Mixture and distribution of different water qualities: An experiment on vertical structure in a complex market* # Nikolaos Georgantzís Aurora García-Gallego LEE and EC Dept., Universitat Jaume I, Castellón and LINEEX, Valencia # Enrique Fatás-Jubería Universidad de Valencia and LINEEX, Valencia # Praveen Kujal Universidad Carlos III, Getafe (Madrid) # Tibor Neugebauer University of KIEL, Germany and LINEEX, Valencia ^{*} Corresponding author: Aurora García-Gallego, Economics Department, Universitat Jaume I, Sampus Riu Sec, 12071-Castellón (Spain), Tf.: 0034964728604, Fax: 0034964728591, e-mail: Ingarcia@eco.uji.es. The authors would like to thank Santiago J. Rubio and Jordi Brandts for helpful ad encouraging comments. The research whose results are reported here was financed by the IFREE and the TINKER FOUNDATION. The authors are grateful for the support received by the two organizations. Financial support by the project FEDER 1FD97-1761-C05-05 is also gratefully acknowledged. N. Georgantzís and A. García-Gallego are grateful to financial support received (grants 2000-0287 and PR2000-0282) during the time they were visiting the University of Crete. Any maining errors are the authors' responsibility alone. #### ABSTRACT We report results from experimental markets in which two different qualwater are supplied to two types of consumers: households and farmers. In the rios studied, we vary strategic complexity (and centralization) by varying the roof agents per market. Centralization of information by a multiproduct mode (scenario 1) improves market performance with respect to a duopoly (scenario downstream coordinator (scenario 3) succeeds in mitigating upstream market. In a complex setup like ours, some centralization on the supply or the demandance market efficiency. Key words: water quality, experimental market, complex system, central market efficiency JEL: C91, D43, L13, L95, Q25 #### 1. Introduction Water is necessary for multiple purposes ranging from its use as a consumgood (potable water and water for recreational activities) to water as a productation (industrial usage, energy generation, intrinsic usage to clean up used we interaction of usage is complex, since used water returns in different forms and be subject to irreversibility (let alone the problems accruing due to water's spatial temporal dimensions). Since early debates on market regulation, the management of natural resolutions which water is usually mentioned as the most necessary for life) has be considered a task of major economic, ecological and political importance. In precases, water management has been undertaken by state or local authorities. However, in some countries with a strong tradition in decentralized market institutions, the public blem of water scarcity has been tackled with decentralized management by most less coordinated economic agents. A usual critique of such solutions is inspired by fact that water is a necessary commodity whose accessibility by all should not depend on market conditions and the fear that market prices might make water a wlust good» for low income citizens. This fear is basically founded on two arguments is the incompatible with glomaximization of welfare. Second, decentralized agents may fail to efficiently the with the dynamic aspects of the exploitation of a resource and its distribution acts tifferent uses, mainly because they lack information on the general functioning of the system. While the first argument has been extensively studied, controlling for dynamic inefficiencies and learning failures in complex markets has been a far more temanding task. In his seminal article, Gordon (1954) showed that complete rent dissipation may emerge from the exploitation of an open access resource, whereas a single owner of the resource would be more efficient by internalizing exploitation externalities. Eswaran and Lewis (1984) established the related result of inverse dependence of tent accrual and the number of resource extractors. Mason and Phillips (1997) provided experimental evidence of this relationship for small groups showing that an increase of the industry size may induce a smaller standing stock of a common resource. In the context of groundwater, Burt (1964) proved analytically that a monopoly induces a more conservative usage of the resource, while perfect competition would induce depletion of the economic rent. Up to now, there has been limited experimental research on water resources, but the few studies undertaken in (rather simple) competitive settings fed the pessimism that resources may be inefficiently used. In an experiment with a static setting, Gardner et al. (1997) show that higher efficiency is achieved when a lower number of extractors exploit a common resource, although the expected non-cooperative equilibrium values are not supported by the results. In a water pumping game experiment (with limited entry), Herr et al. (1997) observed that subjects faced with an intertemporal problem acted even more myopically and less successfully than in a time-independent setting. Their results suggest that the tragedy of the commons arises also in a world with minimal institutional constraints on behavior, and that myopic behavior in a time-dependent setting exacerbates this problem. In all these papers, dynamic and static (in)efficiencies relate to horizontal externalities due to competition in the extraction of a common resource. However, it is teasonable to assume that externalities may also arise due to downstream competition fin the supply or distribution) among firms extracting from independent resources². ¹ In the resource management front, a number of interesting issues are dealt with in a series of experimental papers on natural gas transportation through pipeline networks by Rassenti et al. (1988) and McCabe et al. (1989). ² For less complex setups, the existence of vertical relations among markets has been studied in the laboratory in several occasions. For example, Goodfellow and Plott (1990) and Durham (2000) report the results from a series of experiments on a simple—in terms of its parametric structure—tup with two vertically related markets. Our setup rules out competition in the extraction of the resource³. In the considered here, there are two water sources of different qualities. The deis represented by two different types of consumers: households and fa water supplied to them may be the result of purification, since households sume water whose quality exceeds a minimum level. The experimental deses on three different levels of strategic complexity (and decentralization). characterized by the number of different types of (human) agents acting ket. We study water allocation in a market where a monopoly (treatment in poly (treatment 2), sell water of two different qualities to the consumers. treatment, the duopoly sells to a monopsonist (downstream coordinator) behalf of both types of consumers4. Given that in treatments 1 and 2 consumers4. simulated by the computer, treatment 3 is the only one in which human age both sides of the market (supply and demand). A novel feature of our fram that we allow for mixing of different water qualities. This acts as a bridge dynamic efficiency of water flow administration, on one hand, and market ning under heterogeneous market valuations of two goods sold into a «thinse on the other. Our interest in such a setting relates to some market features which been already dealt with in the literature⁶, and some of which are rather specific case of water markets⁷. Among such features, we mention market power, water administration, decentralization (vs. cooperative decision-making aimed at efficiency), etc. Generally speaking, our assumptions concerning consumer utility are quavely similar to those in Williams et al. (1986) on multiple commodities which ³ By defining property rights of a resource or more to a sole owner, we concentrate on the ownich arise from the vertical market structures studied and neglect the 'public good' nature or resource. ⁴ Inspired on the practice by many politicians and suggestions by authors like Anderson Leal (1989), adopting the formation of coalitions as an efficient method of water management. ⁵ As used by Saleth et al. (1991) to refer to a market in which there are relatively few again ⁶ Howe et al. (1986), using a much simpler model than ours, offer some justification of our cerns for a solution to a problem of water flow management in the presence of quality consideration an upstream-downstream framework. ⁷ Administration of dynamic flow problems are a famous example of such characteristics, the interest in human behavior under alternative market structures has been the most popular resource economics, despite the argument by Wong and Eheart (1983) that inefficiency due to interest fections in market design and organization can be observed even in the case of simulated (thus, a feet) behavior. prerequencement in consumption. Two further features which are rather specific to the figuramics of water are added to the structure described so far: First, buyers are restated to buy up to a certain amount of each type of water, given that their purchases a each period are used to serve their current needs. Second, a constant inflow recharge) comes to increase in each period the stock of water in the basins of each producer. In fact, following a standard formulation of similar groundwater extraction problems⁸, a lower stock implies a higher extraction cost, giving rise to a positive correlation between each period's marginal costs and past levels of extraction. We find that competition on the supply side (treatment 2) results in lower social welfare as compared to a monopoly (treatment 1). Introducing downstream coordination (treatment 3) in the duopolistic market increases market competition. The monopsonist is unable to exercise its market power and the deadweight loss decreases. Therefore, some centralization
