand for the observations to indicate the density. 

rent - Jet 

x )()Q()(~X. »IK 

Figure 3: West German women. Results for last two components in specification (10) on non 

trimmed range. Here, TJ5 is centered to zero. Crosses stand for the observations to indicate 

the density. 

to leave his children in the East. The results are provided in Table 2, Figure 2 (for the West) 
and 4 (for the East), all based on model (11). As we concern only for the demonstration of 
the feasibility of our method and hereby a comparison of possible different behavior in East 
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Figure 4: East German women. Results for specification (11) for the non trimmed range. 

Here, 'T/5 is centered to zero. Crosses stand for the observations to indicate the density. 

and West, we will not discuss the particular coefficients neither the shapes of the estimated 
nonparametric components. Apart from the fact that our method obviously works also 
fine for this different, smaller data set (N=611), we find that behavior for labor supply 
measured in real hours of work is pretty the same in the East and the West, except for 
education and number of children. The latter outcome was expected for aforementioned 
reasons. Comparing with e.g. Kempe (1997) who used the same sample, this is a little bit 
surprising as he found big differences in behavior when looking on participation at all and 
was thus in accordance with e.g. HoIst and Schupp (1994). -

5 Conclusion and Discussion 

In this article we have presented a new method for estimating weak and strong separable 
models typical in economics. Assuming the knowledge of the conditional distribution of the 
random errors we are able to include complex regression systems as Tobit models. This, to 
our knowledge is so far only possible for purely nonparametric models without the opportu-
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nity of imposing structure or a parametric part. Aside of the theoretical consequences, the 
use of maximum likelihood makes the estimator feasible in small data sets typical in empir­
ical research. This has been demonstrated in Section 4 together with a detailed discussion 
of problems related to application. 

For the future it will be necessary to spend also more attention to the distribution assump­
tion. In the case of SIM, i.e. models of the form E[YIX] = G{(3Tt + 7](x)}, 7](.) being 
nonparametric, you can test the specification of G(·) as proposed by Hardle, Mammen and 
Proenca (2000), as done in the aforementioned paper by Hardle, Huet, Mammen, Sperlich 
(1999). Often, also approximate X2 tests could be applied on the residuals. 

Finally, a detailed simulation study comparing the different methods could reveal informa­
tion, if there is the alternative of different methods, which one does best. Nevertheless, often 
the alternative is simply not given, as e.g. when having truncated variables. 

Appendix I 

Proof of the main results 

In order to show the main results we need to introduce the following definitions and assump­
tions: 

Let Il-x denote a k-vector of nonnegative integer constants. For such vector define 

(i) Ill-xl = "L,j=lll-j, where Il-x = (Il-l,··· 'Il-kf, 
(ii) For any function a (x) on IRk. 

Assumptions 

(A.I) For fixed but arbitrary (h, 7]t,···, 7]:, where (h E 8, and 7]t E HI,···, 7]: E Hp, let 

P(7]1,7]2,·· .,7]p,() = f cp(y,t;7]l,···,7]p,()£(y,t;7]t,···,7]:,()l) dy, 

() E 8,7]1 E HI,··· ,7]p E Hp 

If () =1= ()1, then 
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Let 10 (TJl, TJ2," " TJp, B) denote the marginal Fisher information for B in the parametric 
model, that is 

= E [%ocp (Y, T; TJ, B) 8~TCP (Y, T; TJ, B)] - E [%ocp (Y, T; TJ, B) ;;TCP (Y, T; TJ, B)] 

xE [~ cP (Y, T; TJ, B) ~CP (Y, T; TJ, B)] -1 E [%77 8~T cP (Y, T; TJ, B)] 

where 

a ( a a )T aB cP (Y, T; TJ, B) = aB
l 

cP (Y, T; TJl, ... ,TJp, B) , ... , aB
k 

cP (Y, T; TJl, ... , TJp, B) 

and 

a ( a a )T aTJ cP (Y, T; TJ, B) = aTJl cP (Y, T; TJl,' ", TJp, B) , ... , aTJp cP (Y, T; TJl," " TJp, B) 

Then assume that the matrix 10 (TJl, TJ2," " TJp, B) is positive definite for all BEe and 
TJl E HI, ... ,TJp E Hp. 

