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Abstract 

Changes in variance or volatility over time can be modelled using stochastic volatility 
(SV) models. This approach is based on treating the volatility as an unobserved variable, 
the logarithm of which is modelled as a linear stochastic process, usually an auto­
regression. This article analyses the asymptotic and finite sample properties of a 
Quasi-Maximum Likelihood (QML) estimator based on the Kalman filter. The relative 
efficiency of the QML estimator when compared with estimators based on the General­
ized Method of Moments is shown to be quite high for parameter values often found in 
empirical applications. The QML estimator can still be employed when the SV model is 
generalized to allow for distributions with heavier tails than the normal. SV models are 
finally fitted to daily observations on the yen/dollar exchange rate. 
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1. Introduction 

Time series models with heteroscedastic errors are recelvmg an mcreasing 
attention in the econometric literature. These models are specially useful for 
modelling high-frequency financial time series, such as stock returns and ex­
change rates. In the simplest set up, the series of interest is a white noise process, 
with unit variance, multiplied by a factor (J" known in the financial literature as 
volatility. That is, 

y, = (J,G,. (1) 

There are different ways for modelling changes in volatility over time. Some of 
the most popular models in the literature are those based on the Autoregressive 
Conditional Heteroscedasticity (ARCH), inspired by Engle (1982); see Bollerslev 
et al. (1992) for a detailed review of these models. All ARCH-based models share 
the property that the distribution of y, conditional on past values of the series, 
up to and including time t - I, is Gaussian with variance (J~. Consequently, the 
volatility is observable at time t - 1. 

Alternatively, the volatility may be treated as an unobserved variable, the 
logarithm of which is modelled as a linear stochastic process, such as an 
autoregression. Models of this kind are called stochastic volatility (SV) models; 
see Taylor (1991) for an excellent review on SV models. 

ARCH-type models and SV models have similar statistical properties. How­
ever, they are different with respect to the observability of (Jl at time t - 1; see 
Andersen (1992) for a detailed discussion on this subject. 

SV models fit quite naturally into the theoretical framework within which 
much of the modern finance theory, in relation to option valuation, has been 
developed; see, for example, Chesney and Scott (1989). Another feature of these 
models is that they can be naturally generalized to multivariate series as in 
Harvey et al. (1992). However, they are not conditionally Gaussian and, there­
fore, their estimation and statistical handling may present some difficulties. The 
estimation of SV models has usually been carried out by variants of the method 
of moments. The aim of this article is to analyse the properties of a Quasi­
Maximum Likelihood (QML) estimator of SV models based on the Kalman 
filter and proposed independently by Nelson (1988) and Harvey et al. (1992) and 
compare them with the properties of some estimators based on the method of 
moments. 

The article is organised as follows. Section 2 sets out some of the basic ideas of 
univariate SV models. In Section 3, the QML estimator is described and its 
asymptotic and finite-sample properties are found. In Section 4, the asymptotic 
and finite-sample properties of two estimators based on the method of moments 
are analysed. It is shown that for parameter values likely to arise in practice 
when analysing very-high-frequency financial time series, these estimators are 
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less efficient than the QML estimator. Section 5 presents an empirical applica­
tion using a series of daily yen/dollar exchange rates. The conclusions are given 
in Section 6. 

2. Stochastic volatility processes 

A simple stationary SV model is given by 

y, = 8, exp {h,/2}, (2a) 

(2b) 

where h, = In(o}), 8, is a white noise process with unit variance, generated 
independently of '1, and 14> 1 < 1. Working with logarithms ensures that (J; is 
always positive. 

Transforming y, by taking logarithms of the squares, we obtain a linear state 
space model 

In(y?) = E(1n(8l)) + h, + ~" 

h, =,' + 4>h'-1 + '1" 

(3a) 

(3b) 

where ~, = In(8?) - E(ln(8; )). ~, is a non-Gaussian, zero mean, white noise, and 
its statistical properties depend on the distribution of c,. From (3) it is possible 
to observe that, In(Yn is equivalent to an ARMA(1,I) process with a non­
Gaussian noise. 

If 8, ~ NID(O, 1), as it is often assumed in the literature, the mean and variance 
of In(8~) are known to be I{I(!) - In(~):::::: - 1.27 and 1[2/2 respectively, where 
I{I( • ) is the Digamma function; see Abramovitz and Stegun (1970). 

