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This paper analyses the behaviour of a Wald-type test, i.e., the (E¢ cient) Fractional

Dickey-Fuller (EFDF) test of I(1) against I(d); d < 1; relative to LM tests. Further, it extends

the implementation of the EFDF test to the presence of deterministic trending components in

the DGP. Tests of these hypotheses are important in many macroeconomic applications where

it is crucial to distinguish between permanent and transitory shocks because shocks die out in

I(d) processes with d < 1. We show how simple is the implementation of the EFDF in these

situations and argue that, under �xed alternatives, it is preferred to the LM test in Bahadur´s

sense. Finally, an empirical application is provided where the EFDF approach allowing for

deterministic components is used to test for long-memory in the GDP p.c. of several OECD

countries, an issue that has important consequences to discriminate between alternative growth

theories.
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1. INTRODUCTION

Typically, tests of I(1) vs. I(0) processes have problems in rejecting the null that a time

series fytg is I(1) when the true DGP is a fractionally integrated, I(d); process, particularly

if 0:5 < d < 1. This issue can have serious consequences for the analysis of the medium

and long- run properties of macroeconomic and �nancial variables. For instance, (i) shocks

could be identi�ed as permanent when in fact they die out eventually, and (ii) two series

could be considered as spuriously cointegrated when they are independent at all leads and

lags (see Gonzalo and Lee, 1998). Further, these mistakes are more likely to occur in the

presence of deterministic components as, e.g. in the case of trending economic variables.

In view of this problem, the goal of this paper is threefold. First, we discuss the power

behavior of a recently proposed Wald test of I(1) vs. I(d), d 2 [0; 1) relative to the one

achieved by well-known LM tests. In particular, we use the concept of Bahadur´s asymptotic

relative e¢ ciency (henceforth, ARE; see Gourieroux and Monfort, 1995) to derive new

analytical results regarding the non-centrality parameters of both types of tests under �xed

alternatives. Secondly, we extend the Wald-type testing procedure, originally derived for

driftless processes, to the more realistic case where deterministic components are present.

Finally, we present a feasible linear single-step regression estimation approach to deal with

serially correlated errors.

Speci�cally, we focus on a modi�cation of the Fractional Dickey-Fuller (FDF) test by

Dolado, Gonzalo and Mayoral (2002; DGM hereafter) recently proposed by Lobato and

Velasco (2007; LV hereafter) which achieves a slight improvement in e¢ ciency over the

former. This test, henceforth denoted as the EFDF (e¢ cient FDF) test, generalizes the

traditional DF test of I(1) against I(0) processes without deterministic components to the

broader framework of testing I(1) against I(d) with 0 � d < 1. The EFDF (and the FDF)

test belongs to the family of Wald tests and relies upon the principle underlying the popular

Dickey-Fuller (DF) approach. The idea is to test for the statistical signi�cance of the slope

coe¢ cient, '; by means of its t-ratio, t' , in a regression where the dependent variable and

the regressor are �ltered so as to become I(0) under the null and the alternative hypothesis,
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respectively. 1 Both DGM and LV set �yt as the dependent variable, where � = (1� L) :2

As regards the regressor, whereas DGM choose �dyt�1, LV show that zt�1(d) = (1 �

d)�1(�d�1 � 1)�yt improves the e¢ ciency of the test. Non-rejection of H0: ' = 0 against

H1: ' < 0, implies that the process is I(1) and, conversely, rejection of the null implies

that the process is I(d):

In order to compute either �dyt�1 or zt�1(d), an input value for d is required. One could

either consider a (known) simple alternative, HA : d = dA < 1 or, more realistically, a

composite one, H1 : d < 1. We focus here on the last case where DGM and LV show that

it su¢ ces to use a T �-consistent estimate (with � > 0) of the true integration order to get

a N(0; 1) limiting distribution of the resulting test-statistic:

Under a sequence of local alternatives approaching H0 : d = 1 from below at a rate of

T�1=2, LV (2007, Theorem 1) prove that, with Gaussianity, the EFDF test is asymptotically

equivalent to the uniformly most powerful invariant (UMPI) test, i.e., the LM test intro-

duced by Robinson (1991, 1994) and later adapted by Tanaka (1999) for the time domain.

We �rst show that, when the alternative is �xed, the former has a larger non-centrality

parameter than the latter, in line with the standard result about the better power properties

of Wald tests relative to LM tests (see Engle, 1984). Moreover, when compared to other

tests of I(1) vs. I(d) which rely on direct inference about semiparametric estimators of

d, the EFDF test exhibits better power properties in general, under a correct speci�cation

of the stationary short-run dynamics of the error term in the auxiliary regression. This is

due to the fact that the semiparametric estimation procedures often imply larger con�dence

intervals of the memory parameter, in exchange for less restrictive assumptions on the error

term and robustness in case of misspeci�cation.3 By contrast, the combination of a wide

1 In the DF setup, these �lters are � = (1� L) and �0L = L; so that the regressand and regressor are

�yt and yt�1, respectively.
2As shown in DGM (2002), both regressors can be constructed by applying the truncated version of the

binomial expansion of the �lter (1 � L)d in the lag operator L to yt (t = 0; 1; :::), so that �d
+yt =

Pt�1
i= 0

�i(d) yt�i; where �i(d) is the i-th coe¢ cient in that expansion, de�ned at the end of this Introduction. In

the sequel, we will refer to this truncated �lter simply as �d:
3See, e.g., Velasco (1999), Robinson (2003), Abadir et al. (2005), Shimotsu and Phillips (2005) and
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range of semiparametric estimators for the input value of d with an auxiliary parametric

regression, as the one discussed above, yields a parametric rate for the Wald tests. Thus,

in a sense, the Wald tests combine the favorable features of both approaches to improve

power, while reducing the danger of misspecifying short-run dynamics.

Next, we investigate how to implement the EFDF test when some deterministic compo-

nents are considered in the DGP, a case which was neither considered by LV nor by DGM.

Although we will analyze other types of trends, we will mainly focus on the role of a linear

trend since many (macro) economic time series exhibit this type of trending behavior in

their levels. Our main result is that, in contrast with what happens with most tests for

I(1) against I(0), the EFDF test remains being e¢ cient in the presence of deterministic

components and it maintains the same asymptotic distribution, insofar as they are cor-

rectly �ltered. In this respect, this result mimics the one found for LM tests in this case;

cf. Robinson (1994), Tanaka (1999) and Gil-Alaña and Robinson (1997).

Lastly, we extend the results obtained for a DGP with i:i:d: error terms to the case where

they are autocorrelated, as in the (augmented) DF case (ADF henceforth). In this respect,

DGM (2002, Theorems 6 and 7) have proved that, in order to remove the autocorrelation, it

is su¢ cient to augment the set of regressors in the auxiliary regression of the FDF test with

k lags of the dependent variable such that k " 1 as T " 1; and k3=T " 0, as in Said and

Dickey (1984). This leads to the augmented FDF (AFDF) test. As regards the EFDF test,

we conjecture that a similar result holds, although we will con�ne our discussion below, as

in LV (2007), to the case of �nite-lag AR processes. The procedure based on the EFDF test

turns out to be much simpler than accounting for serial correlation in the LM framework.

Further, we point out that the two-step procedure proposed by LV (2007) can be simpli�ed

to a feasible linear single-step estimation approach. An empirical application dealing with

testing the possibility that long GNP per capita series for several OECD countries may follow

nonstationary I(d) processes, yet with shocks that die out (supporting the hypothesis of

beta-convergence) instead of I(1) (no convergence), illustrates our proposed methodology.

The rest of the paper is structured as follows. Sections 2 brie�y overviews the properties

Shimotsu (2006).
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of the EFDF test when the process is a driftless random walk under the null and derives

new results about the power of this test relative to the LM test under �xed alternatives

using Bahadur´s ARE. Section 3 extends the previous results to the case where the process

contains trending deterministic components (e.g., a linear trend), considering both the case

of i:i:d. and autocorrelated errors. Section 4 discusses an empirical application of the

previous test. Finally, Section 5 draws some concluding remarks.