(A.2) Assume that for vectors Ir771 :::; 4 and Isol :::; 4 such that Ir771 + Isol :::; 4 the function 

DTT/ DS8 cP (Y, T; TJl, ... , TJp, B) 

exists for almost all Y and T and that 

E {s~p s~p IDTT/ DS8 cP (Y, T; TJl, .. " TJp, B) 12 } < 00. 

(B.1) For each BEe and x E X let us define 

h (B, TJl, ... , TJp, x) = E { cP (Y, T; TJl, ... , TJp, B) IX = x} . 

Then 
sup IDTT/DS8DtXh(B,TJl"",TJp,x)1 < 00 

0,771,"',T/p,X 

for 2 :::; IrT/1 :::; 4, Isol :::; 2, Itxl :::; 1 and Ir771 + Isol + Itxl :::; 4. 

(B.2) Let the vector i7o(x) = (i7l,O(X l ),' ", i7p,O(XP))T be the solution to 

a 
aTJ h (B, TJl," " TJp, x) = 0, 

with respect to TJ for each fixed Band x. i7o(x) is unique and for any constant E > 0 
there exists another 8 > 0 such that 

a 
sup sup I ~.h (B, TJO(x) , x) I :::; 8 
o x uTJj 

implies that 
sup sup ITJj,o(x) - TJj,O(x) I :::; E 

o x 

for j = 1,' ",p. 
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(B.3) Let 
D..~~;/8 (Y, T) = DTT/ DS8 cp (Y, Tj 171, ... , 17p, fJ) 

and let fJTT/,S8) (y, tlx) denote the conditional density of D..~~;/8 (Y, T) given X = x. Then 

(i) E (SUPTJ SUPOID..~~;/8(Y, T)i) < 00 for IrTJI ~ 5 and Isol ~ 3. 

(H) For some even integer q ~ 10 then sUPTJ suPo E {1D..~~;/8 (Y, T) Iq} < 00, 

for IrTJI ~ 3 and Isol ~ 4. 

iii) sUPTJSUPOsuPy,x,t If~;T/,S8) (y, tlx)1 < 00 for IrTJI ~ 4 and Isol ~ 3 

iv) sUPx I Dt",p(x) I < 00 and sUPTJ Supo sUPy,x,t IDt", fTJo (y, tlx)1 < 00 for Itxl ~ m + 2. 

v) 0 < infxp(x) < suPxp(x) < 00. 

(K.I) The kernel K(·) is a real valued function on lRd such that, 
it is compactly supported with z = (Zl, Z2,' .. , Zd)T, Zi E lR 

/ Zfl ... z~K(Zl,Z2"",Zd)dzl···dzd= 
1 if i1 = i2 = ... = id = 0 

o if 0 < i1 + i2 + ... + id < m 

/ IzliIK(z)ldz < 00 for i = 0 and i = m. 

and 
sup IDtz K(z)1 < 00 for Itz I ~ m + 2. 

z 

(H.I) hN is a sequence of constants satisfying hN = Gp (N-a), 

h th t m q-p-2 
suc ad> 2p+q+4' 

1 1 q-p-2 
-<0:<-----
4m 4d2p+q+4 

(Q.I) Let 9 denote a compact subset of lR such that g(t,17l(X1)'''',17p(xP),fJ) E 9 for all 

t E T, Xl E Xdp' . ·,xP E Xdp,17I E HI,' . ',17p E Hp and fJ E e. Then SUpg V (g) < 00, 

infg V (g) > 0, SUPg O(g) < 00 and SUPg JY O(s)ds, where 

/

9 ds 
O(g) = V(s)' 

(Q.2) For p = 1, ... ,3 then 8P~~9) exists and it is bounded for all g E g. 

(Q.3) The function g(.) is at least three times continuously differentiable bounded with 
respect all its arguments. 

(B.I') The same as for (B.1) replacing cp(.) by r(·). 

(B.2') The same as for (B.2) replacing cp(.) by r(·). 
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(B.3') The same as for (B.3) replacing cp(.) by r(·). 

