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Abstract 

This work aims to provide a critical examination of different approaches to creating models of 

automated quality control systems for digital images in digitization projects for photographic 

heritage collections. It investigates the feasibility of using machine-learning algorithms that 

work on sets of images previously evaluated by experts to obtain models on which to construct 

a high performance visual algorithm. We analyzed the data collected after conducting a 

psychometric experiment in which four human experts evaluated a set of three series of 300 

degraded images by assigning each image to different quality classes. This analysis concludes 

that it is not possible to talk about commonly used simplistic models based on continuous 

acceptance ranges for colour metrics on an isolated basis, and therefore that it is necessary to 



2 
 

investigate more complex models. This study demonstrates that a model based on a machine 

learning rule-based system employing the CIE 1976 or CIEDE 2000 metrics along with the hue, 

saturation and lightness colour perceptual attributes emulates the human image quality 

experts with a high degree of efficacy, above 85%, opening an interesting way to get higher 

performance visual algorithms to automatically evaluate image quality in the context of 

digitization of photographic collections. 

 

 

 

1. Introduction 

In the context of heritage digitization of photographs and other documents with graphical 

value, a strict perspective of quality has taken hold that conceives of digital images as faithful 

representations at the physical and perceptual level: the images must faithfully represent the 

physical characteristics of the original physical documents and their appearance, under 

determined conditions of perception, during the digital capture process. Only this way can 

they be used for the functions of custody, conservation, reproduction, analysis, study and 

dissemination they are meant to support, within certain ethical criteria that do not approve of 

any change in the plastic characteristics or reinterpretation of the iconic and plastic messages 

(Martínez & Muñoz, 2002; Ruiz, 2004; Robledano, 2011a, 2011b). This strict perspective has 

important implications when it comes to proposing a procedure for controlling the quality of 

the digitizations, as its application introduces the need to operate on two planes: a physical 

plane and a perceptual one.  

In terms of the first, the level of quality can be measured objectively in a simple way by 

applying certain physical attributes to the image that have been widely studied in recent 

decades in the fields of imaging engineering and colour science and technology (resolution, 

colour coding error, dynamic range, OECF, etc.), as well as by measuring the impact on the 

digital signal of a series of distortions that can affect the performance of the attributes (noise, 

chromatic aberrations, geometric distortions, compression artefacts, etc.). There have even 

been various attempts to systematize these characteristics in the context of digitization of 

cultural collections (Frey & Reilly, 1999, 2006; FADGI-Still Image Working Group, 2010). Based 

on a set of pre-selected physical attributes, it is possible to construct a multidimensional 

quality model that enables computation of the quality of the digital image of an original 

document digitized together with one or more reference cards with respect to its 

corresponding physical original. Different multidimensional models have been used to 

compute quality based on the measurements obtained for attributes, such as the Generalized 

Weighted Mean Hypothesis or the Minkowski metrics (Engeldrum, 1995). As shown in 

equation 1, quality (Q) in this type of model can be approached as a function that calculates 

the Euclidean distance of the degraded image (x) with respect to an ideal image (y) in an n-

dimensional space, with the dimensions being the attributes (i) included in the tests, weighted 

through its weighting coefficients (p).  
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𝑄(𝑥, 𝑦) =  √∑((𝑥𝑖 − 𝑦𝑖). 𝑝𝑖)
2

𝑛

𝑖=1

 

(1) 

On the perceptual plane, image quality is the possibility of generating visualizations or 

reproductions based on this image that evoke in the user an overall perception similar to that 

which he or she would experience observing the original document under certain determined 

and controlled observation conditions, and without any type of distortion. Overall appreciation 

of quality at the perceptual level is a subjective process that commonly occurs when a human 

observer regards the physical document alongside a reproduction or visualization of its 

corresponding digital image. The human observer will attempt to quantify the degree to which 

the digital image departs perceptually from its corresponding original under certain normalized 

viewing conditions according to standards (ISO, 2008, 2009b). The introduction of a human 

evaluator is very costly, creating the need in many massive digitization projects to devise 

automated quality control systems that can replace the expert human observer in the quality 

comparison phase but do not reduce the high performance of an experienced human observer 

in terms of evaluating the perceptual proximity between the original and its corresponding 

digital image. 

Given the ease of computing attributes and distortions of a physical nature, one important line 

of research on how to develop these systems has been the attempt to connect the physical 

and perceptual performance levels, such that the overall quality of an image at the perceptive 

level can be automatically derived through the use of easily computable physical measures by 

working with a limited number of attributes and ranges of values, and with highly efficient 

processes. The term visual algorithm is commonly used to refer to this type of mathematical 

model. The problem stems from the fact that it is not easy to derive perceptual fidelity from 

physical fidelity directly. Many efforts to create a robust visual algorithm at the level of 

subjective human perception of overall quality based on physical attributes have failed 

because they did not sufficiently consider the multiplicity of elements and complex 

interrelationships that underlie this phenomenon in a sufficiently exhaustive quality model 

(Engeldrum, 2004; Zhou, Bovik, & Ligang, 2002). The performance of these types of 

approaches suffers for diverse reasons, such as the non-linearity of human perception of 

quality problems, the use of attributes lacking a strong degree of correspondence with the 

perceptual appreciation of quality (Engeldrum, 2004), handling the attributes independently 

without considering that they are mutually interactive (Lee, 2005), or not incorporating the 

influence of a series of subjective factors that condition visual interpretation of the image and 

which have been widely studied (Fairchild, 2004). 

The application of multidimensional scaling methods that enable analysis of the complex 

interactions underlying the quality attributes of the images has been explained by Lee (2005), 

who references some that have obtained physical descriptors for psychophysical attributes 

(Martens, 2002; Pellacini, Ferwerda, & Greenberg, 2000). Also the application of machine-

learning methods through which one can infer determinant quality attributes and their 
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interrelationship models for the automation of image quality control systems, but in areas 

outside the context of activity that is our focus and employing experimental graphical 

databases, such as LIVE or TID2008, whose characteristics differ from those of the type of 

heritage object we address in our research. Machine learning is an attractive approach for 

image classification based on quality assessment. Various methods have been proposed within 

what tends to be called Machine Learning-based Image Quality Measure, such as that 

described by Charrier, Lézoray, and Lebrun (2012), and Narwaria, Lin and Cetin (2012). These 

contributions have limited reach for the heritage objectives we propose in this work.  

