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Wald tests of restrictions on the coefficients of vector autoregressive (VAR) processes 

are known to have nonstandard asymptotic properties for 1(1) and cointegrated sys-

tems of variables. A simple device is proposed which guarantees that Wald tests have 

asymptotic X2-distributions under general conditions. If the true generation process 

is a VAR(p) it is proposed to fit a VAR(p+1) to the data and perform a Wald test on 

the coefficients of the first p lags only. The power properties of the modified tests are 

studied both analytically and numerically by means of simple illustrative examples. 

1 Introduction 

Wald tests are standard tools for testing restrictions on the coefficients of vector au-

toregressive (VAR) processes. Their conceptual simplicity and easy applicability make 

them attractive for applied work to carry out statistical inference on hypotheses of 

interest. For instance, a typical example is the test of Granger-causality in the VAR 
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framework where the null hypothesis is formulated as zero restrictions on the coeffi-

cients of the lags of a subset of the variables. 
Unfortunately, those tests may have nonstandard asymptotic propertics if the vari-

ables considered in the VAR are integrated or cointegrated. The difficulties in dealing 

with the levels estimation of such time series are well known and they have been il-

lustrated by means of the general asymptotic theory for inference in multiple linear 
regressions with integrated processes recently developed by Park and Phillips (1988, 

1989), Sims, Stock and Watson (1990) and Toda and Phillips (1993 a,b) among others. 

As a by-product of the analysis it has been found that, for instance, Wald tests for 

Granger-causality are known to result in nonstandard limiting distributions depending 

on the cointegration properties of the system and possibly on nuisance parameters. 

This means that to test such hypotheses, the limiting distributions under the null 

hypothesis need to be simulated in each relevant case, depending on the number of 
variables, cointegration rank, the number of lags and possibly unknown nuisance pa-

rameters (see Table 1 in Toda and Phillips (1993a)). This can be computationally 

burdensome and may be impossible if the required information is unavailable. 

Faced with that problem, a possible solution which has been usually adopted in 
applied work is to condition the testing procedure on the estimation of unit roots, coin-

tegration rank and cointegrating vectors. Thus, for instance, a first order differenced 

VAR could be estimated if the variables were known to be I(l) with no cointegration, 

or an error correction model (ECM) could be specified if they were known to be coin-

tegrated. Of course, a priori, it is hardly the case that such a knowledge exists with 

certainty. Consequently, a pretesting sequen ce is usually needed before estimating the 

VAR model in which inference is conducted. Given the low power of those tests and 

their dependence on nuisance parameters in finite samples, that testing sequence has 

typically unknown overall properties, leaving open the possibility of severe distortions 

in the inference pro ce dure. 
To overcome these difficulties, we propose in this paper an extremely simple method 

which leads to Wald tests with standard asymptotic X2-distributions and which avoids 

possible pretest biases. With this device the tests may be performed directly on the 

least squares (LS) estimators of the coefficients of the VAR process specified in the 

levels of the variables. Note that although the variables are allowed to be potentially 

cointegrated it is not assumed that the cointegration structure of the system under 
investigation is known. Hence, preliminary unit root tests are not Ilecessary and, 

therefore, the testing procedure is robust to the integration and cointegration properties 

of the process. 
The idea underlying the procedure is based on the following argumento It is well 

known that the nonstandard asymptotic properties of the Wald test on the coefficients 
2
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of cointegrated VAR processes are due to the singularity of the asymptotic distribution 

of the LS estimators. Then, the simple device presented here is to get rid of the sin-
gularity by fitting a VAR process whose order exceeds the true order. It can be shown 

that this device leads to a nonsingular asymptotic distribution of the relevant coeffi-
cients, overcoming the problems associated with standard tests and their complicated 

nonstandard limiting properties. In what follows, the test based upon the estimated 

coefficients of the augmented VAR process will be denoted as modified Wald test. 
In independent work Choi (1993) and Toda and Yamamoto (1995) have proposed 

a similar device for univariate and multivariate processes, respectively. However, their 

analysis oí the power properties of the modified tests is rather limited. This is an im-
portant issue since the modified approach uses the sample inefficiently and thereby may 

result in severe reductions of power. Thus, in this paper we pay particular attention to 
analysing those cases in which the inefficiency is likely to be more important. This issue 

is most relevant because if the power loss is small, it may be sensible to ma ke a sacrifice 

in terms of power and gain the correct size in terms of an asymptotic X2-distribution 

Also, we feel that our arguments for obtaining an asymptotic X2-distribution of the 

Wald statistic are more transparent than those of Toda and Yamamoto. From our re-

sult it is apparent when it is actually necessary to add an extra lag and when standard 

asymptotic results make that device unnecessary. 

