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Abstract

In modern data analysis areas such as Image Analysis, Chemometrics or Information
Retrieval the raw data are often complex and their representation in Euclidean spaces
is not straightforward. However most statistical data analysis techniques are designed
to deal with points in Euclidean spaces and hence a representation of the data in some
Euclidean coordinate system is always required as a previous step to apply multivariate
analysis techniques. This process is crucial to guarantee the success of the data analysis
methodologies and will be a core contribution of this thesis.

In this work we will develop general data representation techniques in the framework of
Functional Data Analysis (FDA) for classification and clustering problems. In Chapter
1 we motivate the problems to solve, describe the roadmap of the contributions and set
up the notation of this work.

In Chapter 2 we review some aspects concerning Reproducing Kernel Hilbert Spaces
(RKHSs), Regularization Theory Integral Operators, Support Vector Machines and Ker-
nel Combinations.

In Chapter 3 we propose a new methodology to obtain finite-dimensional representa-
tions of functional data. The key idea is to consider each functional curve as a point in a
general function space and then project these points onto a Reproducing Kernel Hilbert
Space (RKHS) with the aid of Regularization theory. We will describe the projection
methods, analyze its theoretical properties and develop an strategy to select appropri-
ate RKHSs to represent the functional data.

Following the functional data analysis approach, we develop in Chapter 4 a new proce-
dure to deal with proximity (similarity or distance) matrices in classification problems
by studying the connection between proximity measures and a certain class of integral
operators. The idea is to come up with a methodology able to estimate an integral
operator whose associated kernel function, evaluated at the sample, approximates the
sample proximity matrix of the problem. To show the broad scope of application of the
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methodology, we will apply it to three cases: (1) classification problems where the only
available information about the data is an asymmetric similarity matrix (2) partially la-
beled classification problems and (3) classification problems where several sources of
information are available and can be combined to obtain the discrimination function.

In Chapter 5 we propose an spectral framework for information fusion when the sources
of information are given by a set of proximity matrices. Our approach is based on the
simultaneous diagonalization of the original matrices of the problem and it represents
a natural way to manage the redundant information involved in the fusion process. In
particular, we define a new metric for proximity matrices and we propose a method
that automatically eliminates the redundant information among a set of matrices when
they are combined.

We conclude the contributions of the thesis in Chapter 6 with a battery of simulated
and real examples devoted to compare the performance of the proposed methodologies
with the state of the art in representation methods. Finally, in Chapter 7 we include a
discussion regarding the topics described above and we propose some future lines of
research we believe are the natural extensions to the work developed in this thesis.
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Resumen

En áreas de análisis de datos tales como el Análisis de Imágenes, la Quimiometría o la
Recuperación de Información los datos son complejos y su representación en espacios
Euclídeos no es directa. Sin embargo, la mayoría de los procedimientos estadísticos es-
tán diseñados para trabajar con puntos en espacios Euclídeos. Por tanto, representar
los datos en un sistema Euclídeo de coordenadas es el paso previo necesario al uso de
técnicas estadísticas multivariantes. Este proceso es crucial a la hora de garantizar ade-
cuadas soluciones a nuestros problemas y será el núcleo central de las contribuciones
de esta tesis.

En este trabajo desarrollaremos técnicas generales de representación de datos en prob-
lemas de clasificación y conglomerados en el marco del Análisis Funcional de Datos. En
el Capítulo 1 motivaremos los problemas a resolver, describiremos las contribuciones y
fijaremos la notación utilizada en este trabajo.

En el Capítulo 2 revisamos algunos aspectos relacionados con los espacios de Hilbert
de Núcleo reproductivo, la Teoría de Regularización, Operadores integrales, Máquinas
de Vectores Soporte y métodos de Combinaciones de Núcleos.

En el Capítulo 3, proponemos una nueva metodología para obtener representaciones de
dimensión finita de datos funcionales. La idea clave es considerar cada dato funcional
como un punto en un espacio general de funciones y posteriormente proyectar estos
puntos en un espacio de Hilbert de Núcleo Reproductivo con la ayuda de la teoría de
Regularización. En el Capítulo 3 describiremos el método de proyección, analizaremos
sus propiedades teóricas y desarrollaremos una estrategia para seleccionar un espacio
apropiado en el que representar los datos funcionales.