In the context of graphical heritage objects, automated digitization quality systems have been 

based essentially on tests that can be classified as belonging to the physical level, exclusively 

using a limited set of attributes of this type for which certain previously determined value 

acceptance ranges are established. If we consider the main papers published on this question 

in the field of documentary heritage, treatment of the problem of the connection between the 

physical and perceptual levels seems to have been addressed in an overly simple way, in most 

cases leaving aside the subjective perceptive component inherent in the quality control 

process for a graphical medium. Many of the papers have focused on identifying and 

proposing metrics for exclusively physical attributes, but without going into depth about a 

perceptual model for overall image quality that would provide guidance when establishing the 

systematic acceptance ranges for the performance of these attributes and their complex 

interrelationships during the act of perception (Williams, 2000, 2002, 2003, 2010; Puglia, 

Puglia, Reed, & Rhodes, 2004; Still Image Working Group, 2010; FADGI-Still Image Working 

Group, 2010; Bureau Metamorfoze, 2007; Dormolen, 2010; Nationaal Archief, 2010). 

Our paper focuses on an attempt to establish a valid working line for automated creation of 

highly efficient visual algorithms that can be used in quality control systems for digital images 

from the digitization of works of a graphical nature, and which will make it possible to 

overcome the limitations of systems based on multidimensional models that use a predefined 

set of quality attributes together with their ranges of acceptance values. Due to the breadth of 

this objective, we will address only the use of colour attributes. We attempt to demonstrate 

that it is possible to model the perceptual value judgments of an expert, or set of expert 

human evaluators, as regards the perceptual proximity in colour between a digital image and 

its corresponding physical original, through an efficiently computable visual algorithm based 

on the combined use of standardized colour metrics and perceptual colour attributes. The 

complexity of the interactions between colour attributes that occur in the perceptive act 

makes automation of the process of obtaining the visual algorithm necessary. To do this, we 

propose applying a machine-learning method based on the induction of rules that do not 

require pre-definition of the most determinant quality attributes and their acceptance range 

beforehand, and which can work on a data set obtained from the real processes of human 

evaluation to be modelled. For this paper, we have applied the machine-learning algorithm to 

the data obtained from an experimental set of images previously evaluated by a pre-selected 

group of human experts in image evaluation. The use of an experimental set was costlier, but it 

allowed us to configure the test to obtain more accurate knowledge about the suitability of the 

colour attributes and metrics selected for building a robust visual algorithm for this type of 

evaluation.  
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2. Methodology 

2.1. Phase I. Test of evaluation with human experts 

The test consisted of emulating a real quality evaluation process with human experts, applying 

certain ideal evaluation context conditions, according to the standards for carrying out quality 

evaluation, through comparison of the physical originals to the corresponding onscreen digital 

images: ISO 3664 (ISO, 2008), 12646 (ISO, 2009) and 20462-3:2012 (ISO, 2012).  

Three photographic images on paper that were representative of the type of documents found 

in many photography collections were used: modern positive photographic materials in colour 

with glossy and matte finishes, and old photographic materials hand-coloured in ink. We 

selected diverse iconic motifs on the premise that the image motif influences the perception of 

quality. We chose human figures and landscapes with typical icons (sky, clouds, grass, forest, 

water). With this difference in representational motifs, we can attempt to analyze how the 

difference in motif influences the judgment of quality. In the table we present the codes 

assigned to each image and its iconic description. 

 

448 449 550 

Matte colour 
photographic print. 
Mountain and water 
landscape. Late 
twentieth century. 

Monochromatic 
photographic print. 
Hand-coloured. 
Human Portrait. Early 
twentieth century.  

Glossy colour 
photographic print. 
Human Portrait. 
Early twenty-first 
century. 

Table I. Description of experimental images. 

 

We then created the digitized masters of the original images directly using a digital single-lens 

reflex camera and applying colour management through customized ICC colour profiles in 

order to obtain images with high fidelity in colour and contrast at the colorimetric and 

densitometric level. Likewise we took spectral samples of small controlled areas of the 

surfaces of the images by applying a template that allowed exact identification of the sampled 

area and reflected-light spectrophotometry with the intention of also using these areas, along 

with the control card patches, to measure the physical and perceptual colour attributes to be 

used for subsequent derivation of the visual algorithm. 

Based on the masters, a series of between 303 and 300 degraded images per physical original 

were created by editing their HSL perceptual values: Hue (H), Saturation (S) and Lightness (L). 

This created a degradation sequence that contemplated a sufficiently broad scale of 

perceptible changes in these three colour-description variables. To do this, the images were 

converted to the HSL colour space and progressively degraded in these three variables, from 

20 to 19 for hue (on a scale ranging from -100 to +100), from -39 to +39 for saturation (on a 

scale ranging from -100 to +100) or from -20 to 20 for lightness (on a scale ranging from -100 

to 99). Likewise repeated images were generated so that we could measure the degree of 

consistency in the evaluations, analyzing how the evaluators' selective criteria varied over the 

course of the test, if applicable, and to be able to determine the probability of the evaluators 
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giving random responses during the test. The repeated images were distributed throughout 

each series of images to be evaluated.  

The data for the images to be evaluated were recorded automatically by applying different 

comparison metrics for colour and image difference between the original photographs and the 

digital masters and their degradations, of which we selected only two for the tests we present 

in this paper: CIEDE 2000 – CIE00 – (Luo, Cui, & Rigg, 2001) and CIE 1976 L*a*b* colour-

difference formula – CIE76 – (ISO, 2007). For calculating the colour differences between the 

digitized physical images and the digital images from the series of degraded ones, we used all 

the patches from the Colorchecker card and the three colour samples taken directly from the 

photographs. We will use MCIE76 and MCIE00 to refer to CIE76 and CIE00 metrics applied to 

the latter samples. 