Assumption (A.l) is an identification condition. It is imposed over the likelihood function. 
Assumption (A.2) is a standard condition that allows for the interchange of the integration 
and differentiation operations. Assumptions (B.l)-(B.3) are needed to show that the pro­
posed nonparametric estimator is an estimator of a least favorable curve. This is similar to 
the so called N 1

/
4-consistency condition (see Andrews, 1994). If the nonparametric estimator 

is a smooth function of the parametric part then the previous condition is equivalent to im­
pose the asymptotic orthogonality condition between the parametric and the nonparametric 
estimators, and it is needed to show that the nonparametric estimator does not affect the 
asymptotic distribution of the parametric one. The estimators proposed by Klein and Spady 
(1993), Ichimura and Lee (1990) and Rodriguez-P60, Sperlich, Fernandez (1999) among oth­
ers satisfy the so called N 1

/
4-consistency property. Assumption (K.l) is a standard bias 

reducing technique, and jointly with assumption (H.l) on the bandwidth it is needed to 
achieve the previous condition of N 1

/
4-consistency. Note finally that the bandwidth rates 

that are allowed in condition (H.l) are smaller than the optimal ones. This is also standard 
in semiparametric models and it is due to the effect that the bias of the nonparametric es­
timator presents in the asymptotic properties of the parametric part. Finally, assumptions 
(Q.l) to (Q.3) are regularity conditions needed in the quasi-likelihood framework mainly 
to guarantee that the quasi-likelihood function used in estimating 1]1, "', 1]p and 0 has the 
properties of a likelihood function. 

Proof of Theorem 1 

The proof of this theorem is based on a generalization of Propositions 1 and 2 from Severini 
and Wong (1992), p. 1780. Assumptions (A.l) and (A.2) imply directly Conditions I and S 
from Severini and Wong (1992), pp. 1777 and 1778. Furthermore, for fixed 0, under (A.l), 
(A.2), (K.l) and (H.l) the estimator obtained as a solution of 

(12) (ih,(), TJ2,0, ... ,TJp,o) = sup W (1]1, ... ,1]p, 0) , 
1/l EHl "",1/p EHp 

is an estimator of a least favorable curve. To see it, note that if TJo(x) = (TJl,O(X), ... ,TJp,o(x ))T 
is the solution to (12) then 

t: log e (Yi, 11; TJl,O, ... ,TJp,o, 0) K (X ~ Xi) = 0, 
z=1 1] 

where we denote by K (X-;i) the d-variate kernel Kl (xA~xl) x ... X Kd (xg~xt). Fur­

thermore 
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Then, using the previous assumptions and the properties of the Watson-Naradaya smoother 
then 

8 { [ 8
2 1 }-1 80Tf]0(x) --+p - E 81]81]T 'P(Y, T; 1]1(X1), ... , 1]p(XP) , Oo)IT = t, X = x 

xE [80~21]T 'P(Y, T; 1]1(X1), ... , 1]p(XP) , ( 0 ) IT = t, X = xl 
and the estimator obtained in (12) is an estimator of a least favorable curve (This is Condition 
NP(b) from Severini and Wong, 1992; p. 1779). Condition NP(a) is obtained as follows. Let 
us denote 

Consider the case TT} = So = o. Then, using the same approach as in the proof of Lemmas 5 
and 8 from Severini and Wong (1992) it is possible to show that 

sup sup sup IDt"'GT},o(x) - D t", h (0,1]1, ... ,1]p, x) I 
1/1,",T}p 0 x 

and 

for some 'Y > O. Use for the bandwidth the rate assumed in (H.1), then 

sup sup sup IhN (0,1]1, ... , 1]p, x) - h (0, 1]1,·· ., 1]p, x)1 = Op (N-1/4
) , 

T}l,··,T}p 0 x 

and 

The same can be done for I TT} I > 0 and Isol > 0 and then Conditions NP(a) from Severini 
and Wong (1992), pp. 1779, are verified. Since Conditions I, Sand NP are verified, then 
Propositions 1 and 2 apply and the proof is done. 

