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Abstract—In this paper we present a Mixed Integer Non-
Linear Programming (MINLP) formulation for aircraft trajec-
tory planning. As illustration, we study the en-route strategic
flight planning of a commercial aircraft constrained to pass
through a set of waypoints whose sequence is not predefined.
This problem has been solved as an hybrid optimal control
problem in which, given the dynamic model of the aircraft,
the initial and final states, the path constraints constituting the
envelope of flight, and a set of waypoints in the European air
space, one has to find the control inputs, the switching times, the
optimal sequence of waypoints and the corresponding trajectory
of the aircraft that minimize the direct operating cost during
the flight. The complete layout of waypoints in the European
airspace is reduced and waypoints are gathered into a small
number of clusters. The aircraft is constrained to pass through
one waypoint inside every cluster of waypoints. The presence
of multi point constraints makes the optimal control problem
particularly difficult to solve. The hybrid optimal control problem
is converted into a MINLP problem first making the unknown
switching times part of the state, then introducing binary variable
to enforce the constraint of passing through one waypoint inside
every cluster, and finally applying a direct collocation method.
The resulting MINLP problem has been solved using a branch
and bound algorithm. The cases studied and the numerical results
show the effectiveness, efficiency and applicability of this method
for en-route strategic flight plans definition.

Index Terms—Air Traffic Management, 4D Trajectory Plan-
ning, Hybrid Optimal Control, MINLP.

I. INTRODUCTION

The SESAR concept of operations requires a paradigm
shift [1], [2] from a highly structured and fragmented system,
heavily reliant on tactical decision and with few strategic
planning functions, to an integrated one based on collaborative
strategic management of trajectories. In the future European
ATM system to be built under SESAR, the trajectory becomes
the masterpiece of a new set of operating procedures referred
to as Trajectory-Based Operations (TBO) [3]. Therefore, the
strategic-level implementation of optimal 4D trajectories must
be done within a framework of increasing complexity [4].
Thus, 4D trajectory planning and optimization plays a crucial
role in the new ATM concept.

Current flight plans are defined according to rigid con-
straints; in particular, the en-route flight plan portion must

specify a certain number of waypoints through which the
aircraft must fly, giving expected overfly times and, generally,
performing a steady flight, i.e., at constant altitude and veloc-
ity, in some defined airways connecting waypoints. Defining,
thus, the most efficient flight plan is not easy since there are
thousands of waypoints, flight regions with different associated
overfly costs, and wind influence to be considered. Moreover
it has also been shown that cruising in steady flight is far from
an efficient performance [5].

Consequently, with the aim of defining more efficient (en-
route) flight plans, this paper presents a MINLP approach for
commercial aircrafts strategic horizontal trajectory planning
towards TBO.

Some prior research works on aircraft trajectory optimiza-
tion using optimal control have been presented in [6], [5],
and [7]. Other works on trajectory optimization were based
on hybrid optimal control in which the sequence of phases
was predefined. Problems with known phase sequence have
been frequently solved in aerospace engineering as multi-phase
problems [8], [9], [10] [11] [12], the last two considering a
fixed sequence of waypoints. Another approach to solve multi-
phase problems applied to aircraft trajectory optimization was
presented in [13], [14], [15], in which a method to generate
optimal vertical and 3D flights plans have been presented
for commercial aircrafts with a fixed sequence of phases
consisting in different operational procedures and aerodynamic
configurations.

However, to the best knowledge of the author, the problem
of considering multiple waypoints without specifying the
sequence has not been studied yet, posing an interesting and
challenging problem to show the potentiality of MINLP. Thus,
the main contribution of this paper is to present an approach
based on MINLP to solve a hybrid optimal control problem
with non-defined sequence of phases and to apply it to the
problem of strategic flight plan definition.

MINLP is the mathematical problem of minimizing a func-
tion in a feasible region described as the intersection of a non-
linear set and integrity requirements. In the aircraft motion
problem herein presented, the MINLP arises from minimizing
the objective function of the system subject to the physical
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constraints. These physical constraints combines non-linear
constraints expressing the dynamics of the trajectory of the
aircraft and integer requirements to model the choice of the
optimal sequence of points. In all generality MINLP is an
undecidable problem [16] but if one assumes that the feasible
region is bounded, which is the case here, it is NP-Hard.
Although bounded MINLPs can be solved in theory, they
remain one of the most challenging problems in computational
optimization. This is true in particular, when the non-linear
set is not convex as it is the case here. Several computer
programs have been developed to solve such MINLPs. Among
the most efficient codes are the commercial code Baron [17]
and the open-source solver Couenne [18]. Unfortunately, as
problems size grows above a few hundred variables, these
solvers rapidly become impractical. Therefore, we revert to
a heuristic approach (one that does not guarantee that the
solution found is the best possible). Our approach is based
on a nonlinear solver which is able to find locally optimal
solution to the problem where the integrity requirements on the
variables is removed and a branch-and-bound scheme aimed at
finding feasible value for the integer variables. This approach
is more commonly followed for problems where the nonlinear
region is convex (in such cases it is an exact algorithm) but
it has also been found useful for finding good solutions to
problems with non-convex nonlinear regions [19].

In the problem formulation, the coupling of the discrete
waypoints with the continuous aircraft dynamics results in
a hybrid system, i.e., systems that combine a discrete and a
continuous dynamics. Some works that model aircraft flights
as hybrid systems are [20], [21] and [22]. For a more detailed
insight into hybrid systems, the reader is referred to [23].