Siguiendo el enfoque de análisis de datos funcionales, desarrollamos en el Capítulo 4
un nuevo procedimiento para trabajar con matrices de proximidades (similaridades o
distancias) en problemas de clasificación y conglomerados estudiando la relación en-
tre matrices de proximidad y cierta clase de operadores integrales. La idea es desar-
rollar una metodología capaz de estimar un operador integral cuya núcleo, evaluado
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en la muestra, aproxime la matriz de proximidad. Para mostrar la utilidad de la me-
teodología propuesta la aplicaremos en tres casos: (1) problemas de clasificación donde
la información disponible sobre los datos es una matriz de similaridades asimétrica,
(2) problemas de clasificación parcialmente etiquetados y (3) problemas de clasificación
donde varias fuentes de infomación están disponibles y pueden ser combinadas para
obtener el clasificador.

En el Capítulo 5 proponemos un marco espectral para la fusión de infomación cuando
las fuentes de información vienen dadas por un conjunto de matrices de proximidades.
Nuestro enfoque está basado en la diagonalización simultánea de dichas matrices y
representa un modo natural de tratar con la infomación redundante involucrada en el
proceso de combinación. En particular, definiremos una nueva métrica para matrices de
proximidades y propondremos un método que elimina automáticamente la infomación
redundante de una serie de matrices cuando son combinadas.

Concluimos las contribuciones de esta tesis en el Capítulo 6 con una batería experi-
mentos reales y simulados cuyo objetivo es comparar la metodología propuesta con el
estado de arte en métodos de representatión de objetos. Finalmente, en el Capítulo 7
incluimos una discusión sobre los temas tratados en anteriormente y futuras líneas de
investigación que creemos son la prolongación natural de las contribuciones de esta
tesis.
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Chapter 1

Introduction

In modern data analysis problems the raw data are often complex and their represen-
tation in Euclidean spaces is not straightforward. For instance in Genetics the data are
usually time series of cDNA micro-arrays gathered over a set of equally spaced time
points (Spellman et al., 1998) (see for instance Figure 1 a)). In Textual Analysis, the data
are collections of documents or web pages usually labeled by topic (Lang, 1995) (see
Figure 1 b)). In problems of automatic handwriting identification the objects can be
given a images of digits or characters. Such images are treated as matrices (as in Figure
1 c)) whose components play the role of the pixels of the original pictures (Frey and
Slate, 1991). Another point of view in automatic handwriting identification is to pro-
cess writing sequence of characters (see Figure 1 d)) as curves that reflect the horizontal
and vertical position of the pen position for a set of time measurements (Ramsay and
Silverman, 2006).

While in the previous fields in not straightforward to represent the data in Euclidean
spaces, statistical procedures are designed to deal only with points in Euclidean coor-
dinate systems. Therefore the data must be embedded in some Euclidean space as a
previous step to apply any multivariate analysis technique.

1
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(a) Profiles a of a set genes. (b) Document. The data can be the docu-
ment itself or the words it contains.

(c) Binary matrix representing a digit. (d) Writing sequences of the chain of char-
acters "fda".

Figure 1.1: Four real examples of data with different nature.

In fields like Genetic Data Analysis, Control Quality or Chemometrics the data have
very high (or intrinsically infinite) dimensionality and they are very difficult to manage
for many traditional statistical techniques. The reason is that the data are functions and
most Multivariate Analysis algorithms are designed to work with vectors. In this cases,
the data must be analyzed in a Functional Data Analysis (FDA) context (Ferraty and
Vieu, 2006; Ramsay and Silverman, 2006). The key idea of FDA is to represent each
curve as a point in some space of functions B = {φ1, . . . φd} where d ∈ IN and each φj
explains some feature of the curves of the problem.

In other applications the objects can be images, shapes of objects in 3D, points on a
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manifold, tree structured data, etc. In such cases, a generalized approach to represent
the objects can be done when a proximity (similarity or disimilarity) matrix is available.
In this cases it is always possible to estimate Euclidean coordinates for the data via some
Multidimensional Scaling (MDS) procedure (Cox and Cox, 2001).