(upstream or downstream) is socially desirable even in the presence of human actions⁹. The remaining part of the paper is organized in the following way: section 2 provides some discussion of the theoretical framework in which we derive the socially optimal solution. Section 3 describes the experimental design. In section 4 we discuss the results obtained and, in section 5, we conclude. #### 2. Theoretical framework and social optimum Due to the obvious difficulties associated with the multiple interactions among the socio-economic and environmental aspects of water management, theoretical tro-economic models focus only on specific questions. Thus, most of the literatuis based on partial equilibrium analysis. See, for example, Gisser and Sanchez (1984) and Rubio and Casino (1999). Which are sub-optimal compared to simulated agents in treatments 1 and 2 who, by design, an individually optimal way. In fact, a vast literature is dedicated to various factors which may responsible for observed shortcomings of human behavior in complex environments, like mispersion of feedback (Paich and Sterman, 1993, and Sterman, 1994), limitations in subjects' learning exposed to strategic complexity (Richards and Hays, 1998), or multi-task decision making (1995) with asymmetries (García-Gallego and Georgantzís, 2001, and García-Gallego et al., A number of factors that favour subjects' improvement of performance have, also, been idented. For example, trial-and-error algorithms have been shown to facilitate convergence of the strates played by uninformed subjects towards symmetric, full-information equilibrium predictions, shown in García-Gallego (1998) for the case of a price-setting oligopoly. Aquifers should be considered as different both from renewable and now wable resources, because the recharge does not imply an intrinsic growth rate existing stock but is, generally speaking, exogenously generated. However, extraction rate exceeds the recharge rate, the stock will be exhausted, while, growth extraction which equals the recharge, a hydro-economic equilibrium emerges, bling an infinite exploitation. Costs of extraction, which arise from pumpine inversely related to the aquifer's water table. In our model there are two renewable stocks (aquifers) S_H and S_L from where water may be extracted. For the sake of simplicity, assume that the recharge to respective basin is deterministic and constant. The inflow to the respective basin assumed to cease when the storage capacity of the aquifer is reached. The return do of consumed water is assumed to be negligible. Thus, changes in the stocks are to extraction and recharge only. Extraction costs are supposed to be twice differentiable functions of quantity and stock size. First derivatives are assumed to be, to pectively, positive and negative, whereas second derivatives are positive. We consider the possibility that the water resources differ in their respective qualities. Quality of water in an aquifer may be lower due to marine intrusion or due to infiltration of fertilizer from agriculture. Let the qualities be denoted respectively be Q_n and Q_L , where $Q_H > Q_L > 0$. The qualities are assumed to be constant over time. However, there exists the possibility of providing any intermediate quality by mixing water of the two sources. Mixing quantities K_H and K_L of the two qualities results in water whose quality is given by: $$Q_{M}(K_{H}, K_{L}, Q_{H}, Q_{L}) = \frac{K_{H}Q_{H} + K_{L}Q_{L}}{K_{H} + K_{L}}$$ (1) Quality of potable water should weakly exceed the constant minimum quality standard Q_{mn} , where $Q_{tt} > Q_{nm} > Q_{tt}$. Mixed water of quality Q_{tt} may or may not satisfy the minimum quality standard, depending on the quantities and the qualities which are mixed. In any case, any quality may be improved at a cost, which is an increasing function of the difference between the quality before and after purification. Moreover, a given improvement DQ of a lower quality is less costly than the same improvement performed on a higher quality. Let the initial quality subject to purification be Q_{tt} . The purification cost, denoted by $C_{tt}(K, DQ, Q_{tt})$, for a certain water quantity $K = K_{tt} + K_{tt}$, is assumed to satisfy the following conditions: $$\frac{\partial C_{\Lambda Q}}{\partial K} > \frac{\partial^2 C_{\Lambda Q}}{\partial K^2} > \frac{\partial C_{\Lambda Q}}{\partial \Delta q} > \frac{\partial^2 C_{\Lambda Q}}{\partial (\Delta Q)^2} > \frac{\partial C_{\Lambda Q}}{\partial Q_0} \Big|_{V_0} > \frac{\partial^2 C_{\Lambda Q}}{\partial Q_0^2} \Big|_{V_0} > 0$$ (2) A centralized knot may exist which co-ordinates the resource flow between the sources and the consumers. The principal objective of the distribution knot is the centralization of the decisions about quantity and quality supply and the distribution to the respective consumers. Figures 1 and 2 show the distribution scheme that operates in each scenario. Suppose there are many consumers in the economy whose behavior can be aggregated under one of two types: i) the households (h) and ii) the farmers (F). Consumers differ in their respective preferences regarding the quality of water. Both types prefer a higher quality of the resource to a lower one. Farmers prefer more quantity of each product to less. However, households will consume water whose quality weakly exceeds a minimum standard. If mixed quality does not satisfy this condition it will be subject to purification. The purification procedure is assumed to be costly enough that it is not profitable to improve quality above the minimum standard. Hence, the quality consumed by households will be the maximum between the minimum quality and the mixed quality. Thus, $Q_n = Q_M$ and $$\Delta Q = \begin{cases} Q_{mn} - Q_M, & \text{if } Q_{mn} > Q_M \\ 0, & \text{if } Q_{mn} \le Q_M \end{cases}$$ Let the households take the purification cost into account in their utility function and assume the utility functions $U_h = U_h$ ($K_w Q_{hh}$) and $U_r = U_r$ ($K_w Q_{hh}$) (where $K_h = K_{hh} + K_{Lh}$, and $K_r = K_{hh} + K_{Lh}$) of the respective consumer-types to be twice differentiable with respect to quantity and mixed quality. Farmers' utility is increasing in both arguments, while depending on the purification cost function, the utility function of households might be increasing in the quantity of low quality only up to a certain limit. In fact, it will be increasing if mixed quality weakly exceeds the minimum reality standard. From the assumption of twice differentiability of the utility functions it follows that the sum of the functions is twice differentiable, too. The indirect rectal welfare function $V(K_{lp}K_r)$ which maximizes consumer surplus for a given matrity of water can be described as follows: $$V\left(K_{H},K_{I}\right)=\max_{K_{Hib},\ K_{Lib}}\ U_{h}\left(K_{Hb},K_{Li},Q_{Mb};K_{H},K_{L}\right)+\text{UF}\left(K_{HF},K_{LF},Q_{MF};K_{HB};K_{HB},K_{LB},K_$$ $$(i) \quad K_H = K_{III_1} + K_{III_2}$$ $$(ii) \quad K_t = K_{t,h} + K_{t,t}$$ $$(iii) \ \ Q_{Mh} = - \frac{Q_H \, K_{Hh} + Q_L \, K_{th}}{K_{Hh} + K_{Lh}} \label{eq:QMh}$$ $$(iv) \ \, Q_{MF} = - \frac{Q_{II} \, K_{HF} + Q_{L} \, K_{LF}}{K_{HF} + K_{LF}} \,$$ As a benchmark for our experimental results, we are interested in the optimal solution of water supply. Given the assumptions above, we formulate program that maximizes social welfare¹⁰. Without loss of generality, suppose initially the resource stocks are in the natural hydrological equilibrium, i.e. a. upper bound of the storage capacity. Let, denote, respectively, recharges of each lity water, and t_n the starting time of extraction. Assume the social rate of discount d=1. Thus, the intertemporal objective function is formulated as follows $$\max_{K_{tt}} \int_{t_{t}}^{s_{t}} e^{-\delta t} \left[V\left(K_{tt}, K_{tt}\right) - C_{tt}\left(K_{tt}, S_{tt}\right) | K_{tt} - C_{tt}\left(K_{tt}, S_{tt}\right) | K_{tt} \right] dt$$ S.I. $$(i) \qquad \frac{dS_m}{dt} = \begin{cases} -K_m + a_n, & \text{if } S_n <
S_n^{\text{max}} \\ S_n^{\text{max}}, & \text{otherwise} \end{cases}$$ (ii) $$\frac{dS_{Ii}}{dt} = \begin{cases} -K_{Li} + a_L, & \text{if } S_L < S_L^{max} \\ S_L^{max}, & \text{otherwise} \end{cases}$$ $$(iii) \quad S_{m_0} = S_{m}^{max}$$ in Indeed, it is a problem which is solvable by means of optimal control theory, where the stock are the states and the quantities the control variables. By means of the resulting current value Hamiltonian and Pontryagin's maximum principle (assuming an interior solution) the two following conditions have to be satisfied in the hydro-economic equilibrium: $$\frac{\partial V}{\partial K_{H}}\Big|_{K_{L}=a_{L}} = a_{R} \left| \frac{\partial C_{H}}{\partial K_{H}} \right|_{K_{L}=a_{L}} + C_{R} \left(a_{R}, S_{H} \right) - a_{R} \left| \frac{\partial C_{R} \left(a_{R}, S_{H} \right)}{\partial S_{R}} \right| \\ \frac{\partial V}{\partial K_{L}}\Big|_{K_{L}=a_{L}} = a_{L} \left| \frac{\partial C_{L}}{\partial K_{L}} \right|_{K_{L}=a_{L}} + C_{L} \left(a_{L}, S_{L} \right) - a_{L} \left| \frac{\partial C_{L} \left(a_{L}, S_{L} \right)}{\partial S_{L}} \right| \\ (5)$$ These conditions in (5) simultaneously determine the steady-state standing-stocks of S_n and S_t . They basically state that, in the long-run, the marginal social utility, which embodies the respective resource price in the economy, should equal the social costs of extraction represented on the right hand side.