Some authors also assume that 8, have a Student-t distribution; see Harvey 
et al. (1992). Let c, be a t-variable written as 

(4) 

where (, is a standard normal variate and VK, is distributed, independently of C, 
as a X2 with v degrees of freedom. Then In(cl) = In((;) - In(K,). It follows from 
results in Abramovitz and Stegun (1970) that, in this case, E[ln(cm:::::: 
- 1.27 -1{I(v/2) + In(v/2) and var[ln(8m = 1[2/2 + 1{I'(v/2), where I{I'(.) is the 

Trigamma function. 
The SV model in (2) can be generalised so that h, follows any stationary 

ARMA process. Alternatively, h, can be allowed to follow a random walk. The 
corresponding SV model is then given by 

y, = 8,exp{h,/2}, 

h, = h'-I + '1,. 

(5a) 

(5b) 
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In this case, In(y~) is a random walk plus noise, and the best linear predictor of 
the current value of ht is an exponential weighted moving average (EWMA) of 
past values of In(y~). 

3. Quasi-maximum likelihood estimation 

The QML approach for estimating SV models has been proposed indepen­
dently by Nelson (1988) and Harvey et al. (1992) and is based on the Kalman 
filter. This is applied to In(y~) to obtain one-step-ahead errors and their 
variances. These are then used to construct a quasi-likelihood function. Because 
In(y~) is not Gaussian, the Kalman filter yields minimum mean square linear 
estimators (MMSLE) of ht and future observations rather than minimum mean 
square estimators (MMSE). 

3.1. Stationary case 

Consider the SV model (2) with Gt'" NID(O, 1). In order to estimate the 
parameters y, cp, and lT~, consider the linear state space model in (3), which in this 
case is given by 

In(y~) = - 1.27 + ht + ~t' 

ht = Y + cpht - 1 +I'/t, 

where lT~ = 7[2/2. 

(6a) 

(6b) 

Estimation of model (6) can be carried out by QML by treating ~t as though it 
were NID(O, 7[2/2). The Kalman filter may then be used to obtain the prediction 
error decomposition form of the Gaussian likelihood, which has to be numer­
ically maximised. Notice that model (6) can be written 

y~ = ht + ~t' 

ht = cpht - 1 + I'/t, 

(7a) 

(7b) 

where y~ is equal to In(y~) corrected by its mean given by y* = - 1.27 + 
y/(l - cp). 

y* can be consistently estimated by the sample mean of In(y~). Moreover, the 
sample mean is a QML estimator of y* uncorrelated with the QML estimator of 
the stochastic part of the model; see Harvey (1989). In what follows, we treat y*, 
or equivalently y, as known and concentrate on the estimation of P = (cp, lT~)'. 

The standard theory for the estimation of unobserved component time series 
models with nonnormal errors applies to the estimates of P. Using the results in 
Dunsmuir (1979) and since I'/t and ~t are martingale differences and have finite 
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moments up to at least order four, the asymptotic distribution of the QML 
estimator of '1', denoted by tfi, is given by 

jT(tfi - '1') ~ N(O, C('I')), 

where T is the sample size and the analytic expression for C('I') is given in the 
appendix. 

Table 1 shows the finite-sample approximation to the asymptotic standard 
errors (ASEs), given by jC('I')ljT, for _different parameter values and sample 
sizes. The finite-sample properties of 'I' have been studied by carrying out 
several Monte Carlo experiments. Table 2 shows the results of some of these 
experiments. The small-sample bias in the QML estimates for rp is generally of 
relatively minor order in the present context with a relatively large number of 
observations. The QML estimates for (J~ are also slightly biased in finite 
samples. Both biases tend to increase when rp decreases or (J~ decreases. Com­
parison between the ASEs in Table 1 and the Monte Carlo standard errors 
shows that for T = 500 the ASEs of ($ and iJ~ underestimate the observed 
standard errors by quite a large amount when rp = 0.9 and (J~ = 0.09. This may 
be due to the fact that both parameters are getting close to the boundary of 
the permissible parameter space. The ASEs of iJ~ are, in general, a better 
approximation to the observed standard errors. 