The problem is solved as an hybrid optimal control problem
in which, given the dynamic model of the aircraft (continuos
dynamic), the initial and final states, a set of path constraints,
and a set of waypoints (discrete dynamic), one has to find the
control inputs, the switching times, the optimal sequence of
waypoints and the corresponding trajectory of the aircraft that
minimize a certain objective function during the flight, e.g.,
minimize fuel cost and overfly costs.

The complete layout of waypoints in the European airspace
is reduced and the waypoints are gathered into a small number
of clusters. The aircraft is constrained to pass through one
waypoint inside every cluster of waypoints. The presence of
the point constraints together with the fact that the sequence of
waypoints is undefined makes the optimal control problem par-
ticularly difficult to solve. The hybrid optimal control problem
is converted into a MINLP problem first making the unknown
switching times part of the state, then introducing binary
variable to enforce the constraint of passing once through
each cluster of waypoints and finally applying a collocation
method based on Gauss-Lobatto quadrature rules [24], [25] to
convert dynamic equation of the system into constraints. The
resulting MINLP problem has been solved using a branch and
bound algorithm, Bonmin [26]. Three cases are studied and
the numerical results are reported.

The paper is organized as follows: first, in Section II, we

present aircraft dynamics, wind dynamics, waypoint data and
overfly costs. The hybrid optimal control problem is stated
in Section III, and it is reformulated in Section IV as a
MINLP problem. The approach to its resolution is described
in Section V and in Section VI numerical results are reported.
Finally, Section VII contains the conclusions and a description
of future work.

II. AIRCRAFT DYNAMICS

For finding aircraft trajectory purposes, it is commonly
assumed to consider a 3 Degree Of Freedom (DOF) dynamic
model that describes the point variable-mass motion of the
aircraft over a flat earth model.

A 3D flight plan can be subdivided into a sequence of flight
phases that can be regarded as symmetric flights either in a
vertical or horizontal plane. The hypothesis of symmetric flight
in a vertical or a horizontal plane allows the dynamic equation
of motion of the aircraft to be simplified. Since this paper
focuses on cruise phase, the equations for Symmetric flight in
horizontal plane are presented.

A. Horizontal flight dynamics

The vertical component of wind, Vwzh , and the first deriva-
tives, V̇wxh and V̇wyh , are not considered due to its low
influence. We consider a spherical earth model. 2h

Re
<< 1,

so the influence of all terms regarding normal acceleration is
dismissed. Wind terms are expressed in terms of the fixed
reference and projected into the reference attached to the
aircraft. A standard atmosphere is defined with ∆ISA = 0,
and a parabolic drag polar for CD is assumed, i.e, CD =
CD0 +KC2

l .. The airplane is a conventional jet airplane and
BADA 3.61 is used as aircraft performance models.

The 3DOF equations governing the translational Horizontal
2D motion of an airplane are the following:

mV̇ = T −D,
mV χ̇ cos γ = L sinµ,

L cosµ = mg,

λ̇ =
V cosχ+ Vwxh

Re cos θ
, (1)

θ̇ =
V sinχ+ Vwyh

Re
,

ṁ = −ηT,

In general, the engine thrust T and bank angle µ are the
control variables of the aircraft, that is u = (T, µ). The thrust
is commanded by the engine throttle and the bank angle is
commanded combining rudder and ailerons trims. The state
vector, x, will be: x = (λ, θ, V, χ,m), where λ is de longitude,
θ the latitude, V the True Air Speed, χ the heading angle and
m the mass of the aircraft.

The path constraints of the problem are those that define
aircraft’s flight envelope and can also be consulted in BADA
database manual [27].

1http://www.eurocontrol.int
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0 ≤ h ≤ min[hM0, hu],

CVmin
Vstall ≤ V ≤ VMo,

M ≤MM0,

mmin ≤ m ≤ mmax,

0 ≤ CL ≤ CLmax,

T ≤ Tmax,

μ ≤ μmax,civ, (2)

V̇ ≤ al,max(civ),

γ̇ ≤ an,max(civ)

V
,

where hu = hmax+Gt(ΔTISA−CTc,4)+GW (mmax−m),
and CVmin

= 1.2.

B. Wind data

In order to include wind dynamics in the aircraft dynam-

ical model (1) and solve the resulting MIOCP, an analytical

function for wind dynamics is needed.

Therefore, we represent the wind function as a nonlinear

regression of GRIB data provided by the National Oceanic and

Atmospheric Administration (NOAA 2) wind forecasts. GRIB

data are given in spherical coordinates, i.e., longitude, latitude

and altitude. In particular, we adjust these GRIB tabular data

to analytical functions, so that both west-east component,

Vwλ = f(λ, θ), and south-noth component, Vwθ = f(λ, θ),
are functions of λ and θ. As the component perpendicular to

earth, Vwh, is negligible, we have set it to zero.

The wind forecast of october the 20th, 2010 in the European

region has been considered. We convert those tabular data into

analytical functions by means of nonlinear regression. A 4th

degree polynomial is fitted to the data. The goodness of fit,

measured in terms of R-Squared parameter, yielded 0.76 for

Vwλ and 0.88 for Vwθ. Real data and analytical functions are

presented in Figure 1 at 250 [Hpa] (h=10393 [m]).
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Fig. 1. Wind data at 250 [HPa] -h=10395 [m]-

C. Waypoints data

As defined above, a flight plan must be defined specifying

a certain number of waypoints through which the aircrafts

is going to fly. AUGUR 3, a tool developed by Eurocontrol,

provides a list of current en-route waypoints and navaids

in the ECAC (European Civil Aviation Conference) area

2http://www.noaa.gov/
3http://augur.ecacnav.com

Fig. 2. European waypoints: Airport, Navaid and en-route waypoints of
Portugal (blue), Spain (red), France (green), Italy (pink), England (violet),
Germany (blue), Switzerland (yellow) and Benelux (orange)

which can be selected by ICAO (International Civil Aviation

Organization) identifier.