The visual evaluation of the experts was carried out based on the perception of the digital 

images reproduced on the monitor, making it necessary to minutely control all the elements 

that made up the viewing flow, which, in addition to the digital image, included the following: 

the calibration and ICC profile of the monitor; the conversion from the colour space of the 

image to the colour space of the monitor by the operating system's colour management 

system (CMS); the quality of the monitor and of the conditions of its viewing environment; the 

quality of the booth for viewing the physical originals and its viewing conditions. The screen 

interface was designed using the Adobe Bridge program so that only the image being 

evaluated appeared, with a narrow band along the left edge showing the images in the group 

to allow the evaluators to select the next image to view and navigate through the batch. The 

quality value applied and the coded name of the image were displayed underneath. The 

Colorchecker card used to create the masters and the original itself were placed in the booth 

in a position that was very similar to that in the test images. The intensity of the grey 

background colour of the screen was made to coincide with that of the booth. 

 

 



7 
 

Figure 1. Evaluation interface showing image 449. 

 

Based on the quality detected, the experts were able to assign a score to each image based on 

a scale with three values: 1 (the image would not pass a professional quality control measuring 

the proximity in the appearance of colour and contrast between an image on the screen and 

an image on paper); 2 (the image would pass the quality control but with a less rigorous 

criterion); and 3 (the image would pass the quality control with a rigorous criterion). In the 

interest of simplifying our first analytical approach in this study, we consolidated values 2 and 

3 so that we would be working with only two quality classes: valid image and invalid image. 

Four experts were selected who met the condition of being professionals with extensive 

experience in the sectors of professional photography and graphic arts (8, 14, 15 and 16 years 

of work experience in evaluation). Part of their daily work consists of visually evaluating the 

quality of images and comparing the proximity between the onscreen image and the printed 

copy. The team of experts was given a sufficient period of instruction to understand the type 

of quality evaluation required in the field of documentary heritage. 

 

2.2. Phase II. Data analysis 

With the collected data, two types of analysis were carried out:  

1) Analysis of consistency in the quality judgments of each evaluator.  

There were two objectives: to detect and estimate, percentagewise, errors due to lack of 

consistency in the evaluations of the human experts participating in the test, and to be able to 

compare the error percentages of the experts with those of the rules-based system we 

obtained afterward through machine learning. We applied two parameters that allowed us to 

measure the degree of consistency in the evaluations of each human evaluator (intra-

evaluator) and between evaluators (inter-evaluator).  

a) Intra-evaluator consistency error. 

This type of consistency error is indicative of the application of random evaluation processes at 

some point in the test or of changes in the quality criteria employed in the course of this. The 

factors that can cause both behaviours are multiple and vary widely in type: fatigue prior to or 

during the course of the test, lack of concentration, lack of interest, lack of engagement, etc. 

An evaluator, even an experienced one, can also adjust his or her criteria diachronically during 

the evaluation process in response to the errors being detected or the order in which images 

with varying degrees of distortion are presented.  Consistency was measured using repeated 

images inserted into the series. This was calculated, as shown in equation 2, by adding up, for 

each expert, all the consistency errors that occurred over the course of the three series of 

images and the total number of repeated images to discover the percentage represented by 

the first compared to the total number of images. A consistency error is understood to mean a 

difference in the scores assigned to identical repeated images.  
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𝐶 = 100 𝑥 
∑ 𝑒(𝑎𝑖) ≠ 𝑒(𝑏𝑖). 1𝑛

𝑖=1

𝑛
  

  (2) 

where 𝑛 is the number of repeated images, ℐ the set of images, 𝑒: ℐ → ℕ the assessment 

function, and 𝑎𝑖 𝑎𝑛𝑑 𝑏𝑖  the identical representations of the repeated image 𝑖 

 

b) Inter-evaluator consistency.  

Lack of consistency at this level is due mainly to the use of different criteria or degrees of 

strictness during evaluation. We applied three indicators: 

 Experts' degree of strictness. This was calculated by discovering the percentage of 

images selected as valid out of the total number of images evaluated. 

 Degree of consistency between experts with respect to the coincidence of scores for 

the same images. To calculate this, we measured the percentage of coincidence 

between each pair of experts in the three degrees of scoring permitted in the test. This 

meant measuring, when an expert assigned a certain value to the images in the series, 

what proportion of the other experts coincided. For example, of the images to which 

expert 1 assigned value 2, in what percentage did expert 2 also assign value 2. We 

should point out that the percentage does not necessarily have to coincide in reverse: 

continuing with our example, expert 2 could also have assigned value 2 to many other 

images to which expert 1 assigned other values.  

 Degree of coincidence in the scores for all the images by the four evaluators. 

Represented by the sum of images where all the experts coincided on the same value 

and of the images where there was no such coincidence. 

 

2) Regularity analysis in the behaviour of the four HSL colour perceptual values and of the CIE 

colour difference metrics in the evaluators' quality judgments. 

We tried to detect whether or not regular intra- and inter-evaluator patterns existed in the 

dispersion of the values for the different attributes that would explain the quality criterion 

applied by the experts, and which colour perceptual attributes would best enable modelling of 

the experts' behaviour. The existence of these patterns would facilitate the work of obtaining 

visual algorithms, based on which highly efficient evaluation systems could be generated that 

would approximate human evaluation processes in terms of accuracy. After analyzing the 

results, we will have to be able to determine whether it is feasible to generalize quality models 

based on fixed acceptance ranges for the colour difference metrics and perceptual attributes 

considered in this study. This aspect is highly relevant, as many quality control systems 

currently being applied are based on this model.  

To do this, we analyzed the ranges of acceptance values (quality score 1) and rejection values 

(quality score 2 or 3) in the metrics and HSL variables for each of the experts and images, 
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attempting to detect some regularity in them. Subsequently we comparatively analyzed the 

behaviour of the values for the ones degraded in the HSL variables with respect to the values 

of the colour difference metrics in the valid and invalid image groups.  