3.2. Random walk plus noise case 

When hI follows a random walk as in model (5), the Kalman filter approach is 
still valid if the restriction rp = 1 is imposed. The only difference is that the first 

Table I 
Asymptotic standard deviations of QML estimator of stationary stochastic variance model 

T= 500 T= 3000 T= 6000 

<i> = 0.9 0.0306 0.0125 0.0088 
(J; = I 0.2890 0.1180 0.0834 

<i> = 0.7 0.1033 0.0422 0.0298 
(J; = 1 0.4802 0.1960 0.1386 

<i> = 0.9 0.0792 0.0323 0.0229 
(J; = 0.09 0.1004 0.0410 0.0290 

<i> = 0.7 0.6761 0.2760 0.1951 
(J; = 0.09 0.3407 0.1391 0.0983 
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Table 2 
Monte Carlo experiments on QM L estimator of the stationary stochastic variance model: Average 
value with standard deviations in parentheses (1000 replications) 

T= 500 T= 3000 T = 6000 

<p = 0.9 0.8927 0.9004 0.9010 
(0.0342) (0.0170) (0.0150) 

<1; = 1 1.0276 0.9942 0.9964 
(0.3117) (0.1207) (0.0913) 

<p = 0.7 0.6840 0.6982 0.6979 
(0.1081) (0.0434) (0.0230) 

<1; = 1 1.0612 1.0030 1.0076 
(0.5015) (0.1935) (0.1400) 

<p = 0.9 0.7464 0.8932 0.8968 
(0.2691) (0.0406) (0.0254) 

<1; = 0.09 0.2178 0.0996 0.0949 
(0.3314) (0.0528) (0.0329) 

<p = 0.7 0.3688 0.5362 0.6138 
(0.2857) (0.2841) (0.2314) 

<1; = 0.09 0.2583 0.1481 0.1305 
(0.3627) (0.1532) (0.1184) 

observation is used to initialise the Kalman filter, whereas when cp < 1, the 
unconditional distribution of h, is available at t = 0. 

Assuming that e, ~ NID(O, 1), consider the following state space model: 

In(y~) = - 1.27 + h, + ~" (8a) 

(8b) 

where a~ = n 2 /2. In this case, the model contains only one unknown parameter, 
a;. Denote by &; the QML estimator of a;. The asymptotic distribution of 
JT(&; - a;) is normal with zero mean and asymptotic variance C(a~). The 
analytic expression for C(a;) appears in the Appendix. 

Table 3 shows the approximation in finite-sample sizes to the ASEs of &;, for 
different values of a~ and different sample sizes. 

The results of several Monte Carlo experiments, carried out to analyse the 
finite-sample properties of &;, appear in Table 4. The QML estimates of a~ show 
a slight finite-sample bias which tends to increase when a; decreases. Moreover, 
comparing Tables 3 and 4, one observes that, for small values of a~, the ASEs 
underestimate the observed standard errors. The problem may be that, when 
a; is close to zero, the distribution of &~ may be some way from normality; see 
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Table 3 
Standard deviation of QML estimator of random walk volatility model 

,,2 
" 

T= 500 T= 3000 T = 6000 

0.09 0.03196 0.01305 0.00922 
0.01 0.00603 0.00246 0.00174 
0.0009 0.00098 0.00040 0.00028 
0.0001 0.00019 0.00008 0.00005 

Table 4 
Monte Carlo experiments on QML estimator of the random walk volatility model: Average value 
with standard deviations in parentheses (1000 replications) 

,,, 
" 

T= 500 T = 3000 T = 6000 

0.09 0.09028 0.08949 0.09005 
(0.03356) (0.01269) (0.00903) 

0.01 0.01015 0.00996 0.01002 
(0.00689) (0.00247) (0.00175) 

0.0009 0.00101 0.00089 0.00091 
(0.00148) (0.00042) (0.00028) 

0.0001 0.00028 0.00010 0.00010 
(0.00083) (0.00009) (0.00006) 

Harvey (1989). For relatively large values of 0';, the ASEs are good approxima­
tions to the finite-sample standard deviations. 

