Electronic Transactions on Numerical Analysis. ETNA
Volume 30, pp. 278-290, 2008. Kent State Univerg"[y
Copyright © 2008, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.
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Abstract. In the present paper, we obtain quadrature rules for Bernstein measures on [—1, 1], having a fixed
number of nodes and weights such that they exactly integrate functions in the linear space of polynomials with real
coefficients.
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1. Introduction. In this paper, we present quadrature rules for Bernstein measures on
[—1, 1] such that they exactly integrate functions in the linear space of polynomials with real
coefficients. These types of rules have a fixed number of nodes and quadrature weights for
each Bernstein measure. Since we have proved in the case of the unit circle the existence of a
quadrature rule for Bernstein-Szegd measures with similar properties from the point of view
of the exactness (see [2]), the use of the transformations between measures supported on the
interval [—1, 1] and symmetric measures supported on the unit circle T = {z : |z]| = 1},
the so-called Szegd transformation (see [1, 8, 15, 16]), allows us to obtain the results. This
approach of relating quadrature rules on the unit circle and the interval [—1, 1] has been used
successfully to investigate Gauss-Szegd quadrature rules (see [3]).

Indeed, for each Bernstein measure, we give the nodes and the weights. In order to apply
our method in the computation of the integral of any polynomial with respect to the Bernstein
measure, we only need to know the coefficients of the expansion of the polynomial in the
corresponding Chebyshev basis. The well-known Clenshaw-Curtis quadrature rule (see [5])
uses this type of expansion in terms of the Chebyshev polynomials of the first kind but it
exactly integrates polynomials only up to a certain degree depending on the number of nodes.
Our method has unlimited exactness on the space of polynomials.

The paper has the following structure. In Section 2, we introduce the Bernstein measures
on [—1,1] and we recall the Szegd transformations of measures supported on a bounded
interval and the unit circle. In Section 3, we deduce a quadrature rule for Bernstein-Szegd
measures on the unit circle which is exact in the linear space II of polynomials with complex
coefficients. In Section 4, we prove the main results of the paper concerning quadrature rules
for the Bernstein measures supported on the interval [—1,1]. In Section 5, we give some
numerical examples, and a technical result about the changes of basis is presented.

2. Bernstein measures on the interval [—1, 1] and Bernstein-Szegé measures on the
unit circle T. The aim of this paper is to obtain quadrature rules for the Bernstein measures
corresponding to rational modifications of the Jacobi measures dp, 5(z) = (1 —2)*(1+2)°dz
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for the parameters a = :i:% and 8 = :I:%, i.e., the so-called Chebyshev measures of the first

kinda =8 = —%, of the second kind & = 8 = %, of the third kind o = —%, = %, and of

the fourthkind e = %, B = —1 (see [13, 16]).

If gx (z) = Zﬁ:o arz" is a positive polynomial on [—1, 1] with real coefficients, we con-
sider the following rational modifications of the above measures, i.e., the Bernstein measures:

_ dz 21 —2%dx
d/‘tl(x) - T /—1 — l‘2qk(.'L')7 dﬂ2($) - qu(m')

1 /1+z dz 1 /1—z dz

which, of course, are positive Borel measures on [—1, 1].

Q2.1

Taking into account the Féjer-Riesz representation (see [11, 16]), we know that there

exists an algebraic polynomial Ay (z) = Efzo m,2", withm, € Rforr =0,...,k, mg >
0, without zeros in D = {z : |2| < 1} such that g (cos 0) = | A (e®)|?.
Next we show that, applying suitable transformations, the measures dy;, @ = 1,...,4,

become the Bernstein-Szegd measure on [—m, 7], dv(f) = ﬁEW' In order to obtain
this result, we recall the connection between measures supported on [—, 7] and [—1,1],
respectively, through the following four transformations (see [1, 8, 15, 16]).

2.1. Szegd transformations of measures from the interval [—1,1] to the unit circle.
Let p be a nontrivial probability Borel measure on [—1, 1], absolutely continuous with respect
to the Lebesgue normalized measure, with weight function w(z), i.e., du(z) = w(z)dz. We
will transform this measure in the following four different ways.

