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Abstract

In this paper, we propose a new front-end for Acoustic Event Classifi-
cation tasks (AEC). First, we study the spectral characteristics of different
acoustic events in comparison with the structure of speech spectra. Second,
from the findings of this study, we propose a new parameterization for AEC,
which is an extension of the conventional Mel Frequency Cepstrum Coeffi-
cients (MFCC) and is based on the high pass filtering of the acoustic event
signal. The proposed front-end have been tested in clean and noisy condi-
tions and compared to the conventional MFCC in an AEC task. Results
support the fact that the high pass filtering of the audio signal is, in gen-
eral terms, beneficial for the system, showing that the removal of frequencies
below 100-275 Hz in the feature extraction process in clean conditions and
below 400-500 Hz in noisy conditions, improves significantly the performance
of the system with respect to the baseline.

Keywords: Acoustic Event Classification, High-Pass Filtering, Auditory
Filterbank

1. Introduction

In recent years, the problem of automatically detecting and classify-
ing acoustic non-speech events has attracted the attention of numerous re-
searchers. Although speech is the most informative acoustic event, other
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kind of sounds (such as laughs, coughs, keyboard typing, etc.) can give
relevant cues about the human presence and activity in a certain scenario
(for example, in an office room). This information could be used in dif-
ferent applications, mainly in those with perceptually aware interfaces such
as smart-rooms (Temko and Nadeu, 2006), automotive applications (Muller
et al., 2008), mobile robots working in diverse environments (Chu et al., 2006)
or surveillance systems (Clavel et al., 2005). Additionally, acoustic event de-
tection and classification systems, can be used as a pre-processing stage for
Automatic Speech Recognition (ASR) in such a way that this kind of sounds
can be removed prior to the recognition process increasing its robustness. In
this paper, we focus on Acoustic Event Classification (AEC).

Several front-ends have been proposed in the literature, some of them
based on short-term features, such as Mel-Frequency Cepstral Coefficients
(MFCC) (Temko and Nadeu, 2006; Zieger, 2008; Zhuang et al., 2010; Kwangy-
oun and Hanseok, 2011), log filterbank energies (Zhuang et al., 2010), Per-
ceptual Linear Prediction (PLP) (Portelo et al., 2009), log-energy, spectral
flux, fundamental entropy and zero-crossing rate (Temko and Nadeu, 2006).
Other approaches are based on the application of different temporal inte-
gration techniques over these short-term features (Meng et al., 2007; Mejia-
Navarrete et al., 2011; Zhang and Schuller, 2012). Finally, other relevant
works in the literature have shown that the activation coefficients produced
by the application of Non-Negative Matrix Factorizarization (NMF) on au-
dio spectrograms can be used as acoustic features for AEC and other related
tasks (Weninger et al., 2011; Cotton and Ellis, 2011). In order to distinguish
between the different acoustic classes, some classification tools are then ap-
plied over these acoustic features, as for example, Gaussian Mixture Models
(GMM) (Temko and Nadeu, 2006), Hidden Markov Models (HMM) (Cot-
ton and Ellis, 2011), Support Vector Machines (SVM) (Temko and Nadeu,
2006; Mejia-Navarrete et al., 2011), Radial Basis Function Neural Networks
(RBFNN) (Dhanalakshmi et al., 2008) and Deep Neural Networks (DNN)
(Kons and Toledo, 2013). The high correlation between the performance
of different classifiers suggests that the main problem is not the classifica-
tion technique, but a design of a suitable feature extraction process for AEC
(Kons and Toledo, 2013).

In fact, as pointed in (Zhuang et al., 2010), conventional acoustic features
are not necessarily the more appropriate for AEC tasks because they have
been design according to the spectral characteristics of speech which are
quite different from the spectral structure of acoustic events. To deal with
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this issue in (Zhuang et al., 2010) it is proposed a boosted feature selection
method to construct a more suitable parameterization for AEC.

In this work, we follow a different approach. Based on the empirical study
of the spectral characteristics of different acoustic events in comparison with
the structure of speech spectra, we propose a new parameterization for AEC,
which is an extension of the conventional MFCC and is based on the high
pass filtering of the acoustic event signal. The proposed front-end has been
tested in clean and noisy conditions achieving, in both scenarios, significant
improvements with respect to the baseline system.

This paper is organized as follows: in Section 2 the main spectral charac-
teristics of acoustic events are described. Section 3 is devoted to the explana-
tion of the proposed parameterization. Section 4 describes the experiments
and results to end with some conclusions and ideas for future work in Section
5.