 

 

2.3. Phase III. Application of a machine-learning method for obtaining and validating a 

visual algorithm  

The detection of regular behaviour patterns in the analyzed variables reinforced the idea of 

the utility of applying machine-learning techniques for obtaining a visual algorithm that models 

their behaviour patterns with a high predictive capacity. The emulation of the human 

responses to image quality assessment has been approached through systems based on 

artificial neural networks with some success (Tchan, Thompson & Manning, 1999), but we 

have chosen to apply a rule induction algorithm because the information that the rules give us 

will be highly relevant for understanding the visual algorithm, determining its computation 

efficiency, and gaining knowledge about the act of quality perception by a human expert. We 

have also considered the greater flexibility provided by a rule-based approach to change or 

add parameters (Zhiqing & Yang, 1999). We applied a rule induction method, the C4.5 

machine-learning algorithm (Quinlan, 1993), using Weka machine-learning software (Witten & 

Frank, 2005). This algorithm derives an organized rule-based system in the form of a decision 

tree that is easy to read and comprehend.  

We used all the data from the three images and those from two of the experts: expert 1, as the 

most inconsistent, and expert 4, as the most consistent. Values 2 and 3 remained consolidated 

in a single class to allow us to work with a binary-type attribute. The number of positive 

instances (valid images) and negative ones (invalid images) was compensated by 50% to avoid 

polarization of the model towards the most numerous class. The compensation was done by 

repeating the data records for the positively evaluated images. We used only five variables: 

the expert score, the CIE76 metric and the three HSL colour perceptual attributes. The method 

applied to validate the resulting rule was crossed validation with 10 folders.  

3. Results and discussion 

3.1. Response consistency of the experts 

 

a) Intra-evaluator consistency error. 

Expert 1 Expert 2 Expert 3 Expert 4 

20% 15.22% 15.22% 10.87% 

Table II. Intra-evaluator consistency error. 

 

b) Inter-evaluator consistency. 

 Experts' degree of strictness. 
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Expert 1 

 
Expert 2 

  
Expert 3 

 
Expert 4 

Figure 2. Experts' degree of strictness, represented by the percentage of images considered 

valid for each of the four experts.   

 

 Degree of consistency between experts with respect to the coincidence of scores for 

the same images. 

In tables III to VI, we present the average of the percentages obtained for the three images. 

 

 
 

Average % agreement 
in assigning value 1. 

Average % agreement 
in assigning value 2. 

Average % agreement 
in assigning value 3. 

Expert 1 and 2 95.97 
 

14 
 

0 

Expert 1 and 3 91.03 
 

25.75 
 

9.5 
 

Expert 1 and 4 82.87 
  

38.6 
 

25.57 
 

Table III. Average of the agreement percentages from expert 1 compared to the other experts.  

 

 Average % agreement 
in assigning value 1. 

Average % agreement 
in assigning value 2. 

Average % agreement 
in assigning value 3. 

Expert 2 and 1 85.7 
 

31.33 
 

0 
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Expert 2 and 3 88.96667 
 

21.8 
 

0 

Expert 2 and 4 78.63333 
 

43.56667 
 

0 

Table IV. Average of the agreement percentages from expert 2 compared to the other experts. 

 

 Average % agreement 
in assigning value 1. 

Average % agreement 
in assigning value 2. 

Average % agreement 
in assigning value 3. 

Expert 3 and 1 87.03 
 

36.77 
 

3.17 
 

Expert 3 and 2 95.5 
 

13.97 
 

0 

Expert 3 and 4 82.66 
 

51.7 
 

39.67 
 

Table V. Average of the agreement percentages from expert 3 compared to the other experts. 

 

 Average % agreement 
in assigning value 1. 

Average % agreement 
in assigning value 2. 

Average % agreement 
in assigning value 3. 

Expert 4 and 1 91.73 
 

34.9 
 

14.3 
  

Expert 4 and 2 97.43 
 

18.63 
 

0 

Expert 4 and 3 95.5 
 

32.266 
 

13.27 
 

Table VI. Average of the agreement percentages from expert 4 compared to the other experts.  

 

 Degree of coincidence in the scores for all the images by the four evaluators. 

 

 

Figure 3. Scoring coincidences for the images in the 448 series by all the experts. 
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Figure 4. Scoring coincidences for the images in the 449 series by all the experts. 

 

 

Figure 5. Scoring coincidences for the images in the 550 series by all the experts. 

There were intra-evaluator consistency errors with all the experts, with a variability of 

between 5 and 10%. The error percentages are not exceptionally high, and therefore we can 

rule out a sustained random response and assume that the experts performed their 

evaluations guided by their perception of the quality of the images and applying a quality 

criterion. The expert with the most experience in evaluating documentary heritage, number 4, 

was the most consistent, suggesting that baseline training was a factor in the performance in 

this parameter.  

It seems that the degree of strictness of the four experts was generally very high, as the 

percentages, except for image 448, were under 20%. There only appears to have been a 

disparity of opinions for image 448, where the difference between the percentages was high, 

and for one of the experts (expert 2), the strictest, for image 550. 

In all the series of images, we can appreciate how the degrees of coincidence are much higher 

for the images considered invalid, which is explained by the fact that there was a much higher 

number of images considered invalid in all the series and for all the experts. We can say that 

the coincidence is in general low, and therefore we cannot talk about uniformity in the 

criterion of the four experts. As a result, without a period for the participating human experts 
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to agree on a common criterion beforehand, a quality control will always yield a low 

consistency rate, providing little reliability and consistency. 

The degrees of intra- and inter-evaluator consistency are indicative of the difficulty of 

achieving very high efficiency percentages with a visual algorithm that models their behaviour 

in a very accurate way, as the algorithm will also model the inconsistencies. There were fewer 

inconsistencies at the intra-evaluator level, and therefore achieving high performance rates by 

obtaining individual algorithms for each expert is feasible. In a real case, it would be necessary 

to try to analyze why the inconsistencies occur, improving the training of the experts to 

increase the consistency levels before proceeding to obtain the algorithm.  