First transformation. Since z = cos@ transforms the interval [—7, 7] into [—1,1],
then we can define a measure v; on [—, 7] such that dv;(8) = fw(cos6)|sin@|df and
vi([—m,7]) = 1. Tt induces another measure on T that we also denote by v for the sake
of simplicity. Notice that when p is the Chebyshev measure of the first kind, then vy is the
Lebesgue normalized measure.

If P(z) =Y oaTi(z), witha; € R, 1 =0,...,n, where {T,(z) }nen is the sequence
of Chebyshev polynomials of the first kind and Q(2) = Y-, a;2!, then it is easy to relate
the inner products induced by both measures p and v; as follows:

(P2), Ti(@)), = ~(Q() + Q1) 21), .

w9 1

Second transformation. The substitution z = cos @ and the multiplication by 481179

defines a finite positive Borel measure v on [—7, 7] by dv () = Uil(gfrfgl) doif [ i1 £ _(:;)2 dz <
+o00. The measure v induces in a natural way another measure on T that we also denote by
V5. Notice that when p is the Chebyshev measure of the second kind, then v is the Lebesgue
normalized measure.

If P(z) = Elnzo biUi(x), withby € R, 1 =0,...,n, where {Uy(z) }nen is the sequence
of Chebyshev polynomials of the second kind and Q(2) = Y, b2, then it is easy to obtain
the following relation between the inner products corresponding to both measures:

(P(@),Ui(2)), = (Q(x) = Q(z71),2'),,.
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Third transformation. The substitution z = cosf and the multiplication by Toed T Cotz 5
2

defines a finite positive Borel measure v3 on [—,7] by dv3() = 2w(cosd)|tan §|d6 if
il %dﬂ? < 400. The measure v3 induces a measure on T that we also denote by v3.
Notice that when p is the Chebyshev measure of the third kind, then v3 is the Lebesgue
normalized measure.
If P(z) = YL oaWi(z), with g € R, 1 = 0,...,n, where {W,(z)},en is the
sequence of Chebyshev polynomials of the third kind and Q(z) = ;' ¢2!, then the
inner products corresponding to both measures are related as follows:

(P@),Wi(2)), = (22Q(2) +273Q(e7),21*7), .

Fourth transformation. The substitution z =cos § and the multiplication by @‘ al-
2

lows us to define a finite positive Borel measure v4 on [—, 7] by du4 (6) = Sw(cos 6)|cot g|d€

if fil f(fz) dx < +oo. The measure v4 induces a measure on T that we also denote by v4.
Notice that when g is the Chebyshev measure of the fourth kind, then vy4 is the Lebesgue
normalized measure.

If P(z) = Y o diVi(z), withd; € R, 1 = 0,...,n, where {V,,(z) }en is the sequence
of Chebyshev polynomials of the fourth kind and Q(z) = 3_;", d;2', then we can relate the
inner products corresponding to both measures as follows:

(P),Vi(2), = (2Q(z) — = #Q(="),24)

Now, if we consider the Bernstein measures dy, dus, dus, and duy defined in (2.1) and we

transform each du; by the ith transformation, ¢ = 1,...,4, then it is easy to prove that we

obtain the same Bernstein-Szegd measure dv(f) = W.

l/4'

3. Quadrature rules for Bernstein-Szegé measures. Since our aim in this work is to
obtain quadrature rules for the Bernstein measures du;, i = 1,...,4, defined in (2.1), we
are going to recall a recent result about quadrature rules for Bernstein-Szegé measures on the
unit circle T.

Let A (2) be an algebraic polynomial of degree k with zeros outside D and A (0) > 0
and let us consider the Bernstein-Szeg6 measure dv defined on [—7, 7] by

d
*

3.1 dv(f) = ——
G3.1) ") =

If we denote by {®,,(2) }nen the monic orthogonal polynomial sequence with respect to the

measure dv (MOPS(v)), then @,,(z) = z"‘kiz—g(z);, forn > k (see [16]).
k

In [2] we have obtained the following quadrature rule for Bernstein-Szegd measures.