Figure 2 illustrates all Airport, Navaid and en-route way-

points in western Europe. It gives a qualitative measure of the

complexity of defining an efficient flight plan.

D. En-Route Overfly Charges

The en-route charge of a flight shall be calculated in

accordance with R = UR × N , in which R is the charge,

UR is the unit rate and N = d × p is the number of service

units corresponding to each flight, where d is the flight distance

factor accomplished, and p the weight factor of the aircraft.

The distance factor shall be obtained obtained by diving

by 100 the number of kilometers in the great circle distance

between: the aerodrome of departure within, or the entry

point into, the defined airspace, and; the aerodrome of first

destination within, of the exit point of that airspace. These

entry and exit points are those where the route described in

the flight plan crosses the lateral limits of the different FIRs.

The weight factor shall be p =
√
MTOW [ton]/50.

The basic unit rates, from January 1st 2010, for some

european countries are: Spain, 84.1 C; France, 65.1 C;

Germany, 68.99 C; Italy, 68.64 C; Switzerland, 75.05 C(1.51

CHF = 1 Cexchange rate); Belgium and Luxemburg, 76.59 C;

Netherlands, 65.8 C.

III. DESCRIPTION OF THE PROBLEM AND FORMULATION

We study the problem of finding the control inputs T (t)
and μ(t) that steer the state of an aircraft whose dynamic

model is given by (1) from the initial state xI to the final

state xF , passing through a set of waypoints and minimizing

the direct operating cost (in this case, fuel consumption and

overfly costs) during the horizontal flight.

Let wpI and wpF be the aircraft positions that correspond to

xI and xF , respectively. We define a number of clusters, ncl,

each cluster containing some determined number of waypoints,

nwp, so that the aircraft must pass through one waypoint out

of nwp inside cluster i, i = 1 . . . ncl.
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Let P = {wp1,1, . . . , wpncl,nwp} be the set of possi-
ble waypoints that correspond to the set of possible states
{x1,1, . . . , xncl,nwp}. Thus, we can say that the aircraft is
constrained to pass through ncl waypoints of P when moving
between wpI and wpF . The order in which the waypoints
of P are overflown is specified by the cluster index, i.e.,
i = 1 . . . ncl, but the waypoints inside every cluster, i.e.,
wpi,j , j . . . nwp must be determined.

If ncl is the number of clusters of the set P , nf = ncl + 1
phases can be identified during the motion of the aircraft. More
precisely, a phase starts when the aircraft position coincides
with wpI or when it passes through one of the points of the
set P and ends when the aircraft passes through another point
of the set P or when it reaches the final point wpF . Let

tI = t̃0 ≤ t̃1 ≤ · · · ≤ t̃ncl ≤ t̃nf = tF

be the switching times between phases. Thus for t ∈ [t̃k, t̃k+1]
the system is in phase k, k = 0, . . . , nf − 1. The duration of
each phase must also be determined.

Let δ(t) the binary control function that indicates which
point of the set P is visited by the aircraft at time t̃k,
i.e. at the beginning of phase k. It is a vector function
whose components are piecewise constant with jumps at times
t̃k, k = 1, . . . , nf − 1, with a single nonzero component in
each phase. The function δ(t) during phase k will be denoted
by δk(t). Component i, j of δki,j (tk), δki,j (tk) = 1 means that
the aircraft flies through waypoint wpi,j at time t̃k. Abusing
notation, δki,j (tk) will be simply denoted by δi,j . Let xk(t) be
the state variables of the optimal control problem during phase
k. Thus, the point constraints can be expressed as follows

xk(t̃k) =

nwp∑
j=1

δi,j(t̃k) xi,j , k = i = 1, . . . , nf − 1 (3)

which means that, if δi,j(t̃k) = 1 at the beginning of phase
k, it will be xk(t̃k) = xi,j , that is, the aircraft will be in
configuration xi,j and the associated waypoint position wpi,j .
Additional constraints are

nwp∑
j=1

δi,j(t̃k) = 1, i = 1 . . . ncl (4)

δi,j(t̃k) ≤ 1, i = 1 . . . ncl. (5)

Condition (4) means that the aircraft must pass only through
a single point, wpi,j , in cluster i at time t̃k, whereas condition
(5) means that the aircraft may pass or not through every one
of the waypoints wpi,j .

The objective functional to be minimized is

J =

nf−1∑
k=0

∫ t̃k+1

t̃k

ṁk(t) dt +

ncl∑
i=1

nwp∑
j=1

δi,jOCwpi,j , (6)

where ṁk(t) is the fuel flow of the aircraft during phase k
and OCwpi,j is the Overfly Cost (OC) associated to each
of the waypoints. This cost functional represents a measure
of the direct operating cost during the flight of an aircraft,
which among others counts with the cost of the burnt fuel and

the navigation fees due to overflying certain regions of the
airspace.