 

3.2. Regularities in the behaviour of the HSL colour perceptual values and the CIE colour 

difference metrics in the judgments of the evaluators 

First we present a table with the threshold values for all the metrics and colour-perceptual 

variables for each image and, following this, these same data referenced to each expert. These 

data help calibrate the scope of the acceptance ranges for the images. 

 

 
 

Value CIE76 CIE00 MCIE76 MCIE00 Hue Satur. Light. 

448 Max. 16.51 9.72 15.38 13.49 19 39 19 

Min. 0.97 0.66 3.87 3.25 -20 -39 -20 

449 Max. 16.55 9.35 14.21 11.47 19 39 19 

Min. 1.11 0.80 3.09 2.45 -20 -39 -20 

550 Max. 16.79 9.62 14.31 11.78 19 39 19 

Min. 0.88 0.69 5.10 4.33 -20 -39 -20 

Table VII. Maximum and minimum values of the above metrics in the three sets of images. 

 

 Value CIE76 CIE00 MCIE76 MCIE00 Hue Satur. Light. 

448 2 and 3 
(58 
images) 

0.97 
a 
11.68 
 

0.66 
a 
7.71 
 

3.76 a 
9.08 

4.57 a 
10.84 

- 4 a 
10 

-31 a 
8 

-12 a 
18 

1 (245 
images) 

1.04 
a 
16.51 

0.68 
a 
9.72 

3.87 a 
15.38 

3.25 a 
13.49 

-20 a 
19 

-39 a 
39 

-20 a 
19 

449 2 and 3 
(46 
images) 

1.18 
a 
10.86 

0.90 
a 
7.84 

3.09 a 
8.18 

2.45 a 
5.79 

-5 a 
9 

-25 a 
14 

-3 a 
19 

1 (254 
images) 

 1.11 
a 
16.55 

0.80 
a 
9.35 

3.21 a 
14.21 

2.63 a 
11.47 

-20 a 
19 

-39 a 
39 

-20 a 
18 

550 2 and 3 ( 
51 
images) 

0.88 
a 
10.74 

0.69 
a 
7.84 

5.22 a 
11.77 

4.45 a 
9.40 

-6 a 
6 

-23 a 
8 

-7 a 
19 
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1 (248 
images) 

0.88 
a 
16.79 

0.69 
a 
9.62 

5.10 a 
14.31 

4.33 a 
11.78 

-20 a 
19 

-39 a 
39 

-20 a 
17 

Table VIII. Value ranges for the expert 1. 

 

 Value CIE76 CIE00 MCIE76 MCIE00 Hue Satur. Light. 

448 2 and 3 
(27 
images) 

1.09 
a 
11.63 

0.74 
a 
6.97 

3.87 a 
8.92 

3.25 a 
7.41 

-2 a 
11 

-13 a 
14 

-7 a 
13 

1 (276 
images) 

0.97 
a 
16.51 

0.66 
a 
9.72 

3.98 a 
15.38 

3.35 a 
13.49 

-20 a 
19 

-39 a 
39 

-20 a 
19 

449 2 and 3 ( 
24 
images) 

1.11 
a 
7.58 

0.80 
a 
5.91 

3.30 a 
7.52 

2.45 a 
6.31 

0 a 4 -17 a 
5 

-7 a 
13 

1 ( 
images) 

1.18 
a 
16.55 

0.89 
a 
9.35 

3.09 a 
14.21 

2.63 a 
11.47 

-20 a 
19 

-39 a 
39 

-20 a 
19 

550 2 and 3 ( 
11 
images) 

0.88 
a 
8.47 

0.69 
a 
6.70 

5.48 a 
10.34 

4.67 a 
8.38 

0 a 6 -10 a 
2 

-3 a 
13 

1 (289 
images) 

0.88 
a 
16.79 

0.69 
a 
9.62 

5.10 a 
14.31 

4.33 a 
11.78 

-20 a 
19 

-39 a 
39 

-20 a 
19 

 Table IX. Value ranges for the expert 2. 

 

 Value CIE76 CIE00 MCIE76 MCIE00 Hue Satur. Light. 

448 2 and 3 
(40 
images) 

0.97 
a 
10.74 

0.66 
a 
7.79 

3.98 a 
9.08 

3.35 a 
7.52 

-2 a 
8 

-10 a 
14 

-7 a 
19 

1 (263  
images) 

1.08 
a 
16.51 

0.68 
a 
9.72 

3.87 a 
15.38 

3.25 a 
13.49 

-20 
a 19 

-39 a 
39 

-20 a 
16 

449 2 and 3 
(30 
images) 

1.18 
a 
10.86 

0.90 
a 
7.84 

3.21 a 
8. 18 

2.63 a 
5.79 

-4 a 
3 

-13 a 
9 

-2 a 
19 

1 (248 
images) 

1.18 
a 
16.55 

0.89 
a 
9.35 

3.09 a 
14.21 
 

2.45 a 
11.89 

-20 
a 19 

-39 a 
39 

-20 a 
18 

550 2 and 3 
(27 
images) 

0.88 
a 
7.39 

0.69 
a 
5.85 

5.22 a 
9.50 

4.45 a 
7.70 

-1 a 
2 

-10 a 
1 

-11 a 
13 

1 (273 
images) 

0.88 
a 
16.79 

0.69 
a 
9.62 

5.10 a 
14.31 

4.33 a 
11.78 

-20 
a 19 

-39 a 
39 

-20 a 
19 

 Table X. Value ranges for the expert 3. 
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 Value CIE76 CIE00 MCIE76 MCIE00 Hue Satur. Light. 