THEOREM 3.1. Let dv be a Bernstein-Szegd measure like (3.1) and let {®,(2)}nen
be the corresponding MOPS(v). Assume that ®,(z) = 2" *Ii_, (2 — 2;)" forn > k
with z; # z; if© # j and 23:1 v; = k. Then there exists a quadrature rule with nodes
{#1,...,2s} which uses the values of the function and its derivatives in these nodes and
such that it exactly integrates functions in the linear space Il of polynomials with complex
coefficients, i.e., for every P € 1l we get

s v;i—1

(32) /1r P)du(x) =3 3 Xy PO ().

i=1 j=0

Moreover, X; ;1 #0fori=1,...,s.
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Proof. See [2]. O

Notice that the above result can be completed with the following proposition where the
explicit computation of the weights A; ; in the quadrature rule (3.2) is given.

PROPOSITION 3.2. Let us assume that A} (z) = cxIIi_; (z — 2;)"i, with Y ;_, vi = k,
and let A; ; be the numerators of the following partial fraction decomposition:

(_1)kzk—1

= -+
|Ck| O,z e, (2 — i) VI, (2 — ) ZZ ZZ

Z zljlz_zl ’Lljl Zz

Then the weights A; j of the quadrature rule (3.2) satisfy

Proof. Since |Ay(z)| = |Aj(2)| for z € T, thus we can write
1 1 1

()" #AR@AL(L)  zadl, (2 - ) e, (L - F)

Sh—1

|ck| I, z -z Vinzl (1 — zz_,)y
(—1)kzh=1

o | T 2 0y (2 — 20) " TIy (= - =)"

141 Vs
Aj As,j

j=1 (z - zl) j=1 (z - Zs)
128 Vs
B, B;,;
+Z > _.+...+27’ -,
= (- %) i (- 2)

Taking into account the previous decomposition and the Cauchy’s theorem, we get

i : dé
P 6
/_w ) A

1 [ P(z) dz
2mi Jr 2 |Ak(2)|2

s

B
2m ZZ _ d+— P - 5 dz

i=1 j=1 Z - 2mi i=1 j=1
L1 P(j,l) (Zl) Vs P s vi—1 P(J) )
=ZALJW+“'+ZAM =2 > A ——
j=1 J : j=1 i=1 j=0
Thus using (3.2) we have \; j = A"J"“ fori =1,...,8,5=0,. —1. 0

In the next section, we obtain quadrature rules for Bernstein measures on [—1, 1] applying
the previous results and the transformations of measures introduced in Section 2.
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4. Quadrature rules for Bernstein measures in [—1, 1]. Let us consider the Bernstein
measures given in (2.1) and the Bernstein-Szegd measure (3.1) obtained using the above
transformations. Our aim is to prove that for each of these Bernstein measures there exists a
quadrature rule with a fixed number of nodes and weights, which is exact in the linear space
P of polynomials with real coefficients.

THEOREM 4.1. Let duy(x) = ﬁzqk(w) There exists a quadrature rule using the

nodes {z;}i_, and the weights {X; j}i=1,..s; j=0,....vi—1, With > ;_, v; = k, such that it
exactly integrates polynomials, i.e.,

VPeP, Pz Zb,T, ), with b € R,

we get

1 s vi—1 (J)
[ P@dn@ =22 2 X <Z”’—>
B =0

i=1 j= =0 |z=z;
Proof. Using the first transformation, the measure dy; becomes the measure dv given by
— o
w(0) = sz ey
If P(z) = Yty biTi(z) with by € R, 1 = 0,...,M, and Q(2) = Yt &2, then
(P(2),1)4, ={(Q(2) + Q(z 1), 1),. Therefore, we can write

