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Visual Ego Motion Estimation in Urban Environments based on U-V
Disparity

Basam Musleh, David Martin, Arturo de la Escalera and Jose Maria Armingol

Abstract— The movement of the vehicle provides useful
information for different applications, such as driver assistant
systems or autonomous vehicles. This information can be known
by means of a GPS, but there are some areas in urban
environments where the signal is not available, as tunnels or
streets with high buildings. A new method for 2D visual ego
motion estimation in urban environments is presented in this
paper. This method is based on a stereo-vision system where
the feature road points are tracked frame to frame in order
to estimate the movement of the vehicle, avoiding outliers from
dynamic obstacles. The road profile is used to obtain the world
coordinates of the feature points as a unique function of its
left image coordinates. For these reasons it is only necessary
to search feature points in the lower third of the left images.
Moreover, the Kalman filter is used as a solution for filtering
problem. That is, in some cases, it is necessary to filter raw
data due to noise acquisition of time series. The results of the
visual ego motion are compared with raw data from a GPS.

I. INTRODUCTION

Visual ego motion estimation or visual odometry are
useful applications for developing Intelligent Transportation
Systems (ITS), such as Driver Assistance Systems or au-
tonomous vehicles. Several of these systems need to know
the movement of the vehicle. This information is usually
supplied by a GPS, but there are some areas where the
signal is not available in urban environments. This is because
the signal is affected by high buildings or tunnels. The
method of visual ego motion estimation proposed in this
paper allows to know the 2D displacements of the vehicle in
urban environments with a great accuracy.

The visual ego motion is one of the most active field
in computer vision. Different solutions have made use of
monocular cameras [1], stereo systems [2] and omnidirec-
tional cameras [3]. Monocular sensors have the problem of
scalar factor, but its implementation is easier than stereo
systems which presents a complex calibration step. Stereo
systems achieve the most accurate results in long distances,
because 3D information is avalaible, although they present
great uncertainty in depth estimation [4]. Several methods
have been presented, working in the disparity space in order
to solve the uncertainty [5]. Finally, omnidirectional cameras
allow to track the feature points along more frames than
others sensors[6]. On the other hand, the distorsion makes
difficult the feature matching.
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The method presented is based on a stereo vision system
[7]. The visual ego motion estimation or visual odometry
is normally performed by means of detecting and tracking
feature points between consecutive frames [8]. Our visual
ego motion estimation uses a dense disparity map [9] to
detect the road in front of the vehicle in order to use only the
feature points that belong to the road, avoiding using feature
points of obstacles which can be a source of outliers if the
obstacles are moving. Another interesting result of using only
feature points that belong to the road is that it is not necessary
to search feature points in the whole image, as our algorithm
only needs to process a lower third of the image.

The information of the road profile [10] is used to obtain
the world coordinates of the feature road points. Besides
the road profile, it is only necessary to know the position
of the feature points on the left image in order to obtain
the world coordinates, in constrast to most of the visual
ego motion algorithms, which need to perform a matching
between the images of the stereo pair in order to obtain the
disparity for each feature point. Moreover, the feature points
used are close to the vehicle reducing the uncertain in depth
estimation.

Kalman filtering [11] has been applied to many situations
in engineering, such as radio communication signals or
applications to navigation. The filtering approach of the
algorithm is applied in this work to raw data in order to
smooth out undesirable fluctuations in visual ego motion.

An acquisition of raw data from a GPS is synchronized
with the capture of images in order to compare the results of
the visual ego motion with the GPS. The GPS is based on a
Novatel receiver [12] that has been configured to work with
Satellite-Based Augmentation Systems (SBAS) for sub-meter
positioning. The solution has been calculated specifically
with the European Geo-Stationary Navigation System (EG-
NOS), which is a type of geo-stationary satellite system that
improves the accuracy of the basic GPS signals. Accuracy is
enhanced through the use of wide area corrections for GPS
satellite orbits and ionospheric errors. EGNOS consists of a
series of reference stations, master stations, ground uplink
stations and geostationary satellites (GEOs).

II. OBSTACLES AND ROAD DETECTION

The dense disparity map and the u-v disparity [13] are
developed in order to detect obstacles in front of the vehicle.
The method for detecting obstacles obtains, as a result,
two different dense disparity maps. The first one is the
obstacle map (Fig.1(c)) and the second one, the free map
(Fig.1(d)). The obstacle map is a disparity map where only
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the obstacles appear, whereas the free map is the opposite to
the obstacle map, where only the empty space ahead of the
vehicle appears. This information can be used by a system of
detection and localization of obstacles, as presented in [14].