1) General formulation of the optimal control problem:
The aircraft flight planning problem stated above is a particular
case of a multiphase mixed integer optimal control problem
which can be stated in a more general form as follows [28,
Chapter 1], [29]

min

nf−1∑
k=0

[

∫ t̃k+1

t̃k

Lk[xk(t), uk(t), δk(t), v, z, t]dt+

Ek[xk(t̃k+1), v, z] ] (7)

subject to

x′k(t) = fk[xk(t), uk(t), δk(t), v, z, t],

t ∈ [t̃k, t̃k+1], (8)
gk[xk(t), uk(t), δk(t), v, z, t] = 0, t ∈ [t̃k, t̃k+1], (9)
ck[xk(t), uk(t), δk(t), v, z, t] ≤ 0, t ∈ [t̃k, t̃k+1], (10)
rineq[xk0(t0), xk1(t1), . . . , xknr (tnr ), v, z] ≤ 0, (11)
req[xk0(t0), xk1(t1), . . . , xknr (tnr ), v, z] = 0, (12)
xk+1(t̃k+1) = tr[xk(t̃k+1), uk(t̃k+1), v, z], (13)

for k = 0, . . . , nf − 1.
a) Continuous variables: t ∈ [tI , tF ] ⊂ R is the time,

xk(t) ∈ Rnxk is the state variable in phase k whose time
derivative is xk′(t) ∈ Rnxk and uk(t) ∈ Rnuk is the control
function in phase k, which is assumed to be measurable.
Variable z ∈ Rnz represents a vector of parameters.

b) Discrete (integer and binary) variables: Let δ(t) :
[tI , tF ] 7→ Rnδ be a measurable function. A time dependent
variable δ(t) is called an integer variable or an integer control
function if it takes values in Znδ . If takes values in {0, 1}nδ
it is called a binary variable or binary control function.
Let v ∈ Rnv a vector. A time independent variable v is
called integer variable if takes values in Znv , and binary
variable if takes values in {0, 1}nv . We assume that integer
variables can take values in a finite set. We suppose that
δ(t) is piecewise constant in [tI , tF ] with jumps only at
times t ∈ {t̃1, . . . , t̃nf−1} which are the instants when a
discontinuity in the binary control function δ(t) may occur. If
at time there is a discontinuity in at least one of its components
we say that a switching occurred and this time is called the
switching time. δk(t) ∈ Znδ is the value of variable δ(t) in
phase k.

c) Objective functional: The terms of the objective
functional (7) are in Bolza form and contains a Lagrange
term

∫ tk+1

tk
Lk[xk(t), uk(t), δk(t), v, z, t]dt and a Mayer term

Ek[xk(tk+1), v, z]. Both L and E are assumed to be twice
differentiable.

d) Constraints: Equation (8) and Equation (9) with fk ∈
Rnfk and gk ∈ Rngk are the equations of the differential-
algebraic model of the system in phase k.

Equations (10) with ck ∈ Rnck are the path constraints in
phase k.
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Equations (11) with rineq ∈ Rnrineq and Equations (12)
with req ∈ Rnreq are the inequality and equality multi
point constraints, respectively, which are assumed to be twice
differentiable. In these equations ki denotes the index of the
phase that contains ti, that is, ti ∈ [t̃ki , t̃ki+1

]. In our case
the number of interior point constraints nr coincides with the
number of clusters ncl.

The dimensions nxk , nuk , nδ, nck , nrineq , nreq , nfk , ngk are
not necessarily identical for each phase.

Equations (13) are the transition conditions between phases
which are usually of the form xk+1(t̃k+1) = xk(t̃k+1).

The solution of this problem is given by the set
{x(t), u(t), δ(t), v, z|t ∈ [tI , tF ]}.

e) Hybrid dynamical systems: The set of dynamic sys-
tems (8) is called hybrid dynamical system and the problem
(7)-(13) is actually a hybrid optimal control problem formu-
lated as a multiphase Mixed Integer Optimal Control Problem
(MIOCP).

The binary control function δ(t) in [tI , tF ] defines both
the untimed sequence of phases (k0, k1, . . . , knf−1) and the
sequence of switching times (t̃1, . . . , t̃nf−1). Switches can be
either autonomous or controlled. For instance, autonomous
switches may occur when the system reaches a prescribed
set of the state space expressed by Equations (13). On the
contrary, controlled switches take place in response to control
inputs which in our case are determined by the solution of the
optimal control problem (7)-(13).

In this work we assume that the number of phases is known,
both the untimed sequence of phases and the sequence of
switching times are not known, and the dynamic equation of
the system does not change across different phases, i.e., the
aircraft flies in all phases with clean configuration and in the
horizontal plane.

f) Relaxed optimal control problem: In the following
sections the concept of relaxed optimal control problem will
be used. The relaxation of a MIOCP is the optimal control
problem obtained replacing integrality assumption for δk(t)
and v with the conditions δk(t) ∈ [0, 1]nδk and v ∈ [0, 1]nv ,
respectively.

IV. PROBLEM REFORMULATION

A. Incorporating Switching Times

For the sake of simplicity of exposition of the method
consider the following simplified version of the optimal control
problem (7)-(13)

min

nf−1∑
k=0

[∫ t̃k+1

t̃k

Lk[x(t), u(t), t]dt+ Ek
[
x
(
t̃k+1

)]]
(14)

subject to
x′(t) = fk[x(t), u(t), t]. (15)

where t̃0 ≤ t̃1 ≤ · · · ≤ t̃ncl ≤ t̃nf are the switching times
between phases which must be determined.

This hybrid optimal control problem is converted into a
conventional optimal control problem making the unknown

switching times part of the state and introducing a new
independent variable with respect to which the switching times
are fixed [30], [31].

Without loss of generality, we can assume that t0 = t̃0 =
tI = 0 and t̃nf = tF = 1.