The rest of the paper is planned as follows. First, Section 2 explains how the 

procedure works in terms of a VAR system with 1(1) variables, since this is the most 

important case in practice. The local power properties of the modified test are anal-

ysed in Section 3. Sorne illustrating Monte Carlo simulations are offered in Section 4. 
Finally, sorne conclusions are drawn in Section 5. 

2 The Main Result 

Consider the k-dimensional multiple time series generated by a VAR(p) process: 

(1) 

where Ct = (CIt, ... , ckt)' is a zero mean independent white noise pro ces s with nonsin-

guiar covariance matrix ¿;, and, for j := 1, ... , k, Elcjd2+T < (Xl for sorne T > O. The 

order p of the process is assumed to be known or alternatively it may be estimated by 

sorne consistent model selection criterion (see, e.g., Paulsen (1984) or Lütkepohl (1991, 
Chapter 1l)) 1. 

lor course this involves sorne pretesting bias, but it is also involved in the standard procedure. 

Paulsen (1984) and Toda and Yamamoto (1995) prove that ir Yt is I(d) (integrated or arder d) the 
usual selection procedures are consistent ir p ? d. Thus, ir d = 1, the lag selection procedures are 
always valido In Section 4, we examine the consequences of overestimating the true VAR order. 

3



372 DOLADO AND LÜTKEPOHL 

Let ap = vec[A 1 , ... , Ap] , where vec denotes the vectorization operator that stacks 
the columns of the argument matrix, and suppose that we are interested in testing q 

independent linear restrictions: 

Ha : Rap = s vs. H1 : Rap -=f s (2) 

where R is a known (q x k2p) matrix of rank (henceforth denoted as rk) q and s is a 
known (q xl) vector. For example, if Yt is partitioned in m and (k - m )-dimensional 

subvectors y; and y; and the Ai matrices are partitioned conformably, then y; does not 

Granger-cause y~ iff the hypothesis Ha : A12 ,i = O for i = 1, ... ,p is true. The standard 
Wald test is as follows. Get an asymptotically normal estimator Cz p satisfying: 

where =* denotes weak convergence in distribution, and use the statistic: 

(3) 

where Ep is sorne consistent estimator of Ep. The Wald statistic .\W has an asymptotic 

X2-distribution with q degrees of freedom if Ep is nonsingular. If the VAR(p) process 

{Yd is I(O), invertibility holds for the usual estimators (LS or ML) and Wald tests 

may be applied in the usual manner. However, this is not true if {Yd is 1( d), d > O. 
The reason is that in this case sorne coefficients or linear combinations of them are 
estimated more efficiently with a fas ter convergence rate then TI/2. An exposition of 

the previous result for 1(1) processes can be found in Lütkepohl (1991, Chapter 11). 

On the other hand it is known from the work of Park and Phillips (1989) and 
Sims, Stock and Watson (1990) that if the model can be reparametrized in such a way 

that the dependent variable and sorne regressors are stationary the estimators of the 

coefficients attached to the stationary regressors converge at the usual T 1/ 2 rate to 

a nonsingular normal distribution. Such a reparametrization is utilized, for instance, 

in Johansen's (1991) error correction representation. For our purposes the following 

reparametrization of (1) is helpful: 

p 

Yt L AjYt-j + A;Yt-i + ét 
)=1. 
J~i t. Aj(Yt-j - Yt-i) + (t A j) Yt-i + ét 

J~i 

Hence, 2 defining D./Yt = Yt - Yt-/ for 1 = ± 1, ±2, ... , 

2We thank a referee for suggesting this representation. 
4
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p 

!:::.iYt = L Aj!:::.i-jYt-j - IIYt-i + [t (4) 
)=1, 
J~i 

where II = h - Al - ... - Ap. Since !:::.¡Yt is stationary for 1 # 0, it follows from the 

previously mentioned results by Park and Phillips (1989) and Sims, Stock and Watson 

(1990) that the LS estimators of the Aj,j # i, have a nonsingular joint asymptotic 

normal distri bution. Therefore, the following theorem holds. 

THEOREM 1 
Let the k-dimensional possibly integrated 1(1) process {y¡} be generated by the VAR(p) 
process in (4) and let Ai (i = 1, ... ,p) be the LS estimators and a~-l the [k2(p - 1)]-

dimensional vector consisting of the k2(p - 1) elements of ap = vec[A I , ... , Ap] that are 

obtained by deleting the matrix .4;, i E {1, ... ,p} fixed. The corresponding vector of 

the true parameters is denoted by a~-I. Then: 

where the [k 2(p - 1) X k2(p - 1)] covariance matrix ~~-l is nonsingular. Moreover, 

given a consistent estimator t~-\ a fixed (q x k2(p - 1)) matrix R with rk(R) = q and 

a fixed (q x 1) vector 5, the Wald test of the null hypothesis Ha : Ra~-l = 5, 

(5) 

has an asymptotic X2(q)-distribution under Ha. o 

Note that 
~p-l = l' (XI X) (i) " 

p plm T 0,-,. 