Proofs of the theorems are collected in the Appendix.

In the sequel, the de�nition of a I (d) process that we will adopt is the one used by

Akonom and Gourieroux (1987) where a fractional process is initialized at the origin. This

corresponds to Type-II fractional Brownian motion (see the previous discussion in footnote

3) and is similar to the de�nitions of an I(d) process underlying the LM test proposed Robin-

son (1994) and Tanaka (1999). Moreover, the following conventional notation is adopted

throughout the paper: �(:) denotes the Gamma function, and f�i (d)g represents the se-

quence of coe¢ cients associated to the expansion of (1� L)d in powers of L ,

�i (d) =
� (i� d)

� (�d) � (i+ 1) :

The indicator function is denoted by 1(:): Finally,
w! denotes weak convergence in D[0; 1]

endowed with the Skorohod J1 topology, and
p! means convergence in probability.

2. THE EFDF TEST

2.1 De�nitions

Like Robinson (1994) we consider a process fytg that is generated by an additive model,

namely as the sum of a deterministic component, �(t); and an I(d) component, ut; so that

yt = �(t) + ut; (1)

where ut = ��d"t1t>0 is a purely stochastic I (d) process and "t is a zero-mean i.i.d. random

variable.
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When � (t) � 0;4 DGM introduced a Wald-type (FDF) test for testing the null hypothesis

of H0 : d = 1 against the composite alternative H1 : 0 � d < 1; based on the t-ratio

associated to the hypothesis � = 0 in the OLS regression

�yt = ��
d�yt�1 + �t: (2)

where d� � 0 is an input value needed to perform the test. If d� is chosen such that

d� = bdT ; where bdT is a T �-consistent estimator of d, with � > 0; DGM (2002) and LV (2006)

have shown that the asymptotic distribution of the resulting t-statistic, t� is N (0; 1).

Recently, LV (2007) have proposed the EFDF test based on a modi�cation of regression

(2) that permits to achieve higher e¢ ciency s under the assumption of � (t) � 0 (or known).

More speci�cally, their proposal is to compute the t-statistic, t'; associated to the null

hypothesis ' = 0 in the regression

�yt = 'zt�1 (d
�) + "t; (3)

where zt�1 (d�) is de�ned as5

zt�1 (d
�) =

�
�d��1 � 1

�
(1� d�) �yt;

such that ' = (d� � 1): Note that, when ' = 0; the model becomes a random walk, i.e.,

�yt = "t; while, when ' = (d� � 1) < 0 , it becomes a pure fractional process, �dyt = "t:

The insight for the higher e¢ ciency of the EFDF test is that, under H1, the regression

model considered in (2) can be written as �yt = �1�d"t = "t + (d � 1)"t�1 + 0:5d(d �

1)"t�2 + ::: = ��dyt�1 + "t + 0:5d(d� 1)"t�2 + ::: with � = d� 1. Thus, the error term �t

= "t+0:5d(d� 1)"t�2+ ::: in (2) is serially correlated. Although OLS provides a consistent

estimator of �, since �t is orthogonal to the regressor �yt�1 = "t�1; it is not the most

e¢ cient one. By contrast, the regression model used in the EFDF test does not su¤er

from this problem since, by construction, yields an i:i:d. error term. Finally, note that
4Alternatively, �(t) could be considered to be known. In this case, the same arguments go through after

substracting it from yt to obtain a purely stochastic process.
5A similar model was �rst proposed by Granger (1986) in the more general context of testing for cointe-

gration with multivariate series, a modi�cation of which has been recently considered by Johansen (2005).
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application of L´ Hôpital rule to zt�1 (d�) in the limit case as d� ! 1 leads to a regressor

equal to �ln(1�L)�yt = �1j=1j�1�yt�j , which is the one used in Robinson�s LM test (see

section 2.3).

Theorem 1 in LV (2007), which we reproduce below for completeness, establishes the

asymptotic properties of t':

Theorem 1 Under the assumption that the DGP is given by yt = ��d�t1(t>0), "t is i:i:d.

with �nite fourth moment, the asymptotic properties of the t-statistic t' for testing ' = 0

in (3), where the input of zt�1(cdT ) is a T��consistent estimator of d�; for some d� > 0:5
with � > 0; are given by

a) Under the null hypothesis (d = 1),

t'(bdT ) w! N (0; 1) :

b) Under local alternatives, (d = 1� 
=
p
T );

t'(bdT ) w! N (�
h (d�) ; 1) ;

where h(d�) = �1j=1j
�1�j(d� � 1)=

q
�1j=1�j(d

� � 1)2; d� > 0:5; d� 6= 1:

c) Under �xed alternatives (d 2 [0; 1) < 1), the test based on t'(bdT ) is consistent.
LV (2007) show that the function h(:) achieves a global maximum at 1 where h(1) =p
�2=6, and that h (1) equals the noncentrality parameter of the locally optimal Robinson�s

LM test (see subsection 2.2 below). Thus, insofar as a T �-consistent estimator of d is used

as input of zt�1(d�) with � > 0, the EFDF test is locally asymptotically equivalent to

Robinson´s LM test. In practice, the estimate of d could be smaller than 0:5. If such is the

case, the input value can be chosen according to the following rule: edT = max{bdT ; 0:5+#g,
where # is a small number, e.g., # = 0:001: A power-rate consistent estimate of d can be

easily obtained by applying some semiparametric estimators. Among them, the estimators

proposed by Abadir et al. (2005), Shimotsu (2006) and Velasco (1999) provide convenient

choices since they also cover the case where deterministic components are present, as we do

in section 3.
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2.2 Asymptotic relative e¢ ciency of Wald and LM tests.

As discussed earlier, the closer competitor to the Wald (FDF and EFDF) tests is the LM

test proposed by Robinson (1991, 1994) in the frequency domain, subsequently extended

by Tanaka (1999) to the time domain. In this section we discuss the power properties of

the three competing tests under �xed alternatives.6 The comparison is done in Bahadur�s

ARE sense.

We start with the LM test, denoted as LMT ; which considers the null hypothesis of � = 0

against the alternative � 6= 0 for the DGP �d0+�yt = "t. In line with the hypotheses

considered in this paper, we will focus on the particular case where d0 = 1 and �1 � � < 0:

Assuming that "t � N(0; �2), the score-LM test is computed as

LMT =

r
6

�2
T 1=2

T�1X
j=1

j�1b�j w! N (0; 1) ; (4)

where b�j = P
T
t=j+1�yt �yt�j=

P
T
t=1(�yt�j)

2 (see Robinson, 1991 and Tanaka, 1999).

Breitung and Hassler (2002) have shown that an alternative simpler way to compute the

score-LM test is as the t-ratio (t�) of b�ols in the regression
�yt = �x

�
t�1 + et; (5)

where x�t�1 =
P t�1

j=1 j
�1�yt�j : Intuitively, since t� =

P
(�ytx

�
t�1)=b�e(P(x�t�1)2)1=2 and,

under H0 : � = 0; b�e tends to � and plim T�1
P
(x�t�1)

2 = �2=6; then t� has the same

limiting distribution as LMT :

Under a sequence of local alternatives of the type � = 
T�1=2 with 
 > 0 for H0 :

d0 = 1, the LMT (or t�) is the UMPI test. However, as discussed above, the EFDF test is

asymptotically equivalent to the UMPI under the appropriate choice of bdT earlier discussed.
Hence, as stated in Theorem 1 above, when �(t) � 0 (or known) and d = 1 � 
T�1=2;

the limiting distribution of the the EFDF test is identical to that of the LM test, i.e.,

N(�
h(d); 1) where h(:) is �=
p
6 for d = 1. DGM (2002, Theorem 3) in turn obtained that

6The available results in the literature only establish the consistency of the Wald and LM test under �xed

alternatives. Yet, they do not derive the non-centrality parameters as we do below.
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the corresponding distribution of the FDF under local alternatives test is N(�
; 1): Hence,

in the case of local alternatives, the asymptotic e¢ ciency of the FDF test relative to the

LM and EFDF tests is 0:78 ('
p
6=�).