¹¹ #### 3. EXPERIMENTAL PARAMETERS AND MARKET DESIGN The experiments were conducted at the *Laboratorio de Investigación en Economía Experimental (LINEEX)*, at the University of Valencia (Spain). Three treatments with 14 independent markets (per treatment) were studied in which a total of 84 subjects participated. They were recruited among undergraduate students of Economics at the University of Valencia. Urs Fischbacher's software *z-Tree 2011* was used for the programing of the design. An experimental session took between two and two and a half hours. Subjects earned an average of 3500 ptas (\$20). We use the model described above with the following values for the parameters: - (i) Recharge: $(a_{ij}, a_j) = (3, 3)$ - (ii) Initial and maximum stock sizes $(S_{IP}, S_I) = (20, 20)$ - (iii) Water qualities: $(Q_{tr}, Q_{L}) = (5, 1)$ - (iv) Minimu n quality standard demanded by the household: $Q_{min} = 3$ In each condition, the first two terms, both positive, represent the marginal costs which result from extracting a quantity K_n (respectively K_i) from the water stock S_n (S_i). The third term reflects the shadow price of the resource, that is, the implied costs induced by a lower water table, which are imposed on all future extraction. The utility and cost functions used are provided in the appendix. Applying the abequations, in the steady state of the social optimum a stock size of $(S_{IP}, S_{IJ}) = (4.84)$ is obtained associated with the prices $(P_{IP}, P_{IJ}) = (102, 86)$. The quantities $(K_{HP}, K_{IJ}) = (2.85)$ and $(K_{HP}, K_{IJ}) = (0.45, 3)$ are assigned, respectively, to household (h) and agricultural (F) consumptions. Subjects were told that sessions would last 45 periods¹². ### 3.1. Experimental design The experiment adopted a discrete time framework. No explicit reference was made to water in the instructions aiming at a no-label experiment. Producer-subject knew their product «type», in the sense that they were conscious about a generic preference by consumers for one good (high quality) over the other. Moreover, the knew that their products were demand substitutes (though not perfectly) and that their production cost structures were identical. Subjects received a table with their uncosts depending on the stock size (see the instructions in the appendix). Consumers received specific information about the increases in their 'satisfaction' level' from each additional unit bought. Experimental subjects (consumers and producers) were introduced separately to their tasks and did not know any details about the restrictions on the other side of the market (the information was provided privately at any instance on their computer screens). A history window would display at past outcomes regarding own decisions, quantities, payoffs and market prices. Producers and consumers were asked to decide about their respective reservation prices for each unit of product within the range 1 to 5 (the maximum quantity each one of them could trade in each period)¹³. Producers had to post, simultaneously, *five* sealed offers which should equal the minimum price at which they were willing to sell the respective unit¹⁴. The offers had to exceed weakly the cost of the corresponding unit and offers of subsequent units would have to be non-decreasing. On the demand side subjects would have to submit five scaled bids for each product, which had to be not (monotonically) increasing for subsequent units and, at most as high as the rent that would arise from one extra unit. The bids should reflect the maximum price at which ¹² However, in order to avoid end-game behavior, we stopped sessions after period 35. ¹³ The quantity limitation was designed to account for the time restrictions of experimenta exposition. ¹⁴ Producers in treatment 1 had to post five scaled offers for each product. consumers were willing to purchase an additional unit. Subjects knew that, after bids were announced, all units of the same product in a period would be sold at the same market price (see instructions). ### 3.2. Market institutions We aim at comparing three different market structures. Our basic market (treatment 2) is designed to be a fully decentralized structure in which resources are independently owned and run and consumers act in an individually optimal (simulated) way. Two alternative structures are designed in which either upstream (treatment 1) or downstream (treatment 3) action is coordinated and, in both cases, coordinating agents are human subjects. The non coordinated part of the market (suppliers) in treatment 3 is also run by human subjects. Therefore, together with upstream and downstream centralization, other shortcomings of human behavior in dynamically and strategically complex environments can be analysed. Treatment 1 involves a monopoly (joint ownership of both sources) in the upstream market, and optimal (simulated) coordination of downstream behavior. One subject is posting price offers for both water qualities. Given these offers, the maximal consumer rent is determined in the simulated centralized downstream market: $V(K_mK_t) - w^*k$, where w denotes the vector of sealed offers and k denotes the vector of quantities. Thus, the bundle of high quality and low quality water which produces the highest consumer rent is allocated in the economy, and the corresponding offers of the subject stablish the clearing prices. Treatment 2 is our «basic» and least centralized one with which the other two treatments could be directly compared. In this treatment, we assume uncoordinated action on both sides of the market with a duopoly (decentralized ownership of resources) selling to two simulated (decentralized) utility-maximizing consumers. Given the multiplicity of independent agents, further problems in market design had to be solved. The producer-subjects did not receive information about how markets would clear and, therefore, they did not know what influence the decisions of the competitor would have on the own demand. Although subjects posted their offers simultaneously, markets cleared in a random order determined by the computer¹⁵. This mecha- We used this mechanism because we were not interested in a systematic Stackelberg market structure, favoring one of the two markets and the correspondingly consumer type. nism was introduced aiming at avoiding totally inefficient outcomes in which commers buy too much of the product which least fits their specific needs. Thus, farm were given preference in the low quality market and households were preferred in high quality market. Therefore, a consumer was allowed to buy in the 'other' mark only if the 'own' market was the first to clear and the consumer had been left wis some excess demand. In treatment 3, three subjects participated in each session. Two of them, if owners of the sources, acted on the (decentralized) supply side of the marker. The third one, a representative consumer, would be on the (centralized) demand side acting as a monopsonist and representing both consumer types 16. Like in treatment a market day comprises a sequence of two, in which the subject who acted as the consumer representative buys subsequently in both markets which opened in a rando order. In the second market, the number of units purchased in the first market, were taken into account 17. The market-clearing is determined by means of comparison across unit offers and unit bids. In particular, the market-clearing price is the maximin (within the producer's price offers) exceeded by the maximum price (within the consumer's bids), for the same unit, which the consumer were willing to pay. Then the quantity would be determined too. ## 4. RESULTS AND DISCUSSION This section is organized in three subsections. The first one is dedicated to the observations concerning stock sizes. In the second subsection, market prices and the bid-and-offer results are presented and discussed. Finally, in the third subsection, we undertake the comparison of the three treatments in terms of welfare and efficiency ³⁶ Since his/her earnings were proportional (50%) to the consumers' rent. ^{1/} Subjects' screens would display the maximal satisfaction level associated with the consumption of an additional unit. #### 4.1. Stock data In figure 3, the (cummulative) distributions of end-period stock sizes are presented. Stock sizes below the socially optimal hydrological steady state stock size of $(S_m, S_c) = (4.84, 5.01)$ were hardly observed in treatment 1, whereas, in treatments 2 and 3 a few times
a high quality stock size of 3 units was reached — which stemmed from one subject's strategies in each treatment. Considering the distributions, we see that each one of the scenarios resulted in a different resource-management. It can be seen from figure 3 that treatment 1 did not produce any perceivable stock differences across water qualities. On the other hand, in treatment 2, the low quality stock dominates the high quality one, while in treatment 3 almost the opposite prevails. Table 1 contains data on the stock sizes in the 14 markets after 35 experimental periods. A Mann-Whitney test does not reject the hypotheses of stochastic equivalence of last period stock sizes across treatments for low (respectively, high) qualities 18. A common feature can be seen in figure 4. in which we observe a declining tendency in (average) stocks during the course of the sessions. However, this trend is much weaker in treatment 1 (only significant during the first five periods). This observation is, generally speaking, an indicator of the fact that subjects, in treatment 1, have given priority to the goal of maintaining the hydrological equilibrium of the system, whereas competing producers, in the other two treatments, have been trying to sell as many units as possible. In fact, in treatment 3, the decreasing rate at which this trend is produced indicates that producers have also tried to avoid selling beyond a certain point leading to stocks which fall too low (so that extraction costs would not increase to levels implying a serious competitive disadvantage to them). In any case, the relatively high extraction costs associated with low stock sizes led subjects in all regimes —on average— to more conservative extraction than would correspond to the socially optimal steady state solution. In other words, we obtain the opposite of the common resource