1
dz
P(2) ——=——
/—1 /1 — 22qi ()
" (L, df " (v, do
= ) DX IS Nt Z bkl WA
-7 \J=0 27T|Ak(€z )| =0 27T|Ak(€z )|
for z = €.
In order to compute these integrals, we apply Theorem 4.1. Indeed if 24, ..., 25 are the
zeros of Aj(z), which are located in D, and v, . . . , v, are their multiplicities with >_;_, v; =

k, then there exist weights {\; ; }i=1,....s; j=0,...,»;—1 such that for every R € II we get

™ v;—1
| Rt s - 33 AR (2)

- 27T|Ak ew i=1 j=0
and
™ v;—1
R(ei? — X R(J)
. (6 )27F|Ak ew Zz; ]ZO ] Zz

Therefore, if Q(2) = ;VIO b 2! with by € R, then

_ (4)
bl 2L+ 7 d@ s M blzl
/— ( >2W|A COlk J( 2 )

T =0 i=1 j=0 =0

|z2=2z;

and, as a consequence, the statement holds. 0
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REMARK 4.2. When A} (z) has simple zeros 21, . .., 2, in ID, the weights are Ay, ..., A
and the quadrature rule means that if P(z) = Ef‘io biTi(z), with b; € R, then

blz
IRE i e ‘23%(;?2 )

THEOREM 4.3. Let dus(x) = 27;1(1;(“”:)‘1“”. There exists a quadrature rule using the nodes

{zi}i_, and the weights {X; j}i=1,....s; j=0,....vi—1, With Y i_, v; = k, such that it exactly
integrates polynomials, i.e.,

VPeP, Pz Zd,Ul ), withd; € R,

we get
s vi—1 M ) L M PPN
IRCTCD %> ( 3 @9 () R Y (@) (zi)) -
i=1 j=0 1=0 1=0
Proof. We write f_ll P(x)dps(z) = (P(x),1),,, YP € P. Using the results about the
second transformation given in Section 2, the measure dys becomes dv(0) = Mi%' If
P(z) = Y2, diUi(2) and Q(2) = Y22y dyz*1, then
(P(2),1),, =(Q(z) - Q(),2), = (ZQ(2) - 2Q(2), 1),
Since for z € T we have 2Q(z) = Y it diz' and 2Q(z) = Y1% diz"+2, then
1
| P@du(a)
-1
T M e M
= / (Z dl2l> 7(” - / (Z _l+2> 7610 —5, 2= e’
-7 \=0 27T|Ak 6’9 0 27T|Ak (6’9) |

Proceeding like in the proof of Theorem 4.3, we can apply Theorem 4.1 and get

x [ M vi—1 ()
[ @d’zl)W IPIY (Zdzz) (=)

i=1 j=0

as well as

T M do s vi—1 M &)
/ (Z d—ﬁl+2> — Z Xij (Z dlzl+2> (zz)
~T \i=0

2nldu(e)] S

Therefore, we have

/p dpa (@ / <ZdlUl )duz (@)
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REMARK 4.4. If the zeros z,...,2, of Aj(z) are simple, then the weights are
A1, -- -, Ak and the quadrature rule becomes

/11 (Z dle($)> dpa(z Z </\ S dizt - izdlz_il+2> ‘

i=1 =0

THEOREM 4.5. Let us consider the positive measure dus(z) = L,/itz_dz

=\ 1-z qi()
supported on [—1,1]. Then there exists a quadrature rule with nodes {z;};—, and weights
{Ni,jti=t,...,5 j=0,... .5 —1, With 2121 v; = k, such that it exactly lntegratespolynomtals ie.,

VP eP, Pz Zelv, ), with e; € R,

v;—1

[ pesc )=2 Z(Aw2<ezzl><”<zz->—Ai,jz<e1zl+1)“’<zi>)'

=0

Proof. Using the third transformation, dus becomes dv(6) = W. Then if P(z)

= Zfio elVi(z) and Q(2) = E;‘io e 2!, with ¢; € R, we get
(P(x),1), =(22Q(2) —22Q(2),27), = (Q(z) —2Q(2),1),,-

"3

Taking into account that, for z € T, ZQ(z) = Zf‘io €, Z"tT, then

[ p = [ (o= Sart)