In the rest of this section, we analyze the case with �xed alternatives where, to our

knowledge, results are new. In particular, we derive the non-centrality parameters of the

FDF, EFDF and LM tests under an I(d) alternative where the DGP is assumed to be

�dyt = "t with d 2 (0; 1): Hence, �yt = ��b"t where b = d� 1 < 0. These non-centrality

parameters correspond (in square terms) to the approximate slopes of the tests in Bahadur�s

sense. The following result holds.

Theorem 2 If �dyt = "t with d 2 [0; 1); the t-statistics associated to the EFDF and FDF

tests, denoted as t' and t�, respectively, verify,

T�1=2t'
p

! �
�
�(3� 2d)
�2(2� d) � 1

�1=2
� cEFDF (d);

T�1=2t�
p

! � (1� d)�(2� d)
[�(3� 2d)� (d� 1)2�2(2� d)]1=2

� cFDF (d);

while, under the same DGP; the LM test de�ned in (4) satis�es that,

T�1=2LMT

p
! �

r
6

�2
�(2� d)

(1� d)�(d� 2)

1X
j=1

� (j + d� 1)
j� (j + 2� d) � cLM (d);

where cEFDF (d); cFDF (d) and cLM (d) denote the non-centrality parameter under the �xed

alternative d 2 (0; 1) of the EFDF, FDF and LM tests, respectively:

Figure 1 displays the three non-centrality parameters for d 2 (0; 1): In Bahadur�s sense,

the ratio of the approximate slopes of the tests (e.g., ARE(EFDF;LM; d) = [cEFDF (d)=(cLM (d)]2)

de�nes the asymptotic relative e¢ ciency (ARE) of one test versus the other. When ARE

is greater than 1, it is said that the �rst test is asymptotically preferred (or asymptot-

ically more powerful) in Bahadur�s sense to (than) the second one (see section 23.2.3 in

Gourieroux and Monfort, 1995). As expected, the noncentrality parameters of the EFDF

and the LM tests behave similarly for values of d very close to H0, whereas the one of the

FDF test is slightly smaller for these local alternatives. Nonetheless, the LM test performs
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signi�cantly worse than both Wald-type tests when the alternative is not local. The EFDF

tests performs slightly better than the FDF test in line with LV�s (2007) arguments about

e¢ ciency. The intuition for the worse power performance of the LM test is that there does

not exist any value for � in (5 ) that makes et both i:i:d. and independent of the regressor

for �xed alternatives, implying that x�t�1 does not maximize the correlation with �yt. Fig-

ure 2 depicts the Bahadur´s ARE of the EFDF and FDF tests with respect to the LM, plus

the one between the two Wald tests, in the range d 2 (0:5; 1): The message to be drawn

from this Figure is similar to that in Figure 1.

In sum, for �xed alternatives with (approximately) d < 0:9, using the above ARE criteria,

these tests can be ranked in decreasing asymptotic power order as EFDF>FDF>LM.
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Fig 1. Non-centrality parameters of LM and Wald tests
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As regards semiparametric estimators, both the Fully Extended Local Whittle (FELW,

see Abadir et al., 2005) and the Exact Local Whittle estimators (ELW, see Shimotsu, 2006)

verify the asymptotic property
p
m(bdT�d) w! N

�
0; 14
�
form = o(T

4
5 ): Test statistics for unit

roots are based on �d = 2
p
m(bdT � 1) w! N (0; 1). Therefore, their rate of divergence under

H1 : d < 1 is the nonparametric rate Op(
p
m) which is smaller than the Op(

p
T ) parametric

rate achieved by the Wald test. Of course, this loss of power is just the counterpart of their

higher robustness against misspeci�cation.

3. THE EFDF TEST FOR TRENDING I(D) PROCESSES

3.1 i.i.d. case

In this section, we extend the EFDF testing approach to the more realistic case where

� (t) 6= 0 and unknown. Our goal is to examine how this (unknown) deterministic term
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should be taken into account when implementing the test.

Following Elliott et al. (1996), we consider two di¤erent types of � (t) :

Slowly Evolving Deterministic component

Condition A. (Slowly evolving trend). The deterministic component � (t) veri�es

� (t) = O(t�); � < 0:5:

Condition A is immediately satis�ed if � (t) is a constant term but also holds for a variety

of time functions, such as slowly increasing trends, (e.g., t�; � < 0:5 or log t):

In this case, it is straightforward to show that the stochastic component in yt dominates

the deterministic term when T is large. Hence, �(t) has no e¤ect either on the asymptotic

distribution of the t-ratio statistic or on the e¢ ciency properties of the test in the absence

of � (t). Therefore, one can proceed to run regression (3) ignoring the presence of these

slowly evolving trends.

The following theorem presents the properties of the EFDF test when the DGP is given

by (1) and � (t) veri�es Condition A.

Theorem 3 (Slowly evolving trends) Under the assumption that the DGP is given by yt =

� (t) + ��d�t1(t>0), where d � 1, �t is i:i:d. with �nite fourth moment, and � (t) veri�es

Condition A, the asymptotic properties of the t-statistic t' for testing ' = 0 in (3) (denoted

by EFDF� test), where the input of zt�1(bdT ) is a T��consistent estimator of d�; for some
d� > 0:5 with � > 0; are identical to those stated in Theorem 1.

Evolving Deterministic Components

Condition B. (Evolving trend). The deterministic component � (t) veri�es.

� (t) = O(t�); � � 0:5;

with � known.

Under Condition B, the DGP is allowed to contain trending regressors in the form of,

say polynomials (of known order) of t: Hence, when the coe¢ cients of � (t) are unknown,

12



the test described above are unfeasible. Nevertheless, it is still possible to obtain a feasible

test with the same asymptotic properties as in Theorem 1 if a consistent estimate of � (t) is

removed from the original process. Indeed, under H0; the relevant coe¢ cients of � (t) can

be consistently estimated by OLS in a regression of �yt on �� (t) : For instance, consider

the case where the DGP contains a linear time trend, that is,

yt = �+ �t+�
�d�t; (6)

which, under H0 : d = 1; corresponds to the popular random walk with drift case. Taking

�rst di¤erences, it follows that �yt = � + �1�d"t: The OLS estimate of �; �̂; (i.e., the

sample mean of �yt) is consistent under both H0 and H1: In e¤ect, under H0; �̂ is a T 1=2

-consistent estimator of � whereas, under H1; it is T 3=2�d-consistent with 3=2�d > 0:5 (see

Hosking 1996; Theorem 8). Hence, the following theory holds.

Theorem 4 (Evolving trends) Under the assumption that the DGP is given by yt = � (t)+

��d�t1(t>0), where d � 1, �t is i:i:d. with �nite fourth moment, and � (t) satis�es Condition

B, the asymptotic properties of the t- statistic t' for testing ' = 0 in the regression

g�yt = 'gzt�1 �d̂T�+ et (7)

(denoted by EFDF� test), where the input d̂T of gzt�1 �d̂T� is a T �� consistent estimator

of d� > 0:5 with � > 0; g�yt = �yt � ��̂ (t), gzt�1 �d̂T� = �
�d̂T�1�1

�
(1�d̂T )

(�yt � ��̂ (t)); and

the coe¢ cients of ��̂ (t) are estimated by an OLS regression of �yt on �� (t) ; then the

asymptotic properties of the t-statistic t' for testing ' = 0 in (7) are identical to those

stated in Theorem 1.