Proof of Theorem 2 

In order to simplify the proofs, j is fixed, and we can see that f]j is indeed such that 

~ = arg max W; (1]j,ON) ' 
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where 

Wj* (TJj, ON) = t K j (xio ~,Xf) log £ (ri, 11; T]1(Xl),···, TJj,···, T]p(Xf), (}) . 
z=1 J 

A Taylor expansion of <PY) around the point TJ; = TJj(Xf) gives directly the existence of some 
n; belonging between TJj and TJ; and such that 

(fl(1) (Y t· iJ'I' ••• ••• 'TJi, ••• iJi ON) = 
..,... J "", , , " J ' , "p' 

(1) ( t. Ai Ai i Ai Ai (}A ) <Pj Y, ,TJll"',TJj-llTJj,TJj+l,"',TJp, N 

( i) (2) ( t, Ai Ai -i Ai Ai (}A ) + TJj-TJj <Pj Y, ,TJll"',TJj-llTJj,TJj+ll"',TJp, N 

So this leads directly to 

aWl (TJj, ON) (A ) A [( A ) A ] ( 0) 
aTJj = Al (}N + A2 (TJj, (}N) + A3 (}N + A 4 (TJj, (}N) TJj - TJj , 

where 

and 

(2) ( t. Ai Ai i Ai Ai {) )] -<Pj Y, ,TJl,"',TJj-l,TJj,TJj+1,"',TJp, N . 

Now, we will study the asymptotics of the previous terms recalling that under the conditions 
established in Theorem 1, VN(ON-(}O) = Op(l) and SUPXiEXdj IT]j(x j ) - TJj(X j )I = op (N- 1/4

) 

for j = 1, ... , p. 
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Since a~j rp?l and a~T rp?l are absolutely continuous, then by using the root-N consistency 

of ON, the uniform properties of the nonparametric estimators and a strong law of large 
numbers we obtain, 

(13) 

where 

Now, since E [rp)ll (Y, T; 1]1(X1),' .. , 1]i(Xi),' .. , 1]p(XP), (Jo) IXi =~] = 0, standard results 
on Watson-Nadaraya smoothers give us 

-+p 0 

(14) O(hJ) 

N~;j [j KJ(t}dtIj(ryJ, 90}Pj l H) 1 + 0 (n~;j ) . 
and 

I i (1]J,(Jo) = E [rp?l (y,T;1]1(X1), ... ,1]i(Xi), ... ,1]p(XP),(JO)2I xi =~]. 
For both next terms, with the same arguments we arrive at 

where 

with 

(16) 

and 

A2(1], (Jo) 

E (A2(1], (Jo)) 

Var (A2(1], (Jo)) 
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-+p 0 

o(hJ) 
o (Var(Al ((Jo))) , 
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But now, we remark that 

E [ip)2) (Y,T;T}1(X1), ... ,T}j(xj),···,fJO) IXj = xi] = 

[ 82 ( 1) (" ""] = E 8rifipj Y, T; T}l(X , ... , T}j XJ), ... , fJo) IXJ =:ib 

= -E [8~i ipj (Y, T; T}1(X1), ... , T}j(xj), ... , fJo)2 lXj = xi] , 
what finally leads to 

(17) 

For the term A4(T}j, ON), it can be dealt with by using various arguments. Indeed, the 
absolute continuity condition on ip)2) leads directly to 

(18) 

in probability. This convergence is uniform over T}j and () (since both T}j and () belong to 
some compact and so the continuity of ip)2) is indeed uniform). 
The proof of i) is closed as follows. Let us denote 

(19) z = JNh;i (f/j - T}J). 

By applying (13) at point T}j = i}j, we arrive at 

Using (15) we have that 

J Nh;i A2 (i}j, ON) = J Nh;i A2 (i}j, ()o) + Gp (h;+~ + ~) . 

Moreover, by expression (16) 

J Nh;i E [A2 (i}j, ()o)] = 0 ( J Nh;i hj) 
and finally, because of condition (C.1) on the bandwidth we have that Z has asymptotically 
the same distribution as 

r:::;;; -A1 (ON) 
V Nh{ (A) (A ). A3 ()N + A4 i}j, ()N 

Apply now (13), (17) and (18) and remark that thus Z has the same distribution as 
J Nh~i Al bOo) • 

J Ii(1/i ,00) 

On the other hand the Lindeberg-Feller theorem together with (14) leads to 

(20) 
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In order to close the proof of the first part of the theorem, note that we have by continuity 
of the function Vj ('T]j) and because of Theorem 2 (ii) we have 

(21) 

Finally, because of Slut sky's theorem, (21) and (20) are enough to prove the result of Theorem 
2 (i). 