448 2 and 3 
(122 
images) 

0.97 a 
13.88 

0.66 
a 
8.32 

3.87 a 
12.12 

3.25 a 
10.41 

-4 a 
13 

-35 a 
14 

-15 a 
19 

1 (181 
images) 

1.08 a 
16.51 

0.68 
a 
9.72 

4.3 a 
15.38 

3.60 a 
13.49 

-20 
a 
19 

-39 a 
39 

-20 a 
13 

449 2 and 3 
(43 
images) 

1.11 a 
10.86 

0.80 
a 
7.84 

3.21 a 
8.18 

2.63 a 
5.97 

-4 a 
6 

-17 a 
19 

-7 a 
19 

1 (257 
images) 

1.18 a 
16.55 

0.89 
a 
9.35 

3.09 a 
14.21 

2.45 a 
11.47 

-20 
a 
19 

-39 a 
39 

-20 a 
18 

550 2 and 3 
( 58 
images) 

0.88 a 
10.221 

0.69 
a 
7.42 

4.45 a 
9.13 

5.22 a 
11.42 

-7 a 
6 

-17 a 
2 

-14 a 
18 

1 (242 
images) 

0.88 a 
16.79 

0.69 
a 
9.62 

5.10 a 
14.31 
 

4.33 a 
11.78 

-20 
a 
19 

-39 a 
39 

-20 a 
19 

Table XI. Value ranges for the expert 4. 

 

In the interest of reducing the amount of data to be viewed, we simplified the CIE metrics 

based on their correlation, selecting only one out of the most correlated metrics. We applied 

the Pearson correlation coefficient because of its suitability for the type of linear correlations 

we find between all the studied variables. In the following tables, we show the correlations 

between the CIE metrics used in the study. 

 

 CIE00 y CIE76 MCIE00 y 
MCIE76 

MCIE00 y CIE00 MCIE76 Y CIE76 

448 0.93 0.99 0.72 0.57 
449 0.92 0.97 

 
0.68 0.52 

550 0.93 0.96 0.89 0.87 

Table XII. Pearson correlation results between CIE Delta E metrics from the Colorchecker 

patches and from the physical document samples. 

 

All the correlations are significant, and therefore we chose to use the CIE76 metric, one of the 

most used in colour quality evaluation. In the interest of simplifying viewing, we used only 

image 448, considering that in light of the data for all the images provided in the previous 

tables, it is possible to generalize these conclusions for the three images in the study.  
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Figure 6. Distribution of valid (red) and invalid (blue) images in the CIE76 value ranges for the 

four experts (in order from 1 to 4). Image 448. 
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Figure 7. Distribution of valid (red) and invalid (blue) images in the hue value ranges for the 

four experts (in order from 1 to 4). Image 448. 
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Figure 8. Distribution of valid (red) and invalid (blue) images in the saturation value ranges for 

the four experts (in order from 1 to 4). Image 448. 
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Figure 9. Distribution of valid (red) and invalid (blue) images in the lightness value ranges for 

the four experts (in order from 1 to 4). Image 448. 

 

The pattern is very similar for the four experts and for the three images, except in the case of 

expert 4, who was less strict and accepted a wider range for the valid images. In all the 

metrics, except for the low end in CIE76, the range for invalid images includes the range for the 

valid ones, except for some internal discontinuity. The overlap in the ranges is very high, which 
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prevents the establishment of fixed acceptance ranges for a single metric or colour perceptual 

value in isolation. In any case, it would be possible to set a threshold value above which the 

image could be considered rejected, although it would not be possible to say anything about 

validity below this value. In this study, we have seen how this threshold value varies depending 

on the expert and on the image within the scores of a single expert. We compared to see 

whether this threshold value came close to being the same for the four experts by comparing 

the data from the tables and graphs, but this was not the case; the threshold value oscillated 

in the CIE76 metric between 10.7 and 11.6 for expert 1, between 8.47 and 11.6 for expert 2, 

between 7.39 and 10.8 for expert 3 and between 10.22 and 13.88, for expert 4. In the CIE00 

metric, this was between 7.71 and 7.84 for expert 1, between 5.91 and 6.7 for expert 2, 

between 5.85 and 7.79 for expert 3, and between 7.42 and 8.32 for expert 4. It seems that the 

experts varied their criterion for each type of image, with the acceptance range for the diverse 

metrics not always having same value for the three images. Therefore, we can conclude that 

the iconic motif of the image is determinant with respect to the degree of strictness applied by 

the expert and the perception of colour and hue problems. 

In view of the results, it would be necessary to review the utility of the fixed acceptance ranges 

in the CIE76 and CIE00 metrics found in many image quality control systems, as the acceptance 

ranges are much wider than those commonly considered in heritage quality control systems 

and admit a high percentage of invalid images; to discard these, it would be necessary to also 

consider performance in colour perceptual attributes and their interrelationships, aspects that 

do not seem sufficiently modelled in the CIE metrics we used.  

In order to determine the degree of similarity in the correlation patterns between quality 

judgments and value variations in the parameters analyzed by the different experts, we 

studied what happens in the zones of overlap closely. The zones of overlap are the intervals 

within the values for a variable where as many valid images as invalid images were found. The 

purpose of this analysis was to determine the factors that cause an image within these zones 

to be considered valid or invalid by each expert, and whether a regular pattern exists in the 

behaviour of these factors that will help us obtain a model. For example, we have the case of 

accepted and rejected images in the CIE76 range between 0 and 4. We want to know if this is 

because there is a high degree of randomness in the quality evaluation when the degradation 

is not very evident, or because factors influencing the perception of quality related to the HSL 

colour perceptual variables exist.  

We are going to analyze the role played by variability of HSL, so that the images are considered 

valid or invalid within the same interval, by considering the CIE76 metric and one of the 

images, 448. We did not use CIE00 because its results were practically the same as for the 

previous one, because the zones of overlap between CIE00 and CIE76 coincided 92.74% of the 

time and due to the high degree of correlation between the series of values for the two 

metrics. To do this, we analyzed the individual data for each expert and each image, dividing 

the values for the CIE76 metric into intervals, between ranges 1 and 8, and studying how the 

variation in the HSL variables behaves. The x-axis shows the image's order number, and the y-

axis shows the value of the HSL and CIE76 variables. The images were sorted in ascending 

order by their CIE76 value. To simplify the results, we show only the data for the comparison 
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between experts 4 and 1 with image 448. We present the graphs of the valid and invalid 

images side by side to facilitate viewing of the regularities in the patterns for the two types. 