As mentioned above, Shimotsu�s (2006) semiparametric estimator provides power rate

consistent estimators of d � 1 for the case where the DGP contains a linear or a quadratic

trend whereas Velasco�s (1999) estimator is invariant to a linear (and possibly higher order)

time trend.
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3.2 Serial correlation case: The invariant AEFDF test

Next, we generalize the DGP considered in (1) by assuming that ut follows an stationary

linear AR(p) process, namely, �p(L)ut = �t1t>0 where �p(L) = 1 � �1L � ::: � �pLp with

�p(z) 6= 0 for jzj � 1: This motivates the following nonlinear regression model

�yt = '[�p(L)zt�1(d)] +

pX
j=1

�j�yt�j + �t; (8)

which is similar to (3), except for the inclusion of the lags of�yt and for the �lter �p(L) in

the regressor whose signi�cance is tested. Estimation of this model is complicated because

of the nonlinearity in the parameters ' and �p = (�1; :::; �p): Compared with the i:i:d case,

the practical problem arises because the vector � is unknown and therefore the regressor

[�p(L)zt�1(d)] is unfeasible. For this reason LV (2007) recommended to apply a two-step

procedure that allows one to obtain e¢ cient tests also with autocorrelated errors.

3.2.1 Two-step procedure.�

For the case where � (t) � 0 (or known), LV (2007) implement the two step procedure as

follows. In the �rst step, the coe¢ cients of �p(L) are estimated (under H1) by OLS in the

equation

�
bdT yt =

pX
t=1

�j�
bdT yt�j + at; (9)

where bdT satis�es the conditions stated in Theorem 1. The estimator of �p(L) is consistent

with a convergence rate which depends on the rate �: Second, estimate by OLS the equation

�yt = '[b�p(L)zt�1(d̂T )] + pX
j=1

�j�yt�j + vt; (10)

where b�p(L) is the estimator from the �rst step, and bdT denotes the same estimated input
used in that step as well. As LV (2007, Theorem 2) have shown, the t' statistic in this

augmented regression is still both normally distributed and locally optimal. The test will

be denoted by AEFDF (augmented EFDF) test in the sequel.
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For the case where the coe¢ cients of � (t) are considered to be unknown, a similar pro-

cedure as that described in section 2.1 can be implemented and e¢ cient tests will still be

obtained. If � (t) is a slowly moving trend satisfying Condition A, the test based on regres-

sion (10) can be implemented and the asymptotic properties stated in LV (2007, Theorem

2) still hold through. For the case where � (t) satis�es Condition B; as discussed earlier,

one needs to remove these terms from the original variables prior to computing regressions

(9) and (10) ; where the coe¢ cients of � (t) can be estimated by OLS under the null. For

instance, if the DGP is de�ned as in (6), a consistent estimator of � is obtained from the

OLS estimator of a regression of �yt on a constant term. Clearly, this estimator has the

same properties in this case as those described in Section 3.1. Then, regression (9) simply

becomes

�
bdT (yt � �̂t) = [1� �p(L)]�bdT (yt � �̂t) + at;

whereas regression (10) would be

g�yt = '[b�p(L)gzt�1 �d̂T�] + pX
t=1

�j�̂yt�j + vt; (11)

and g�yt = �yt � �̂ and gzt�1 �d̂T� = �
�d̂T�1�1

�
(1�d̂T )

(�yt � �̂): In the case where �(t) in the

DGP contains a quadratic term, �yt should be regressed on a constant and a linear time

trend and so forth for higher-order time trends.

LV (2007) have shown that the asymptotic properties of the two-step AEFDF test is

identical to those in Theorems 1 and 2, except that, under local alternatives (d = 1�
=
p
T ;

with 
 > 0); we have that t'(d)
w! N (�
!; 1) and t (d)

w! N (
!; 1) where

!2 =
�2

6
� {0	�1{;

such that { = ({1; :::; {p)0 with {k =
P1

j=k j
�1cj�k; k = 1; :::; p, cj�s are the coe¢ cients

of Lj in the expansion of 1=� (L) ; and 	 = [	k;j ]; 	k;j =
P1

t=0 ctct+jk�jj; k; j = 1; :::; p;

denotes the Fisher information matrix for � (L) under Gaussianity. Note that !2 is identical

to the drift of the limiting distribution of the LM test under local alternatives (see Tanaka,

1999).
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3.2.2 Single-step procedure.�

In this section we show that a single-step procedure can also be applied with the same

properties. Our one-step method starts by de�ning the following decomposition for the

polynomial �p(L)

�p(L) = �p(1) +
1

�d�1 � 1�
�
p(L); (12)

where the polynomial ��p(L) is de�ned by equating (12) to the standard Beveridge-Nelson

polynomial decomposition

�p(L) = �p(1) + �e�p(L): (13)

By doing that we obtain

1

�d�1 � 1�
�
p(L) = �

e�p(L); (14)

and therefore

��p(L) = (�
d ��)e�p(L) = �de�p(L)� [�p(L)� �p(1)]: (15)

Substituting (12) into (8) and using (15), yields

�yt = '[�p(1)zt�1(d)] + [
'

1� d�
�
p(L)]�yt + [1� �p(L)]�yt + "t

= '[�p(1)zt�1(d)]� [�de�p(L)� (�p(L)� �p(1))]�yt + [1� �p(L)]�yt + "t:(16)
Operating we obtain the �nal model

�yt = 'zt�1(d)�
1

�p(1)
e�p(L)�d+1yt +

1

�p(1)
"t: (17)

Finally, to have only lagged variables in the right hand side of (17), we can proceed as

follows
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�yt = 'zt�1(d)�
1

�p(1)
[e�p(L)� e�p(0) + e�p(0)][�d � 1 + 1]�yt +

1

�p(1)
"t

= 'zt�1(d)�
1

�p(1)
f[e�p(L)� e�p(0)][�d � 1]�yt + [e�p(L)� e�p(0)]�yt

+[e�p(0)][�d � 1]�yt + [e�p(0)]�ytg+ 1

�p(1)
"t

= 'zt�1(d)�
1

�p(1)
f[e�p(L)][�d � 1]�yt + [e�p(L)� e�p(0)]�yt

+[e�p(0)]�ytg+ 1

�p(1)
"t: (18)

Therefore

�p(1) + e�p(0)
�p(1)

�yt = 'zt�1(d)�
1

�p(1)
[e�p(L)][�d � 1]�yt

� 1

�p(1)
[e�p(L)� e�p(0)]�yt + 1

�p(1)
"t; (19)

so that

�yt = '[
�p(1)

�p(1) + e�p(0) ]zt�1(d)� 1

�p(1) + e�p(0) [e�p(L)][�d � 1]�yt

� 1

�p(1) + e�p(0) [e�p(L)� e�p(0)]�yt + 1

�p(1) + e�p(0)"t: (20)

Noticing that �p(1) + e�p(0) = 17, this model can be simpli�ed to
�yt = '[�p(1)]zt�1(d)� e�p(L)[�d � 1]�yt � [e�p(L)� e�p(0)]�yt + "t; (21)

where notice that neither [�d � 1]�yt nor [e�p(L)� e�p(0)]�yt contain contemporaneous
terms in �yt: Since [�d � 1]�yt can be expressed as an (in�nite) lag polynomial of �yt�1;

in practice regression (21) could be run regressing �yt on zt�1(d) and lags �yt, using a

truncation rule similar to that proposed in DGM (2002, Theorem 7): Also notice that when

�p(1) ' 0; i.e., the gain of the autoregressive process is close to unity, the AEFDF test is

7This results follows from the Beveridge-Nelson decomposition �p(L) =
1P
0

�jL
j = �p(1)+�e�p(L), with

�0 = 1; and e�p(L) = 1P
0

e�jLj ; where e�j = � 1P
j+1

�k:
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bound to have low power since the composed coe¢ cient '�p(1) will be close to zero even

when ' < 0:

The following examples illustrate show how this procedure works in two simple cases of

autocorrelated errors.