2. Spectral Characteristics of Acoustic Events

As it is well known, the spectrograms of speech signals are character-
ized by the presence of a higher energy in the low-frequency regions of the
spectrum. However, in general, non-speech sounds do not show this speech
spectral structure. In fact, in many cases, their relevant spectral contents are
located in other frequency bands, as it will be shown in the empirical study
of the spectral characteristics of several AEs performed in this Section.

As an example, Figure 1 represents the spectrograms of two instances
of the same acoustic event, Phone ring. Although it is possible to extract
conclusions about the spectral nature of this AE by means of the visual
inspection of these spectrograms, their high variability due in part to the
intrinsic frequency characteristics of the acoustic event and in part to the
presence of noise (microphone, environment noise, etc.), motivates us to use
an automatic method such as Non-Negative Matrix Factorization (NMF)
(Lee and Seung, 1999), which is capable of providing a more compact parts-
based representation of the magnitude spectra of the AEs.

Given a nonnegative matrix V, € RiXT, where each column is a data
vector (in our case, V. contains the short-term magnitude spectrum of a set
of audio signals), NMF approximates it as a product of two nonnegative
matrices W, and H,, such that

Ve m= Wel, (1)
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Figure 1: Spectrograms of two different instances of the acoustic event Phone ring.

where W, € ]REXK and H, € Rff *T and F, T and K represent frequency
bins, frames and basis components, respectively. This way, each column of
V. can be written as a linear combination of the K building blocks (columns
of W), weighted by the coefficients of activation located in the corresponding
column of H,. In this work, we are interested on retrieving the matrix W,
as it contains the building blocks or Spectral Basis Vectors (SBVs) which
encapsule the frequency structure of the data in V, (Smaragdis, 2004).

For each for the acoustic events considered, their SBVs were obtained
by applying NMF to the corresponding matrix V, composed by the short-
term magnitude spectrum of a subset of the training audio files belonging
to this particular class. The magnitude spectra were computed over 20 ms
windows with a frameshift of 10 ms. In total, 364,214 magnitude spectral ex-
amples were used for performing NMF, which corresponds to approximately
60 minutes of audio. The NMF matrices were initialized using a multi-start
initialization algorithm (Cichocki et al., 2009), in such a way that 10 pairs of
uniform random matrices (W, and H,.) were generated and the factorization
producing the smallest euclidean distance between V, and (W, H,) was chosen
for initialization. Then, these initial matrices were refined by minimizing the
KL divergence between the magnitude spectra V. and their corresponding
factored matrices (W, H,) using an iterative scheme and the learning rules
proposed in (Lee and Seung, 1999) until the maximum number of iterations
(in our case, 200) was reached.
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Figure 2: Spectral Basis Vectors (SBVs) for different acoustic events and types of noise.

The number of basis vectors K was set taking into account a trade-off
between an accurate reconstruction of the magnitude spectra (i. e. the av-
erage approximation error between V, and (W,H,) computed over all AEs)
and a good visualization of the SBVs. In particular, we used K = 23 which
corresponds to the case in which the relative change in the average approxi-
mation error between two successive numbers of SBVs is less than 2%. It is
also worth mentioning that when the number of basis vectors increases, NMF
tends to place more and smaller bands in the areas of the spectrum with high
energy (i. e. provides more resolution in these regions) and therefore reduces
the overall reconstruction error (Bertrand et al., 2008). Nevertheless, for
the purpose of this analysis, a larger value of K does not provide relevant
information and produces a worse visualization of the SBVs.

Figure 2 represents the 23 SBVs of four different non-speech sounds
(Laugh, Applause, Phone ring and Spoon/cup jingle) and two different kind
of noises (Restaurant and Subway). From this figure, the following observa-
tions can be extracted:

e The spectral content of the AEs are very different each other, present-
ing, in general, relevant components in medium-high frequencies. As it
is well-known that the spectral components of speech are concentrated
in low frequencies, it is possible to infer that the parameterizations de-



signed for speech (as the conventional MFCC) are not suitable enough
for representing non-speech sounds.

e In all cases, low frequency components are presented to a greater or
lesser extent, so this part of the spectrum seems not to very discrimi-
native when comparing different types of AEs.

e Comparing the SBVs of the non-speech sounds, it can be observed that
large differences can be found in the medium-high part of the spectrum,
suggesting that these frequency bands are more suitable (or at least,
they can not be negligible) than the lower part of the spectrum for
discriminating between different acoustic events.