In order to show ii), if in place of using the Lindeberg-Feller theorem as we did to prove i), 
we use Bernstein's type inequality (see Serfiing, 1980; p. 95) we get immediately for Ai (00 ) 

the following expression 

( l09N) Ai (00 ) = Op -d-" 
Nh,~ 

J 

Writing now S in the form 

and using (15), (16), (17) and (18) to treat the terms A2 , A3 and A4 , we get directly 

(22) S = 0 ( l09N). 
p Nh~j 

J 

Finally, (19) and (22) are enough to finish the proof of part ii) of the theorem. 

• 
Proof of Theorem 3 

The proof of this result is again based on Propositions 1 and 2 from Severini and Wong 
(1992). Assumptions (Q.l)-(Q.3) are regularity conditions that imply Conditions I and S 
from Severini and Wong (1992), pp. 1777 and 1778. This can be shown following the same 
lines as Severini and Staniswalis (1994), p. 511. To finish the proof we need to show that 
conditions NP are verified. In order to do so, we will show that the estimator obtained as a 
solution of 

where 
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for fixed e is an estimator of a least favorable curve. To see it, note that if f]o(x) 
(f]l,O(X),· .. ,f]p,o(x)f is the solution to the previous maximization problem then 

~ Yi - g(1i; f]l,O, ... , f]p,o, e) 8 (A A) (X - Xi) 
~ v ( (1'. .. A • •• A e)) a g 1i; 'f/l,O, ... ,'f/p,o, e K h = 0, 
~=l g~, 'f/l,O, , 'f/p,o, 'f/ 

where we denote by K (X-;i) the d-variate kernel Kl (xA~Xl) x ... X Kd (xg~xt). Fur­

thermore 

where 

(

A e) ( 1 Yi - 9 (1i; f]o, e)) 8 ( A e) 8 ( A e) 
Rli 1i; 'f/o, = V( (1'. .. A e)) + V( (1'. .. A e))2 8eg 1i; 'f/o, 8 Tg Ti ; 'f/o, 9 ~,'f/o, g~, 'f/o, 'f/ 

Yi - 9 (Ti; f]o, e) 82 
( A ) 

- v ( (1'. .. A e)) 8e Tg 1i; 'f/o, e 9 ~,'f/o, 'f/ 

Then, using the previous assumptions and the properties of the Watson-Naradaya smoother 
then 

8~Tf]O(X) -+p 

{ E [tTjg (T; 'f/l (Xl), ... ,'f/p(XP), eo) {)~T 9 (T; 'f/l (Xl), ... ,'f/p(XP), eo) IT = t, X = X]}-l 

X E [tog (T; 'f/l (Xl), ... ,'f/p(XP), eo) {)~T 9 (T; 'f/l (Xl), ... ,'f/p(XP), eo) IT = t, X = x] 

Therefore (see Lemma 1, Severini and Wong, 1992; p.1778) {)~Tf]O(X) is an estimator of a 
least favorable curve (This is Condition NP(b) from Severini and Wong, 1992; p. 1779). 
Condition NP(a) is shown in the same way as in the proof of Theorem 1, and therefore the 
result is shown. 

• 
Finally, the proof of Theorem 4 follows the same lines as in the proof of Theorem 2 by 
replacing the log-likelihood by the quasi-likelihood function. 
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Appendix 11 

Computational Remarks: The Newton-Raphson algorithm for Truncated Vari­
able Model 

First, remember the fully parametric case. The Maximum Likelihood Function for the 
truncated variable (Tobit 1) case is 

where the sum 2:i only runs over observations Yi > o. 