Example 1 (AR(1)): �1(L) = (1� �1L): In this case �1(1) = 1� �1, e�1(L) = �1, ande�1(0) = �1: Then, the regression model becomes
�yt = '(1� �1)zt�1(d)� �1[�d � 1]�yt + "t: (22)

Example 2 (AR(2)): �2(L) = (1 � �1L � �2L): In this case �2(1) = 1 � �1 � �2,e�2(L) = (�1+ �2) + �2L; e�2(0) = �1+ �2; and e�2(L)� e�2(0) = �2L: Then, the regression
(21) becomes

�yt = '(1� �1 � �2)zt�1(d)� [(�1 + �2) + �2L][�d � 1]�yt � �2�yt�1 + "t: (23)

There are two messages we can send to practitioners: (i) Regress �yt on zt�1(d); on

contemporaneous and lags of [�d � 1]�yt; and lags of �yt; or (ii) Regress �yt on zt�1(d)

and lags of �yt; using a truncation rule as the one discussed above: The �rst type of

regression (Full-method) has the advantages that all the lag polynomials are �nite and the

order can be selected consistently by some information criteria. It has the disadvantage of

generated regressors because of having to estimate d in order to generate the second set of

regressors (this problem does not occur when we test against a simple alternative d = dA).

On the contrary the second type of regressions (Simple-method) does not have this problem

but the lags will be in�nite and therefore dependent on the truncation rule. If there are

unknown deterministic components in the model, then, apply the previous tests with the

deviations f�yt and gzt�1(d):
3.3 Monte Carlo evidence

In this section we study the �nite sample performance of the tests analyzed in this paper.

The discussion is divided in two cases, with and without i.i.d. error terms.
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3.3.1 i.i.d. error terms.�

Monte-Carlo evidence in favour of the EFDF and FDF tests can be found in LV (2007)

and DGM (2002), respectively, for the case where �(t) � 0 and i:i:d. error terms: In

what follows, we keep the i:i:d: assumption and provide some additional simulations when

�(t) = �+ �t: Table 1 presents the empirical rejection frequencies for local alternatives at

the 5% level of the EFDF, LM and Shimotsu´s ELW tests (denoted as ELW� and ELW� ;

respectively): The DGP is yt = � + �t + ��d"t;with "t � n:i:d (0; 1); d = 1 � 
=T 1=2

for 
 = f0; 0:5; 1:0; 2:0 and 5:0 g and T = f100; 400g. The number of simulations is

N = 10; 000. Shimotsu�s (2006) ELW estimator has been used for the input value of d;bdT . The �gures corresponding to EFDF�, LM� and ELW� are obtained by setting � = 1,

� = 0; whereas those for EFDF� , LM� and ELW� pertain to � = 1; � = 0:2. Inspection

of the results show that, for the smaller sample sizes (when 
 = 0); the LM test is slightly

under-sized whereas the EFDF and ELW test are slightly over-sized, specially when we

allow for a linear trend. For this reason, we compute size-adjusted power for 
 > 08. The

most relevant �nding is that, as expected, both EFDF and LM tests have similar power

for the two smaller values of 
 whereas the former has larger power for 
 = 2 and 5; with

improvements up to 5 percentage points in some instances. In turn, the ELW test behaves

somewhat similarly to the other two tests for 
 = 0:5 and 1:0, whilst it loses quite a lot of

power for the larger values of 
:

[Table 1 about here]

In Table 2 we also report the results of simulating the same DGP as in Table 1, except 
 =

5; but with errors following an i:i:d. (demeaned) �2(1) distribution rather than n:i:d (0; 1).

The reported results correspond to the � -version of the tests, reaching similar conclusions

to the ones discussed earlier.9

8Response surface estimates of �nite sample critical values of the EFDF under the presence of determin-

istic components can be found in Sephton (2007).
9Similar conclusions also hold when the error tem in the DGP follow a Student´s t distribution with 5

d.f.
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[Table 2 about here]

3.3.2 Serially correlated error terms.�

Table 3 presents e¤ective size and (size-adjusted) power of the AEFDF, LM and ELW

tests when the errors are autocorrelated. The DGP is now �dyt = �+ �t+ "t=(1� 0:2L);

with N = 10; 000 for several values of d = 1� 
=T 1=2; using the the same values of 
 and T

as before plus combinations of � = 1 and � = 0:2. The AEFDF test is implemented using

model (22) on the detrended variables. Although for this AR(1) disturbance, power is lower

than in the i:i:d: case, the comparison across the three tests is similar to the one discussed

above, with the AEFDF test performing better for the larger values of 
:

[Table 3 about here]

Next, in Table 4a, we perform a comparison of the two single-step procedures discussed

in section 3.2.2: simple and full methods. The DGP we consider is �dyt = "t=(1 � �1L);

again with N = 10; 000 for several values of �1and d in the ranges [0; 0:8] and [0:6; 1],

respectively, and T = f100; 500g; the sample size used in LV(2007). The input value of d is

estimated with Shimotsu´s (2006) nonparametric approach. For the Simple-method we use

one lag when T = 100 and two lags for T = 500. Full-method is based on regression (22).

In general, both procedures yield similar results with some exceptions. For instance, for

T = 500 with �1 � 0:6 and d � 0:7; the Simple-method exhibits much higher power. Since

a high value of �1 leads to low power of the AEFDF test, this seems to lead to a substantial

advantage of the Simple-method over the Full-method.

[Table 4a about here]

Finally, to gauge how LV´s (2007) two-step procedure fares relative to our proposed

single-step procedures, Table 4b presents results on size and (size-adjusted) power of the
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former approach for an identical DGP to that used in Table 4a.10 Both procedures yield

similar results though, interestingly, for �1 � 0:6 and d � 0:7; the Simple-method has higher

power.

[Table 4b about here]

4. EMPIRICAL ILLUSTRATION

An interesting application of the theoretical results above is to examine whether the

time-series of GDP per capita of several OECD countries behave as I(d) processes with

d 2 (0:5; 1). These are series which are clearly trending upwards and therefore provide nice

examples of the role of deterministic terms in the use of the EFDF test. As pointed out

by Michelacci and Za¤aroni (2000; henceforth, MZ), such a long-memory behavior could

well explain the seemingly contradictory results obtained in the literature on growth and

convergence. The puzzling result is that a unit root cannot be rejected in (the log of) those

series and yet a 2% rate convergence rate to a steady-state level (approximated by a linear

trend) is typically found in most empirical exercises testing the so-called unconditional

beta- convergence hypothesis (see Barro and Sala i Martín, 1995 and Jones, 1995). The

explanation o¤ered by MZ to this puzzle relies upon two well-known results in the literature

on long-memory processes, namely that standard unit root tests have low power against

fractional values of d in the nonstationary range, and that for all values of d 2 [0; 1) the

e¤ects of shocks die out. Notice that consideration of GDP p.c as an I(d) process may be

very reasonable since GDP is obtained as the aggregation of value-added in a wide range

of productive sectors which are likely to have di¤erent persistence properties (see Lo and

Haubrich, 2001). Thus, the aggregation argument popularized by Granger (1980) applies

strongly to this case.

Using Maddison�s (1995) data set of annual GDP per capita series for 16 OECD countries

10The results are (almost) identical to those reported in Table III of LV(2007).
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during the period 1870-1994 and the log-periodogram estimator of d due to Robinson (1995),

MZ �nd that in most countries the order of fractional integration is in the interval (0:5; 1),

theoretically compatible with the 2% rate of convergence found in the literature of beta-

convergence and, therefore, validating in this way their explanation of the puzzle. Since that

estimation procedure is restricted to the range of I(d) processes with �nite variance, namely,

jdj < 1=2 , MZs proceed by �rst detrending the data and then applying the truncated �lter

(1� L)1=2 to the residuals, discarding the �rst ten observations to initialize the series.

The previous results have been criticized by Silverberg and Verspagen (2001) on the

grounds that the use of the Geweke and Porter-Hudak (GPH) semi-parametric estimation

procedure, as modi�ed by Robinson (1995), su¤ers from serious small-sample bias. Instead,

they propose to use the �rst-di¤erence �lter, (1�L); to remove the trend, and then employ

both Beran´s (1994) nonparametric estimator and Sowell�s (1992) parametric ML estimator

of ARFIMA models to tackle short-memory contamination in the estimation of d. By using

these estimation procedures, Silverberg and Verspagen (2001) �nd, in stark contrast to MZ

�s results, that d tends to be either not signi�cantly di¤erent from unity or signi�cantly

above unity for most countries.