A. Use of the Disparity Map and the u-v Disparity

Two cameras are neccesary to calculate the depth (Z) for
a point P = (X,Y, Z) in world coordinates by means of the
stereo equation (1), where the projection of the point P over
the image plane is (uL, vL) for the left camera and (uR, vr)
for the right one.

Z =
f ⇒B

uL uR
=

f ⇒B

d
(1)

Where d is the disparity, f is the focal length and B is
the baseline between both cameras. The disparity map is
developed using the rectified images supplied by the stereo
system, being the disparity (d) represented in the disparity
map for every pixel of the image. The pixels corresponding
to closest points have a bigger grey level and the farthest
ones, an inferior grey level. Once the disparity map has been
created, the u-v disparity can be obtained. The v-disparity
expresses the histogram over the disparity values for every
image row (v coordinate), whereas the u-disparity does the
same, but for every column (u coordinate). It is important
to note that a useful information can be obtained from the
disparity map and its corresponding u-v disparity, such as
the obstacles situated perpendicularly in front of the vehicle,
which appear as horizontal lines in the u-disparity and as
vertical lines in the v-disparity [15], in their corresponding
values of disparity. As commented before, the obstacle map

(a) Left image (b) Disparity map

(c) Obstacles map (d) Free map

Fig. 1. Example of the Obstacles and Road Detection

is one of the results of the obstacle detection step. The
development of the obstacle map is performed in two stages:
firstly, the u-disparity is thresholded, using as a threshold
the minimum height of an obstacle measured in pixels.
This value must be small enough to detect every obstacle
which blocks the movement of the vehicle and large enough

so as not to detect possible obstacles which do not avoid
the movement of the vehicle, for example a speed bump.
Once the u-disparity has been thresholded, every pixel of
the disparity map which does not correspond to an obstacle
is removed, getting the obstacles map. The second result of
the obstacle detection is the free map. The development of
the free map follows the same method that the generation of
the obstacle map in the first stage, but in the second stage
every pixel beloging to an obstacle is removed. Althought
the free map usually corresponds to the road, the free map
is theoretically the whole empty space ahead of the vehicle.

B. Estimation and Use of the Road Profile

In addition to the information of the obstacles, it is
possible to obtain information about the road from the v-
disparity. The road appears in the v-disparity as an oblique
line called the road profile [10]. If a flat ground assuption
is performed, this road profile can be expressed as a straight
line (2), where v is the vertical coordinate of the image, m is
the slope of the road profile and b is the theoretical value of
the horizon of the stereo system. Furthermore, once the road
profile has been estimated, it is possible to know the picht
α between the stereo rig and the road [10] for each frame,
by means of the (3) where Cv is the vertical coordinate of
the optical center.

v = m⇒d+ b (2)

α = arctan
b Cv

f
(3)

It is important to note that estimating the road profile v-
disparity which has been generated using the disparity map,
can be a difficult task in urban environments, so the detection
of the oblique line corresponding to the road profile is
difficult. An extended explanation of the solution to this
problem is presented in [16]. For this reason, it is better to
use the free map in order to generate the v-disparity because
the obstacles are removed from the v-disparity, so it is easier
to estimate the road profile.

The straightforward way to calculate the depth (Z) for a
point is by means of the stereo equation (1), where the depth
(Z) is a function of the disparity d. On the other hand, the
road profile (2) shows the relationship between the vertical
coordinate of the image v and the disparity d, then it is
possible to obtain a new expression (4) merging the stereo
equation (1) and the road profile (2) where now the depth
(Z) is a function of the vertical coordinate of the image
v, increasing significantly the resolution of the new equation
[14]. This new expression to calculate the depth Z is only for
points belonging to the road. Moreover, in order to calculate
the depth to the vehicle instead of the depth to the camera
it is necessary to use the information about the pitch α (3).
Once the depth (Z) for a point belonging to the road has
been calculated, it is possible to obtain its world coordinate
X , which is a function of Z as (5) shows. Where Cu is the
horizontal coordinate of the optical center.