where X = [XI,"" XT ] with 

!:::.i-lYt-l 

Yt-i 

(!:::'aYt-i being excluded) and (X'X/T)(i) denotes the upper left-hand (P(p-1) x P(p-
1)) dimensional submatrix of (X'X/T)-I. Hence a consistent estimator of ~~-l is 

, (XIX)(j) , 
~p-l = __ rv, " 

p T ~'-'. (6) 

where t. is the residual covariance matrix obtained from the LS residuals. 
5
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The theorem implies that whenever the elements in at least one of the complete 

coefficient matrices Ai are not restricted under Ho, the Wald statistic has its usual 

X2-distribution. Thus, if elements from all A i , i = 1, ... , p, are involved in the re-

strictions as, for instance, in noncausality hypotheses, we may just add an extra lag in 

estimating the parameters of the process and thereby ensure standard asymptotics for 

the Wald test. Of course, if the true D G P is a VAR(p) process, then a V AR(p + 1) with 

Ap+1 = O is also an appropriate mojel. U sing the previous notation, in this case the 

modified Wald test will be based on the estimator &:+1' namely the first Pp elements 

of vec[A 1, .•. , Ap+d. 
Notice that for this procedure to work it is obviously neither necessary to know 

the cointegration properties of the system nor the order of integration of the variables. 

Thus, if there is uncertainty whether the variables are 1(1) or 1(0), one may simply add 

the extra lag and then perform the test to make sure to be on the safe side. Of course, 

there will be a loss of power, given that in the nonstationary case sorne VAR coefficients 

ar linear combinations of them can be estimated more effectively with larger rate of 

convergence than in the 1(0) case. Nevertheless, one may argue about the acceptability 

of the resulting loss in power. In general, we will expect the los s in power to be of 

little relevance if the true order p is large and the dimension k is small or moderate, 

since in this case the relative reduction in the estimation precision due to one extra 

VAR coefficient matrix will be small. However, if the true arder is small and k is 

large, an extra lag of all variables may lead to a sizeable decline in the power of the 

modified Wald test. Choi (1993) uses an analogous approach in the univariate case 

and constructs a t-test for integration. He finds that this test suffers from low power 

relative to the Dickey-Fuller test. However, it has reasonable properties in constructing 

confidence intervals for the sum of AR coefficients possibly in the presence of unit roots. 

To get a feeling for the trade-off between size and power in the presently considered 

multivariate case, a small Monte-Carlo analysis is carried out in Section 4. 

lt may be worth noting that the theorem remains valid if an intercept term or other 

deterministic terms, like seasonal dummies or time trends, are included in the VAR 

model. This follows from the results in Park and Phillips (1989) and Sims, Stock and 
Watson (1990) who demonstrate that the asymptotic properties of the VAR coefficients 

are essentially unaffected by such terms. Moreover, a similar result can be obtained for 

VAR systems with I(d) variables where d> 1. In that case, d coefficient matrices Ai 

must be unrestricted under Ho. Alternatively, d lags must be added if all parameter 

matrices of the original process are restricted. This is also a consequence of results 

given in Sims, Stock and Watson (1990). 
6
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3 Power Properties 

To analyse the power properties of the modified Wald test, we first notice that it is 

consistent. That is, under the alternative hypothesis 

HI : Ra p = s + b, b -1- O fixed (7) 

Pr[Aw > M] -t 1 as T -t 00, for any fixed positive number M. This result is an easy 

by-product of the following local power analysis. Consider the usual Pitman-type 

sequence of local alternatives defined by 

HI : Ra p = s + T- 1
/ 2b for fixed b (8) 

Then, Aw =} X2(q, J12), i.e. a non-central X2-distribution with non-centrality pararneter 

given by 
(9) 

Following Kendall and Stuart (1961, Chapter 24), the first two rnoments of the non-

central X2-distribution can be approximated by a central X2 (with different degrees of 

freedorn). More precisely: 

(10) 

where h = (q + 2J12)j(q + J12) and m = (q + J12)2 j(q + 2J12). Consequently, for any M, 
the approximate and large sample power P' of Aw is given by 

(11) 

Note that if Ha is true, J1 = O, so that 

confirming the appropriate nominal and large sample size of the test. Moreover, if 

J12 = bl(R¿:~+IR'tlb -t 00 so that h -t 2 and m -t 00, then P' -t 1. Sirnilarly, 

if b takes higher values, for fixed T, J12 and m increase and so do es the power. To 

sumrnarise, equation (11) offers an analytical formula to examine the effects oí the 

íactors (a~+I' b, T, k) = 1j; on the large sarnple power of Aw to reject Ha against the 
sequen ce (8). We devote the next section to analysing sorne oí those effects in finite 

samples. 