To shed light on this controversy, we apply the AEFDF test developed in Section 3.2 to

the logged GDP p.c. of a subset of thirteen of the main OECD countries, listed in Table

5, where (under the null) the estimated intercept and its (Newey-West robust) standard

deviation in the regression �yt = �+ ut is reported.11 As can be inspected, the mean

(average GDP p.c. growth rate) is always highly signi�cant making it convenient to use

a model which allows for a linear trend, as in (6), as the maintained hypothesis. Indeed,

when the ADF and the Phillips-Perron (P-P) unit root tests (not reported) were computed

using Elliott et al. (1996)´s e¢ cient GLS detrending procedure, the I(1) null hypothesis

could not be rejected in most cases12. The KPPS test, which takes I(0) as the null, also

11Maddison�s (2004) dataset has been employed in this case, which adds 9 observations to the data

considered by MZ.
12The only exceptions are Canada, Germany and the US with p-values of 0.045, 0.049 and 0.040, respec-

tively.
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yielded rejection in more than half of the cases, con�rming the high persistence of the series.

Thus it seems clear that the levels of the series have a linear trend and that deviations from

such a trend are likely to be nonstationary. In addition, since there were clear signs of

autocorrelation in ut; an AEFDF test was applied to the series. The number of lags of the

dependent variable was chosen according to the AIC with a maximum lag of length k = 5:

[Table 5 about here]

Pre-estimation of d using Shimotsu�s (2006) nonparametric approach allows one to esti-

mate a value of d for each country. The estimated values of d are always in the non-stationary

range. Taking into account that the standard error (s.e.) of this estimator is
p
1=4m with

m = T 0:65; with a sample size of T = 134, it takes a value of 0:102 in all cases. Using this

s.e., the value d = 1 is included in an appropriate con�dence interval of 12 out of the 13

countries, yielding similar results to those in Silverberg and Verspagen (2001). Neverthe-

less, using the AEFDF test with the above-mentioned estimated input value, bdT ; the �rst
column of Table 6 shows strong rejections of H0: d = 1 in 6 out of the 13 countries.13 As

discussed earlier, the intuition for this higher rejection rate is the higher power of the EFDF

test relative to pure semiparametric tests which yield wider con�dence intervals. Thus, our

results in almost half of the countries seem to favor nonstationary I(d) processes with d < 1;

in line with MZ´s conclusions. As Jones (1995) �rst suggested, this evidence is inconsistent

with endogenous growth theories for which permanent changes in certain policy variables

have permanent e¤ects on the rate of economic growth. We are aware that a de�nitely

conclusion on this issue requires a deeper data analysis in at least two directions: (i) testing

long memory versus structural breaks, and (ii) deriving a panel version of the proposed

EFDF test. Both directions are being under current investigation by the authors (for the

former, see Dolado et al., 2005).

[Table 6 about here]

13When the estimated value of d was larger than unity, a value of d̂T = 1 was employed as an input to

run the test.
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5. CONCLUSIONS

This paper provides new theoretical results regarding gains in power, under �xed alterna-

tives, of applying a Wald test instead of the conventional LM test for detecting the presence

of a unit root in time-series data against the alternative of I(d); d < 1; possibly allowing

for a wide variety of deterministic terms in the DGP. The Wald test is based on the EFDF

testing approach (see LV, 2007). Four main �ndings have been obtained. First, though the

EFDF test is asymptotically equivalent to the LM test under local alternatives, it has larger

power in Bahadur�s sense under �xed alternatives. This gain in power relative to the LM

test may also hold for other Wald tests, like the FDF test (see DGM, 2002) which are less

e¢ cient than the EFDF test. Secondly, if �(t) is slowly evolving trend (e.g, including just

a constant term), then the EFDF test ignoring �(t) can be implemented without losing any

of its optimal asymptotic properties. Thirdly, if �(t) is a polynomial in t of known order

but unknown coe¢ cients, then these properties remain identical if one runs the EFDF test

on the OLS residuals of the regression of �yt on �(t) under the null of d = 1. And, fourthly,

under the presence of serial correlation, we show that the EFDF test can be performed in

a feasible linear single-step instead of the two-step procedure proposed by LV (2007). An

empirical application regarding the issue of whether deviations from a trend of GDP p.c. in

a variety of countries follow an I(1) or a nonstationary I(d) where shocks die out illustrates

the usefulness and simplicity of the testing approach proposed here.

Interesting extensions under current investigation by the authors include testing fractional

integration versus I(0) allowing for structural breaks (see Dolado, Gonzalo and Mayoral,

2007), testing for cointegration between two I(d) series which have a non-zero drift and

where a constant term or a linear trend is included in the regression model and �nally, an

extension of this framework to panel data.
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APPENDIX

Proof of Theorem 2

Let us �rst consider the case where the true value of d is used to compute the test. In

this case, under the alternative hypothesis of �dyt = "t with "t � i:i:d:(0; �2), the t'(d)

statistic associated to the coe¢ cient of zt�1(d); in the regression of �yt on zt�1(d) can be

written as,

T�1=2t'(d) =

PT
t=2�ytzt�1(d)=T��PT

t=2 (�yt � b'zt�1(d))2 =T��PT
t=2 z

2
t�1(d)=T

��1=2 :
Using the results collected in Baillie (1996) stating that, if�byt = "t with b > �1; then the

variance (
0) and the autocorrelation of order j (�j) of yt satisfy 
0 = �
2�(1�2b)=�2(1�b)

and �j = [� (j + b) (1� b)= (� (j � b+ 1)�(b))]: In the previous case, where �yt � I (d� 1)

(hence b = d � 1); it is easy to check that the numerator of T�1=2 t'(d) converges in

probability to

PT
t=2�ytzt�1(d)

T
=

PT
t=2(�

1�d"t)("t ��1�d"t)
(1� d)T

p! �2

1� d [1�
�(3� 2d)
�2(2� d) ];

whereas the two terms in the denominator converge to

PT
t=2 z

2
t�1(d)

T
=

PT
t=2("t ��1�d"t)2
(1� d)2T

p! �2

(1� d)2 [
�(3� 2d)
�2(2� d) � 1];

and

PT
t=2 (�yt � b'zt�1(d))2

T

p! �2:

Replacing the previous limits in the expression for T�1=2t'(d) yields

T�1=2t'(d)
p! �

�
�(3� 2d)
�2(2� d) � 1

�1=2
� cEFDF (d). (A1)
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Next, we examine the case where a T �� consistent estimator of d, d̂T ; for some d > 0:5

with � > 0, is employed to construct the test. In this case, provided

T�1=2t�(d)� T�1=2t�(d̂T ) = op (1) ; (A2)

the limit of T�1=2t�(d̂T ) would also be given by expression (A1) : Following LV, we consider

the most critical component in this expression, i.e., the numerator of the di¤erence in (A2),

given by

T�1

 
TX
t=1

�ytzt�1 (d)�
TX
t=1

�ytzt�1
�
d̂T

�!
:

Proceeding as Robinson and Hualde (2003), we just need to show that expression

T�1

 
TX
t=2

�
�1�d"t

�
"t �

TX
t=2

�
�1�

bdT "t� "t! (A3)

tends to zero in probability. It is straightforward to see thatPT
t=1

�
�1�d"t

�
"t

T
=

PT
t=1 ("t + �1 (1� d) "t�1 + �2 (1� d) "t�2 + :::+ �t�1 (1� d) "1) "t

T

p! �2

since all cross-products tend to zero in probability. As for the second term in (A3) ; it can

be written as P
"2t
T

+ T�1
TX
t=1

0@ t�1X
i=1

t�1X
j=1

�i (1� d)�j
�
d̂T � d

�
"t�i"t�j

1A ;
where the �rst term tends to �2. By applying similar steps to those considered in LV (2007,

expressions (26)-(28) in appendix 1), it is easy to show that the second term tends to zero

in probability. Hence, it follows that (A3) tends to zero in probability and the desired result

follows.