3.3. Heavy-tailed distributions 

When er is a t-variable as given by (4) and hr is stationary, consider the state 
space model in (7) with i'* = - 1.27 - tjI{v/2) + log(I'/2) - }'/(l - cP) and 
O'~ = 1[2/2 + tjI'(v/2). Then, the model can be estimated by estimating O'~, 1'*, cP, 
and 0'; with the restriction O'~ ~ 1[2/2. The estimated variance of ~r implies 
a value of v. As in the Gaussian case, )'* can be estimated by the sample mean 
and therefore we concentrate on the estimation of gt* = (O'~, cP, 0';)'. Estimates of 
gt* can be obtained by treating ~r as though it were NID(O, a~) and maximising 
the resulting quasi-likelihood function. In this case, the asymptotic distribution 
of the QML estimator of gt* is given by 

JT(tfi* - gt*) .t N(O, C(gt*)). 

The elements of C(gt*) appear in the Appendix. 
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It is also possible to estimate SV models by assuming that v is known. In this 
case, there is no need to estimate (]'~. Surprisingly, for the typical parameter 
values often found in empirical applications, the estimates of cP and 0'; are less 
efficient in this case. Table 5 reports values of ASEs of the QML estimators of 
'l' = (CP, (]'~)' obtained by assuming that v is known and when this parameter is 
estimated. It can be observed that the loss in efficiency is greater for &; than for 
cfj. For the parameter values considered in Table 5, the loss in efficiency for cfj can 
be shown to be quite small. However, for &~ the loss could be as big as 3% in 
some cases. This result seems counterintuitive at first sight. However, since the 
proposed estimators are QML and not maximum likelihood estimators, they 
are not fully efficient. Consequently, it may be possible that the QML estimator 
of 0'; when both variances are estimated is more efficient than when O'~ is known. 

With respect to hypothesis testing, an interesting hypothesis to test is whether 
er is normal, i.e., Ho: O'~ = 7[2/2. One possible test statistic could be a quasi­
Likelihood Ratio (LR) test. Since under the null hypothesis, (]'~ is on the 

Table 5 

Asymptotic standard deviations with Student-t disturbances and relative efficiency computed as the 
ratio of standard deviations 

(a) Stationarity 

1'=6 
</> = 0.95 
O"~ = 0.09 

\' = 10 

</> = 0.95 
O"~ = 0.09 

\' = 6 

</> = 0.95 
O"~ = 0.01 

1'=6 
</> = 0.99 
0"; = 0.09 

(b) Random walk 

1'=6 
O"~ = 0.09 

\' = 6 

O"~ = 0,01 

\'=6 
0"; = 0.001 

Estimating I' 

0.6634 
1.3577 

0.6556 
1.3342 

2.2472 
0.6645 

0.1646 
0.8275 

0.7183 

0.1367 

0.0242 

\' known Efficiency loss 

0.6708 1.0112 
1.3847 1.0199 

0.6647 1.0139 
1.3670 1.0246 

2.2785 1.0139 
0.6792 1.0221 

0.1650 1.0024 
0.8367 1.0111 

0.7384 1,0280 

0.1379 1.0088 

0.0243 1.0041 
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boundary of the admissible parameter space, the distribution of the LR test is 
given by 

LR - h6 + hi, 

where X6 is a degenerate distribution with all its mass at the origin; see Harvey 
(1989). The size of the LR test can therefore be set appropriately simply by using 
the 2et, rather than the et, significance point ofaxi distribution for a test of size et. 

For example, for et = 5%, the corresponding critical value for the quasi-LR test 
statistic is 2.71. This is the value found by Bollerslev (1987) by carrying out 
Monte Carlo experiments. 

Alternatively, by estimating O"~ as an unrestricted parameter (i.e., without 
imposing the lower bound 7[2/2), it is possible to allow e, to have a distribution 
with kurtosis which could be smaller or bigger than the normal kurtosis. For 
example, e, may have a generalized error distribution (GED); see Nelson (1988). 
The reason why the GED family of distributions could be an attractive alter­
native is because it includes the normal as an special case, and also includes 
distributions with thinner and fatter tails than the normal. 

Finally, when s, is a t-variate and h, follows a random walk as in (5), 
the corresponding SV model can be estimated by estimating pt = (O"~ 0";)' 
in the appropriate linear state space model. The asymptotic distribution of 
JT(tpt - 'Pt) is also normal with zero mean and variances and covariances 
matrix, C(pt), given in the Appendix. 