e Different environment noises present very different spectral character-
istics. For example, in the case of Restaurant, most of the frequency
content is located in the band below 1 kHz, whereas the SBVs of the
Subway noise are distributed in two different regions of the spectrum: a
low frequency band below 750 Hz and a medium-high band of frequen-
cies between 2 and 3 kHz. The analysis of other kind of noises (Airport,
Babble, Train and Ezhibition Hall) yields to similar observations. This
way, the distortion produced over the AE signals due to the presence
of additive noise will vary considerably depending of the nature of the
noise. As a consequence of this fact, some noises will be presumably
more harmful than others, producing more noticeable degradations in
the performance of the AEC system.

3. Feature extraction for AEC derived from the high-pass filtering
of the acoustic event signal

The observation of the SBVs of the different acoustic events shown in
Section 2 motivated us to derive an extension of the conventional MFCC
more suitable for AEC. As it is well known, MFCC is the most popular
feature extraction procedure in speech and speaker recognition and also in
audio classification tasks. The basic idea behind the new front-end is to take
explicitly into account the special relevance of certain frequency bands of the
spectrum into the feature extraction procedure through the modification of
the characteristics of the conventional mel-scaled auditory filterbank.

One of the main conclusions drawn from the empirical study in Section
2 is that medium and high frequencies are specially useful for discriminating
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Figure 3: Upper frequency of the stopband vs. number of removed filters for the Mel scale.

between different acoustic events. For this reason, this band of frequencies
should be emphasized in some way into the parameterization process. This
can be accomplished by high-pass filtering the short-term frames of the sig-
nal (using the appropriate filter) prior to the application of the auditory
filterbank and the cepstral parameters computation. However, in this work,
we have adopted a straightforward method which consists of modifying the
auditory filterbank by means of the explicit removal of a certain number of
the filters placed on the low frequency region of the spectrum. In Figure 3 it
can be observed the upper frequency of the complete stopband as a function
of the number of removed filters in the auditory filterbank for the Mel scale.

In practice, this procedure consists of setting to a small value the energies
corresponding to the outputs of the low-pass filters which are required to be
removed. This threshold must be different to zero in order to avoid numerical
problems with the logarithm, being, in our particular case, equal to 2752 (the
value of the roundoff level eps in the programming language Matlab).

Once the high-pass filtering is carried out following the procedure previ-
ously described and the remaining log filterbank energies are computed, a
Discrete Cosine Transform (DCT) is applied over them as in the case of the
conventional MFCC yielding to a set of cepstral coefficients!. Finally, it is
applied a temporal feature integration technique which consists of dividing

! Another alternative to this method was considered in which the cepstral coefficients
were obtained by applying the logarithm and the DCT exclusively on the outputs of
the non-removed filters. The first method was finally adopted in this work because a
preliminary experimentation showed that it outperformed this second approach.
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Figure 4: Block diagram of the proposed front-end.

the sequence of cepstral coefficients into sliding windows of several seconds
length and computing the statistics of these parameters (in this case, mean,
standard deviation and skewness) over each window. These segment-based
parameters are the input to the acoustic event classifier, which is based on
Support Vector Machines (SVM). The whole process is summarized in Figure
4.

4. Experiments

4.1. Database and Ezperimental Protocol

The database used for the experiments consists of a total of 2,114 in-
stances of target events belonging to 12 different acoustic classes: Applause,
Cough, Chair moving, Door knock, Door open/slam, Keyboard typing, Laugh,
Paper work, Phone ring, Steps, Spoon/cup jingle and Key jingle. The com-
position of the whole database was intended to be similar to the one used in
(Zhuang et al., 2010) and it is shown in Table 1. Audio files were obtained
from different sources: websites?, the FBK-Irst database® (FBK-Irst, 2009)
and the UPC-TALP database! (UPC-TALP, 2008) and were converted to the
same format and sampling frequency (8 kHz). The total number of segments
of 2 seconds length (the window size used for the segment-based features
computation as indicated in Subsection 4.2) in the whole database is 7,775.

2http://www.freesound.org/
3http://catalog.elra.info/product_info.php?products_id=1093
4http:/ /catalog.elra.info/product_info.php?products_id=1053




Figure 5 shows the histogram of the number of segments per target event in
the database, being the average about 3.75 segments.

Table 1: Database used in the experiments.