Likewise, the FDF test is based on the t-ratio

T�1=2t�( ~dT ) =

P
�yt�

~dT yt�1=T��P�
�yt � b�� ~dT yt�1

�2
=T

�
(
P
(� ~dT yt�1)2=T

�1=2 : (A4)
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As before, when the true value of d is used as input then, by the Law of Large Numbers

(LLN), the numerator tends to (d� 1)�2: With respect to the denominator, we have that

T�1
P
(�yt)

2 p! �2�(3�2d)= (�(2� d))2 and �̂ p! (d� 1) : Combining these results, yields

T�1=2t�̂(d)
p! (d� 1)�(2� d)
[�(3� 2d)� (d� 1)2�2(2� d)]1=2

� cFDF (d). (A5)

If a consistent estimate of d; d̂T is employed to run the test, a similar strategy to that

followed above can be used to show that t�̂(d) also converges to (A5).

Finally, by the LLN, the LM test de�ned in (4); multiplied by T�1=2; satis�es that,

T�1=2LMT
p!
r
6

�2

T�1X
k=1

1

k
�k;

where �k is the (population) correlation function of a pure I (d� 1) process. Using the

formula for the autocorrelations given above, yields

T�1=2LMT
p!
r
6

�2
�(2� d)
�(d� 1)

1X
j=1

� (j + d� 1)
j� (j � d+ 2) � cLM (d):�

Proof of Theorem 3

We consider �rst the case where d 2 (0:5; 1) is a �xed number and then extend the proof

to case where it is stochastic. In the general case where � (t) is di¤erent from zero, the

t-statistic on the coe¢ cient ' from the OLS regression of �yt on zt�1 is a function of � (t)

given by,

t' (d; � (t)) =

PT
t=2�ytzt�1(d)

ŜT (d)
qPT

t=2 (zt�1 (d))
; (A6)

where Ŝ2T (d) = T
�1PT

t=2 (�yt � b'zt�1 (d))2. We now show that the asymptotic distribu-
tion of (A6) for the case where � (t) satis�es Condition A is the same as in the case where

� (t) � 0: Following the same strategy as LV (2007), we now prove that, for d 6= 1;

t' (d; � (t))� t' (d; � (t) � 0) = op (1) ;

which implies that the test computed ignoring the fact that the DGP contains slowly evolv-

ing trends has the same asymptotic properties as in the case where � (t) � 0:
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As in LV, we just analyze the most critical component of t' (d; � (t)), which is the numer-

ator, since the analysis of the denominator is similar but simpler. Under H0; the numerator

of (A6), multiplied by T�1=2 (1� d)�1 ; is given by,

T�1=2 (1� d)�1
TX
t=2

�ytzt�1(d) = T
�1=2

TX
t=2

(�� (t) + "t)
��
�d ��

�
� (t) +

�
�d�1 � 1

�
"t

�

= T�1=2

 
TX
t=2

"t

�
�d�1 � 1

�
"t +

TX
t=2

�
�� (t) (�d ��)� (t)

�
+ (A7)

TX
t=2

�� (t)
�
�d�1 � 1

�
"t +

TX
t=2

"t(�
d ��)� (t)

!
: (A8)

We now show that if � (t) = t�; � 2 [0; 0:5) all the terms in (A7) and (A8) but the �rst,�
T�1=2

PT
t=2 "t

�
�d�1 � 1

�
"t

�
; converge to zero. Any other speci�cation of � (t) satisfying

Condition A can be dealt with analogously.

To prove this, notice that the terms t� and ���1(t>0) are of the same order of magnitude.

This is because ���1(t>0) =
Pt�1

i=0 �i (��) � c
Pt�1

i=0 i
��1 = O(t�) (see Davidson, 1994,

Theorem 2-27), where c is a constant and the coe¢ cients �i (��) are de�ned at the end of

the Introduction.

The second term in (A7) veri�es that,

T�1=2

 
TX
t=2

�� (t)�d� (t)�
TX
t=2

(�� (t))2
!

� T�1=2

 
TX
t=2

t2��d�1 �
TX
t=2

t2(��1)

!
= T�1=2

�
O
�
T 2��d

�
�O (1)

�
! 0; (A9)

if d > 0:5 and � < 0:5:

With respect to the �rst term in (A8),

T�1=2E

 
TX
t=2

�t�
�
�d�1 � 1

�
"t

!
= 0; (A10)

and

T�1V ar

 
TX
t=2

�t�
�
�d�1 � 1

�
"t

!
� T�1

�
�2" + �

2
�d�1"

� TX
t=2

t2(��1) ! 0; (A11)
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where �2
�d�1" denotes the variance of the stationary fractionally integrated process �

d�1"t:

Expressions (A10) and (A11) imply that
PT

t=2�t
�
�
�d�1 � 1

�
"t

p! 0: The same type of ar-

gument can be used to show that the second term in (A8) also converges to zero. Therefore,

for d 6= 1; it follows that

(1� d)�1 T�1=2
TX
t=2

�ytzt�1(d) = (1� d)�1 T�1=2
TX
t=2

"t

�
�d�1 � 1

�
"t + op (1) ; (A12)

which in turn implies that the distribution for the case where the DGP contains slowly

evolving trends is the same as that obtained with � (t) = 0 for the case where d is a �xed

number 2 (0:5; 1) : Considering an stochastic input for bdT amounts to show that
t' (d; � (t))� t'ols

�
d̂T ; � (t)

�
= op (1) ;

where d̂T satis�es the conditions stated in Theorem 1. It is easy to show, following the

same strategy as above, that the last three terms computed with the estimated input d̂T

converge to zero. Hence, the numerator of t' (d; � (t))� t'
�
d̂T ; � (t)

�
can be written as

(d� 1)�1 T�1=2
 

TX
t=2

"t

�
�d�1 � 1

�
"t �

TX
t=2

"t

�
�
bdT � 1� "t!+ op (1) ;

and LV (2007, Appendix 1) have shown that the �rst term of this expression also tends to

zero.

The case where d = 1� 
=
p
T can be solved in an analogous fashion, taking into account

the derivations reported in Appendix 1 of LV (2007). Finally, using the results in DGM

and LV, it is straightforward to prove the consistency of the test under �xed alternatives.�

Proof of Theorem 4

We start, as before, by analyzing the case where the input of zt�1(d); d�; is �xed. We

now show that under H0 : d = 1; t' (d; � (t) = 0) � t' (d; �̂ (t))
p! 0; where in this case

t' (d; �̂ (t)) is given by,

t' (d; �̂ (t)) =

PT
t=2

f�ytgzt�1 (d)
ŜT (d)

qPT
t=2 (gzt�1 (d)) ;

where f�yt = (�yt ���̂ (t)); gzt�1 (d) = (1� d)�1 ��d�1 � 1
�
(�yt ���̂ (t)) and Ŝ2T (d) =

T�1
PT

t=2

�f�yt � '̂gzt�1 (d)�2 and � (t) satis�es condition B.
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For simplicity, we consider the DGP with a linear trend

yt = �+ �t+�
�d"t; d � 1; (A13)

since any other power of t� for � � 0:5 can be handled similarly. Let �̂ be the OLS

estimate of �; computed after taking �rst di¤erences in (A8). Then, �̂ = �yt; where �yt

is the sample mean of �yt: Notice that under (A13) ; �̂ is a T 3=2�d-consistent estimator of

� (see Hosking, 1996). As in Theorem 2, we analyze the numerator of t' since the analysis

of the denominator is similar but simpler.