4. Estimators based on the method of moments principle 

The estimation of SV models has usually been carried out by variants of -the 
method of moments. These methods have the difficulty that their efficiency 
depends on the choice of moments. In this section, we compare the asymptotic 
properties of the QML estimator of SV models with two estimators based on the 
method of moments principle. In what follows we will assume that 
s, - NID(O, 1). 

4.1. Estimator based on the sample variance 

Consider the SV model in (5) with h, following a random walk. The corre­
sponding linear state space form is given by (8). 

The stationary form of y; = In(yl) is given by ily; = IJ, + il~,. 
Given that IJ, and ~, are mutually uncorreIated and O"~ = 7[2/2, the variance of 

IJ, is given by . 

becweb
Rectángulo
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A method of moments estimator of O"~ is then given by 

0-; = 0-3r t - 7[2, 

where o-~rt is the sample variance of Llln(y;). 

(9) 

If O"~ > 0, then JT((j~ - 0";) has an asymptotic normal distribution with zero 
mean and variance C 2 = 2 [(O"~ + 7[2f + 7[4]. 

Table 6 shows the ASEs of a-~ and J C 2/ JT, together with the square root of 
the relative efficiency of 0-; with respect to a-~. It is possible to observe that, for 
the parameter values considered, the efficiency of the method of moments 
estimator compared with the QML estimator is exceptionally low. 

4.2. Generali::.ed method olmoments estimator 

Melino and Turnbull (1990) propose an estimator of SV models based on the 
Generalized Method of Moments (GMM) principle. Consider the stationary SV 
model in (2) with f" ~ NID(O, 1). The functions used by Melino and Turnbull to 
compute the GMM estimator of model (2) are given by 

y; - E(y;), 

Y~ - E(y~), 

ly,l - E(ly,I), 

Iy;'l- E(IYi'I), 

IY,Y,-rl - EIY,Y'-rl, 

T = L ... ,10, 

T = 1, ... ,10. 

(lOa) 

(lOb) 

(lOc) 

(lOd) 

(lOe) 

(10f) 

Denote by P the G MM estimator of P. Under suitable conditions, Hansen 
(1982) shows that JT(P - P) is asymptotically distributed as a normal vari­
able with zero mean and co variance matrix given by W = (D' V- 1 D) - \ where 
D' = plim (og(P)/oP), y(P) = (l/T)L{j" y, denote a vector whose components 
are functions of .vI drawn from (10), and V = E(y, g;). 

Table 6 
Asymptotic standard deviation of QML and method of moments (MM) estimators of random walk 
volatility model 

(J,7 QML MM (ReI. elf.)'·2 

0.09 0.7763 19.8294 0.0391 
0.01 0.1391 19.7492 0.0070 
0.0009 0.0222 19.7401 0.001 I 
0.0001 0.0042 19.7393 0.0002 
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The derivatives needed to compute D have been derived by Vetzal (1991). The 
moments involved in the construction of V can be derived using the moments of 
Yt given in an Appendix to Melino and Turnbull (1990), kindly supplied to us by 
the authors. 

Table 7 shows the ASEs of tjJ together with the ASEs of the QML estimator. 
Table 7 also shows the square root of the relative efficiency of the GMM 
estimator with respect to the QML estimator. Comparing the ASEs of both 
estimators, it is possible to observe that, in terms of efficiency, the QML 
estimation method performs better when 4> is close to one and u; is relatively 
big. On the other hand, when u~ and 4> are small, the GMM estimator is more 
efficient. This result could be expected, because when u~ and 4> are small, the 
variance of the log-volatility process, given by u;/(l - 4>2), is very small in 
relation to the variance of (t. Therefore, the transformation In(yn is dominated 
by (0 and the approximation to normality used by the Kalman filter is very 
poor. Also, in these circumstances, the process Yt is approximately normal, with 
the excess kurtosis being small. As a consequence, the sample moments are 
reliable estimators of the population moments, and the GMM estimator per­
forms quite well. 