Z =
m⇒f ⇒B

v b
⇒cosα (4)



X =
Z⇒(u Cu)

f
=

m⇒B⇒(u Cu)

v b
(5)

III. VISUAL EGO MOTION ESTIMATION

The visual ego motion estimation is based on tracking
feature points between consecutive frames of the left camera.
In opposition to the usual methods of visual ego motion
estimation or visual odometry [7]; this method does not
have to match up the feature points between both images of
the stereo system to locate the points in world coordinates,
because the method only uses the points belonging to the
road. This points can be located on world coordinates by
using (4) and (5) with the coordinates of points on the left
image. An implementation of the Scale-Invariant Transform
Feature (SIFT) detector and descriptor [17] developed for
the MATLAB environment [18] is used in order to detect
the feature points of the images.

Fig. 2. Scheme of the movement of the vehicle. On the left, rotation stage.
On the right, translation stage.

A. Vehicle Model

The chosen model for the kinematic motion of the vehicle
is the Ackerman’s steering model [19] which has been
already used by other authors, such as in [20]. In order to
simplify the visual ego motion estimation, it is necessary to
make some assumptions: firstly, the movement of the vehicle
between two consecutive frames can be divided into two
stages, whose velocity is constant in each one (Fig.2): a
rotation around the center of the motion of the rear axle and a
forward translation after the rotation. The second assumption
is that there is no slip in any direction.

B. Calculate of the Visual Ego Motion between Consecutive
Frames

The vehicle motion estimation between two consecutive
frames (t and t + 1) is perfomed in two steps. Firstly, the
feature points have to be detected on the two left images
of the stereo pair, in the instants t and t + 1. Then, a
correspondence between the two sets of feature points (t
and t + 1) is done in order to know the displacement of
the feature points within the images. As commented before,
the method makes only use of points of the road, which are
situated at the bottom of the image. For this reason, it is
possible to detect only the feature points at the bottom of
the image, checking what feature points belong to the road
using the free map. Besides the redution of the computing
time, using only the closest points to the vehicle improves the
flat ground assumption. Once the image coordinates of the

feature points have been obtained, it is possible to calculate
the world coordinates }X,Z of these feature points in the
instants t and t+ 1 by means of (4) and (5).

(a)
tT

(b)

Fig. 3. (a) Example of feature points detecting and matching between con-
secutives frames. (b) Scheme of the movement of the cartesian coordinate
system between consecutives frames.

θ = arctan

(
XT

ZT

)
{ tan θ =

sin θ

cos θ
=

XT

ZT
(6)

[
Xt

Zt

]
=

[
cos θ sin θ
sin θ cos θ

] [
Xt+1

Zt+1

]
+

[
XT

ZT

]
(7)

Secondly, the estimation of the vehicle movement between
two consecutives frames (t and t + 1) can be calculated by
using the different locations in the instant t and t+1 of the
points detected in the previous step. As Fig.3(b) shows, the
rotation angle θ of the vehicle can be calculated by means
of the (6), where ZT and XT represent the translation after
the rotation. Besides, it is possible to express ZT and XT

as a function of θ and the locations of a road point, in the
instant t and t+1 by using (7). On the other hand, the angle
θ is the only unknown variable of the expression in equation
(8). It is possible to obtain firstly θ by solving the second
order equation (9) and then ZT and XT by using (7).

XT

ZT
=

sin θ

cos θ
=

Xt Xt+1 cos θ Zt+1 sin θ

Zt Zt+1 cos θ +Xt+1 sin θ
(8)

(X2
t +Z2

t ) sin
2 θ+(2⇒Xt+1⇒Zt) sin θ+(X2

t+1 X2
t ) = 0 (9)

In this way, a set of solutions }θ, ZT , XT for the vi-
sual ego motion estimation is obtained, where a solution
}θ, ZT , XT k has been calculated for each pair of points
}Xt, Zt k and }Xt+1, Zt+1 k. Different methods can be
used in order to choose a unique solution }θ, ZT , XT from
the set of solutions, as a result of the visual ego motion
between the two consecutive frames. Although the simplest
method is the mean, the algorthim uses a solution from the
set by means of the median because the median is more
robust to possible outliers.