4 A Small Monte-Carlo Analysis 

4.1 An Illustrative Example 

To illustrate the previous discussion on the use of Granger-causality tests in VAR 
systerns with 1(1) variables, we have generated 1000 replications oí the bivariate VAR(2) 

7
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cointegrated process Yt = (Ylt, Y2tl' given by: 

[ 
-(3 (3] [0.5 0.3] 6Yt = Yt-1 + I 6.Yt-1 + Et O O T- 1¡26 0.5 

(12) 

where Et ~ N(0,I2 ) and 6 = 6 1 , Theprocess has cointegration rank r = (= O) iff 

(3 i- O ((3 = O). If 6 = O, Ylt is Granger-noncausal for Y2t and if 6 i- O, Ylt causes Y2t· 

Therefore, 6 = O is used to study the size of the test and 6 = 1,2 are used to analyse 

power. 

For each time series 50 presample values are generated with zero initial conditions, 

taking net sample sizes of T = 50, 100 and 200. The fitted processes indude a constant 

term, that is, the model Yt = v+A1Yt-1 +A2Yt-2+Et is fitted for the standard procedure 

and an analogous VAR(3) process for the modified procedure. 

Table l(a) presents the relative rejection frequencies for tests with asymptotic 5% 

significance level ofaX2(2)-distribution when (3 = 1, i.e. there is cointegration. In 

this case it is not difficult to see that the standard Wald test has an asymptotic X2 (2)-
distribution under Ha. Thus, this case is favourable for the standard test. To assess 

whether the rejection rates are significantly different from the theoretical rate of 5% 

the following 95% confidence interval is useful: [3.6%,6.4%].3 The test rejects slightly 
too often for small and moderate samples (T = 50 and 100). 4 With respect to the 

power, it is dear that it is higher when the true VAR(2) process is estimated. In other 

words, the modified test wastes ínformation by estimating extra coefficients. However, 

the assumption that the true order is known might be too optimistic, so in Table l(b) 

we pretend that the data are generated by a VAR(3) process and repeat the tests which 

now have asymptotic x2(3)-null-distributions. The corresponding modífied Wald test 

is obtained from a V AR( 4) process. In this case the powers of the two tests are found to 

be almost identical. Thus, even under this minor deviation from the ideal conditions for 

the standard test, the loss in efficiency for the modified procedure almost disappears. 

Table l(c) reports the size and power for (3 = O, i.e. the case where there is no 

cointegration. In practice, the cointegration rank is unknown and has to be determined 

in a pretesting procedure. In this case the standard test do es not have an asymptotic 

X2(2)-distribution under the null hypothesis. Hence, this example illustrates the con-
sequences of using the standard Wald test íncorrectly with a 5% critical value [10m a 

X2(2)-distribution. As in the first example, VAR(2) and VAR(3) processes are fitted 

to the variables in levels. We find that the standard test rejects too often under Ho 

even for large samples (see Ohanian (1988) and Toda and Phillips (1993a)) while the 

3This confidence interval is produced using the formula var(p) = p(l - p)/ N with p = 0.05 and 

N = 1000. 
4This is in agreement with the slow convergence of the standard t-ratio in the univariate case 

analysed by Choi (1993). 
8
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Table 1. Relative Rejection Frequencies (%) 

(a) (3 = 1, AM = VAR(2), 5% CV = 5.99 
Standard Test Modified Test 

8 8 

O 1 2 O 1 2 

50 7.6 4l.4 89.7 8.7 20.5 55.8 

T 100 7.1 40.9 9l.9 7.1 19.5 58.5 

200 5.8 40.4 93.8 4.7 19.0 57.6 

(b) (3 = 1. AM = VAR(3), 5% CV = 7.81 
Standard Test Modified Test 

8 8 

O 1 2 O 1 2 

50 8.7 27.2 72.8 10.8 29.2 72.0 

T 100 5.8 24.8 73.6 6.7 26.0 72.6 

200 5.4 23.9 72.9 5.1 23.1 71.6 

(e) (3 = O. AM = VAR(2), 5% CV = 5.99 
Standard Test Modified Test 

8 8 

O 1 2 O 1 2 

50 2l.5 36.1 70.4 11.5 24.0 57.8 

T 100 16.7 36.2 68.8 8.4 22.9 58.0 

200 16.7 32.1 68.2 6.2 19.7 56.1 

(23.4) (6l.3) (18.7) (54.6) 