Since the number of switches ncl is known, we introduce the
new state variables, xnx+1, . . . , xnx+ncl , such that xnx+k =
t̃k, with x′nx+k = 0, k = 1, 2, . . . , ncl. Let

x̂ = [x1, . . . , xnx , xnx+1, . . . , xnx+ncl ]
T

be the extended state vector.
We introduce the new independent variable, s and choose an

increasing sequence of ncl values on the interval [0, 1] setting
sk = k/(ncl+1), k = 1, . . . , ncl. However, any monotonically
increasing sequence of ncl values on the interval [0, 1] could
be used for sk.

We then establish a piecewise linear correspondence be-
tween time, t, and the new independent variable, s, so that for
every chosen fixed point, sk, k = 1, . . . , ncl, t equals t̃k. The
relation between s and t changes on each interval

[
t̃k, t̃k+1

]
.

As a result we obtain the following expressions for the
change of variable

t =



(ncl + 1) xnx+1 s, 0 ≤ s ≤ 1
ncl+1

. . .

(ncl + 1)(xnx+k+1 − xnx+k) s+

(k + 1) xnx+k − k xnx+k+1,
k

ncl+1 < s ≤ k+1
ncl+1

. . .

(ncl + 1)(1− xnx+ncl) s+

(ncl + 1) xnx+ncl − ncl, ncl
ncl+1 < s ≤ 1

(16)
After introducing the new independent variable, in the interval
k

ncl+1 < s ≤ k+1
ncl+1 k = 0, . . . , ncl the dynamic constraint (15)

becomes

x′(s) = (ncl + 1)(xn+k+1 − xn+k)f̂k[x(s), u(s), s], (17)

where f̂k[x(s), u(s), s] = fk[x(t), u(t), t(s)], and

L̂k(x̂(s), u(s), s) = (ncl+1)(xn+k+1−xn+k)Lk[x(t), u(t), t(s)],

In this way the problem (14)-(15) can be rewritten as

min

ncl∑
k=0

[∫ k+1
ncl+1

k
ncl+1

L̂k[x̂(s), u(s), s]ds+ Ek

[
x̂

(
k + 1

ncl + 1

)]]
,

(18)
subject to

x′(s) = (ncl + 1)(xn+k+1 − xn+k)f̂k[x(s), u(s), s]. (19)

The new equivalent problem is a conventional optimal
control problem. The last ncl components of the optimal
solution x̂∗ of this problem will be the optimal switching times
t̃k, k = 1, . . . , ncl.
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B. Optimal control resolution using collocation
In this section the numerical method employed to solve the

optimal control problem (18)-(19) derived from the reformula-
tion will be described. For the sake of simplicity of exposition
consider the following simplified version of this problem

min

∫ tF

tI

L[x(t), u(t), t]dt+ E(tF ) (20)

subject to
x′(t) = f [x(t), u(t), t]. (21)

A collocation approach has been used in which integration
rules are based on a particular family of Jacobi interpo-
lating polynomials that give rise to the so called Gauss-
Lobatto quadrature rules. In this class of numerical methods
the optimal control problem is converted into a NonLinear
Programming (NLP) problem.

The time interval [tI , tF ] is subdivided into nd intervals
whose endpoints are {t̄0, t̄1, . . . , t̄nd} with t̄0 = tI and
t̄nd = tF and a numerical integration scheme is used for
the objective functional in (20) and Equation (21) in each
subinterval [t̄i, t̄i+1].

Consider a simplified form of differential equation (21),
dx/dt = f(t). Basic numerical integration methods to solve
this differential equation rely on the trapezoidal rule

x(t̄i+1)− x(t̄i) =

∫ t̄i+1

t̄i

f(t)dt ≈ hi
2

[f(t̄i) + f(t̄i+1)],

with hi = (t̄i+1 − t̄i), where the integrand is approximated
with a linear function, and on the Simpson’s rule

x(t̄i+1)−x(t̄i) =

∫ t̄i+1

t̄i

f(t)dt ≈ hi
6

[f(t̄i)+4f(t̄i,C)+f(t̄i+1)],

(22)
in which the integrand is approximated using a quadratic
polynomial which depends on the values of the integrand at
the endpoints of the interval [t̄i, t̄i+1] and at the midpoint
t̄i,C = (t̄i+1 − t̄i)/2 of this interval. These points are
called collocation points. Both the trapezoid rule and the
Simpson’s rule belong to the so called Gauss-Lobatto family
of integration rules in which the degree of the integrated
polynomial coincides with the number of discrete value of the
integrand used to generate the interpolating polynomial. Thus,
the trapezoid rule is the second-degree rule and Simpson’s rule
is the third-degree Gauss-Lobatto integration rule.

Both the trapezoid rule and the Simpson’s rule can be used
to derive iterative schemes to numerically solve differential
equations of the form dx/dt = f(x) which can be expressed
in the form of constraints. If xi = x(t̄i) and xi+1 = x(t̄i+1),
from the trapezoid rule we obtain the constraint

CT (xi, xi+1) = xi − xi+1 +
hi
2

[f(xi) + f(xi+1)] = 0,

called the trapezoid system constraint, and from the Simpson’s
rule the constraint

CS(xi, xi+1) = xi−xi+1+
hi
6

[f(xi)+4f(xi,C)+f(xi+1)] = 0

(23)

called the Hermite-Simpson system constraint in which the
approximation of x(t) at t̄i,C is given by

xi,C =
xi + xi+1

2
+
hi
8

[f(xi)− f(xi+1)]. (24)

Constraint (23) is obtained imposing f(xi,C) = x′i,C .
For numerical calculations, we will use a Hermite-Simson

collocation method [24].

V. MINLP SOLUTION APPROACH

Applying all the transformations described in the previous
sections, we obtain a MINLP problem, whose form is omitted
for the sake of brevity.