\ Class \ Event type \ No. of occurrences
1 Applause [ap] 155
2 Cough [co] 199
3 Chair moving [cm] 115
4 Door knock [kn] 174
5 Door open/slam [ds] 251
6 Keyboard typing [kt] 158
7 Laugh [la] 224
8 Paper work [pw] 264
9 Phone ring [pr] 182
10 Steps [st] 153
11 | Spoon/cup jingle [cl] 108
12 Key jingle [kj] 131
| Total \ 2,114 |

Since this database is too small to achieve reliable classification results,
we have used a 6-fold cross validation to artificially extend it, averaging the
results afterwards. Specifically, we have split the database into six disjoint
balanced groups. One different group is kept for testing in each fold, while
the remainder are used for training.

For the experiments in noisy conditions, the original audio recordings were
contaminated with six different types of noise (Airport, Babble, Restaurant,
Train, Exhibition Hall and Subway) obtained from the AURORA framework
(Pearce and Hirsch, 2000) at SNRs from 0 dB to 20 dB with 5 dB step. In
order to calculate the amount of noise to be added to the clean recordings,
the audio and noise powers were calculated following the procedure indicated
in (Steeneken, 1991), which takes into account the non-stationary character-
istics of the signals.

The AEC system is based on a one-against-one SVM with RBF kernel on
normalized features (Mejia-Navarrete et al., 2011). The system was devel-
oped using the LIBSVM software (Chang and Lin, 2011). Concerning SVM
training, for each one of the subexperiments, a 5-fold cross validation was
used for computing the optimal values of the RBF kernel parameters using
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Figure 5: Histogram of the number of segments per target event for the database used in
the experimentation.

clean data (i.e., these parameters were not optimized for noisy conditions).
In the testing stage, as the SVM classifier is fed with segmental-based fea-
tures computed over sliding windows, the classification decisions are made
at segment level. In order to obtain a decision for the whole instance (target
event level), the classifier outputs of the corresponding windows are inte-
grated using a majority voting scheme, in such a way that the most frequent
label is finally assigned to the whole recording (Geiger et al., 2013).

4.2. Ezxperiments in clean conditions

This set of experiments were carried out in order to study the performance
of the proposed front-end in clean conditions (i.e. when no noise is added to
the original audio files). For the baseline experiments, 12 cepstral coefficients
(Cy to C42) were extracted every 10 ms using a Hamming analysis window
of 20 ms long and a mel-scaled auditory filterbank composed of 40 spectral
bands. Also, the log-energy of each frame (instead of the zero-order cepstrum
coefficient) and the first derivatives (where indicated) were computed and
added to the cepstral coefficients. The final feature vectors consisted of
the statistics of these short-term parameters (mean, standard deviation and
skewness) computed over segments of 2 s length with overlap of 1 s.

Table 2 and Table 3 show, respectively, the results achieved in terms of the
average classification rate at segment level (percentage of segments correctly
classified) and at target event level (percentage of target events correctly
classified) by varying the number of eliminated low frequency bands in the
auditory filterbank. Results for the baseline systems (when no frequency
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Table 2: Average classification rate [%] (segment) in clean conditions.

Number of Eliminated Filters
Param.

Base. 1 2 3 4 5 6 7 8 9 10 11 12
cc 75.10 7747 77.66 7758 T7.63 78.16 76.95 78.11 76.87 7612 77.23 77.23 76.10
CC+H+ACC  77.57 7943 7945 79.22 79.36 79.07 79.20 79.55 79.41 7847 77.81 7877 7855

Table 3: Average classification rate [%] (target event) in clean conditions.
Number of Eliminated Filters
Param.

Base. 1 2 3 4 5 6 7 8 9 10 11 12
cc 8107  82.28 8204 8242 8242 81.89 8131 8320 81.27 80.78 80.69 8L75 T79.72
CC+ ACC 8141 8262 83.39 8358 8349 83.15 8238 8271 8281 80.06 81.12 8155 81.22

bands are eliminated) are also included. Both tables contain the classification
rates for two different set of acoustic parameters, CC (cepstral coefficients
+ log-energy) and CC+ACC (cepstral coefficients + log-energy + their first
derivatives).

As can be observed for the CC parameterization, the high pass filtering of
the acoustic event signal outperforms the baseline, being the improvements
more noticeable when the number of eliminated filters varies from 3 to 7.
From Figure 3, it can be seen that these ranges of eliminated filters roughly
correspond to a stopband from 0 Hz to 100-275 Hz. In particular, the best
performance is obtained when the seven first low frequency filters are not con-
sidered in the cepstral coefficients computation. In this case, the difference
in performance at segment level with respect to the baseline is statistically
significant at 95% confidence level. The relative error reduction with respect
to the corresponding baseline is around 12.1% at segment level and around
11.2% at target event level.