Note: AM denotes assumed model; the 5% CV in parts (a) and (e) eorrespond a X2(2)­

distribution while that in part (b) corresponds to a X2 (3)-distribution; Figures in parentheses 

in block (e) eorrespond to size-adjusted powers; Number of replications = 1000; Computations 

performed using MATLAB. 
9
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modified test converges to its correct nominal size for T= 200. Hence, the standard 

test is clearly misleading while the modified test maintains roughly the same proper-

ties in large samples as for the cointegrated process (12) with B -# O. Consequently, in 

terms oí size, the modified procedure is clearly preferable if tlle cointegration rank is 

unknown. 5 

Another interesting aspect to analyse is the pretest effect in procedures to test for 

Granger-causality which involve pretesting for the cointegrating rank as in Mosconi and 

Giannini (1992). Since the importance of the pretest effect is unknown, it is interesting 

to investigate it using the previous DGP. To test the null hypothesis of no cointegration 

we use the 5% critical value (= -3.40) from :v1acKinIlon's (1991) tables for T = 100 in 

the regression of YIt on Y2t and a constant. Depending upon the outcome of this test, 

the null hypothesis of noncausality is tested in a model in differences or levels. Under 

the null of no cointegration and noncausality, i.e. {3 = O, fj = O, with 1000 replications, 

the overall size of the test of Ha : fj = O is 14.1 % versus a nominal value of 5%. To 

check that this result is not a consequence of the finite sample properties of the t-test 

in the differenced model (the correct one) we ran 1000 replications oí the test with this 

model, yielding a size of 5.7%. Thus the pretest effect is clearly important in this case. 

As regards power, we simulated the DGP with /3 = O and fj = 1 and 2. For fj = 1( = 2) 

we get a rejection rate of 25% (62.4%) only slightly aboye the 22.9% (58.0%) rate 

obtained with the modified procedure, as shown in Table l(c), but with asevere size 

distortion. Thus, given these results, the case for using the modified procedure is even 

stronger. 

4.2 Increasing the Lag Length of the VAR 

Next, in order to check the loss in power of the modified Wald test for given values 

of the dimension k of the process and the true order p of the VAR, we carry out two 

types of experiments. First, to analyse the effect of enlarging p for given k, the DGP 

(12) is generalised to: 

[ -(3 (3] [0.5 0.3] 
!::,.Yt = Yt-I + 1/2 !::,.Yt-p+1 + ét O O T- fj 0.5 

(13) 

1, ti 1 and p 2,3, ... ,6. The empirical powers were 

5Note that the power of the standard test in this case is up\\'ards biased since it has a larger size 

than the nominal 5% level. Computation of the size adjusted power for T=200 and Ó = 1,2 yields 

rejection frequencies 23.4% and 61.3% for the standard test and 18.7% and 54.6% for the modified 
test, respectively. 

10
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Table 2. Power Analysis for Increasing Lag Length 

(DGP (13), T = 100, Ó = 1, k = 2) 
Lag p 2 3 4 5 6 

Relative power modified/standard test 0.47 0.73 0.91 0.95 0.98 

Power of standard test (%) 40.9 35.6 33.2 30.5 28.2 

calculated out of 1000 replications for a net sample size of 100 and are reported in 

Table 2. 

The null hypothesis is again Ho : Ó = O. In the table the relati ve inefficiency 

(measured by the ratio of powers) of the modified with respect to the standard Wald 

test and the absolute empirical power of the latter are gi ven, respecti vely. In agreement 

with the conjecture offered in Section 3 we find that, for k = 2, the relative inefficiency 

of the modified test, based upon the estimation of a VAR(p+ 1) rather than a VAR(p) , 
decreases with increasing true order p. For instance, we find that, for p > 3, the loss in 

power becomes les s than 10%. Hence, if a VAR system has a small number of variables 

with a long lag length, as is often the case in practice, then the inefficiency caused by 

adding a few more lags would be relatively smal!. 

4.3 Increasing the Dimension of the VAR 

To examine the effect of enlarging k for given p, the DGP in (12) is generalised to 

-(3 (3 (3 
O O O 

O O O 

O O O 

(3 
O 

O Yt-l + 

O 

O 

O 

O 0.5 O 

O O 0.5 

where now Yt (YIt'Y2t" .. ,Ykt)', k = 2,3, ... ,6, ét ~ N(O,h), (3 = 1, Ó = 1, 
all = 0.3/(/ - 1) (/ = 2, ... , k) and a2/ = 0.3/(/- 2) (/ = 3, ... , k). Having generated 

1000 replications for T = 100, the numbers in Table 3 have the same meaning as in 

Table 2, with the null hypothesis being again Ho : Ó = O. We conclude from this 

experiment that if the VAR system has many variables and the true lag length is short 

(p = 2 in this case), then the inefficiency caused by adding even one extra lag would 

be relatively big. For instance, for k = 6, the modified Wald test has only a little more 

than one-fourth of the power of the standard test. However, given that the absolute 

power of the latter is around 20%, the absolute loss of power is not that large after al!. 
11
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Table 3. Power Analysis for Increasing Dimension 
(DGP (14), T = 100, 8 = 1, p = 2) 