However, in most empirical applications with very-high-frequency financial 
time series (hourly or daily), it has been observed that the parameter 4> is very 
close or exactly one. The estimated values for u~ are usually between 0.01 and 
2.77; see Taylor (1991). With this range of parameter values, there is little doubt 

Table 7 
Asymptotic standard deviations of QML and GMM estimators 

QML GMM (ReJ. elf.)! 2 

<p = 0.9 0.68 12203.65 0.00 
<r~ = I 6.46 28903.37 0.00 

<p = 07 2.31 29.17 0.08 
(J; = 1 10.74 20.13 0.53 

<p = 0.9 1.77 3.77 0.47 
<r; = 0.09 2.24 0.86 2.60 

<p = 0.7 15.12 13.94 1.08 
<r; = 0.09 7.62 1.02 7.47 

<p = 0.95 0.92 3.00 0.31 
<r~ = 0.04 0.95 0.61 1.56 

<p = 0.97 0.47 3.54 0.13 
<r~ = 0.04 0.69 1.17 0.59 

<p = 0.99 0.18 74.36 0.00 
<r~ = 0.04 0.47 73.98 0.01 
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about the better performance of the QML estimator. Further, using the GMM 
estimator in these circumstances could lead to huge losses in efficiency. Observe, 
for example, the case when (J~ = 1 and <P = 0.9, in Table 7. The extremely big 
standard deviations in this case may be due to the fact that the excess kurtosis of 
y, is big and, therefore, the sample moments are not reliable estimators of the 
population moments. 

5. An empirical example 

In this section, we illustrate the QML estimation method by fitting SV models 
to the yen/dollar exchange rate. The data consist of daily observations of 
weekdays close exchange rates from 1/10/81 to 28/6/85, giving T = 946 (this 
data was also used in the empirical application reported in Harvey et aI., 1992). 
The analysed series is the first differences of the logarithms of the spot price, i.e., 
the rates of return. For convenience, the rates of return have been centered 
about the sample mean prior to analysis. 

Table 8 

Empirical estimates of SV models using daily yen/dollar exchange rates with asymptotic standard 
deviations in parentheses 

(a) Stationary SV model 

f:,~ N(O.I) I:, ~ Student-t 

QML GMM QML 

- 0.0551 - 0.3045 - 0.0493 

rP 0.9948 0.9727 0.9954 
(0.0046) (0.0942) (0.0043) 

rr; 0.0048 0.1627 0.0042 

(0.0034) (0.0229) (0.0031) 

a! 5.2989 

(0.4046) 

In L - 1272.64 - 1271.5015 

(b) Random walk volatility model 

i:,~ N(O.I) I:, ~ Student-t 

QML MM QML 

er 2 

" 
0.0034 0.7649 0.0030 

(0.0019) (0.6671) (0.0018) 

ui 5.3039 
(0.4038) 

log L - 1273.64 - 1272.44 
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The Box-Ljung statistic for the data, Ye, based on ten lags, is 16.92, and therefore 
not significant at the 5% significance level. However, the Box-Ljung statistic for 
y; is \09.79, a highly significant value. Therefore, the dynamic properties of the 
yen/dollar exchange rate show up in the squares and not in the level of the series. 

First, the stationary SV model in (2) is fitted to Ye- Table 8 shows the QML 
and GMM estimates when [;, is assumed to be a standard normal variate. Both 
estimates of the autoregressive parameter imply persistence of the volatility and, 
as we have previously seen, in this circumstances the efficiency of the G MM 
method can be very low relative to the efficiency of the QML method. Therefore, 
we only consider the QML estimates. 

As the QML estimate of the autoregressive parameter is very close to one, we 
estimate the random walk specification in (4). Once more we estimate by QML 
and using the method of moments (M M) estimator described in Section 4.1. The 
efficiency of the MM estimator is extremely low relative to the QML estimator. 
Moreover, the MM estimate is extremely big and not very reliable. Therefore, 
we concentrate on the QML estimates. 

The random walk specification fits almost as well as the stationary SV 
specification. The Box-Ljung statistic of the innovations for ten lags has a value 
of 8.45, giving no indication of residual serial correlation. Fig. 1 shows the 

o. 

0.025 

C 
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o 0.02 

'> 
Q) 

-0 
-0 0.015 
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o 

-0 
§ 0.01 

+-' 
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0.0 237.5 475.0 712.5 950.0 

Time 
Fig. 1. Absolute value of first differences of logged yen/dollar exchange rate and smoothed estimates 
of volatility. 
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absolute values, IYtl, together with the estimated volatility, exp{0.5 htlT}, where 
ii,'T is the MMSLE of the log-volatility level, ht, as given by a smoothing 
algorithm. 