Similar observations can be drawn for the CC+ACC parameterization:
best results are obtained when low frequencies (below 100-275 Hz) are not
considered in the feature extraction process. When comparing to CC for
the case in which the first 7 filters are eliminated, it can be observed that
CC+ACC achieves an improvement about 1.4% absolute and a decrement
around 0.5% absolute at, respectively, segment and target event level over
CC. However, these differences are not statistically significant.

Other frequency scales (in particular, ERB and Bark) have been experi-
mented observing, as is expected, a similar behaviour than the Mel scale with
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respect to the elimination of low frequency bands. Nevertheless, the Mel scale
produces slightly better results than ERB and Bark. More details about these
experiments can be found in (Ludena-Choez and Gallardo-Antolin, 2013).

In order to perform a more detailed analysis of the AEC system perfor-
mance, we have analysed the confusion matrices produced by the baseline
and the proposed front-end. As an example, Figures 6 (a) and (b) show, re-
spectively, the confusion matrices at segment level for the baseline CC+ACC
parameters and the modified version of this parameterization in which the
first 7 low frequency filters are removed. In both tables, the columns corre-
spond to the correct class, the rows to the hypothesized one and the values
in them are computed as the average over the six folds. As can be observed,
in the baseline system the less confusable classes (with a classification rate
greater than 80%) are Applause, Keyboard typing, Laugh, Paper work and
Phone ring, whereas the highest confusable ones are Cough, Chair moving,
Door knock and Spoon/cup jingle. In particular, 23% of the Cough instances
are classified as Laugh and 12% of the Chair moving and Door knock in-
stances are assigned to the class Steps. It is worth mentioning the large
amount of confusions between the human vocal-tract non-speech sounds (i.
e. Cough and Laugh) which has been previously reported in the literature
(Temko and Nadeu, 2006). In the proposed front-end, the recognition rates
of all the acoustic classes increase with the exception of Cough and Key jin-
gle. The acoustic events which are better classified are the same than in the
baseline, whereas there are only two AEs with a classification rate less than
70% (Cough and Chair moving). This is because classes Door knock and
Spoon/cup jingle reduce significantly their amount of confusions in compar-
ison to the baseline.

4.3. Experiments in noisy conditions

In order to study the impact of noisy environments on the performance of
the AEC system, several experiments were carried out with six different types
of noise (Airport, Babble, Restaurant, Train, Ezhibition Hall and Subway) at
SNRs from 0 dB to 20 dB with 5 dB step. For the sake of brevity, we only
report in this subsection the results for the baseline and for the proposed
front-end in the case of CC+ACC parameters.

Figure 7 represents, for each noise, the average of the relative error reduc-
tion with respect to the baseline (noisy conditions without high-pass filtering
of the audio signal) computed across the SNRs considered (0 dB to 20 dB

12
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Figure 6: Confusion matrices [%] at segment level for the CC+ACC parameterization: (a)
Baseline; (b) Front-end with the first 7 low frequency filters removed.

with 5 dB step) as a function of the number of removed low frequency fil-
ters at both, segment and target event level. The mean of the relative error
reduction over all noises and SNRs is also indicated. In order to observe in
more detail the behaviour of the AEC system with respect to different SNRs
and noises, we also show Table 4 which contains the classification rates at
segment level for the baseline and for the proposed front-end at several se-
lected SNRs (20, 10 and 0 dB) for the six noises evaluated and the range of
number of eliminated filters from 7 to 12.

Although all the evaluated noises produce a dramatic decrease in the
classification rates, results in Table 4 suggest that each type of noise has
a different effect over the system performance, being some noises (Airport,
Babble, Restaurant and Train) less harmful than others ( Ezhibition Hall and
Subway). This fact can be explained by analysing the spectral characteristics
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of each noise. In Figure 2, the SBVs of the Restaurant and Subway noises are
represented. In the first case, most of the spectral content is concentrated in
low frequencies and, for this reason, this kind of noise affects to lesser extent
the most relevant frequencies of the AEs. However, in the second case, part
of the SBVs spreads over medium-high frequencies, and therefore, this noise
can considerably mask the underlying AEs. Note that, on the one hand, the
SBVs of Airport, Babble, Restaurant and Train noises are concentrated in
the same range of frequencies than those of the Restaurant noise and, on
the other hand, the SBVs of Ezhibition Hall and Subway have also similar
characteristics.