 

Figure 10. Delta 1 ranges. 

 

Figure 11. Delta 2 ranges. 
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Figure 12. Delta 3 ranges. 

 

 

Figure 13. Delta 4 ranges. 
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Figure 14. Delta 5 ranges. 

 

 

Figure 15. Delta 6 ranges. 
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Figure 16. Delta 7 ranges. 

 

 

Figure 17. Delta 8 ranges. 
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If we look at these graphs, we can see how the numerical patterns of the HSL colour 

perceptual variables are very different within the same delta range between the images 

accepted and rejected by the two evaluators; although some coincidences also appear, there 

are very few. The coincidences represent anomalous behaviour, as they assume that the 

expert is applying the same conformity criterion to the valid images as to the invalid ones, and 

vice versa, but they are explainable if we consider the data for consistency in the response of 

the experts we included previously. If we assume the same inconsistency percentage as we 

had in the repeated images for the rest of the images, it is logical that we find repeated 

patterns of rejection within the acceptance patterns, and vice versa. But the differences found 

in the patterns reinforces the idea that it is not possible to base quality control models on fixed 

acceptance ranges for the CIE Delta E 1976 or CIEDE 2000 metrics without also considering the 

behaviour in the hue, saturation and lightness variables. This consideration is very important in 

the overlap ranges. Therefore, rigid models based on ranges of metrics considered in isolation 

cannot be used to obtain effective quality evaluation. 

It is possible to confirm the existence of a similar numerical model in the HSL values for the 

valid and invalid images in experts 1 and 4, which becomes practically identical in the invalid 

ones as the delta increases. This progressive similarity is explainable because, there being a 

greater number of invalid images in the highest deltas, it is more likely that the coincidence 

between the two experts will increase gradually for the images they selected as valid and 

invalid. In delta 7, for example, the coincidence between expert 1 and expert 4 is 23 images 

out of a total of 32 images. If we return to the data shown above on the level of consistency 

between the experts, we can see how experts 1 and 4 are very consistent with each other, 

over 90% of the time for the invalid images and close to 40% for the valid images.  

 

3.3. Performance of a machine-learning method for obtaining and validating a visual 

algorithm 

Using algorithm C4.5, we obtained a set of rules that makes it possible to classify new 

examples of images as valid or invalid in the same way as the human expert whose evaluation 

data was used to infer the rules.  To measure the degree of efficacy and efficiency, we used 

different indicators. These include the precision and recall rates. The first expresses the 

proportion among the images recovered by the rule-based system within a class, for example 

class 1 (invalid), of ones that are correct because they correspond to their class and ones that 

are not. The recall rate expresses the proportion of images of one class that were correctly 

assigned by the rule-based system compared to all the images corresponding to this class. 

For the image 448: 

Expert 1 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

471 Total % Total % Valid Invalid Valid Invalid 33 

406 86.383 64 13.617 0.784 0.984 0.987 0.752 

Expert 4 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 
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728 Total % Total % Valid Invalid Valid Invalid 40 

670 92.033 58 7.967 0.899 0.944 0.948 0.892 

Table XIII. Rule system performance for the image 448. 

 

For the image 449: 

Expert 1 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

525 Total % Total % Valid Invalid Valid Invalid 14 

482 91.8095 43 8.1905 0.898 0.942 0.948 0.886 

Expert 4 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

515 Total % Total % Valid Invalid Valid Invalid 13 

472 91.6505 43 8.3495 0.857 1 1 0.833 

Table XIV. Rule system performance for the image 449. 

 

For the image 550: 

Expert 1 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

504 Total % Total % Valid Invalid Valid Invalid 16 

470 93.4394 33 6.5606 0.885 1 1 0.867 

Expert 4 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

474 Total % Total % Valid Invalid Valid Invalid 19 

436 91.9831 38 8.0169 0.867 0.986 0.987 0.855 

 Table XV. Rule system performance for the image 550. 

In figure 18 we show the set of rules obtained automatically for the case with the highest 

success rate in correctness, image 550 and expert 1, where we can see how the ranges for the 

CIE76 metric are influenced in all cases by the range of values in the HSL variables. 
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Figure 18. Rule system for the image 550 and the expert 1. 

 

The success rates of the rule-based system are always higher than 85%, with image 449, where 

this exceeds 91.5%, being especially notable. The precision and recall rates, except in image 

448 for expert 1, are always higher than 0.83. The inconsistency rates we saw for all the 

experts would make it impossible to obtain a rules system directly from the analysis of their 

behaviour with performance of 100%, as the rule-based system, to a certain extent, models 

this inconsistency by inferring the rules directly from the data obtained for the experts 

themselves. 

We can assume that the result of the machine-learning test reinforces the conclusion reached 

in the previous section on the existence of regular patterns in the quality judgments of the 

experts, that these patterns are based on visual analysis of perceptual colour properties, and 

that it is possible to generate a model that represents these regular patterns through the 

combined use of easily computable metrics and colour perceptual attributes, such as CIE76, 

CIE00 or HSL. Therefore, we understand that it is possible to generate a numerical model that, 

with a small set of variables, yields a relatively high success rate when compared to the error 

rates we found in the evaluations of the human experts participating in the experiment. The 

mathematical representation of this model would comprise a visual algorithm. In order to 

assess the complexity of a rules-based visual algorithm of these characteristics, we have 

analyzed the complexity of the decision trees. Except in the case of the first image, the 

resulting sizes are small, as the number of rules oscillates between 13 and 19. In the first 

image, they oscillate between 33 and 40. Therefore, the visual algorithm would really be 

efficient with the computing power currently available to us. 
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Next we performed three tests of the consistency of the machine-learning algorithm applied, 

using the data for expert 4, the most consistent, and the image in which the algorithm 

provided the highest success rate, 448. 