In all the previous approaches, to find a "good" representation system means to obtain
a coordinate system where the distance between two objects, viewed as points, reflects
the "right" notion of dissimilarity between them. Two similar objects (for instance, two
similar genes profiles (see Figure 1 a)) should be represented by two points that are close
together, and two dissimilar objects (two different genes profiles) should be represented
by two points that are far apart. When the data set is labeled (classification problems)
the underlying hypothesis for a good representation is that all the points in an small
enough neighborhood must belong to the same class (have the same labels) (Martín de
Diego et al., 2009).

So far, the literature has already considered a wide variety of representations meth-
ods. Common examples are Principal Components Analysis (PCA) (Jolliffe, 2002), Par-
tial Least Squares (PLS) (de Jong, 1993) or Independent components Analysis (ICA)
(Hyvärinen et al., 2001). These procedures work well in some cases but their success
depends on the problem at hand. The main goal of this thesis is to develop a general
data representation techniques in classification and clustering problems that takes into
account the properties described above. To achieve this task we will develop a method-
ology capable to solve problems where the available data have some of the following
characteristics:

i) The objects are naturally represented by functions.

We are mainly interested in problems involving functional data. That is problems where
each datum is given by a large vector where some covariance structure among the vari-
ables exists. This includes chemometrics data, time series, genetic data profiles etc.

ii) The information about the data set is a proximity matrix.

In some cases the only available information about the objects is a proximity matrix.
We are specially interested problems where such proximity matrix is not symmetric
(Martín-Merino and Muñoz, 2005). This happens, for instance, when dealing with sim-
ilarities in genetic or textual data analysis.

iii) Classification problems with partially labeled data.
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We are also interested in discrimination problems where the training data set consists
of some labeled points and the remaining unlabeled (Chapelle et al., 2006). The idea is
to use the structure of the unlabeled data to define a mapping that acts over the labeled
data and that helps to improve the final classification performance.

iv) Several information sources are available for the objects.

In the last years, increasing interest has focused in the development of statistical tech-
niques able to combine several sources of information to solve the problem at hand.
In this context, we will pay an special attention to classification problems where two
or more proximity matrices are available (Martín de Diego et al., 2009; Lanckriet et al.,
2004; Kittler et al., 1998). For instance, when a set of web pages has to be classified we
generally can make use of two different matrices to discriminate the web pages: the
co-citation matrix and the terms by document matrix. In cases like this, such matrices
convey complementary information and they should be combined. In this thesis we are
interested in the combination process itself and in the problems derived from the bad
use of the common information of the matrices.

Next, we give an overview of the thesis including its original contributions. In Section
1.2 we set up the notation of this work.

1.1 Overview of the thesis and roadmap of the contributions

This thesis is divided in six chapters. Chapter 2 we review some aspects concerning
Reproducing Kernel Hilbert Spaces (RKHSs), Regularization Theory Integral Operators,
Support Vector Machines and Kernel Combinations.

The theoretical contributions of this thesis are developed in Chapters 3, 4 and 5. In
Chapter 3 we propose a new methodology to obtain finite-dimensional representations
of functional data. We will describe the proposed method, analyze its theoretical prop-
erties and develop an strategy to select RKHSs appropriate to represent the functional
data.

Following the functional data analysis approach, we develop in Chapter 4 a new proce-
dure to deal with proximity (similarity or distance) matrices in classification problems
by studying the connection between proximity measures and a certain class of integral
operators. To show the broad scope of application of the methodology, we will apply
it in three cases: classification problems where the only available information about the
data is an asymmetric similarity matrix, in partially labeled classification problems and
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in classification problems where several sources of information must be combined to
obtain the discrimination function.

In Chapter 5 we propose an spectral framework for information fusion when the sources
of information are given by a set of proximity matrices. In particular, we define a new
metric for proximity matrices and we propose a method that automatically eliminate
the redundant information among a set of matrices when they are combined.

Since the nature of the problem to study is quite data-oriented we have included a
chapter specifically devoted to experimentation. In Chapter 6 we include simulated ex-
periments to check the performance of the proposed techniques in controlled situations.
In addition we compare our proposals with the state of the art in data representation
techniques in a wide range of real examples.