In this problem, fixing the variables δi,j i = 1, . . . , ncl, j =
1, . . . , nwp is equivalent to fixing the sequence of waypoints
and if this is done the MINLP problem becomes a regular
flight planning problem. A simple algorithmic approach could
therefore be to enumerate all possible values for δi,j , solve the
associated flight planning problems and pick the best one. A
rapid calculation of the number of problems if one follows this
approach shows that it is impractical for more than a handful
of waypoints. A common approach to try to address bigger
problems is to do an implicit enumeration via the branch-
and-bound algorithm [32], [33]. Branch and bound has now
become a standard algorithm for integer programming (see
for example [34] and reference therein). We give below a brief
sketch of it in our context, in particular we try to stress out the
particularities that arise in trying to solve the MINLP problem.

Branch and bound is a divide-and-conquer method. The
dividing (branching) is done by partitioning the set of feasible
solutions into smaller and smaller subsets. The conquering
(fathoming) is done by bounding the value of the best feasible
solution in the subset and discarding the subset if its bound
indicates that it cannot contain an optimal solution. Branch
and bound is an exact algorithm when the bound used in the
fathoming phase is a valid lower bound. Our case is particular
in that, obtaining a valid lower bound of the MINLP problem
is usually a daunting task. Therefore, we don’t use a true lower
bound but just a lower approximation of the MINLP problem.
In that case the procedure is heuristic (i.e. does not return
the exact optimal solution). Of course, the quality of the final
solution found depends on the quality of the approximation
of the bound. We don’t have a theoretical guarantee on the
quality of the approximation but we will try to assess it in the
computational section of this paper.

The major question to apply the branch-and-bound al-
gorithm is which method to use to bound or approximate
the value of the problem in a subset. In our case, we use
NonLinear Programming (NLP). This variant of branch-and-
bound is usually naturally called NLP based branch-and-bound
or NLP BB for short (for more details, see for example [35]
and references therein).

Several solvers such as MINLP-BB [36] and SBB [37]
implement the NLP BB algorithm. In our case, we used
the solver Bonmin [26]. Bonmin is an open-source MINLP
solver implementing several different algorithms for solving
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mixed integer nonlinear optimization problems. Source code
and binaries of Bonmin are available from COIN-OR (http:
//www.coin-or.org). Bonmin may be called from both the
AMPL and GAMS modeling languages or be used via a web
interface on NEOS (http://www-neos.mcs.anl.gov).

VI. NUMERICAL EXPERIMENTS

We consider the horizontal motion of a commercial aircraft
constrained to pass through a certain number of waypoints.
We analyze three cases, namely Case A, Case B and Case
C. In these experiments the underlying idea is to proof the
consistency and robustness of this formulation applied to
the cruise phase optimization. We solve realistic problems
taking into consideration real waypoints (Section II-C), wind
conditions (Section II-B) and overfly costs (Section II-D). In
Case A we neither consider wind nor overfly costs; in Case
B we consider wind dynamics; and in Case C we consider
overfly costs and neglect wind effects.

In all cases, an Airbus A-320 performs the cruise phase of a
flight Madrid-Berlin with the following boundary conditions:
λtI = −3.56 [deg], θtI = 40.47 [deg], htI = 10393 [m],
VtI = 220 [m/s], γtI = 0 [deg], χ = 0 [deg], µ = 0 [deg],
mtI = 64000 [Kg]; λtF = 13.52 [deg], θtF = 52.38 [deg],
htF = 10393 [m].

Since the big amount of waypoints makes it impossible
an efficient computation, it is mandatory a reduction of their
number through a proper selection of potential candidates,
denoted wpi,j , i = 1 . . . ncl, j = 1 . . . nwp, where ncl is
the number of clusters, and nwp the number of waypoints per
cluster.

The parameter ncl will be given by the minimum number
of waypoints to be flown trough when defining the flight plan;
nwp is a trade off between accuracy in the optimal solution
and the need for efficiently computing trajectories at strategic
level. We choose, for the three cases, ncl = 10 clusters of
nwp = 5 waypoints each, so that the aircraft must fly through 1
out of nwp = 5 waypoints inside each cluster. The continuous
motion of the aircraft is given by Equation 1, while the discrete
dynamics are given by the sequence of waypoints.

For clustering, we start considering all waypoints in Fig-
ure 2, retaining only the en-route waypoints and eliminating
all navaid and airport waypoints, see Figure 3(a). Then, we
generate the free-flight optimal trajectories (with and without
wind), see Figure 3(b). Afterwords, we define an interest
region close to the free-flight optimal trajectories, see figure
3(b). Finally, we take ncl = 10 clusters homogeneously
distributed along the free-flight optimal trajectory. From each
cluster, we randomly choose nwp = 5 waypoints.

The waypoints layout, and its coordinates together with the
associated costs are shown in Figure 3(c) and in Table I,
respectively. Notice that the associated waypoint cost, Cwpi,j ,
has been assigned considering the basic unit rates of the
different countries (see Section II-D). To illustrate how the cost
of the different flight regions affects the optimal sequence of
waypoints, the assigned costs does not necessary correspond
to the real cost of the country in which the waypoint lays.
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Fig. 3. Free flight optimal trajectories and waypoints layout