From results in Figure 7 it can be observed that with respect to the per-
formance of the proposed front-end, for the Airport, Babble, Restaurant and
Train noises, the classification rates at segment level improve considerably
when the number of eliminated filters increases, specially for medium-low
SNRs (see the corresponding rows labeled as “0 dB” and “10 dB” in Table
4). In this case, optimal values are obtained when frequencies below 400-500
Hz are not considered in the feature computation, which corresponds to the
elimination of the 10-11 first low-frequency filters. Similar observations can
be drawn by analysing the results at target event level. For the Ezhibition
Hall and Subway noises, results at segment level suffer a slight variation with
respect to the number of removed filters, achieving smaller improvements
with respect to the baseline than in the case of the other noises. At target
level, the variations are greater, yielding to a decrease in the classification
rate in most of the cases for these two noises.

Nevertheless, in average the proposed front-end, when 11 filters are re-
moved, obtains relative error reductions with respect to the baseline (see
Figure 7) about 7.81% at segment level and 7.78% at target event level.

Further experiments were carried out for other scales (Bark and ERB)
and the CC parameterization. In all the cases, the results follow similar
trends in comparison to the Mel scale and the CC+ACC parameters.

5. Conclusion

In this paper, we have presented a new parameterization method for
acoustic event classification tasks, motivated by the study of the spectral
characteristics of non-speech sounds. First, we have performed an empirical
study of the spectral contents of different acoustic events, concluding that
medium and high frequencies are specially important for the discrimination
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Table 4: Average classification rate [%] (segment) for the CC+ACC parameterization and
different noise types and SNRs.

Number of Eliminated Filters

Noise SNR (dB)
Baseline 7 8 9 10 11 12
20 dB 66.51 69.47 67.82 68.33 68.82 68.52 68.17
AIRPORT 10 dB 49.92 53.45 5294 54.29 55.63 56.08 55.28
0 dB 29.01 33.60 34.59 35.57 37.48 3820 36.97
20 dB 67.09 68.77 6845 68.89 6894 67.94 67.33
BABBLE 10 dB 52.27 56.45 56.69 56.99 57.44 56.85 56.08
0 dB 27.59 36.92 35.74 37.16 39.12 37.69 35.28
20 dB 67.43 69.40 68.89 68.89 69.22 68.8 68.62
RESTAURANT 10 dB 53.09 57.14 56.97 57.34 57.26 57.32  56.69
0 dB 25.65 37.35 37.91 3822 38.22 38.65 36.72
20 dB 71.18 7292 7282 728 7274 7227 72.68
TRAIN 10 dB 58.69 61.72 61.67 6291 629 63.44 63.27
0 dB 40.46 45.81 45.88 46.40 46.7  47.32 46.83
20 dB 58.00 57.68 57.13 58.01 5835 57.76 56.49
EXHIBITION HALL 10 dB 42.66 42.98 4241 4346 44.02 43.65 42.50
0 dB 22.00 23.45 24.02 23.83 2466 2499 23.61
20 dB 56.90 56.38 55.97 56.23 56.68 56.10 55.32
SUBWAY 10 dB 39.88 41.51 40.94 40.82 40.53 41.30 40.40
0 dB 19.34 23.06 23.81 23.94 2274 2475 2441
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Figure 7: Relative error reduction [%] with respect to the baseline for the CC+ACC
parameterization and the Mel scale: (a) at target event level; (b) at segment level.

between non-speech sounds. Second, from the findings of this study, we have
proposed a new front-end for AEC, which is an extension of the MFCC pa-
rameterization and is based on the high pass filtering of the acoustic event
signal. In practice, the proposed front-end is accomplished by the modifica-
tion of the conventional mel-scaled auditory filterbank through the explicit
elimination of a certain number of its low frequency filters.

The proposed front-end have been tested in clean and noisy conditions
and compared to the conventional MFCC in an AEC task. Results support
the fact that the high pass filtering of the audio signal is, in general terms,
beneficial for the system, showing that the removal of frequencies below 100-
275 Hz in the parameterization process in clean conditions and below 400-500
Hz in noisy conditions, improves significantly the performance of the system
with respect to the baseline.

For future work, we plan to use feature selection techniques for auto-
matically determining the most discriminative frequency bands for AEC.
Other future lines include the unsupervised learning of auditory filterbanks
by means of NMF and the use of the NMF activation coefficients as acoustic
features for AEC.
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