Next, the normality assumption for Ie: t is relaxed, and the variance of In(f,~), cr~, 
is estimated as another parameter which is restricted to be greater than or equal 
to 7[2/2. The estimation results also appear in Table 8. 

The number of degrees of freedom implied by iTi in the random walk case is 
6.35. The LR test statistic takes a value of 2.4. The critical value for 'Y = 10% is 
1.642. Therefore, we reject normality at the 10% significance level. The evidence 
against normality is very weak but, as we have previously seen, the efficiency of 
iT~ is greater if we also estimate cri. Consequently, we maintain as our final 
estimate iT; = 0.0030. Monte Carlo experiments carried out for these parameter 
values have shown that in this case, the ASE is a good approximation to the 
finite-sample standard error. 

6. Conclusions 

The QML estimator of the parameters ofSV models is easy to implement and 
has good finite-sample properties. It is shown that for the parameter values often 
found in empirical analysis of high-frequency financial time series, the QML 
estimator outperforms in terms of efficiency some estimators based on the 
GMM principle. 

The extension to heavy-tailed distributions can be carried out very easily 
using the t-distribution. In this case, the estimation of SV models can be carried 
out by assuming the number of degrees of freedom, v, is known or estimating it 
as another parameter. When comparing the asymptotic variances of the QML 
estimators obtained by assuming that \' is known or when it is estimated, we 
found the somewhat counterintuitive result that there is a slight loss in efficiency 
when estimating O"~ in the former case. This result may be due to the fact that 
since our estimators are QML, they are not fully efficient. In any case, given that 
assuming an incorrect value of v leads to an inconsistent estimate of 0";, there 
seems to be no reason for making assumptions about the distribution of Gt. 

Appendix 

Asymptotic variance and co variance matrices oj" the Q M L estimator oj" some 
stochastic L'olatility models 

The derivation of the analytic expressions of all the asymptotic variance and 
covariance matrices in this article has been carried out, using the results in 
Dunsmuir (1979), in an appendix which is available upon request. 
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The asymptotic variance and covariance matrix of the QML estimator of SV 
models is given by C( '1') = 2A - 1 + A-I BA - 1, with 

where 'I' is the vector of parameters to be estimated, Y(/c) IS the spectral 
generating function of the stationary form of log y~, and 

n IT 

Bij = K l~ f k*(l) oy - I(/c) k(A) di.] l~ f k*(A) oy - I(A) k(i.) d;,] , 
2n 0'1', 22 2n O'l'j 22 

where K is the fourth cumulant oflog£~, kill = I; Dje"'< Dj is the 1 x 2 vector of 

coefficients corresponding to (11, (,), in the stationary representation of log }}, 
k*().) is the transpose conjugate of k(i.), and [MJ"" denotes the {uv}th element of 
matrix M, 

(a) Stationary SV model with Gaussian errors 

A consists of the following elements: 
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B is given by 

(b) Random walk volatility model with Gaussian errors 

(c) Stationary SV model with Student-t errors 

A consists of the following elements: 

a 
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B is given by 

n4 + 1jI(3)(v/2) , 
B = (1"4(a 2 _ b2 )3 bIb!, 

where (1"2 = n2 /2 + 1jI'(v/2), 1jI(3)(.) is the Tetragamma function and 

(1 + c{J2)a + (a 2 - b2)3!2 - a3 + 2ab2 + 4c{Jb(l + c{J2) 
(1"2 

- 2q(c{Ja + b) 

(1 + c{J2)a + 2c{Jb 
(1"2 

(d) Random walk volatility model with Student-t errors 

A-I is given by 

A-I _ (1"4 [(q + 2) 
- (q + 2) - (q(q + 4))1/2 - 2q 

- 2q J 
(q(q + 4))3/2 _ q2(q + 6) . 

B is given by 

4(n4 + 1jI(3)(v/2) 

B = (1"B(q(q + 4))3 

X [0.25((q2 + 4q)3/2 - q2 (q + 6))2 0.59((q2 + 4q)3/2 - q2 (q + 6))J. 
0.59 ((q2 + 4q)3/2 _ q2(q + 6)) q2 
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