wp1,1 = (40.58,−2.88); 84.11 C wp1,2 = (40.78,−2.63); 84.11 C
wp1,3 = (40.65,−2.57); 84.11 C wp1,4 = (41.48,−2.37); 84.11 C
wp1,5 = (40.48,−2.15); 65.1 C wp2,1 = (42.63,−1.75); 65.1 C
wp2,2 = (41.18,−1.45); 65.1 C wp2,3 = (43.42,−1.13); 65.1 C
wp2,4 = (43,−1.10); 68.64 C wp2,5 = (40.87,−0.78); 68.64 C
wp3,1 = (43.40, 0.38); 65.1 C wp3,2 = (41.48, 0.5); 65.1 C
wp3,3 = (44.5, 0.92); 75.05 C wp3,4 = (43, 0.97); 68.64 C
wp3,5 = (41.68, 1.1); 65.1 C wp4,1 = (41.67, 1.78); 65.1 C
wp4,2 = (44.98, 1.93); 65.1 C wp4,3 = (44.50, 2.22); 65.1 C
wp4,4 = (42.20, 2.47); 65.1 C wp4,5 = (48.22, 2.78); 65.1 C
wp5,1 = (46.33, 3.42); 68.99 C wp5,2 = (45.82, 3.60); 65.1 C
wp5,3 = (48.02, 3.90); 65.1 C wp5,4 = (49.58, 4.35); 65.1 C
wp5,5 = (45.12, 4.60); 76.59 C wp6,1 = (46.92, 5.23); 68.99 C
wp6,2 = (46.67, 5.58); 65.80 C wp6,3 = (49.53, 5.82); 65.80 C
wp6,4 = (51.02, 6.08); 68.99 C wp6,5 = (49.37, 6.45); 76.59 C
wp7,1 = (49.70, 6.95); 76.59 C wp7,2 = (51.27, 7.15); 65.80 C
wp7,3 = (49.85, 7.37); 65.80 C wp7,4 = (50.10, 7.65); 65.80 C
wp7,5 = (48.23, 8.15); 65.80 C wp8,1 = (50.93, 8.92); 68.99 C
wp8,2 = (50.28, 9.12); 68.99 C wp8,3 = (49.18, 9.12); 68.99 C
wp8,4 = (50.98, 9.47); 68.99 C wp8,5 = (49.33, 9.67); 68.99 C
wp9,1 = (50.07, 10.23); 68.99 C wp9,2 = (51.43, 10.50); 68.99 C
wp9,3 = (51.42, 10.52); 68.99 C wp9,4 = (51.17, 10.75); 68.99 C
wp9,5 = (51.32, 11.27); 68.99 C wp10,1 = (52.02, 11.92); 68.99 C
wp10,2 = (51.40, 11.97); 68.99 C wp10,3 = (51.38, 12.08); 68.99 C
wp10,4 = (51.72, 12.12); 68.99 C wp10,5 = (51.93, 12.20); 68.99 C

TABLE I
CORDINATES OF THE WAYPOINTS, wpi,j = (θ[deg], λ[deg]), AND

ASSOCIATED COST, Cwpi,j .

1) Case A: The total consumed fuel in this experiment is
5259.35 [Kg]. The optimal sequence of waypoints, denoted by
the active set of binary variables δi,j , with i = 1 . . . ncl, j =
1 . . . nwp, is given in Table II. The optimal trajectory is given
in Figure 4 (orange-dotted line). The switching times between
phases and total flight time are listed in Table V. The state and
control variables of the optimal solution are shown in Figure 5
(orange-dotted line). The computation time to find the solution
was 2442.3 [s].
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2) Case B: The total consumed fuel in this experiment is
4839.34 [Kg]. The optimal sequence of waypoints, denoted by
the active set of binary variables δi,j , with i = 1 . . . ncl, j =
1 . . . nwp, is given in Table III. The optimal trajectory is given
in Figure 4 (green-dotted line). The switching times between
phases and total flight time are listed in Table V. The state and
control variables of the optimal solution are shown in Figure 5
(green-dotted line). The computation time to find the solution
was 6820.9 [s].

3) Case C: To take overfly cost into consideration, we use
Equation (6) as objective function, considering that OCwpij =
UR×d×p, where UR is modeled as a cost due to overflying
a determined waypoint, Cwpi,j , listed in Table I, d is modeled
as a constant consisting on dividing the total distance to be
flown (1854.98 [km]) by 100 and by the number of waypoints
to overfly, ncl = 10, and p is defined as in Section II-D. We
also assume that 1 [kg] of fuel burnt costs 1 C.

The total consumed fuel in this experiment is 5265.35 [Kg].
The optimal sequence of waypoints, denoted by the active set
of binary variables δi,j , with i = 1 . . . ncl, j = 1 . . . nwp, is
given in Table IV. The optimal trajectory is given in Figure 4
(red-dotted line). The switching times between phases and total
flight time are listed in Table V. The state and control variables
of the optimal solution are shown in Figure 5 (red-dotted line).
The computation time to find the solution was 6120.2 [s]. The
overfly cost as defined above was 1587.65 C.

TABLE II
CASE A: SWITCHING SEQUENCE.

δi,j δi,1 δi,2 δi,3 δi,4 δi,5
δ1,j 0 0 0 1 0
δ2,j 0 0 0 1 0
δ3,j 0 0 1 0 0
δ4,j 0 1 0 0 0
δ5,j 1 0 0 0 0
δ6,j 0 0 0 0 1
δ7,j 0 0 1 0 0
δ8,j 0 0 0 1 0
δ9,j 0 0 1 0 0
δ10,j 0 0 0 0 1

TABLE III
CASE B: SWITCHING SEQUENCE.