The derivatives are as follows: 

Some more calculation is needed to get 8C/8a and (PC/8a2
: 

Finally, the mixed derivative 

Semi parametric with multivariate nonparametric part 

We write down first the expressions for a multivariate nonparametric part 1J(x). To derive the 
expressions for the components 1Jj is straight forward but certainly depend on the particular 
model specification. Set as before Kh = I1j Khj and 1Ji = 1J(Xi). Let xbe the continuous, t 
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the discrete variables. The Maximum Likelihood Function for the truncated variable (To bit 
1) case is 

The local, smoothed Likelihood for rf is 

.cS = ~ [_In:" _ In;' _ {y, - 'Y;; -?fi}' -1+ _ F (4: -?fi)}] Kh(x, - x;) 

where F is the cumulated standard normal probability function, and f we will use for the 
standard normal density. Note that for p = 1, this £8 is equivalent to the smoothed likelihood 
we called WO in Section 3. For the ease of notation set Ukl = (-,,? tk - 1l)(J-l 

We start with calculating 8£8 j8rf and 82£8 j8(rf)2. 

(23) 

(24) 

(25) 

8£8 

8TJj 
82£8 
8(TJj)2 

8£ _ ~ ~ [Yi +u .. - f(Uii) ] t-.. 
8 - ~ n F() U' I' (J i=l (J 1 - Uii 

For the Hessian matrix we neglect the dependency of ~i on I' and get 

A little bit more complicated is to get 8£j 8(J and 82 £j 8(J2; set rfu = 8rf j 8(J : 

(26) 

For the Hessian matrix we again neglect the dependency of rfu on (J and so get with Bn (Uii) 
from (26) and get 

-; t [-1 + 3 {Yi + Uii} 
2 

+ 4 {Yi + Uii} TJ~ + (TJ~ Y 
(J i=l (J (J 

_ 2f(Uii) (Uii + TJ~) + f(Uii)Uii(Uii + TJ~)2 _ P(Uii) (Uii + TJ~)2] 
1 - F(Uii) 1 - F(Uii) {I - F(Uii)P , 
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The question is how to get rf-r = 8rf 18,. For the likelihood maximizing rf expression (23) 
is equal to zero. First we derive it with respect to ,: 

Second we derive this expression with respect to a: 

82£8 

8r/j8a 

-1,,~ [.-.i + 2 (Xi + u .. ) + J(Uij){U~j+Uij~-l} - j2(Uij){Uij+~}l K (x· - x·) 
0"2 L-t=l '10" 0" tJ I-F(Uij) {l-F(Uij)P h J t , 

Finally we need the mixed derivatives 8£18,8a, respectively 8£18a8,. 

Here, we have neglected the dependency of TJ~ on , and the dependency of TJ~ on a. 

The Hessian matrix for £8 is simply given by (24) and the one for £ is given by 

For nonparametric functions when parameters are known 

We first have to specify the considered model structure: we consider the two models 

which is the pure additive one, and 

both with the identification conditions E[TJj(Xj )] = 0 for j = 1,2,3,4,6, i.e. except for TJ5' 
Consequently, a possibly existing constant is going into 1J5 for the additive and into TJ5(1 +TJ6) 
for the other case. 
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Let us only consider the second model and calculate first the derivatives for the components. 
As above, set 1]ij = 1](Xjl, Xii) where xii means all dimensions of vector Xi except the first 

d "IT t· T}ij an Vij = - ;- : 

Certainly, for 1]2,1]3,1]4 we get the same. Note, that, following straightly the notation of 
the proof of Theorem 2 you should take Vij = -'YT;-ni

j
, but intuitively it is clear, this was 

confirmed by simulations, that the numerical performance is much better when letting run 
the nuisance components over i. 

For 1]5 it is only slightly different, resulting in 

a£g 
arfs 

a2£g 
a(rfs)2 

where still Vij = -'Y
T;_l}ij 

but now 1]ij = 1](Xj5' Xig) where Xi!:? are all dimensions of vector Xi 

except the fifth. 

Much more difficult for 1]6 with notation Vij = -'Y
TX;_l}ij where now 1]ij = 1] (Xj6' Xif'!) and Xif'! 

are all dimensions of vector Xi except the fourth: 

a£~ 

ard 
a2£~ 

a(1]~)2 
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