The numerator of t' (d; �̂ (t)) multiplied by (1� d) is given by,

T�1=2 (1� d)
TX
t=2

g�ytgzt�1 = T�1=2 TX
t=2

"t

�
�d�1 � 1)"t

�
+ T�1=2At;

where

T�1=2At = T
�1=2

�
� � �̂

� X�
�d�1 � 1)"t

�
+
�
� � �̂

� TX
t=2

� t (d) +

 
TX
t=2

(� t (d)� 1)"t

!!
;

with � t (%) =
Pt�1

i=0 �i (%) and the coe¢ cients �i (%) are de�ned at the end of the Introduc-

tion. It is easy to check that, under H0,

T�1=2At (d1) = Op
�
T�1

� �
op (T ) +Op

�
T�1=2

�
O
�
T 1�d

�
+Op

�
T 1=2

��
p! 0:

The same strategy can be used to show that the denominator of t' (d; �̂ (t)) equals the

denominator of t' (d; � (t) = 0) plus some terms that go to zero in probability. This implies

that t' (d; �̂ (t))
w! N (0; 1) : When d is replaced by bdT , if t' (d; �̂ (t)) � t' �d̂T ; �̂ (t)� =

op (1) ; then the asymptotic distribution corresponding to t'
�
d̂T ; � (t)

�
would be the same

as that of t' (d; � (t)). Following the same steps as above, it is straightforward to show that

T�1=2At
�
d̂T

�
tends to zero. Then, the numerator of (1� d)

�
t' (d; � (t))� t'

�
d̂T ; � (t)

��
can be written as,

(d� 1)�1 T�1=2
 

TX
t=2

"t

�
�d�1 � 1

�
"t �

TX
t=2

"t

�
�
bdT�1 � 1� "t!+ op (1) ;

and LV (2007) have shown that this expression tends to zero under the conditions stated in

Theorem 1. Similar results can be easily obtained for the denominator. Hence, t'
�
d̂T ; �̂ (t)

�
w!

N (0; 1) :
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Again, the case where d = 1�
=
p
T can be solved in a similar manner, taking into account

the derivations reported in Appendix 1 of LV(2007). Likewise, using the results in DGM

and LV, the proof of the consistency of the test under �xed alternatives is straightforward.�

Proof of Theorem 5

The proof of this theorem can be easily constructed along the lines of Appendix 2 in LV

(2007) and Theorems 2 and 3 above. Therefore, it is omitted.�
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TABLES

TABLE 1

Size and Power(�) of EFDF, LM and ELW tests

DGP: yt = �+ �t+�
�d"t; 5% s.l.

d = 1� 
=
p
T ; � = 1; "t � N(0; 1)

EFDF�; (�=0) EFDF�; (�=0:2) LM�; (�=0) LM�; (�=0:2) ELW�; (�=0) ELW�; (�=0:2)


nT 100 400 100 400 100 400 100 400 100 400 100 400

0 0.061 0.045 0.074 0.087 0.031 0.029 0.049 0.046 0.071 0.075 0.072 0.074

0.5 0.116 0.195 0.123 0.164 0.111 0.190 0.100 0.162 0.091 0.090 0.086 0.096

1 0.287 0.378 0.252 0.328 0.273 0.369 0.237 0.324 0.150 0.158 0.125 0.154

2 0.728 0.834 0.649 0.774 0.681 0.803 0.612 0.748 0.361 0.353 0.301 0.339

5 1.000 1.000 1.000 1.000 0.980 0.991 0.951 0.962 0.953 0.932 0.909 0.940

(�) Size-adjusted power. Number of replications: 10000.

TABLE 2

Power(�) of EFDF, LM and ELW tests

DGP: yt = �+ �t+��d"t; 5% s.l.

d = 1� 
=
p
T ; � = 1; � = 0:2; "t � �21

EFDF� LM� ELW�


= T 100 400 100 400 100 400

0.5 0.151 0.150 0.127 0.143 0.088 0.093

1 0.321 0.354 0.272 0.331 0.166 0.172

2 0.737 0.806 0.704 0.765 0.376 0.387

(�) Size-adjusted power; Number of replications: 10000.
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TABLE 3

Size and Power(�) of AEFDF, LM and ELW Tests

DGP: yt = �+ �t+�
�d�t= (1� �1L) ; 5% s.l.

d = 1� 
=
p
T ; �1 = 0:2; � = 1; � = 0:2; �1 = 0:2; "t � N(0; 1)

AEFDF�; (�=0) AEFDF�; (�=0:2) LM�; (�=0) LM�; (�=0:2) ELW�; (�=0) ELW�; (�=0:2)


nT 100 400 100 400 100 400 100 400 100 400 100 400

0 0.061 0.066 0.075 0.065 0.033 0.031 0.029 0.050 0.058 0.056 0.057 0.053

0.5 0.093 0.091 0.075 0.085 0.079 0.077 0.070 0.079 0.097 0.072 0.083 0.070

1 0.139 0.154 0.108 0.155 0.112 0.151 0.091 0.134 0.139 0.121 0.121 0.118

2 0.328 0.352 0.237 0.342 0.285 0.338 0.224 0.314 0.321 0.278 0.312 0.291

5 0.952 0.973 0.840 0.942 0.891 0.947 0.811 0.914 0.910 0.898 0.814 0.890

(�) Size-adjusted power; Number of replications: 10000.
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TABLE 4a

Size and Power(�) of the One-Step AEFDF test

DGP: yt = �
�d"t= (1� �1L) ; "t � N(0; 1); 5% s.l.

T=100

Simple-method Full-method

�1nd 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

0 .938 .735 .409 .163 .067 .864 .628 .389 .141 .063

0.3 .768 .505 .305 .130 .063 .706 .475 .277 .132 .069

0.6 .368 .219 .126 .079 .072 .349 .206 .121 .084 .060

0.8 .076 .069 .052 .046 .067 .057 .052 .036 .040 .061

T=500

Simple-method Full-method

�1nd 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

0 1.000 1.000 .990 .492 .056 1.000 1.000 .969 .495 .066

0.3 1.000 .986 .869 .331 .061 1.000 .995 .827 .333 .079

0.6 .976 .906 .478 .193 .060 .979 .816 .425 .152 .072

0.8 .461 .266 .143 .088 .060 .178 .056 .049 .041 .060

(�) Size-adjusted power. Number of replications: 10000.

Note.- Simple-method consists of regressing yt on zt�1 (d) and lags of �yt. For this table, one

and two lags of�yt have been included for T=100 and T=500, respectively. Full-method, in general,

is based on regression (21). For the particular DGP of this table is based on regression (22):
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TABLE 4b

Size and Power(�) of the Two-step AEFDF test

DGP: yt = �
�d"t= (1� �1L) ; "t � N(0; 1); 5% s.l.

T=100 T=500

�1nd 0.6 0.7 0.8 0.9 1 0.6 0.7 0.8 0.9 1

0 .931 .712 .398 .157 .077 1.000 .999 .980 .516 .065

0.3 .762 .503 .268 .119 .073 1.000 .999 .868 .344 .063

0.6 .372 .218 .126 .078 .068 .996 .919 .437 .158 .062

0.8 .052 .048 .040 .038 .065 .363 .152 .062 .045 .061

(�) Size-adjusted power. Number of replications: 10000.

TABLE 5

Estimates of b� and robust s.e(c�) in �yt = �+ ut
Country Mean Robust s.e.

Australia 0.0148 0.004

Belgium 0.015 0.005

Canada 0.0195 0.005

Denmark 0.0184 0.008

France 0.0185 0.006

Germany 0.0176 0.007

Italy 0.0192 0.006

Netherlands 0.0154 0.006

Norway 0.0221 0.006

UK 0.0143 0.003

USA 0.0186 0.005

Spain 0.0199 0.005

Sweden 0.0193 0.005
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TABLE 6

AEFDF Test

H0 : I(1) vs: HA: d < 1

Country t'(bdT ) bdT (s:e: = 0:10)
Australia -1.02 1.10

Belgium -0.74 0.98

Canada -2.58� 0.80

Denmark -0.72 0.99

France -1.82� 1.08

Germany -1.94� 0.83

Italy -0.18 0.98

Netherlands -1.76� 0.92

Norway -1.03 0.98

UK -1.94� 0.87

USA -3.50� 0.63

Spain -0.17 1.18

Sweden -0.07 1.12

(�) denotes rejection at the 5% s.l.
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