Proceeding like in the proof of Theorem 4.3, we can apply Theorem 4.1 and deduce

/” <§elzl)7 Zyzz_l)\,]z (i) D (24)

27T|A i=1 j=0 1=0

as well as

T \ =0 27T|Ak (ez€)| i=1 j=0 1=0
Hence
1 s wv;i—1 M ) M o
/ P(x)dus(z) = ()\i,g Z (elzl)(ﬂ) (Zz) —Xij Z (elzl—i-l)(J)( )) . 0O
-1 =1 j=0 =0 1=0
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REMARK 4.6. If the zeros 21, . . . , 21 of A} () are simple, then the weights are Ay,. .. A
and the quadrature rule is

/ (Ze,vl )dm s (A DIEE ifem—im)_

i=1 =0

THEOREM 4.7. Let us consider the positive measure dus(z) = %”h;iq:(z)

supported on [—1,1]. Then there exists a quadrature rule with nodes {z;}5_, and weights
{Ai,jYi=1,....5; j=0,....vs—1, With Ele v; = k, such that it exactly integrates polynomials, i.e.,

VPeP, Pz Zf,W, ), with f; € R,

we get
s v;i—1 M ) Mo
/ P(@)dps(z) =y Y ()\i,jZ(ﬁzl)J (zi) + )).
i=1 j=0 1=0 :0

Proof. Using the fourth transformation, du4 becomes dv(f) = W. Then if

P(z) = 2, iWi(z) and Q(2) = 1t fi, with f; € R, we get
(P(@),1), = (2*Q(z) +72Q(3),27), = (Q(2) +7Q(3), 1),

Therefore, taking into account that ZQ(z) = sz\i o fiz't for z € T, then

/ P(x)dua(z / ] (Z fi +Z fﬁm) d

27| Ay (ei0) "

Proceeding like in the proof of Theorem 4.3, from Theorem 4.1 we get

m M o1
/_,r (;flzl>m ; JZO)\Jg 19 ()
and
() o
/*’T (zz; iz ) 27T|Ak(ei9)|2 - ; < Aw; fiz (2i)-
Hence,
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REMARK 4.8. If the zeros 21, .. ., 2 of A} (2) are simple, then the weights are Ay, ... A
and the quadrature rule is

k

/ <Z lel(@) dua(z) =Y (Ai YohAdenY ﬁz’ﬂ) .
-1 \i=0 = prd

=1

REMARK 4.9. In order to compute the nodes of the quadrature rules, we propose to
use the next property. If (x — a)” is a factor of the polynomial g (z) of arbitrary degree
k, then the Joukowski transformation of a with modulus less than one (a + va2 — 1 with
la £ v/a? — 1| < 1) is a node of the quadrature rule with multiplicity v. Therefore, if all the
factors are linear with real zeros, then the nodes are in [—1, 1]. Otherwise if the factors are
quadratic with complex zeros, we have a pair of complex conjugated nodes. Notice that this
fact does not play a relevant role in the method. With this method for determining nodes and
the previous one given in Proposition 5.1 for determining the weights, we prepare the method
in order to be applied without errors in the calculus.

5. Numerical examples. Let us consider the polynomial ¢; () = 5 + 4z, which is
positive on [—1, 1] as well as the Bernstein measures dy; fori = 1, ..., 4, givenin (2.1) with
q1(z) = 5+ 4. Notice that g; (cos8) = |A;(e?)|?, with A;(2) = z + 2; see Remark 4.9
for the details. In order to see how our method works and using the theorems of the previous
section, for the polynomial P(z) = 4z? — x — 1, we compute the integrals fil P(z)dp;(z)
fori =1,...,4 as follows. First we write P(x) in terms of the four Chebyshev polynomial
bases

P(z) =2T5(x) - Ti(z) + To(z),  P(z) = Uz(z) — 3Us (),
P(z) =Va(z) — 3Vi(z) + 3Vo(z), P(z) = Wa(z) + 1 Wi(z) + $Wo(a).