overexploitation result attributed to competition in the extraction stage. That is, the setup studied here results in some kind of horizontal externality leading to under-exploitation of the resource by firms who are competitors in the downstream market. Throughout the paper, we use a a=.05 level of significance. We use standard tests from Siegel and Castellan (1988) # 4.2. Posted offers, bids and market prices Following the theoretical framework, the hypothesis has to be verified the ces, posted bids and offers should correctly reflect the difference in qualities is, high quality water is expected to yield higher prices, offers and bids than quality one. However, in a setting like ours, in which human subjects take decrease in an environment whose market equilibrium is far from obvious, the experiments should not expect this to be a trivial or even a usual result. In fact, the recharge blem implies a further issue to be taken into account by subjects who should not care about what they sell and earn in each period but, also, what this implies for a product's stock and, consequently, each producer's unit costs in future periods. The most important descriptor of the supply side of our experimental marker and also an indicator for the cognitive processes of subjects with respect to bell and learning, is given through the posted offers (since they are the control variable of producer-subjects). Figure 5 plots the average of the posted offers and bids for the first unit of each water quality over the 35 periods of the experiment. Table 2 report for each treatment, the posted offers (for the first unit of each quality water) observed in periods 1 and 35. In the first period, the monopolist in treatment 1 posted, in all markets, a **higher** offer for the first unit of high quality water than for the low quality one. In the same period, the rest of the units were also offered at prices which correctly reflect quality differences. In this treatment, the same applies for period 35 and, for the rest of the periods, only three times (out of seventy possibilities) an inverse order was observed Along the 35 periods, and considering all treatments, 155 times (out of 2450) low quality water was offered at a higher price than high quality one. Given that the only way for producers of controlling their level of sales was through (very high) offers we observe excessively high offers for the last units (mainly, the 4th and 5th). In particular, the frequency of the event of a higher offer for the low quality is highest for the fifth unit²⁰. In some cases, subjects were able to increase their sales of high quality water (selling less low quality's) by raising offers for the water of low quality. ¹⁹ This finding should not be confused with a similar argument by Saliba et al. (1987) concerning prices which do not reflect water values, where value differences are due to water scarcity, etc. ²⁰ In fact, in most of the occasions in which sellers posted a higher price for low quality water than for high quality one, the corresponding unit of low quality was not sold. Unlike the monopolist in treatment 1, sellers of low quality water in treatments 2 and 3 lack any incentive to post higher offers as a means of promoting the sale of high quality water. This observation follows text-book theory on monopoly *vs.* duopoly pricing in static differentiated product markets, according to which monopolist pricing leads to lower price differences than duopoly pricing does. Focusing on the first period of each treatment, stochastic equivalence of posted offers for any unit of high quality and low quality water cannot be rejected by a (pair-wise) *U*-test in any of treatments 2 and 3. In treatment 2, the low quality producer posted a higher offer for the 1st (2nd, 3rd, 4th, 5th) unit of his/her product in 8 (8, 7, 7, 6) out of the 14 markets. In this treatment, offers by the seller of low quality water were, on average, higher than those posted by the seller of high quality water. In treatment 3, the same is true on average but, for the 1st (2nd, 3rd, 4th, 5th) unit, we find only 4 (5, 5, 4, 4) observations in which the offer posted by the seller of low quality was higher than the corresponding offer posted by the seller of high quality (see table 3). More specifically, in period 35, the 1st (respectively, 2nd,..., 5th) offer posted by the low quality seller exceeded 6 (respectively, 7, 8, 9, 10) times the corresponding offers posted by the sellers of high quality water in treatment 3 and 1 (respectively, 1, 0, 0, 0) time in treatment 2. During the experiment, the number of times that the low quality producer posted higher offers (for any unit of his/her product) than the high quality producer significantly decreased over time in treatment 2 and increased in treatment 3. A two-tailed Spearman rank correlation test of the null hypothesis of no correlation of time and the number of observations in which the low quality offer exceeds the high one is rejected (favoring a positive trend). In few words, treatments 1 and 2 have reflected better the quality differences on price offers as compared to treatment 3, in which we observe a tendency towards equalization of the offers across products. Therefore, subjects who acted as monopsonistic distribution knots, have influenced the market outcome in a sense that tends to distort the expected difference in prices as a result of the difference in qualities. In treatments 2 and 3, the average offers were lower in the 35th period than in the first one and low quality producers posted, on average, lower offers than high quality producers did. In treatment 1, the offers for both products were higher in period 35 than in the first one. In all markets and in all treatments, it is observed that subjects who submitted in period 1 offers below 100 posted higher offers in the 35th period, and those who posted offers above 100 posted lower offers in period 35. Look at table 4. The comparison of posted offers across treatments yields that, in the first period, the monopolists (treatment 1) posted lower offers than duopolists (treatments 2 and 3). The Mann-Whitney C-test rejects the null hypothesis of equal posted offers in tre- atments 1 and 2 in most occasions, with lower offers in treatment 1. A compare result is obtained between treatments 1 and 3 for some units (especially for the se of high quality water). Contrary to what static theory would predict, it is surpri that, in the duopoly (treatment 2) offers are higher than in the monopoly (treatment Considering the dynamic nature of the experiment, an interpretation for this a rently odd behavioral pattern is that subjects signal cooperation in the compe environment at the beginning of a session, hoping to achieve the collusive outsi in future periods. In the case of monopoly, subjects approach equilibrium prices in below as has been already pointed out in other experimental studies²¹. Finally seems that high first-period offers are rather specific to oligopolists' strategies aim at establishing the collusive outcome. On the contrary, low offers in the first per seem rather specific to monopolists' strategies aiming at reaching from below initially unknown optimal strategy. A further factor which could favor this kind a behavior observed in treatment 1 may be found in the priors of our subjects may, initially, apply theories based on real world situations in every new scenario they face. In this sense, promotion of new products with low prices may be a strate although it seems less reasonable in our context. Moreover, period 1's posted offer in treatments 2 and 3 are not stochastically different from each other. However, offer in period 35 (treatment 3) are lower than in the other treatments, especially those period 35 (treatment 3) are lower than in the other treatments. ted by high quality sellers. The monopsonistic subjects have used their market power and pushed down the offers posted by sellers of high quality water. The resulting market-prices reflect what has been stated above: in period 1, price of high/low quality water across
treatments are stochastically equivalent. Figure 6 prosents a chart of the average prices in the experiment. In treatment 1, the average prices increase significantly over time (showed by a Spearman rank correlation test). In treatment 2, the high quality price increases and the low quality price decreases, whole in treatment 3 the contrary happens. However, these observations are not statistically significant. Prices in treatment 3 are lower than prices in treatments 1 and 2. Specifically, prices of high quality water in treatment 3 are stochastically dominated by those of treatment 2 in 25 periods, with increasing importance along the experiment. On the demand side of the market, in treatment 3, monopsonistic subjects posted bids for high quality and low quality units (average bids for the first unit are plotted in figure 5). As would have been expected, subjects use their market power to ²¹ See, especially, García-Gallego and Georgantzís (2001). influence market prices through their bids. As can be conjectured from the chart, average bids present a non-increasing trend. Moreover, based on individual data, we find that only in four markets (7, 8, 9, 11) a (significant) decrease of the bids (table 5) is observed, while, in market 9, this decrease is only observed for the first unit. In the other three cases (7, 8, 11), market power has been exercised by downstream subjects who posted very similar bids (negatively correlated with time) for the units along the session. Let us look at table 6. Except from the three markets (7, 8, 11) mentioned above, the correlation between the satisfaction level for one extra unit and the bids is usually positive and, specially in markets 1, 2, 10 y 14, this relation is significant. equalized the satisfaction levels for one extra unit from their screens, thus, behaving