In Chapter 7 we show some general conclusions and motivate some future work. Next
we describe roadmap the most significant contributions of this thesis.

Our contributions start in Chapter 3 which concerns on the the problem of representing
functional data in classification and cluster problems. The two main contributions of
this chapter are:

(1) Representation systems for functional data
Problem: Most FDA approaches choose an orthogonal basis of functionsB = {φ1, . . . φd}
(d ∈ IN), where each φj belongs to a general function space (usually L2(X)) and then
represent each functional datum by means of a linear combination in Span(B). Differ-
ent choices of B induce different distance for the curves (viewed as points in B) and
hence a good election of the basis of functions where represent the curves is crucial to
guarantee the success of classification and clustering techniques.

Contribution: We propose new techniques to obtain finite-dimensional representations
of functional data. The idea is to consider each functional data as a point in a general
function space and then project these points onto a Reproducing Kernel Hilbert Space
(RKHS) with the aid of Regularization theory. In Chapter 3 we will show how to im-
plement this idea in practical cases and we will derive some geometrical and statistical
properties of the previous projection method.

(2) Model selection criteria for functional data
Problem: In (Sugiyama and Ogawa, 2001) the Subspace information Criterion (SIC) is
proposed as a methodology for model selection in general regularization methods. As
we will study in Chapter 3 it represents the natural way to select the RKHS to represent
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the functional data in problem (1). However, as we will show in Section 3.4, the SIC fail
choosing the best RKHS is some relevant problems.

Contribution: We propose the Modified Subspace Information Criteria (MSIC), as an
alternative to the SIC in the context of Statistical Learning Theory (Vapnik, 1995). We
show the theoretical and practical benefits of the new criterion in Section 3.4.3.

The next stop is Chapter 4 where we propose a Functional Data Analysis (FDA) ap-
proach to deal with proximity (similarity or distance) matrices in classification prob-
lems. In particular we study the precise connection between proximity matrices and
certain class of self-adjoint, positive, compact integral operators and we apply the pre-
vious idea to solve the following problems.

(3) Classification Problems with partially labeled data: Classification with partially
labeled data (Chapelle et al., 2006) are a class of classification problems where the data
consist of some labeled points and the remaining unlabeled. The objective is to use the
structure of the unlabeled data to improve the classification of test points.

Contribution: We propose a methodology to solve partially data classification prob-
lems. First, we define a particular similarity matrix that take into account the geomet-
rical information of both, labeled and unlabeled data. Second, we estimate a particular
integral operator associated to such matrix to extend its components for out-of-sample
points.

(4) Classification problems with asymmetric information: In some classification prob-
lems the available proximity matrix between the objects is asymmetric (Martín-Merino
and Muñoz, 2005). In this cases there is no immediate way to obtain Euclidean coordi-
nates and thus apply standard classification procedures.

Contribution: We propose a methodology to estimate an integral operator whose
eigenfunctions define a data embedding induced by the original asymmetric proxim-
ity matrix. This will allow to map the data into a Euclidean space as a previous step to
the use of any classification algorithm.

(5) Combination of multiple proximity matrices in classification problems: In clas-
sification problems, the best alternatives to combine a set of proximity matrices make
use of the labels of the training points (Martín de Diego et al., 2009; Lanckriet et al.,
2004; Kittler et al., 1998). This strategy, that work well in real cases presents two serious
drawbacks: The final combination matrix it is not necessarily positive definite and its
components for out-of-sample points are unknown.
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Contribution: We propose a methodology to solve the two problems described above
within the integral operators framework. The idea is, first, to project the matrix of the
combination onto the cone of positive definite matrices. Finally, use this projected ma-
trix to estimate an integral operator able to extend the matrix combination component
for out-of-sample points.

The last stop is in Chapter 5 where we focus on the analysis the redundant information
in proximity matrices combination procedures. Next we detail the contributions of this
chapter:

(6) Metrics for proximity matrices
Problem: With the emergence of data fusion techniques, the task of comparing proxim-
ity (distance/similarity/kernel) matrices is becoming increasingly relevant (Martín de
Diego and Muñoz, 2006; Cristianini and Shawe-Taylor, 2002). The choice of appropriate
metrics for matrices involved in classification or clustering problems is far from trivial.
However it is crucial to guarantee the success in proximity combinations procedures.