δi,j δi,1 δi,2 δi,3 δi,4 δi,5
δ1,j 0 0 0 1 0
δ2,j 0 0 0 1 0
δ3,j 0 0 1 0 0
δ4,j 0 1 0 0 0
δ5,j 0 1 0 0 0
δ6,j 1 0 0 0 0
δ7,j 0 0 0 0 1
δ8,j 0 0 1 0 0
δ9,j 1 0 0 0 0
δ10,j 0 0 1 0 0

A. Discussion on the experiments

In Case A and Case B, we can observe that we achieve con-
sumptions slightly far from the free-flight optimal consump-
tions without and with wind, respectively. Indeed, the existing

TABLE IV
CASE C: SWITCHING SEQUENCE.

δi,j δi,1 δi,2 δi,3 δi,4 δi,5
δ1,j 0 0 0 1 0
δ2,j 0 0 0 1 0
δ3,j 0 0 1 0 0
δ4,j 0 1 0 0 0
δ5,j 0 1 0 0 0
δ6,j 0 1 0 0 0
δ7,j 0 0 0 0 1
δ8,j 0 0 1 0 0
δ9,j 1 0 0 0 0
δ10,j 0 0 1 0 0
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(d) Case A, orange-dotted line; Case
B, green-dotted line; Case C, red-
dotted line

Fig. 4. Optimal trajectory and optimal sequence of waypoints

Case A [s] Case B [s] Case C [s]
t1 = 681.52 t1 = 655.87 t1 = 681.52
t2 = 1531.79 t2 = 1480.77 t2 = 1531.79
t3 = 2533.19 t3 = 2425.09 t3 = 2533.19
t4 = 2956.31 t4 = 2803.01 t4 = 2946.43
t5 = 3765.97 t5 = 3437.77 t5 = 3641.18
t6 = 5544.11 t6 = 4143.38 t6 = 4418.89
t7 = 5916.23 t7 = 5184.43 t7 = 5554.99
t8 = 6774.41 t8 = 5717.58 t8 = 6113.63
t9 = 7162.08 t9 = 6244.45 t9 = 6672.24
t10 = 7733.49 t10 = 7055.88 t10 = 7536.55
tf = 8214.78 tf = 7696.14 tf = 8219.84

TABLE V
SWITCHING TIMES AND TOTAL FLIGHT TIME

consumption gap between waypoints constrained trajectories
(Figure 4) and (without and with wind) free flight trajectories
(Figure 3(d)) is a good caliber of how good is the layout
of selected waypoints, i.e., the closer we are to the optimal
solution the better waypoints layout have been selected. The
above mentioned gap is, respectively, 53.57[kg] and 39.05[kg]
for Case A and Case B (Notice that Case A is compared with
the without wind free flight optimal consumption and Case B
is compared with the with wind one. See Table VI for more
details).

Notice that in Case C the assigned costs are significative
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Fig. 5. State and control variables: Case A, orange-dotted line; Case B,
green-dotted line; Case C, red-dotted line.

TABLE VI

Case Consumption [kg Gap [kg] OC [ C]
Free flight without wind 5205.68 - -

Free-flight with wind 4800.29 - -
Case A 5259.35 53.57 -
Case B 4839.34 39.05 -
Case C 5265.35 59.57 1587.65

enough to generate a trajectory substantially different from
Case A.

These experiments illustrate how the optimal trajectory
changes when we increase the accuracy of the model, intro-
ducing for instance wind effects or overfly costs. Thus, our
MINLP approach provides a very powerful tool to tackle such
problems.

VII. CONCLUSIONS AND FUTURE WORK

Since free-flight does not seem to be implemented in the
medium term, we have shown that combining an airspace
structured in waypoints together with a more flexible continu-
ous motion of the aircraft, e.g., not performing steady cruise,
might be a very powerful tool for a more efficient strategic
flight planning within a short and medium-term future ATM
concept.

Our current research efforts are focused on improving the
numerical efficiency of the method to reduce the computational
time, a key factor to timely deliver flight plans, and, on getting
closer to real flights, combining cruise with ascent and descent,

to better model overfly costs, or to better reflect the airspace
structure.

Though the stated example might seem non significant, it
shows how solving MINLP problems can be done properly
with relatively low computational cost. The authors believe
that this MINLP formulation presented could be extended to
handle other constraints such as time, flow or conflicts, to
combine better strategic planning tools with tactical operations
towards a more automated, efficient ATM concept.
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[31] M. Žefran, “Continuous methods for motion planning,” Ph.D. disser-
tation, University of Pennsylvania, Computer and Information Science,
1996.

[32] A. H. Land and A. G. Doig, “An automatic method for solving discrete
programming problems,” Econometrica, vol. 28, pp. 497–520, 1960.

[33] R. J. Dakin, “A tree search algorithm for mixed programming problems,”
Computer Journal, vol. 8, pp. 250–255, 1965.

[34] R. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, The
Sharpest Cut, ser. MPS-SIAM Series on Optimization. SIAM, 2004,
ch. Mixed-Integer Programming: A Progress Report, pp. 309–326.

[35] P. Bonami, M. Kilinc, and J. Linderoth, Hot topics in Mixed Integer
Nonlinear Programming, ser. IMA Volumes. Springer Science and
Business Media, LLC, to appear, ch. Algorithms and Software for
Convex Mixed Integer Nonlinear Programs.

[36] S. Leyffer, “User manual for MINLP-BB,” 1998, university of Dundee.
[37] M. R. Bussieck and A. Drud, “SBB: A new solver for mixed integer

nonlinear programming,” OR 2001, Section ”Continuous Optimization”,
Talk, 2001.

AUTHORS BIOGRAPHIES

Manuel Soler is a PhD student and assistant professor at the Department
of Statistics and Operational Research of the Universidad Rey Juan Carlos,
Madrid, Spain. He received his MSc in Aerospace Science and Technology
and BSc in Aerospace Engineering from the Universidad Politécnica de
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