as in perfect competition. Therefore, the random shocks resulting from sequential sales were not smoothened by downstream behavior and were transmitted to upstream markets. As a consequence, the levels of satisfaction of the monopsonistic subjects in treatment 3 decrease over time. Yet, in markets 7, 8, and 10 in which subjects exercised their monopsonistic market power, consumer surplus increased. Figure 7 plots the average payoffs of experimental subjects for each treatment over the horizon of the experiment. Observe that, in treatment 1, monopolists' average profits present a (significant) increasing trend. Table 7 includes data on (average) earnings for each type of firm (per treatment) and levels of satisfaction of monopsonists. Observe that the decreas ng trend of satisfaction levels for consumers in treatment 3 is significant $(r = -0.38 [-2.39])^{22}$. As far as the quantity of water (of each quality) allocated in each treatment, look at figure 8. Comparing graphs in this figure, we find that treatment 1 exhibits most the extraction path which we would assume in the optimal solution, i.e., maximal production at the beginning, and stabilizing at the hydrological equilibrium (where extraction equals recharge). Over the 35 periods, an average quantity was supplied of, respectively, $(K_BK_B) = (2.8 (1.4); 2.8 (1.2))$ in treatment 1, (2.5 (1.3); 2.8 (1.2)) in treatment 2, and (2.8 (1.6); 3 (1.3)) in treatment 3. Table 8 reports the average quantities allocated in the three markets. No significant trend is found. ²² Small numbers indicate standard deviation. # 4.3. Market Performance Let us compare the three treatments in terms of market efficiency. Data on welfare averages (aggregated utility minus production costs) are reported in the At an aggregate level, no significant trend is observed. However, all treatmoresent markets in which the level of social welfare (on average) increases (signately) over time (markets 1, 2 in treatment 1; markets 5, 14 in treatment 2; markets in treatment 3), as well as markets in which this trend is (significantly) decrease (markets 4, 6, 11, 12, 13 in treatment 1; markets 9, 12 in treatment 2; markets 10 in treatment 3). As far as treatment 3 is concerned, observe that markets and 10, even in the presence of monopsonistic power, present levels of ASW that below the average social welfare (on aggregate) and, in the case of market 8, as it cated by the Spearman correlation coefficient, average social welfare increases of time ((r = 0.4; (2.51))). Figure 9 shows average social welfare along the 35 periods. Notice that there less volatility in the trajectory of the averages in treatment 1 than in the other two atments. With respect to treatment 3, since monopsonistic subjects, generally speking, failed to dictate the market, the introduction of an additional subject could have been responsible for more noise. An indicator for inefficiency in our hydrological model is the quantity of water lost because the stock is at its upper limit. Inefficiency arises since resources that flow into the economy are foregone. From table 10, we perceive that the most 'saving' usage, in terms of water management, prevailed under the conditions of the atment 3 and specially for the high quality water (loss equal to 119). Moreover, in treatment 3, the recharge rate was more frequently exceeded by the production than in the other treatments (less number of observations which felt short of the constant periodical recharge). ## 5. Final remarks, Policy implications In a series of experimental markets we have tested the performance of three alternative ways of administrating the flow and the market for two different water qualities. Some of the results reported above have straightforward implications for economic policy in the presence of dynamic and strategic complexity. First, centralization of agent decisions on the supply or the demand side is market power and helps internalize the horizontal externality among consumers and consumer types. In fact, even a market with ideally behaving decentralized typers was shown to be dominated in terms of social efficiency by a market with turnan (thus, imperfect) agents acting as downstream coordinators. Furthermore, the introduction of a monopsony tends to equalize prices across product qualities, which has a direct positive impact on social welfare, because high quality water has been cept relatively cheap. Second, contrary to standard wisdom concerning market power in simpler setups, centralization of decisions by an upstream monopoly also leads to higher levels of social welfare and a more efficient water management. That is, given that the dynamic aspects of water resource management are important, upstream centralization is also desirable because it is more likely to guarantee an efficient exploitation of the resource, and avoid market (price, quantity, profit) volatility. In fact, our results indicate that volatility in all magnitudes has been higher in the presence of a larger number of human agents in the market, which seems to support the view that learning in enhanced in the presence of a more reliable feedback which is more likely to be received when subjects act in a more stable environment²³. Furthermore, the shock introduced by the market clearing mechanism in treatment 2 does not seem to have been a serious obstacle for learning, given that price offers posted by subjects tend to stabilize over time, despite the volatility in the quantities sold and payoffs earned. Together with the remark on the reliability of the feedback, this observation leads us to the conclusion that strategic complexity is a more serious problem for humans learning in unknown environments than are moderate stochastic shocks. A further remark supporting this conclusion is that buyer subjects' strategies present the highest volatility among all data obtained. To the aforementioned shortcomings in our subjects' learning, we have to add the fact that subjects of this type are «unique» in each session and any imitation of successful subjects of the same or similar types is impossible²⁴. ²³ A feature which would give some but not full support to the very pessimistic view of psychologists like Brehmer (1980) who claimed that learning is difficult when not impossible unless subjects are exposed to (very simple) linear and deterministic environments. ²⁴ As suggested, among other authors, by Offerman and Sonnemans (1998) and Duffy and Felbyich (1999). Comparison of water flow management across treatments, indicates that commer coordination has led to a lower waste of the resource than any other of the taket structures studied, although a constantly declining trend of the stocks indicate that in a longer experiment this scenario is the most likely to cause a problem of she tage. In fact, this can also be concluded from the fact that, in this treatment, sales are vertice the recharge rate were observed more often than in any other treatment. However in all treatments, average productions have been almost as much (ranging freshightly lower to equal) as natural inflow, which suggests that the majority of our salects have managed to keep the system close to its hydrological equilibrium (inflow=sales). This also indicates that the dynamic factor has played an importance in subjects' actions. The consumption of high quality water exceeded on average the consumption of low quality water in all treatments. Regarding the usual problems in resource extraction games, depletion of the resource does not appear to be an important issue, because the cost structure prevented subjects from sailing too much in each period. However, we found that, even in a deterministic environment in which one agent managed two resource stocks under optimal demand conditions, a non-trivial allocation problem arises, since the monopolistic subjects needed to improve (along time) their performance. The lesson that we draw from our experiment is that an appropriate definition of property rights? may be not enough for an efficient management of resource markets. ## 6. Appendix #### 6.1. Utility and cost functions used
in the experiment The household's utility is given by the following function: $$U^{h}(K_{Hh}, K_{Lh}, Q_{Mh}) = 20.5 \cdot \ln[1 + (max\{Q_{min}, Q_{Mh}\} + (K_{Lh} + K_{Hh})) \cdot (K_{LH} + K_{Hh}) - C_{AO}$$ where the last term in brackets denotes the purification costs: ²⁵ Often mentioned as a solution to a huge variety of resource-related problems like, for example, in Colby et al. (1993). $$C_{AQh}(K_{Hh}, K_{Ih}, Q_{Mh}) = \begin{cases} \frac{\Delta Q_h^2}{3} (Q_{Mh}^2 + (K_{Hh} + K_{Lh})^2), & \text{if } Q_{mm} \geq Q_{Mh} \\ 0, & \text{otherwise} \end{cases}$$ The farmer's utility function is as follows: $$U^F(K_{HF}, K_{LF}, Q_{MF}) = 1.7 \cdot \ln[1 + 0.5 \cdot (Q_{MF} + 3 \cdot (K_{LF} + K_{HF})) \cdot (K_{LF} + K_{HF})]$$ The cost function of producer i (i = H, L) is given by: $$C_{i}(K_{i}) = \int_{0}^{F_{i}} e^{-\frac{S_{i}}{2}} d_{M}$$ Thus, the following *utils* (unit utilities) for high quality and low quality were assigned to the household (h) and the farmer (F): | household | Low 0 | 1 | 2 | 3 | 4 | 5 | |-----------|-------|-----|-----|-----|-----|-----| | High 0 | 0 | 174 | 301 | 356 | 378 | 378 | | 1 | 399 | 492 | 579 | 637 | 679 | 711 | | 2 | 555 | 624 | 690 | 753 | 797 | 832 | | 3 | 660 | 717 | 771 | 822 | 869 | 906 | | 4 | 740 | 789 | 836 | 880 | 920 | 959 | | 5 | 806 | 849 | 890 | 929 | 965 | 999 | | Farmer | Low 0 | 1 | 2 | 3 | 4 | 5 | |--------|-------|-----|-----|-----|-----|-----| | High 0 | 0 | 187 | 354 | 471 | 560 | 631 | | 1 | 274 | 391 | 491 | 572 | 639 | 696 | | 2 | 422 | 509 | 584 | 647 | 702 | 749 | | 3 | 525 | 594 | 655 | | 753 | 794 | | 4 | 604 | 662 | 712 | 757 | 798 | 834 | | 5 | 668 | 717 | 761 | 801 | 836 | 869 | # 6.2. Instructions²⁶ #### 6.2.1. Producers The goal of this experiment is the study of decision-making in