Contribution: We propose a general spectral framework to build metrics for matrix
spaces. It can be used to reinterpret the most common metrics in the literature and al-
lows to define some new alternatives. In particular, we propose the Pencil Dissimilarity
which is proven to work well in real situations.

(7) Redundancies in Information Fusion Techniques
Problem: Any technique developed to combine several sources of information should
take into account the redundant information of the system (Muñoz and González, 2008).
To illustrate this issue, consider a data set with three variables, and two data representa-
tions given by two projections on two pairs of principal axes: (x, y) and (x, z), where the
x variable is present in both representations. If we use the direct sum of the correspond-
ing spaces as solution for the combination problem, we will have the representation
(x, y, x, z). Thus, the weight of the x variable will be doubled when using the Euclidean
distance and the results of the classification or regression algorithms will be distorted.

Contribution: When the sources of information of the problem are given by a set of
proximity matrices the direct sum of the matrices common in kernel combinations is
affected by the problem described above. We propose a new technique for information
fusion based on the Joint Diagonalization of matrices able to produce a new data repre-
sentation in a Euclidean space eliminating the redundant information among the input
matrices.
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1.2 Some notation and conventions

In this section we introduce some basic notational conventions. Throughout this work
vectors are denoted by lowercase bold letters and matrices by bold uppercase letters.
Individual entries of vectors are denoted by the corresponding subindex while for ma-
trices we use parenthesis. For instance, x ∈ IRn is a vector whose coefficients are given
by xi and the matrix A has entries (A)ij . Vector and matrix transpose is denoted by xT .

Given a matrix A of dimensions n × n we will denote its eigenvalues and eigenvectors
by lj and vj respectively, ard we will always assume that the eigenvalues are sorted in
non-decreasing order, that is l1 ≤ l2 ≤ · · · ≤ ln.

We use the standard norms on finite dimensional vector spaces. Let x ∈ IRn and A ∈
IRn×n. Then

‖x‖ =

√√√√ n∑
j=1

x2
i and ‖A‖F =

√√√√ n∑
i,j=1

(A)2ij (1.1)

where ‖ · ‖F indicates the Frobenius norm.

In this thesis we will consider subsets of IRn as probability spaces and we will quietly
assume the existence of an associated Borel-algebra. Let X be a compact subset of IRn

and ν a Borel probability measure defined on X . Then if ξ is a random variable on X ,
we will denote as Eν(ξ) the expected value of of ξ and Varν(ξ) its variance with respect
to the measure ν.

In Table 1.2 we summarize the most relevant symbol used in this thesis and a brief
description.
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Table 1.1: Summary table of the symbols used in this thesis.

Symbol Description

X Compact space or manifold.
Y Space of label samples (classification) or Y = IR (regression).
C(X) Banach space functions on X.
H(X) Hilbert space of functions on X.
ν(X) Borel measure on X.
P Probability.
Eν Expectation over the measure ν.
Varν Variance over the measure ν
n Sample size.
L Loss function.
sn Random sample of n observations.
x1, . . . , xn Object samples.
X Matrix whose columns are the object samples
x Sample vector (x1, . . . , xn)T .
y1, . . . , yn Label samples.
y Labels vector (y1, . . . , yn)T .
fx Vector fx = (f(x1),. . . , f(xn))T .
Rν(f) Generalization error of f .
Rsn(f) Empirical error of f for the sample sn.
H Hypothesis space.
fH Target function.
fsn,H Empirical target function.
K Kernel function.
LK Integral operator (associated to K).
HK Reproducing Kernel Hilbert Space of kernel K.
Rγ Regularized Generalization Risk.
Rγ,sn Regularized Empirical Risk.
S Similarity or proximity matrix.
D Distance matrix.
K
∣∣
x Kernel matrix where (K

∣∣
x)ij = K(xi, xj).