 

a) Test of swapping the CIE76 metric with MCIE76. 

We confirmed the variation in the performance of the algorithms if we use the samples taken 

of the images themselves (MCIE76 metric) instead of the colour patches from the control 

cards. As we saw above, their correlations are not as high as between metrics CIE76 and CIE00. 

The results are very similar to those obtained using the patches from the card. This conclusion 

is important, as we have to consider that in a quality evaluation system, it is not at all efficient 

to use samples of the documents instead of standardized colour cards, given the excessive 

amount of work time involved in taking samples and obtaining the standardized colour values. 

 

Total 
images 

Correctly classified Incorrectly 
classified 

Precision Recall Number of rules 

728 Total % Total % Valid Invalid Valid Invalid 35 

671 92.17 57 7.83 0.901 0.945 0.948 0.895 

Table XVI. Rule system performance using metric MCIE76. 

  

b) Application of algorithm C4.5 exclusively for metrics CIE76 and CIE00 in isolation.  

The results obtained by inferring the rules only from the CIE metrics in isolation are not 

acceptable, as the success rate is very low, 66.4% for CIE76 and 61.5% for CIE00, which was to 

be expected after observing the high degree of overlap between the data for the valid and 

invalid images according to these metrics. 

c) Validation of the rule-based system obtained with a set of images not used to infer the 

rules, and the performance of the inducted rule-based system on data for images 

evaluated with different criteria. 

The method of validating the resulting rules we used in the previous experiments can even 

involve in the validation process the use of some records already employed to generate the 

rules. This is because of the compensation of images that we included to bring the classes of 

valid and invalid images closer together. To avoid the problem of bias towards optimum results 

that this practice might represent, we proceeded to redo the experiment, applying algorithm 

C4.5 with a compensation system that does not involve including duplicate data records to 

balance the percentages of the two classes. Due to the disparity between the number of 

images considered valid and invalid for all the experts and images, we proceeded to bring the 

two classes closer together by creating a consolidated file with the records for the three 

images for expert 4, without including compensation. This file contains a total of 903 records, 

223 of them corresponding to valid images and the remaining 680 to invalid ones. We are 

aware that by doing this we are mixing different criteria, since, as we saw earlier, the experts 

do not apply exactly the same criteria to the three images due to their differences in iconic 
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content; therefore the performance of the algorithm should be lower, and we should assume a 

reduction in the performance of the rule-based system. But with this test, we can see, at the 

same time, how the use of different criteria by the human evaluators we want to emulate 

influences the performance of the visual algorithm obtained automatically. Based on the 

consolidated file, we then created three files with the following distributions of records: 

 File A. With the records of the 223 valid images and 227 invalid images. 

 File B. With the records of the 223 valid images and 226 invalid images not included in 

the other two files. 

 File C. With the records of the 223 valid images and the remaining 226 invalid images 

not included in the other two files. 

 

To validate, we used the crossed validation method, which, by not acting on records with 

duplicates, in no case employs records used for inferring the rules in the validation process. 

The resulting success rates are the following: 

 

 Correctly 
classified 

Valid images 
recall  

Invalid images 
recall 

Valid images 
precision  

Invalid images 
precision 

A 85.56 0.852 0.859 0.856 0.855 

B 74.4 0.735 0.752 0.745 0.742 

C 75.5 0.785 0.726 0.738 0.774 

Table XVII. Rule system performance for files A, B and C. 

 

The results become less successful, with an important factor being the lack of uniformity in the 

criteria applied to each of the images. Nevertheless, even with this limitation, the success rate 

is higher than 74% in all cases. 

We must reflect on the disparity of results between the rules obtained for each image and by 

each expert. This disparity suggests that the criteria applied to value judgments vary according 

to the image motif and the expert. Both types of inconsistency are a problem for quality 

evaluation systems based on human experts. For this reason, studies are needed that address 

in greater depth how the type of image motif influences the perception of quality and the 

factors that cause lack of consistency between evaluators. The methods of analysis we used 

for this study can be used to detect and analyze this type of problem.  

 

4. Conclusions 

Quality control systems for heritage digitization must consider the performance of the quality 

measurement parameters, not only at the physical level but also at the overall perception 

level, modelling to the extent possible the complex interactions that take place between the 

image quality attributes at this level. A perceptual model involves knowledge that must be 
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obtained through experimentation with human quality experts with sufficient training in the 

objectives of the projects. These experiments run into the problem of inter- and intra-

evaluator inconsistency, which must be measured beforehand.  

We conclude that it is not possible to talk about continuous acceptance ranges for the metrics 

habitually considered in quality systems in colour and in the use of these metrics on an 

isolated basis, and therefore that it is necessary to investigate more complex models. In this 

study, we attempted to obtain a model based on a rule-based system with high performance 

for the case considered in the experiment presented employing the CIE76 and CIE00 metrics 

along with the HSL colour perceptual attributes. The detection of regular patterns of values for 

these attributes in the zone of overlap between images considered valid and invalid by the 

experts leads us to consider that this combination of attributes and metrics might be suitable 

for objectively measuring the subjective appreciation of perceptual proximity with a relatively 

high degree of success, which will always be limited by the errors committed by the human 

expert evaluators in their evaluation work. 

We used machine-learning algorithm C4.5 in an attempt to obtain a rule-based system that 

would enable modelling of these behaviour patterns and which, therefore, could be applied to 

emulate the human experts with a high degree of efficacy. The results indicate that it is 

possible to emulate the scoring process of the expert with efficacy rates above 85% by these 

means. The percentage of errors committed by the experts was estimated at between 10.87% 

and 20%, and therefore we can consider their success rates comparable to those of the 

created system. Given the variability of inter- and intra-evaluator criteria detected, it is not 

possible to generalize a single model for the entire set of evaluators, although it can be 

assumed that after a long enough period for training and agreeing on the results, it would be 

possible to improve this inconsistency enough to generate a single, highly efficacious model.  
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