experimental markets. The decisions you'll make are directly related to your monetary reward. At the end of the session, you will be paid privately in cash. You can make any question regarding these instructions by raising your hand. Any communication is strictly for bidden and it will be penalized with the immediate exclusion of the experiment. #### The Experiment For 45 rounds, you are going to participate in a Market Experiment with the following characteristics: - 1. You take part on a market in which there are two consumers (**represented by** one single agent in treatment 2) and two producers. Producers compete to sell their production and *you* are one of them. - 2. Two commodities (good 1 and good 2) which are demand substitutes (but are not identical), are supplied in the market (each one supplied by one producer). Both producers have similar costs structures. The computer will tell you which of the two producers you are. - 3. Although consumers have different tastes, they both prefer good 2 to good 1 You have to decide about the *minimum selling price* for each unit of your product. To do that, you may use the following information: - 1. The table bellow shows the production costs per unit of your product (using ECUs as our Experimental Currency Unit). - 2. Using the information included in the table, you have to announce *five* (minimum) *prices* at which you are willing to sell your units (afterwards, you will sell a maximum of 5 units). ²⁶ In bold, we add some details that might help the reader to understand the experimental sessions. - 3. Pricing schemes for the 5ht unit bundle cannot be decreasing monotonically: **be price** for the first unit must not be higher than the price for the second unit; the **second** unit price must not be higher than the third unit price, and so on. - ### A: The unit cost decreases with the stock size. Your initial stock size is 20 units and will get, every round, three more units. Your stock can never exceed 20 units and, therefore, any additional (over 20) units you may receive are immediately vanished. | 200000000000000000000000000000000000000 | | | | | | | | | | | |---|-----|-----|-----|-----|----|----|----|----|----|----| | Stock size | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | Unit Cost | 607 | 368 | 223 | 135 | 82 | 50 | 30 | 18 | 11 | 7 | | Stock Size | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | Unit Cost | 4 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | An example: Imagine you are at the beginning of a round with a stock of 10 units of product and you get your additional 3 units (as you will at the beginning of each round), your stock now is 13 units. Your unit costs for the units you produce are the following: The cost of the first unit produced is 2 ECUs, the cost of the second unit produced is 2 ECUs, the cost of the third unit produced is 4 ECUs, the cost of the fourth unit you produced is 7 ECUs, and, finally, the cost of the fifth unit produced is 11 ECUs In order to earn money, your pricing schedules must be such that each unit's price exceeds the corresponding cost. Following the example, the lowest profitable price for your first unit should not lie below 2 ECUs (its unit cost), etc., nor should it exceed the price you fix for the second unit. These rules also apply for the rest of the units. If you sell 5 units, your stock size, in the following round, would be 11 units (8 you kept plus 3 you get in the new round). If you don't sell any unit after your announcing price scheme, your stock would be 16 units (13 you had plus 3 you get). # Decision making and earnings 1. You have to fill in the boxes that appear at your computer screen with the **minimum** prices at which you are willing to sell your units. In each box, you will also set information about each unit cost. - 2. Both producers decide on prices simultaneously and, as a consequence mation about the other producer's decisions will be available only after the recover - 3. Although you have to propose five different minimum prices, all units we sold at the same price: the highest unit price proposed (by a producer) which is eded by the correspondent bid proposed by the buyer (which reflects his willing to pay). In this way, it is also possible to know the number of units sold (all units a price offer higher than the proposed consumer bid). - 4. The money you will earn at the end of the experiment will be the sum of carnings you get in each round. The exchange rate is 10 ECU = 3 ptas. ## 6.2.2. Representative Consumer (only treatment 3) The goal of this experiment is the study of decision-making in experimental the kets. The decisions you'll make are directly related to your monetary reward. At the end of the session, you will be paid privately in cash. You can make any question regarding these instructions by raising your hand. Any communication is strictly to bidden and it will be penalized with the immediate exclusion of the experiment. ## The Experiment For 45 rounds, you are going to participate in a Market Experiment with the following characteristics: - 1. In the market, there are one consumer representative and two producers. The producers compete to sell their production and *you are the consumer representative*. - 2. Two commodities (good 1 and good 2) which are demand substitutes (but are not identical), are supplied in the market (each one supplied by one producer). Both producers have similar costs structures. - 3. Your are the representative of all potential consumers in the market. All you know about consumers preferences is that they prefer good 1 to good 2. - 4. The table bellow includes levels of satisfaction (measured in ECUs, an Experimental Currency Unit) for any combination of commodities you can buy. Your earnings, at the end of each round, will be exactly the difference between your satisfaction level and your expenditure. | Good1/Good2 | 0 | T | 2 | 3 | 4 | 5 | |-------------|------|------|------|------|------|------| | 0 | 0 | 187 | 361 | 528 | 655 | 772 | | 1 | 399 | 586 | 753 | 870 | 963 | 1052 | | 2 | 673 | 790 | 909 | 1026 | 1115 | 1186 | | 3 | 829 | 946 | 1046 | 1131 | 1220 | 1291 | | 4 | 977 | 1064 | 1151 | 1232 | 1300 | 1371 | | 5 | 1082 | 1169 | 1244 | 1312 | 1379 | 1437 | You have to decide on your reservation price (i.e. the highest amount of money you are willing to pay for each unit of product) for *five* units of each product. To do that, you may use the following facts: - a) The reservation price schedule you submit in each round should be not monotonically increasing. That is, the highest price you are willing to pay for the second unit of any good must not be higher than the highest price you are willing to pay for the first unit of the same product, and so on and so forth. - b) Each round, your real consumption will be restricted to a maximum of 5 units of each product. #### Decision making and earnings - 1. Introduce (in the computer) your decisions about reservation prices and be careful to use the appropriate boxes. In a round, all units of the same product are sold at the same price: the *maximin* (the highest of the minimum prices which results from the producer's willingness to accept) which lies below some (highest) price which commes from your willingness to pay. This way, the number of units that are sold in the market is directly determined. - 2. Every time you choose the highest price you are willing to pay for each unit of product, you will get specific information about the incremental value on the utility got by the consumers you represent. - 3. In each round, although you have to propose five different reservation prices, all units of the same product are sold at the same market price: the highest price offer which is exceeded by your corresponding bid. Since this unit is the last one the producer is willing to sell (and you to buy), this unit is the last unit sold in the market. - 4. Your earnings will be the difference between the value got from the consumption (the value reflected in the table) and the expenditure in purchasing the units. An example: Look at the table above. If, in the previous round, you bought? of good 2, your
potential earnings, as a function of the units of good 1 you bought the correspondent column), are: If you buy no units of good 1 consumers get a utility value of 361 ECUs, if you buy 1 unit of good 1, consumers get a utility value of 753 ECUs, if you buy 2 units of good 1, consumers get a utility value of 909 ECUs, if you buy 3 units of good 1, consumers get a utility value of 1046 ECUs, if you buy 4 units of good 1, consumers get a utility value of 1151 ECUs, and, finally, if you buy 5 units of good 2: consumers get a utility value of 1244 ECUs. 5. In the interface of your computer, you will find boxes in which you have write your bids for each unit of product. You also find the utility value got with a purchase. For example, if you prefer to buy one unit of product 1 rather than too the increase in the utility value you got is 392 ECUs (the difference between 753 at 361). Your net payment will be half of consumer earnings. The exchange rate is it ECUs=3 ptas. # 7. References - Anderson, T. L. and Leal, D. R. (1989), «Building coalitions for water marketing», *Journal of Policy Analysis and Management* 8, 432-445. - Brehmer, B. (1980), «In one word: Not from experience», Acta Psychologica 45, 223-241. - Burr, O. R. (1964), "Optimal resource use over time with an application to groundwaters," *Management Science* 11, 80-93. - COLBY, B. G.; CRANDALL, K. and BUSH, D. B. (1993), "Water right transactions: Market values and price dispersion", Water Resources Research 29, 1565-1572. - Duffy, J. and Feltovich, N. (1999), «Does observation of others affect learning in strategic environments? An experimental study», *International Journal of Game Theory* 28, 131-152. - Durham, Y. (2000), «An experimental examination of double marginalization and