Kx Kernel matrix where (Kx)ij = K(xi, xj).
λj j-th eigenvalue of the integral operator LK .
φj j-th eigenfunction of the integral operator LK ..
φj,x Vector φj,x = (φj(x1),. . . , φj(xn))T .
lj j-th eigenvalue of the kernel matrix K

∣∣
x (or Kx).

vj j-th eigenvector of the kernel matrix K
∣∣
x (or Kx).

rank(A) Rank of the matrix A.
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Chapter 2

Background

Abstract

In this chapter we give a general overview of the theoretical background we
will need in the sequel. We will explain with some level of detail the theory
concerning Integral Operators, Reproducing Kernel Hilbert Spaces, Regular-
ization Theory, Support Vector Machines and Kernel Combination methods
since a good understanding of these topics is essential for the development of
the techniques proposed in this thesis.

Keywords: Statistical Learning Theory, Inverse Problems, Reproducing Kernel Hilbert
Spaces, Hypothesis Space, Information Fusion.

2.1 Introduction

The main objective of many statistical techniques is to learn some function from data
samples (generally perturbed with some noise). To this aim, we need to make use of
a variety of subjects. First, Statistical Inference whose purpose is precisely to infer in-
formation from random samples. Approximation theory will also play a crucial role to
choose appropriate functions from data samples in some functions spaces. Finally some
algorithmic considerations have to be done in the learning process. The estimation of
the function will always be the output of some algorithmic procedure and its efficiency
and stability are crucial in practice.

Our aim in this chapter is to give a theoretical overview of the statistical learning process
blending ideas from the three previous fields and emphasizing the relationship of the

11
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learning process with the mainstream of some mathematical theories in the core of the
contributions of this work. We start by showing some general learning examples.

Example 2.1 (Classification). Consider the task of automatic digit identification where
the elements of the problem are: X , the space of binary matrices that represent such
digits (see Figure 1 c)) and Y the labels (name) of the digits. The learning problem to
solve here is the approximation of a function f : X → Y that relates each digit x ∈ X
with its corresponding label y ∈ Y .

• • •

Example 2.2 (Regression). Another classical learning problem is the approximation of
a surface by estimating a function f : X → IR that fits the best a set of n data points
{(xi, yi)}ni=1 where xi ∈ IRd and yi ∈ IR.

• • •

Example 2.3 (Level sets estimation). Another example of learning is the task of esti-
mating high density regions from data samples (Muñoz and Moguerza, 2006). Assume
x is a random variable a with density function p(x) defined on IRd. Let x1, . . . , xn a set of
independent identically distributed (iid) samples of size n (drawn from p). The problem
is stated as the estimation of minimum volume sets of the form Sα(p) = {x : p(x) ≥ α},
such that P (Sα(p)) = µ, where 0 < µ < 1. The learning task is to find f(x) such that
f(xi) = 1 if x ∈ Sα(f) and f(x) = −1 otherwise.

• • •

These three situations constitute examples of inverse problems (Tikhonov and Arsenin,
1977). Inverse problems occur in many branches of science and mathematics where the
values of some model parameters have to be estimated from the observed data. Inverse
problems are usually stated as solving Af = y where A is generally a linear operator
and both, f (the target of the problem) and y are functions that belong to some metric
space. For instance, in multiple regression problems (Example 2.2 when the solution is
restricted to be linear), f ∈ IRd+1 can be identified with the regression vector parame-
ters, A is the linear operator induced by the data matrix of dimension n × (d + 1) and
y = (y1, . . . , yn)T ∈ IRn is the vector of response variables.

Inverse problems are hard to solve. Different values of the model parameters may be
consistent with the sample data and to estimate them may require the exploration of a
huge parameter space (Tarantola, 2005). Moreover inverse problems represent a broad
cast of ill-posed problems (O’Sullivan, 1986).

Definition 2.1. A problem is well-posed in the sense of Hadamard if its solutions is exists, is
unique and depends continuously on the data sample.
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Figure 2.1: Example of problem originally ill-posed and its tranfomation to well posed
by restringing the interpolation function to the family of polynomials of degree 2.