Dimension k 2 3 4 5 

Relative power modifiedjstandard test 0.47 0.43 0.38 0.34 

Power of standard test (%) 40.9 37.1 34.3 29.8 

4.4 A Local-Power Analysis 

6 

0.28 
23.2 

Finally, in order to make analytical comparisons of the relative power properties of 

both tests by means of the approximate power function derived in (11), we have used a 

simplerillustrativebivariate DGP based upon a VAR(l) system with I(l) variables. In 

this way, the analysis becomes tractable and it can be used to shed light on the effect 

of sorne oí the incidental parameters of the DGP. In particular, we focus attention on 

the following set of parameters 1jJ = [;3,8, V(Elt), V(E2tl, COV(Elt, E2t)]. 

We consider the following DGP: 

tlYt = [ -~ _~ 1 Yt-l + Et; Et ~ N [ ( ~ ) , (~ :) 1 (15) 

with a: = T- 1/ 28. As in the DGP's considered aboye, 8 = O corresponds to the case 
where Ylt is Granger noncausal for Y2t. 

Given the simplicity of the DGP, it is easy to compute the non-centrality parameter 

J12 in the VAR(1) system (standard procedure) which is given by (see Appendix): 

(16) 

where p = 1 - a: -;3. Similarly, in the VAR(2) model (modified procedure), the 

corresponding express ion is (see Appendix): 

(17) 

For Ipl < 1, the system is I(l) and cointegrated and it is easy to show that /1i > /1ª in 
this case, as expected. 6 Moreover, since h and m are increasing in /12 this means that 

the power of the standard test is larger than the power of the modified test. Note, also, 

that for ;3 = O and a: = O, i.e. p = 1, J1i is not defined, reflecting the non-standard 
distribution of the standard Wald test in the absence of cointegration. Nevertheless, the 

modified test has a non-centrality parameter which does not depend upon p, reflecting 

that it has the correct size under the null hypothesis and that its limiting distribution 

is a non-central X2 even when cointegration does not existo 

6Since I'f > 62 (1 +.\ - 20)/,\ and (1 +.\ - 20) ~ 1 - 02
/.\. Thus, I'f > I'~. 

12
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To check how well the analytical approximate large sample power compares to the 

empirical rejection frequencies, 2000 replications were conducted for T = 100 of the 
following four experiments, (parameter configurations in parentheses): Experiment 1 

(A = 1,8 = 1,,8 = 1); Experiment 2 (A = 0.2,8 = 1,,8 = 1); Experiment 3 (A = 
1,8 = 2,,8 = 1); and Experiment 4 (A = 1,8 = 1,,8 = 0.1). For each experiment, the 

correlation between Elt and E2t (corr = 8/ A 1/2) takes three values, i.e. corr = (0.0,0.5 
and -0.5). This is done to control for the dependen ce of the power functions on the 

covariance 8 as exemplified by expressions (16) and (17). Thus, Experiment 1 is the 

base experiment; Experiment 2 examines the effect of a reduction in A with respect to 
the base experiment. Similarly, Experiments 3 and 4 examine the effect of an increase 

in 8 and a decrease in ,8, respectively. 

Table 4 reports the results of the previous set of experiments in terms of analytical 
(PO) and empirical (P) rejection frequencies, together with the values of the proportion 

factor (h- I = (q+ ¡.t2)/(q+2¡.t2)), the number of degrees of freedom (m) and the relative 

power (R) computed in terms of the ratio of empirical rejections. To compute the 

analytical power, the degrees of freedom of the approximate central X2-distributions 

were proxied by the integer closest to m. 

Several results are worth mentioning. First, the analytical and empirical rejection 

frequencies yield broadly similar results with their differences never exceeding 10 per-

centage points in the least favourable cases. Thus, the asymptotic local power analysis 

proves to be useful in interpreting the relative power outcomes in finite samples. 
Second, within each experiment, the power of the standard test is highest for corr 

= -0.5 and lowest for corr = 0.5, reftecting the fact that ¡.ti decreases with increasing 

correlation between the error terms. At the same time, the power of the modified 
Wald test does not depend on the sign of the correlation coefficient, as shown in (17). 