vertical relationships», *Journal of Economic Behavior and Organization* 42, 207-229. - ESWARAN, M. and Lewis, T. (1984), «Appropriability and the extraction of a common property resource», *Economica* 51, 393-400. - GARDNER, R.; Moore, M. R. and Walker, J. M. (1997), «Governing a groundwater commons: A strategic and laboratory analysis of western law», *Economic Inquiry* 35, 218-234. - GARCÍA-GALLEGO, A. (1998). «Oligopoly experimentation of learning with simulated markets», Journal of Economic Behavior and Organization 35, 333-355. - GARCÍA-GALLEGO, A. and GEORGANTZÍS, N. (2001), «Multiproduct activity in an experimental differentiated ofigopoly». *International Journal of Industrial Organization* 19, 493-518. - GARCÍA-GALLEGO, A.; GEORGANTZIS, N. and SABATER-GRANDE, G. (2004), «Identified consumers: On the informativeness of cross-demand price effects», Cuadernos de Economía, 27, 185-216. - GISSER, M. and SANCHEZ, D. A. (1980), «Competition versus optimal control in groundwater pumping», Water Resources Research 16, 638-642. - GOODFELLOW, J. and PLOTT, C. R. (1990), «An experimental examination of the simultaneous determination of input prices and output prices», Southern Economic Journal 56, 969-983. - Gordon, H. S. (1954), "The economic theory of a common property resource: The fishery", Journal of Political Economy 62, 324-142. - HERR, A.; GARDNER, R. and WALKER, J. M. (1997), «An experimental study of time-independent and time-dependent externalities in the commons», *Games and Economic Behavior* 19, 77-96. - Howe, C. W.; Schormeier, D. R. and Shaw, W. D. Jr. (1986), «Innovative approaches to water allocation: The potential for water markets». *Water Resources Research* 22, 439-445. - Kelly, F. S. (1995), «Laboratory subjects as multiproduct monopoly firms: An experimental investigation», Journal of Economic Behavior and Organization 27, 401-420. - Mason, C. F. and Philanes, O. R. (1997), «Mitigating the tragedy of the commons through cooperation: An experimental evaluation», *Journal of Environmental Economics and Mana*gement 34, 148-172. - McCabe, K.; Rassenn, S. and Smrti, V. (1989), «Designing 'smart' computer assisted markets in an experimental auction for gas networks», European Journal of Political Economy 5, 259-283. - OFFERMAN, T. and SONNEMANS, J. (1998), «Learning by experience and learning by imitating successful others», *Journal of Economic Behavior and Organization* 34, 559-575. - PAICH, M. and STERMAN, J. D. (1993), «Boom, bust and failures to learn in experimental markets», *Management Science* 39, 1439-1458. - RASSENTI, S.: REYNOLDS, S. and SMITH, V. (1988), «Cotenancy and competition in an experimental double auction market for natural gas pipeline networks», *Working Paper*, University of Arizona. - RICHARDS, D. and HAYS, J. C. (1998), «Navigating a nonlinear environment: An experimental study of decision making in a chaotic setting». *Journal of Economic Behavior and Organization* 35, 281-308. - Rubio, S. J. and Casino, B. (1999), Competitive versus efficient extraction of a common property resource: The groundwater case, mimeo, Universidad de Valencia (Spain). - SALETH, R. M.; Braden, J. B. and Eheart, J. W. 1991, «Bargaining rules for a thin spot water market», Land Economics 67, 326-339. - Saliba, B. C. Bush, D. B.: Martin, W. E. and Brown, T. C. (1987), «Do water market prices appropriately measure water values?», *Natural Resources Journal* 27, 617-651. - Siegel, S. and Castellan, N. J. (1988), Nonparametric statistics for the behavioral set (McGraw Hill, New York). - STERMAN, J. D. (1994), «Learning in and about complex systems», System Dynamics Rev. 291-330. - WILLIAMS, A.; SMITH, V. L. and LEDYARD, J. O. (1986), «Simultaneous trading in two convergences of the convergence conve - Wong, B. D. C. and Empart, J. W. (1983), «Market simulations for irrigation rights: Attachment of the case study», Water Resources Research 19, 1127-1138. ## 8. Figures Figure 1. Water distribution structure in treatments 1 and 3 Figure 2. Water distribution structure in treatment 2 Figure 3. End-period stock: cummulative distribution for the three treatments. Vertical appropriate percentage of the total stock; horizontal axis: interval of stocks - SLI - SH1 Figure 4. Average stock sizes (treatments 1-3) Figure 5. End-period stock: cummulative distribution for the three treatments. Vertical percentage of the total stock; horizontal axis: interval of stocks e de designations de la company compan .1.6 Figure 6. Average clearing prices for low/high quality water (treatments1-3) 111 21 31 Figure 7. Average payoffs (treatments 1-3) Figure 8. Average quantity sold of each quality (treatments 1-3) Figure 9. Average Social Welfare (treatments 1-3) # 9. Tables Table 1. Stock sizes (Low/High quality) in treatments 1-3 after 35 periods | Market | SL1 | SHI | SL2 | SH2 | SL3 | SH3 | |------------|------|-----|------|-----|------|-----| | 1 | 15 | 16 | 17 | 6 | 9 | 11 | | 2 | 18 | 19 | 11 | 5 | 9 | 13 | | 3 | 9 | 13 | 17 | 4 | 15 | 14 | | 4 | 9 | 11 | 6 | 10 | 9 | 16 | | 5 | 18 | 16 | 11 | 13 | 20 | 15 | | 6 | 19 | 19 | 18 | 15 | 6 | 12 | | 7 | 5 | 8 | 17 | 7 | 7 | 10 | | 8 | 8 | 9 | 14 | 15 | 10 | 5 | | 9 | 11 | 9 | 7 | 5 | 4 | 8 | | i 0 | 18 | 7 | 11 | 17 | 4 | 5 | | 11 | 6 | 4 | 11 | 11 | 13 | 13 | | 12 | 11 | 14 | 5 | 4 | 20 | 15 | | 13 | 18 | 17 | 15 | 12 | 20 | 13 | | 14 | 10 | 9 | 17 | 8 | 17 | 4 | | Av. | 12.5 | 12 | 12.6 | 9.4 | 11.6 | 11 | Table 2. First unit posted offers (w) in periods 1 and 35 (treatments 1-3), Consumerable (b) (treatment 3). | Period | Sess | wL1 | wHI | wL2 | wH2 | wL3 | wH3 | bL3 | A. | |--------|------|-----|------|-----|-----|------|-----|-----|-------------| | | 1 | 2 | 3 | 30 | 5 | 1 | 10 | 55 | | | | 2 | 300 | 300 | 11 | _5 | 4 | 10 | 82 | | | | 3 | 20 | 25 | 450 | 100 | 3 | 25 | 40 | | | | 4 | 8 | 18 | 975 | 300 | 5 | 10 | 40 | Napa. | | | 5 | 20 | 30 | 5 | 450 | 15 | 20 | 65 | 100 | | | 6 | 2 | 5 | 900 | 10 | 12 | 400 | 125 | | | 1 | 7 | 10 | 60 | 25 | 10 | 330 | 500 | 186 | | | | 8 | 3 | 4 | 2 | 350 | 15 | 300 | 150 | 250 | | | 9 | 3 | 5 | 50 | 5 | 1 | 75 | 70 | | | | 10 | 3 | 4 | 6 | 400 | 300 | 125 | 115 | 350 | | | 11 | 11 | 3 | 20 | 10 | 1000 | 300 | 187 | 363 | | | 12 | 5 | 8 | 10 | 50 | 10 | 10 | 100 | 260. | | | _13 | 20 | 80 | 35 | 60 | 400 | 10 | 175 | 350 | | | 14 | 4 | 8 | 200 | 300 | 607 | 10 | 150 | 385 | | | | wLi | wH1 | wL2 | wH2 | wL3 | wH3 | bL3 | ьнз | | | 1 | 72 | 92 | 90 | 150 | 30 | 65 | 117 | 399 | | | | 165 | 385 | 60 | 65 | 60 | 95 | 84 | 396 | | | 3 | 65 | 150 | 60 | 75 | 65 | 80 | 47 | 3 50 | | | 4 | 80 | 100 | 65 | 100 | 60 | 100 | 65 | 250 | | | 5 | 95 | 110 | 60 | 99 | 120 | 65 | 85 | 388 | | | 6 | 75 | 95 | 100 | 130 | 30 | 75 | 80 | 215 | | 35 | 7 | 70 | 86 _ | 80 | 150 | 77 | 51 | 89 | 79 | | | 8 | 50 | 80 | 86 | 100 | 50 | 49 | 80 | 100 | | | 9 | 82 | 93 | 85 | 90 | 50 | 99 | 105 | 200 | | | 10 | 66 | 81 | 115 | 395 | 68 | 40 | 180 | 341 | | | 11 | 85 | 90 | 75 | 100 | 25 | 18 | 25 | 25_ | | | 12 | 79 | 94 | 25 | 50 | 110 | 140 | 65 | 340 | | | 13 | 85 | 90 | 75 | 120 | 70 | 74 | 50 | 325 | | | 14 | 85 | 100 | 100 | 99 | 55 | 50 | 82 | 391 | Table 3. Spearman rank correlation coefficient (rs) and t-test of time dependence of 'disequilibrium' offers (i.e., wL>wH) | | | Tre | eatmen | t I | | Treatment 2 | | | | | Treatment 3 | | | | | |---|------|-------|--------|-------|-----|-------------|-------|-------|-------|-------|-------------|------|------|------|------| | | w1 | w.2 | w3 | w4 | w5 | wl | w2 | w3 | w4 | w5 | wl | w2 | w3 | w4 | W5 | | r | -0.2 | -(·.4 | -0.2 | -0.1 | 0.2 | -0.7 | -0.8 | -0.7 | -0.7 | -0.7 | 0.6 | 0.5 | 0.5 | 0,6 | 0.7 | | | -1.4 | -2 4* | -1.3 | -().4 | 1.4 | 6.3* | -7.7* | -5.7* | -5.2* | -5.9* | 4.3* | 3.1* | 3.1* | 4.7* | 5.3* | Note: H₀: rs[t,#(wL>wH)]=0 the minus sign indicates negative correlation Table 4. U statistics of pairwise comparison between posted offers (treatments 1-3) | 2011 | | | period 1 | | | period 35 | | |-----------------|----|-------|----------|-------|-------|-----------|--------| | | | T1-T2 | T1-T3 | T2-T3 | T1-T2 | T1-T3 | T2-T3 | | Low | wl | 40.5* | 67.5 | 81 | 96.5 | 44** | 81 | | | w2 | 43* | 68 | 83 | 93,5 | 65 | 7.5 | |
0 , 111. | w3 | 47* | 44.5* | 82 | 94 | 90 | 59 | | 419 | w4 | 51* | 78.5 | 82 | 89.5 | 86 | , 83.5 | | | w5 | 43* | 80.5 | 75 | 86 | 72 | 72 | | High | w1 | 52.5* | 49.5* | 93.5 | 8 i | 40** | 67.5 | | | w2 | 56.5 | 53* | 92 | 80 | 38.5** | 29** | | | w3 | 56.5 | 61 | 87 | 47.5* | 39** | 14.5** | | | w4 | 55* | 57 | 87 | 45* | 47** | 10.5** | | | w5 | 53* | 61 | 85.5 | 46* | 58.5 | 16.5** | Note: Note: The expected value of the *U*-statistic is 98. rejection of H0 at a=.05-level of significance (htl>2.04) ^{(**):} Rejection of H₀ in favour of the alternative of higher offers in the latter* (former**) treatment (\alpha=05; U<55) Table 5. Spearman rank (r_{i}) correlation coefficient and t-test of posted bids (b) (treatment 3) | market | | b1[L] | b2[L] | b3[L] | b4[L] | b5[L] | b1[H] | b2[H] | b3[H] | b4[H] | | |---------------|--|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|------------------|------------------|-----------------|----------------------| | 1 | $\begin{bmatrix} r_s \\ t \end{bmatrix}$ | 0.67
5.19* | 0.53
3.58* | 0.37
2.26* | 0.34
2.05* | 0.40
2.48* | 0.62
4.56* | 0.09
0.49 | -0.21
-1.26 | -0.16
-0.93 | | | 2 | r_{i} | 0.47
3.02* | 0.44
2.81* | 0.37
2.27* | 0.32
1.91 | 0.36
2.23* | 0.24
1.45 | 0.26
1.54 | 0.30
1.78 | 0.17
0.98 | | | 3 | r_{s} | 0.16
0.95 | 0.15
0.84 | 0.17
1.02 | 0.14
0.80 | 0.10
0.60 | 0.31
1.86 | -0.03
-0.19 | -0.06
-0.32 | -0.02
-0.14 | | | 4 | r, | 0.27
1.61 | 0.30
1.80 | 0.35
2.18* | 0.42
2.69* | 0.51
3.39* | 0.05
0.31 | 0.11
0.61 | 0.41
2.56* | 0.38
2.33* | | | 5 | r,
t | 0.45
2.93* | 0.49
3.20* | 0.35
2.12* | 0.23
1.35* | 0.15
0,89 | 0.49
3.21* | 0.24
1.44 | 0.16
0.90 | 0.22
1.29 | | | 6 | r_{τ} t | 0.40
2.53* | 0.45
2.87* | 0.51
3.44* | 0.65
4.98* | 0.68
5.38* | -0.21
-1.26 | 0.11