C. Model Using in Kalman filter

The process model is implemented by a linear time-
varying (LTV) model in discrete time. That is, the process
is described by a linear system. In this work, the system is a



vehicle driving along a road at constant velocity. This linear
system is a process, which can be described by the following
two equations:

xt+1 = At⇒xt + wt (10)

yt = B⇒xt + zt (11)

Where, t is the time index, x is the state of the system and
y is the measured output. The variable w is the process noise
and z is the measurement noise. The matrix A is the state
transition matrix and B is the measurement matrix, which
are obtained to model a simple vehicle moving with constant
velocity.

Then, the state vector x consists of the vehicle location

p =
[
X,Z, θ

]
and velocity v: xt =

[
pt
vt

]
, and the linear

system equations are:

xt+1 =

[
1 Tt

0 1

]
⇒xt + wt (12)

yt =
[
1 0

]
⇒xt + zt (13)

The Kalman filter combines the measurements taken from
the system (variables for the visual ego motion estimation
}θ, ZT , XT ), with the information provided by the motion
model in order to obtain an optimal estimate of the system
state. In this work, the measurement noise covariance matrix
has been selected as the square of standard deviation of
measurement (such as, 12 if we estimate ZT ), and the process
noise covariance matrix uses process noise variance of 0.01.

IV. EXPERIMENTAL RESULTS

Several tests have been performed in urban environments
in order to evaluate the goodness of the algorithm of the
visual ego motion estimation. The results of a sequence,
where the vehicle performes a closed loop in a urban
environment, are presented in this section. The sequence has
1 minute and 38 seconds` duration and it is made up of 982
stereo images.

The Kalman Filter is applied to filter visual ego motion
estimation and the Global Positioning System (GPS) is used
to compare GPS raw data with visual ego motion estimation
results.

A. Utility of the Kalman Filter

The visual ego motion estimation uses Kalman algo-
rithm to solve filtering problem. The filtering approach of
the algorithm is applied to raw data in order to smooth
out undesirable fluctuations of visual ego motion variables
}θ, ZT , XT .

The utility of the Kalman algorithm is displayed in Fig.
4, where graph represents an example of a curve trajectory
of the vehicle. The example shows only one of the three
variables corresponding to visual ego motion estimation, that
is the angle θ. The example of the angle sequence starts at
20 second when the curve trajectory appears. The red circles
of the graphs are visual ego motion angles and blue circles
are obtained solution with Kalman algorithm.

The filter allows to smooth the fluctuations of the curve
trajectory angle, eliminating outliers from visual ego motion
estimations.

θ

Fig. 4. Example of filtering raw data

B. Results of the Visual Ego Motion Estimation

Two different methods are used in order to evaluate the
degree of accuracy of the visual ego motion estimation.
Firstly, it is possible to compare the difference between the
initial and final location (position and orientation) of the
vehicle. Due to the vehicle performes a closed loop, this
two locations should be the same. Secondly, aerial imagery
can be also used to overlay the resulting trajectory of the
visual ego motion estimation.

(a) (b)

Fig. 5. Comparison of the different trajectories of the visual ego motion
estimation and GPS overlay in a aerial imagery. (a) With obstacles in blue,
mean in green and final egomotion estimation (median) in red. (b) Detail
for comparison of the visual egomotion estimation in red and the GPS raw
data in blue.

Firstly, the two different methods (mean and median)
to choose the final solution }θ, ZT , XT from the set of
possible ones }θ, ZT , XT k are compared. Fig. 5(a) presents
the resulting trajectory of the visual ego motion using both



methods: the trajectory calculated by the mean appears in
green and the median in red. The trajectory is deformed due
to use the mean, in comparison with the obtained one with
the median. In fact, the difference between the position error
is a 62.5% and the orietation error is a 173% so it can be
concluded that it is better to use the median rather than the
mean.

The effect of not using feature points from the obstacles
has been studied. Fig. 5(a) shows the obtained trajectory
using the feature points from the obstacles in blue. The fact
of that using feature points from the obstacles ahead of the
vehicle produce a 50% position error higher than the whole
visual ego motion estimation, whereas the rotation error is
similar. Regarding to the trajectory, the deviation is more
prominent in the entire trajectory as Fig. 5(a) shows.