Therefore, the more negative is the correlation coefficient the larger will be the relative 

inefficiency of the modified test, i.e. the smaller is R. The intuition behind this result 

lies in the form of the cointegrating vector in DGP (15), i.e. (1,-1). This implies that 

the variance of deviations from the cointegrating relationship, (YIt - Y2t), depends upon 

V(Elt - E2t) (see Appendix). Thus if 8 < O, V(YIt - Y2t) will increase. Since in the 
standard Wald test the null hypothesis a = O can be solely expressed as a restriction 

on the coefficient of (Ylt-l - Y2t-I), the higher the variance of that variable, the more 
efficiently the coefficient will be estimated and, hence, the larger will be the power of 

the test. Once we condition on further lags of YIt and Y2t, as in the modified procedure, 
that direct effect disappears. This is reftected by the dependence of ¡.t~ on 82 rather 

than 8. Had the cointegrating vector been (1,1), the "residual" (YIt + Y2t) would have 

a variance which depends on V(EIt + E2t). Therefore, in this case, the opposite result 
holds, that is, 8 > O will increase ¡.ti and the power of the standard test. 

13
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Table 4. Analysis of Analytical and Empirical Power (%) 
(DGP (15), T=100) 

Standard Test [VAR(1)] Modified Test [VAR(2)] 

Experiinent 1 [A = 1,8 = 1,,8 = 1] 

Corr h-1 m P' P h- 1 m P" P R 

0.0 0.60 1.81 32.60 25.72 0.67 1.33 13.22 17.15 0.67 

0.5 0.67 1.34 13.22 15.10 0.70 1.22 13.08 14.35 0.95 

-0.5 0.57 2.30 34.50 34.90 0.70 1.22 13.08 14.35 0.41 

Experiment 2 [A = 0.2,8 = 1,,8 = 1] 

Corr h- 1 m P' P h- 1 m P' P R 

0.0 0.53 3.80 72.36 64.70 0.54 3.27 52.66 58.55 0.90 

0.5 0.56 2.68 52.46 48.32 0.56 2.65 52.44 48.00 0.99 

-0.5 0.53 4.92 83.76 75.10 0.56 2.65 52.44 48.70 0.65 

Experiment 3 [A = 1,8 = 2,,8 = 1] 

Corr h-1 m P" P h-1 m P' P R 

0.0 0.53 4.93 83.76 76.22 0.56 2.78 52.36 50.70 0.66 

0.5 0.55 2.86 52.43 49.43 0.57 2.29 34.50 39.38 0.80 

-0.5 0.52 7.01 96.02 87.75 0.57 2.29 34.50 39.75 0.39 

Experiment 4 [A = 1,8 = 1,,8 = 0.1] 

Corr h-1 m P' P h- 1 m P" P R 

0.0 0.54 3.54 72.66 66.34 0.67 1.33 13.22 17.35 0.26 

0.5 0.58 2.18 34.53 34.67 0.70 1.22 13.08 14.42 0.41 

-0.5 0.53 4.93 83.76 77.43 0.70 1.22 13.08 14.38 0.19 

Note: P' and Pare the analytical and empirical rejection frequencies, respectively; R is the 

ratio between the empirical powers of the modified and standard tests. 

Third, the powers of the two tests in creases with decreasing A, reflecting the fact 

that a lower variance of the error term in the equation of interest results in a higher 

power. Fourth, the powers of the two tests obviously increase towards unity as 8 

increases. Lastly, the lower is ,8, namely, the less cointegrated are the variables and the 

higher is the variance of (Y1t - Y2t), the larger is the power of the standard test relative 

to the power of the modified test, since j.l~ does not depend on ,8. 

Overall, we conclude that the loss in power entailed by the use of the modified 

procedure, for the particular DGP under study, will be larger the more negative is 

the correlation coefficient between the error terms and the less cointegrated are the 

variables. Note, however, that low values of ,8 could lead to potential size distortions 
14



WALD TESTS WORK FOR COINTEGRA TED V AR SYSTEMS 383 

(over-rejections) of the standard test and thereby exaggerate the loss of power of the 
modified test. 7 

5 Concluding Remarks 

In this paper a device is proposed that guarantees standard X2 asymptotics for Wald 
tests performed on the coefficients of cointegrated VAR processes with 1(1) variables if 

at least one coefficient matrix is unrestricted under the null hypothesis. By the same 

token, if all the matrices are restricted, it is shown that adding one extra lag to the 

process and concentrating on the original set of coefficients results in Wald tests with 
standard asymptotic distributions. This leads to a number of interesting implications 
which stem from the possibility of expressing null hypotheses as restrictions on coeffi-

cients of stationary variables (see Sims, Stock and Watson (1990)). First, for 1(1) vari-

ables (with or without cointegration), if a VAR(p) is fitted with p :::: 2, all t-ratios are 
asymptotically normal. Second, a VAR(p) can be tested against a VAR(p + 1), p:::: 1, 

with a standard Wald test. Third, if the true DGP is a VAR(p) and a VAR(p + 1) 

is fitted, standard Wald tests can be applied to the first p VAR coefficient matrices. 

These results do not depend on the presence of deterministic terms in the DGP as 

long as the restrictions are confined to the VAR coefficients. Furthermore, nonlinear 

restrictions can be tested in the same way. 