Now we apply the result concerning the Bernstein-Szeg6é measure in order to get the nodes

and the weights. Since A5 (z) = 2z + 1, then the node is z; = —% and we compute A; as
follows:
™ _1
N = / de _ 1 faem 1
S SV P TER YV SR S X

Therefore,

1 1 dz
[ Pemte) = [ (@ -1 + Do) s

_25%(122%—21—}—1) _2
= =) =3

3 2
/_11 P(x)dps(x) = /_11 (UQ(m) - %U](x)) 2;/(15——%

- 2) 333
/_11 P)dus (z) = /_11 (Vg(x) i) + gVo(w)) %\/3(5%@




ETNA

Kent State University
http://etna.math.kent.edu

NEW QUADRATURE RULES FOR BERNSTEIN MEASURES 287

and

/_ 11 P(z)dpa(x) = /_ 11 (Wz(a:) + %Wl(w) + %Wo(m)) %\/g %“’4@

ERVIPE SR AURE WAPU WP SR |
T3\ Ty ) T (AT TR ) T 1y

In the previous computations, a key step was the explicit expression of the polynomials
in the appropriate basis. In order to simplify these computations, next we present a result
about the change of basis.

PROPOSITION 5.1. If P(x) = Y20 a,am, then P(z) = Y278 b, T,(x), with b, =
E?Z‘gl my ja;j, where we denote by my ; the entry corresponding to the r-row and j-column

of the matrix of change of basis in P between the canonical basis and the basis of the first
kind Chebyshev polynomials. These entries are

(moa])]:(],,2n+1
1 3 5 35 63 (2n—2)---n 1 (2n
=(1,0,2,0,2,0, 2,0, 22 0,2 0,...,0, o0 Z 2Ny 2 :
( ,072’07870’ 1670, 12870, 128,07 ’07222n_3(n_1)!’07 22n(n))7

forr=1,...,n,

(m27'vj ) 7=0,...,2n+1

_ 1 2r+2 @2r+4)@2r+3)  2r+6)(2r+5(02r+4)
— 07___70, 227‘—1707 92r+1 7 9192743 707 31922r+5 )
2r
1 2n
o ()
andforr =0,...,n,

(m27"+17j)j:0,...,2n+1

_{, . 1 2r+3  (2r+5)(2r +4) 0 (2r+7)(2r +6)(2r + 5)
= 20 e s oara o s 2192r+4 » Yy 3192r+6 )

2r+1
1 2n+1
0’.--,22_71(”_7-),0)-

Notice that if the degree of the polynomial P(x) is even, then some analogous formulas can
be obtained.

The other changes of bases can be done using the previous ones. Taking into account the
expressions of the different Chebyshev polynomials in terms of the Chebyshev polynomials of
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the first kind, if P(z) = >__o byT(x), then

1

P(.CC) = 5 ((2b0 — bQ)Uo(JI) + i (bl — b1+2)Ul(.'L') + bn_lUn_l(.fL’) + ann(.ﬂf)) .
=1

P(z) = % ((Zbo + b1) Wo(z) + i (by + b1 ) Wi(z) + ann(a:)> ,

=1

1 n—1
P(z) =3 ((Zbo —b1)Vo(z) + > (b — biya) Vi(e) + ann(x)> .
=1
REMARK 5.2. Taking into account these changes of bases, we can calculate the number
of operations (sums and products) that we need for applying our method for the computation
of the integral of a polynomial of degree n with respect to the polynomial modifications of
the Bernstein measures dy; (¢ = 1,2,3,4). The number of sums is %, the number
of products is @, and a prefixed number of evaluations of a polynomial of degree n
exist. Taking into account the high number of zeros of the matrix of change of basis, a more
efficient algorithm could be developed.

If we want to apply the quadrature rule to a function which is not a polynomial, us-
ing, e.g., the measure dy, then either the expansion of the function or the expansion of an
approximation of the function in the basis {T',(z) } nen is needed.