Finally, the raw data resulting from the visual ego mo-
tion estimation are filtered in order to smooth out fluctu-
ations, Fig. 6 shows the results of filtering each variable
}θ, ZT , XT . It is possible to observe the improvement of the
smoothness in the three variables. The Fig. 6(a) displays the
measured angle in red colour and Kalman estimated angle
in blue colour. That is, Kalman algorithm estimates next
angle using before angles of the time series. The results of
the filter is appropriate in linear and curve trajectories, as
can be observed in Fig.6(a), which first displays a linear
trajectory followed by a curve to the left and so on. It
is interesting to compare Fig.6(a) and Fig. 5(a) to observe
the overall trajectory of the experiment, for example, when
the vehicle is in the roundabout and how the Kalman filter
smoothes continuously the curve trajectory to the left. The
Fig.6(b) displays the X position and the behaviour of the
filter is accurate obtaining again a smooth trajectory. It can
be observed again the equivalence between Fig.6(b) and Fig.
5(a). The third graph is the Z position where the Kalman
algorithm filters fluctuations of approximately 0.8 meters.
The algorithm smoothes efficiently the Z variable.

C. Comparision of visual ego motion Resultls and GPS

The GPS raw data of the followed trajectory by vehicle
is displayed in Fig 7. Raw data is shown in Universal
Transverse Mercator (UTM) geographic coordinate system
to compare visual ego motion estimation data and GPS raw
data in meters. The trajectory start, which is followed by
vehicle, is marked with a red dot in Fig. 7, and each blue
dot stands for a GPS point. The accuracy of overall trajectory
is less than one meter when GPS + EGNOS is active, and if
the receiver uses single point L1 solution the accuracy is 1.5
meters. Moreover, if the receiver is working in single point
L1 solution and the number of GPS satellites is insufficient
to calculate an optimum solution, then the accuracy of the
solution can be increased more than 1,5 meters, resulting
in a lateral displacement of the blue dots close to the real
trajectory of the vehicle. Moreover, the trajectory shows
some gaps, where the receiver can not compute the solution
caused by the loss of GPS satellites. The loss of satellite
signals is caused by obstructions from close buildings in the
right and left side of the road. The final point of the trajectory

θ

(a) Angle θ

(b) Variable X

(c) Variable Z

Fig. 6. Results of the raw data filtering from visual ego motion estimation

is close to start point of the vehicle, and the difference is
approximately one meter.

The comparison between visual ego motion estimation
results and GPS raw data can be observed in Fig. 5(b).
The visual ego motion trajectory is indicated by red colour
and GPS raw data by blue colour. This comparison is the
tool that allows establishing the performance of the visual
ego motion estimation. Considering the accuracy of the GPS
receiver, explained in former paragraph, the results establish
that visual ego motion has better performance that GPS raw
data. It is possible to observe wrong data at the bottom-
right of the Fig.5(b) due to the receiver can not compute



Fig. 7. Raw data of the GPS overlay over a aerial imagery

the solution caused by the loss of GPS satellites. The loss
of satellite signals is caused by a close building in the right
of the road. Moreover, the red trajectory matches exactly
with the cars in the aerial image, as can be observed at
the beginning of the roundabout where appears a car that
is waiting for entering in the roundabout. A second example
is in the middle of the roundabout, where a bus is performing
a curve trajectory.

V. CONCLUSIONS AND FUTURE WORKS

The 2D visual ego motion estimation has been explained
and applied in urban environments. The advantages of the
smart algorithm have been shown comparing GPS raw data
with visual ego motion results. The robust visual ego motion
estimation ensures safe trajectory in case of GPS raw data
loss caused by buildings, trees, tunnels, among other solid
elements around vehicle. The GPS drawbacks have been
solved with proposed algorithm. The visual ego motion
estimation has reached the accuracy for curve and linear
trajectories of the vehicle, avoiding outliers from dynamic
obstacles. The results display a position error of 3.2% and a
rotation error of 2.6% in a closed loop, which accomplishes
the goal of the estimation algorithm. In addition, the use
of the road profile and free map information allow only to
search feature points in the lower third of the left images,
and reduce the uncertain in depth estimation because these
points are close to the vehicle. Kalman filter has been used
as a great asset for smoothing out undesirable fluctuations
of visual ego motion variables.

Regarding to the future work, a new method in order to
autocalibrate the extrisic parameters will be implemented,
allowing to change easily the position of the stereo rig.
Another interesting improvement is the fusion of the visual
ego motion estimation and the raw data of the GPS [21] in
order to cope with GPS raw data loss and reduce cumulative
error of the visual ego motion.
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