As regards the reduction in power entailed by the inefficient use of the sample in 

the modified procedure, our Monte Carlo simulations show that it will be more severe 

in high dimensional VARs with a small true lag length. Moreover, in bivariate systems, 

possibly cointegrated, we find that a negative correlation between the error terms in 
the equations seems to cause larger inefficiency when the cointegrating relationship is 

of the form (1,-1), while a positive correlation causes larger inefficiency if it is of the 

form (1,1). 

However, we find that when there are serious doubts about the series being cointe-

grated, the size distortions of the modified procedure are much smaller in finite samples. 

Thus, the power disadvantage is likely to be outweighed by the ease of applicability 
of the modified procedure. In this respect we ought to mention that there are two 

competing approaches that deserve further consideration in future work. These are 

the procedures to test Granger-causality by Mosconi and Giannini (1992) (which in-

vol ves pretesting for cointegrating rank but allows to determine whether the conditional 

7 As in DGP (12), we pretended that the data were generated by a VAR(2) and repeated the tests 

with X2 (2) critical values in VAR(2) and VAR(3) models. As in the previous case, We found that the 
relative inefficiency in terms of power was minor. 

15
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model is stable or unstable) and Phillip's (1993) recently developed FM-VAR (Fully 

Modified Vector Autoregression) procedure, where the limit distribution of Wald tests 
is bounded aboye by the X2-distribution, resulting in conservative tests. In our Monte 

Carlo study we have demonstrated for a special case that a Mosconi-Giannini type pro-
cedure may result in substantial pretest bias. It is on our research agenda to compare 

our method with the other two procedures in a more systematic way. If it turns out 

that the modified test fares well in general in terms of power and size, the case for 
using it would be even stronger, given that it is far more easily applied. Finally, it is 
important to note that the previous results could be generalised to VAR systems with 

I( d) variables, d > 1. In that case, the modified procedure involves adding d extra lags. 
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Appendix 

Given the DGP (15), the univariate representations of Ylt and Y2t are given by: 

(A.1 ) 

(A.2) 

where the deviation from the cointegrating relationship, Ut, follows the process: 

(A.3) 

with p = 1 - (3 - a, such that Ipl < 1 for the system to be 1(1) and cointegrated. Rere 

L is the lag operator. 

Then, the standard test is based upon the regression model: 

Yt = A¡Yt_1 + Et 

or 

In particular, the second equation of the system, to which the noncausality test IS 

applied, can be written as: 

(A.4) 

Using (A.3), (A.4) can be reparameterised as: 
17
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(A.5) 

That is, the reparameterisation makes it possible to express the parameter of interest, 
b2I , as a coefflcient on an 1(0) variable. Obviously, estimation of (AA) by OLS yields 
consistent estimators of O' and ). in DGP (15), such that plim h21 = O' and plim 

a;2 = ).. Moreover, since Ut-l is asymptotically orthogonal to Y2t-l, (being 1(0) and 
1(1) variables, respectively), the asymptotic variance of h21 , V(h 2¡), depends only on 
E(uZ). Indeed, V(h2¡) = )./E(u7) = ),(1- p2)/(1 +). - 2B). Thus, the non-centrality 
parameter of the standard test is given by: 

In the modified Wald test, the regression model is: 

Yt = A1Yt-l + A2Yt-2 + Et 

or 

In particular, the second equation of the system wiU be: 

which can be reparameterised as: 

6Y2t = b21 Ut-l + C21 Ut-2 + (b21 + b22 )6Y2t-l 

+(b21 + b22 + C21 + C22)Y2t-2 + E:2t 

(A.6) 

(A.7) 

(A.8) 

Using similar arguments as in the VAR(l) case, plim b21 = 0', plim a;2 = ). and the 

1(0) regressors {Ut-l' Ut-2, 6Y2t-d are asymptotically orthogonal to Y2t-2. 

Thus, in this case the asymptotic variance of h21 , V( h2¡) is given by the (1,1) element 

of: 

( 

/'11 /'12 /'13)_1 
). . /'22 /'23 

. . /,33 

where hij} is the covariance matrix of {u t,ut-l,6Y2t}. From (A.1) - (A.3), we get: 

/'11 E(uZ) = /'22 = (1 +). - 2B)/(1 _ p2) 

/'12 E[Ut,Ut-l1 = P/'Il 

/'13 E [Ut, 6Y2tl = E[Uté2d + O'E[utUt-d = B - ). + 0'Pí'1I 

/'23 E [Ut-l, 6Y2tl = 0'/'11 

/,33 E [6Y;t] = ). + 0'2/'11 

From these results we can obtain the much simplified expression V(h 21 ) = ).2 /P-
(

2
). Thus, the non-centrality parameter of the modified Wald test, is given by: 

(A.9) 
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