Let us consider, e.g., an analytic function f on [—1,1]. In order to compute
fil f(x)du (x), we approximate f by ZZ;; a, Ty (x) and we compute exactly the integral
f_ll( "0 axTi(x))dp: (z). The idea is to approximate f_ll f(x)du1 (z) by f_ll( N0 agx
Tk (z))dui (z), and next to evaluate the error; see [6, 7].

A well-known method based on the FFT (fast Fourier transform) can be used to estimate

the expansion in the basis {T},(z)}nen of the interpolatory polynomial of f(z) defined in
[—1, 1]. It can be applied when the evaluations of the function are determined in fixed nodes.

We will choose m = 2P and the m zeros {®;};=1,....m of the polynomial T, (z) as
nodes. Let us consider {6;} C [0,] such that cosé; = z;, and {©;} C [—m,0] such
that cos ®; = z;, as well as the FFT associated with these 2P nodes, i.e., we consider
F(z) = 32m  bpzk—™ such that F(6;) = F(©;) = f(2:). Then t(z) = &G

Yoo arTi(z) with z = Z;% satisfies ¢(x;) = f(z;), Vi = 1,...,m. From the symme-
try of the nodes, the problem has a solution using only functions of the form cos(kf) with
O(m log, m) operations and using a well-known algorithm. The solution is the expansion of

the minimax interpolation polynomial in terms of the basis {7, () } nen-

Next we present three numerical experiments based on the ideas developed above. We
consider the measure dy; used in Section 5 with ¢; (z) = 5+4x, i.e., dui (z) = #2“”(54_”)

and we take 2° nodes, i.e., a few number of nodes in order to have a low computational cost.
The FFT algorithm is well developed in all the standard calculus programs. Although we
can use any of them, we apply the FFT algorithm using the Numerical Math “Trig Fit” of
Mathematica. The discretization has an effect on the accuracy of the quadrature which is the
same as we have when we use a polynomial interpolatory quadrature for a function, i.e., we
have an error given by error of the interpolatory process.

For the three analytic functions, we obtain the function F'(z) which gives the solution of
the complex interpolatory problem and we present a table with the approximation value of the
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integral using our method, the approximate value of the integral obtained using the command
Nlntegrate of Mathematica and the difference between both approximations.

5.1. Function arctan z.

F(z) = —1.82699107'7 + 0.414214 z 4+ 2.12513 1017 22 — 0.0236893 2°
+2.05094 10718 2* + 0.00243866 2° — 2.79839 10~ '8 2¢ — 0.000298863 =7
—3.9365910 18 2% + 0.000039882 2 — 3.7231710 ' 210 — 5.59898 10 ¢ 21!
+3.3389710718 212 + 8.15588 1077 2% + 7.34596 10 '8 2'* — 1.39154 1077 2*°

Function ‘ Approx. ‘ Approx. Nlntegrate ‘ Bound error
arctanz | —0.136146 | —0.136146 | —2.75111 x 1071

. 8 3
5.2. Function e® 122" 13,

F(2) = 4.15411 + 6.22378 z + 4.68205 2% + 3.86116 2° + 2.81959 2*
+1.86711 2% + 1.33197 2% + 0.880642 27 + 0.562949 28 + 0.358526 2°
+0.224258 210 + 0.135074 2 + 0.0813767 2'2 + 0.0469612 2% +0.0254564 24

+0.0111311 2"
Function ‘ Approx. ‘ Approx. NIntegrate ‘ Bound error
e” 243 | 124238 | 1.24238 | —9.44322 x 10-8

5.3. Function e%+3,

F(z) = 273.564 + 488.794 z + 351.61 2% + 207.507 23 + 102.602 2*
+ 43.3441 2° 4+ 15.9135 2% 4+ 5.15172 27 + 1.48867 2® + 0.387967 2°
+0.0919927 2% + 0.019996 2! + 0.00401035 22 4 0.000746306 2**
+ 0.000129448 z** + 0.0000205855 2*°

Function ‘ Approx. ‘ Approx. NIntegrate ‘ Bound error
e” +22°43 | 64.2682 | 64.2682 | 1.21036 x 10~
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