0.61 | 0.12
0.70 | 0.08
0,43 | | | 7 | $\frac{r_s}{t}$ | -0.21
-1.25 | -0.20
-1.17 | -0.10
-0.59 | -0.08
-0.46 | -0.02
-0.14 | -0.51
-3.43* | -0.46
-2.99* | -0.44
-2.82* | -0.37
-2.30* | 4077
1061 | | 8 | r
t | -0.40
-2.47* | -0.35
-2.16* | -0.35
-2.14* | -0.21
-1.22 | 0.02
0.10 | -0.72
-5.94* | -0.75
-6.48* | -0.73
-6.12* | -0.62
-4.51* | | | 9 | r_s | 0.38
2.36* | 0.37
2.28* | 0.36
2.22* | 0.43
2.75* | 0.31
1.84 | -0.75
-6.52* | -0.33
-1.98 | -0.09
-0.49 | 0.05
0.29 | 0.00
0.33 | | 10 | r, | 0.63
4.66* | 0.57
4.00* | 0.60
4.32* | 0.59
4.16* | 0.58
4.14* | 0.23 | 0.23
1.35 | 0.09
0.54 | -0.10
-0.57 | -0.14
-0.78 | | 11 | r_{ϵ} | -0.77
-6.97* | -0.78
-7.05* | -0.74
-6.32* | -0.57
-4.00* | -0.24
-1.39 | -0.85
-9.33* | -0.88
-10.82* | -0.89
-11.38* | -0.86
-9.49* | -0.37
-2.34 | | 12 | $\frac{r_i}{l}$ | -0.14
-0.81 | -0.16
-0.93 | -0.06
-0.37 | 0.22
1.33 | 0.09
0.52 | 0.12
0.68 | 0.27
1.60 | 0.18
1.05 | 0.27
1.64 | 0.2 3
1.36 | | 13 | r _s | -0.14
-0.81 | -0.16
-0.93 | -0.06
-0.37 | 0.22
1.33 | 0.09
0.52 | 0,12
0.68 | 0.27
1.60 | 0.18
1.05 | 0.27
1.64 | 0.23
1.36 | | 14 | r,
1 | 0.13
0.74 | 0.14
0.81 | 0.19
1.12 | 0.19
1.14 | 0.19
1.10 | 0.26
1.55 | 0.33
2.03* | 0.46
3.01* | 0.21
1.22 | 0.3 6
2.18 | | Agre-
gate | r, | 0.03
0.174 | 0.089
0.514 | 0.071
0.41 | 0.076
0.439 | 0.141
0.818 | -0.41
-2.6* | -0.34
-2.07* | -0.46
-2.94* | -0.33
-2.02 | -0.2
-1.2 | | | | | | | | | | | | | .:320 | *Note:* H_0 : $r_s[t,b(.)]=0$ ^{*:} rejection of H0 at a=.05 level of significance (ltl>2.04) ^{-:} the minus sign indicates negative correlation **Table 6.** Spearman rank (r_i) correlation coefficient and t-test of posted bids (b) with consumer's unit satisfaction level (for one extra unit) which was displayed on the subject's screen (treatment 3). | | | | | | • | | | | | | | |--------|--|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------------|-----------------|-----------------|-----------------| | market | | bl(L) | b2[L] | b3[L] | b4[L] | h5[L] | ы[Н] | b2[H] | b3[H] | b4[H] | b5[H] | | 1 | $r_x = t$ | 0.4°
3.04* | 0.21
1.24 | 0.50
3.31* | 0.55
3.81* | 0.24
1.45 | 0.19
1.13 | 0.20
1.19 | -().11
-0.62 | -0.09
-0.51 | -0.04
-0.21 | | 2 | r, | 0.7''
7.03* | 0.83
8.46* | 0.47
3.07* | 0.51
3.40* | 0.45
2.93* | 0.90
11.76* | 0.94
15.64* | 0.89
11.02* | 0.69
5.44* | 0.76
6.69* | | 3 | $\begin{vmatrix} r_s \\ t \end{vmatrix}$ | 0.34
2.05* | 0.17
0.97 | 0.08
0.47 | 0.07
0.40 | -0.20
-1.17 | -0.05
-0.31 | 0.35
2.16* | 0.16
0.96 | 0.22
1.31 | -0.05
-0.31 | | 4 | $\begin{vmatrix} r_i \\ i \end{vmatrix}$ | -0.02
-0.11 | 0.06
0.33 | $0.02 \\ 0.10$ | 0.09
0.52 | 0.09
0.50 | -0.14
-0.78 | 0.33
2.02* | 0.43
2.72* | 0.23
1.35 | 0.37
2.28* | | 5 | r_s | 0.63
4.65* | 0.35
2.13* | 0.19
1.14 | -0.17
-0.96 | -0.20
-1.18 | 0.15
0.84 | 0.88
10.41* | 0.24
1.39 | 00,00
-0.01 | -0.06
-0.33 | | 6 | r, | 0.14
0.80 | 0.26
1.53 | 0,21
1.26 | 0.31
1.87 | 0.75
6.56* | -0.37
-2.27* | 0.44
2.85* | 0.44
2.78* | 0.32
1.92 | 0.30
1.83 | | 1 | r_{i} | -0.18
-1.03 | -0.41
-2.56* | -0.41
-2.55* | -0.33
-2.02* | -0.25
-1.48 | -0.26
-1.54 | -0.36
-2.23* | -0.18
-1.05 | -0.11
-0.61 | -0.25
-1.48 | | 8 | r, | -0,43
-2.76* | -0.41
-2.61* | -0.44
-2.83* | -0.44
-2.83* | -0.24
-1.42 | 0.09
0.52 | 0.03
0.18 | -0.08
-0.47 | -0,03
-0.19 | -0.45
-2.86* | | 9 | rs | 0.22
1.30 | 0.20
1.17 | 0.18
1.06 | 0.36
2.19* | 0.11
0.65 | 0.33
2.03* | -0.24
- <u>1,41</u> | 0.19
1.13 | -0.05
-0.29 | 0.06
0.35 | | 10 | r_s | 0.54
3.65* | 0.27
1.61 | 0.55
3.74* | 0.47
3.05* | 0.62
4.50* | -0.01
-0.04 | 0.02
0.11 | -0.04
-0.25 | 0.23
1.37 | 0.41
2.59* | | 11 | r_s | -0.74
-6.24* | -0.67
-5.16* | -0.66
-5.08* | -0.66
-5.10* | -0.38
-2.34* | -0.68
-5.33* | -0.63
-4.61* | -0.56
-3.91* | -0.55
-3.79* | -0.36
-2.24* | | 12 | r, | -0;)1
-0,)7 | 0.00
0.01 | 0.26
1.55 | 0.72
5.88* | 0.44
2.85* | 0.12
0.71 | 0.29
1.77 | 0.30
1.78 | 0.57
4.01* | 0.18
1.06 | | 13 | r ₃ | 0.26
1.52 | 0.10
0.57 | 0.08
0.46 | 0.25
1.46 | 00.0 | 0.07 | 0.13
0.75 | -0.06
-0.34 | 0.32
1.94 | 0.04
0.21 | | 14 | r _s | 0,64
4.79* | 0.75
6.43* | 0.82
8.31* | 0.68
5.39* | 0.78
7.12* | 0.91
12.53* | 0.64
4.84* | 0.96
19.39* | 0.70
5.57* | 0.44
2.85* | **Note:** H_0 : $r_s[b(.), u'(.)]=0$ rejection of H0 at a=.05 level of significance (ht>2.04) the minus sign indicates negative correlation Table 7. Average profits for each type of firm and each water quality (treatments 1-3) levels of satisfaction (on average) for the monopsonist (C3) in treatment 3. Spearman_rank correlation coefficient and t-test of time dependence for subjects' payoffs | Treat. | Market | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | |--------|-----------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|--------------------------|-----------------------|------------------------|----------------------|------------------------| | Tr.1 | Av. P tot. r , t | 456
0.18
1.06 | 538
0.68
5.28* | 476
0.15
0.87 | 485
0.51
3.38* | 502
0.51
3.39* | 261
0.03
0.16 | 476
-0.30
-1.50 | 405
0.53
3.59* | | 408
0.62
4.48* | | | 450
0.58
4.07* | 070
070
500 | | | Av. P (L1)
r _s
t | 196
0.12
0.69 | 222
0.85
9.31* | 188
0.01
0.08 | 210
0.37
2.3* | 209
0.28
1.68 | 113
0
-0.20 | 188
-0.30
-1.50 | 185
0.33
2.03 | | 168
0.40
2.52* | 109
0.73
6.07* | 196
0.52
3.53* | 193
0.29
1.74* | | | | Av. P (H1)
r,
t | 260
0.22
1.30 | 316
0.28
1.65 | 288
0.08
0.45 | 275
0.32
1.92 | 293
0.16
0.93 | 148
0.24
1.45 | 288
0.27
1.58 | 220
0.47
3.05* | | 0.48 | 89.9
0.76
6.76* | 242
0.32
1.96 | 257
0.25
1.49 | | | Tr. 2 | Av. P (L2)
r,
t | 177
0.12
0.69 | 316
0.29
1.74 | 170
0.19
1.12 | 184
0.12
0.72 | 208
0.16
0.95 | 160
0.14
0.83 | 166
0.29
1.73 | 261
0.07
0.40 | | 271
0.61
4.42* | 211
0.13
0.74 | 120
-0.3
-1.6 | 216
0.07
0.38 | 141
(3)
152 | | | Av. P (H2)
r _s
t | 321
-0.20
-1.20 | 170
0
-0.20 | 347
-0.40
-2.2* | 355
-0.20
-1.30 | 325
0.19
1.08 | 380
0.34
2.08* | 315
0,07
0.40 | 347
0.56
3.83* | -0,20 | 298
 0.61
 4.39* | 282
0.65
4.92* | 156
-0.40
-2.40 | 338
0
-0.10 | 30
0
030 | | Tr. 3 | Av. P (L3) | 101
0.34
2.07* | 142
0.20
1.18 | 202
0.21
1.22 | 134
0.27
1.59 | 199
0.19
1.13 | 183
0.24
1.4 | 211
0.10
0.57 | 148
0.43
2.77* | 142
-0.10
-0.50 | | 79.5
0.02
0.10 | 241
0.14
0.81 | 197
0.11
0.65 | 268
0.26
1.57 | | | Av. P (H3)
r,
t | 212
-0.10
-0.30 | 288
0.28
1.70 | 237
0.02
0.12 | 232
0.53
3.57* | 249
0.25
1.50 | 222
0.47
3.05* | 204
-0.10
-0.60 | 174
-0.40
-2.4* | | -0.40 | 166
-0.70
-5.4* | 286
0.57
4.02* | 231
0.28
1.68 | 143
0.63
4.68* | | |
Av. P (C3)
r _.
t | 746
-0.59
-4.23* | 631
-0.29
-1.77 | 660
0.02
0.13 | 656
-0,71
-5.8* | 581
-0.28
-1.65 | 717
-0.57
-3.95* | 579
0.25
1.51 | 731
0,56
3,92* | -0.45 | | 517
0.25
1.46 | 558
-0.36
-2.22* | | 595
-0.48
-3.17* | *Note*: The null hypothesis is H_0 : $r_a[t, \pi_i(t)]=0$. The asterisk (*) represents a rejection of H_0 at $\alpha=0$ level of significance (ltl>2.04). The sign (-) indicates negative correlation Table 8. Average allocated quantity of each water quality (treatments 1-3) | Market | KL1 | KHI | KL2 | KH2 | KL3 | КН3 | |---------|------|------|------|------|------|------| | 1 | 2.23 | 2.26 | 1.71 | 3.17 | 3.23 | 3.17 | | 2 | 1.49 | 1.09 | 2.09 | 3.34 | 3.23 | 3.14 | | 3 | 2.77 | 2.91 | 1.89 | 3.29 | 2.91 | 3.03 | | 4 | 3.23 | 3.17 | 2.89 | 3.03 | 3.23 | 2.83 | | 5 | 2.60 | 2.80 | 2.69 | 2.80 | 1.94 | 3 | | 6 | 1.46 | 1.40 | 1.77 | 2.91 | 3.29 | 3.09 | | 7 | 3.14 | 3.06 | 1.74 | 3.29 | 2.86 | 2.94 | | 8 | 3.26 | 3.23 | 2.94 | 1.31 | 2.57 | 3.11 | | 9 | 3.20 | 3.23 | 3.26 | 3.34 | 3.37 | 3.26 | | 10 | 2.80 | 3.29 | 3.14 | 0.86 | 3.11 | 3.26 | | 11 | 3.34 | 3.37 | 3.17 | 3.14 | 1.66 | 2.23 | | 12 | 3.17 | 3.17 | 3.34 | 3.37 | 2.89 | 2.94 | | 13 | 2.77 | 2.91 | 2.43 | 3 | 2.14 | 2.71 | | 14 | 3.23 | 3.23 | 2.11 | 2.97 | 2.97 | 3.37 | | Average | 2.76 | 2.79 | 2.51 | 2.84 | 2.81 | 3,01 | | median | 2.97 | 3.11 | 2.56 | 3.09 | 2.94 | 3.06 | Table 9. Average social welfare (ASW) in each market and on aggregate. Spearman-rank correlation coefficient (r) and t-test of time dependence of social welfare in each market (treatments 1-3) | Treat-
ment | Market | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | Av. | |----------------|----------------------------|--------------------------|------------------------|------------------------|------------------------|-----------------------|------------------------|-----------------------|------------------------|--------------------------|------------------------|---------------------|------------------------|-------|------------------------|----------------------| | 1 | ASW
r,
t | 942
 0.50
 3.31* | 674
0.54
3.68* | 1053
0.05
0.27 | -0.41 | 1070
0.03
0.18 | 692
-0.36
-2.23* | 1105
0.16
0.93 | 1115
-0.33
-1.98 | 1123
-0.03
-0.19 | | | -0.53 | -0.53 | 1164
-0.08
-0.45 | 1 | | 2 | ASW
r _t
t | 995
-0.02
-0.10 | 923
-0.11
-0.64 | 1027
0.33
2.01 | 1058
-0.01
-0.08 | 1058
0.77
6.96* | 1006
-0.27
-1.64 | 994
-0.20
-1.19 | 839
0.16
0.96 | 1021
-0.88
-10.39* | | | 919
-0.59
-4.21* | | 1014
0.38
2.33* | 986
-0.07
-0.4 | | 3 | ASW
r _s
t | 1059
-0.56
-3.86* | 1061
-0.27
-1.60 | 1098
-0.03
-0.18 | 1022
-0.23
-1.36 | 1029
0.15
0.87 | 1122
-0.17
-0.98 | 994
0.16
0.94 | 1053
0.40
2.51* | 1100
-0.61
-4.37* | 969
-0.37
-2.26* | 762
0.01
0.07 | 1085
-0.15
-0.85 | | 1006
-0.28
-1.66 | -0.27 | *Note:* The null hypothesis is H_0 : $r_1[t, SW(t)]=0$. The asterisk (*) represents a rejection of H_0 at $\alpha=.05$ level of significance (lt/>2.04). The sign (-) indicates negative correlation Table 10. Resource losses by each quality water (treatments 1-3) due to under-exploitation (units of recharge which did not enter the respective basin) | | Resource
Loss L | Resource
Loss H | #(KL < 3) | #(KH < 3) | #(KL = 3) | #(KH = 3) | |----|--------------------|--------------------|-----------|-----------|-----------|-----------| | T1 | 216 | 189 | 195 | 200 | 147 | 157 | | T2 | 334 | 199 | 218 | 210 | 153 | 110 | | T3 | 225 | 119 | 180 | 178 | 92 | 100 | **Note:** Symbol # notes the number of observations in which the quantity felt short of the constant periodical recharge