A problem is ill-posed if some of the previous conditions is not satisfied. For instance in
classification, regression or density estimation, a parametric approach to find the target
function is not always possible. In the three examples above, f requires an infinite
number of observations to be perfectly described while the sample size is always finite.
Hence, to obtain well posed-ness necessarily implies to seek f from a finite family of
models. We illustrate this in the following example.

Example 2.4. Consider 10 data points in IR2. We can always find a smoothest interpo-
lating polynomial of high degree (10 in this case) as as it is done in Figure 2.1a) (circles
and dotted curve). However if we slightly perturb the points (red crosses) the solution
of the interpolation problem changes a lot. Therefore the problem is ill-posed since the
solution is not stable on the input data. Nevertheless, if we force the interpolation func-
tion to be a polynomial of degree 2, the solution only varies a small amount when the
data are perturbed (see Figure 2.1 b)) and the problem is now well-posed.

• • •

In this chapter we will detail a theoretical framework to achieve well posedness in a
broad cast of learning problems. To this aim we need two main ingredients. First, we
need a manner to measure the difference between the correct model which produces the
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data and our estimation. This is generally done by using some loss functions. Second,
we need a function space where the solution to the learning problem must be sought. In
example 2.4 such space is the space of polynomials up to degree 2. In a general context
our choice will be a Reproducing Kernel Hilbert space.

This chapter is organized as follows. In Section 2.2 we study the learning process and
convergence of the sample error. In Section 2.3 we introduce the concept of hypothesis
space and we study, with some level of detail Reproducing Kernel Hilbert Spaces an the
hypothesis spaces derived from them. In Section 2.4 we review some class of integral
operators defined by kernels. We will focus in Regularization methods in Section 2.5. In
particular we will analyze with some level of detail Ivanov and Tikhonov Regulariza-
tion. We will study the Support Vector Machines as a particular case of Regularization
in Section 2.6. In Section 2.7 we review the concepts of similarity and dissimilarity and
their connections. We conclude in Section 2.8 with an analysis of the most relevant
kernel combinations techniques in classification.

2.2 Learning process and convergence of the sample error

Let X be a compact space or manifold in an Euclidean Space and Y = IR. Let ν be a
Borel probability measure defined on Z = X × Y whose regularity conditions will be
assumed as needed.

Given f : X → Y , we define the Generalization Error of f as

Rν(f) =
∫
Z

(f(x)− y)2dν(x, y). (2.1)

For each x ∈ X and y ∈ Y , the function1 (f(x) − y)2 measures the error of using f to
predict y when we observe x. The integral over Z averages this error for all the possible
pairs (x, y).

The learning problem is posed as finding f that minimizes Rν(f) and a natural way
proceed is to decompose Rν(f) into a sum. For every x ∈ X let ν(y |x) the conditional
probability measure on Y and ν(x) the marginal probability measure of ν on X . Let
γ : X × Y → IR an integrable function on X × Y . Then∫

X×Y
γ(x, y)dν(x, y) =

∫
X

(∫
Y
γ(x, y)dν(y |x)

)
dν(x). (2.2)

1Any convex lower-bounded function can be used through this analysis.
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Hence it is possible to break the measure ν into the measures ν(x | y) and ν(x) looking
at ν as a product of an input domain and an output set.

Define fν : X → Y by

fν(x) =
∫
Y
ydν(y|x). (2.3)

This function is called Regression function. For each x ∈ X , fν(x) is the average of the y
coordinate (in {x} × Y ). We will assume that fν is an bounded function.

Fix x ∈ X . Then the expectation of (fν(x) − y) is
∫
Y (fν(x) − y)dν(y |x) = 0 and its

variance ∫
Y

(y − fν(x))2dν(y |x). (2.4)

Then averaging over X and using eq. (2.2)∫
X

(∫
Y

(fν(x)− y)2dν(y |x)
)
dν(x) =

∫
Z

(fν(x)− y)2dν(x, y) = Rν(fν). (2.5)

Next we decompose the Generalization Error Rν(f) into two independent terms as fol-
lows. For every f : X → Y ,

Rν(f) =
∫
Z

(f(x)− fν(x) + fν(x)− y)2dν(x, y)

=
∫
X

(f(x)− fν(x))2dν(x) +
∫
Z

(fν(x)− y)2dν(x, y)

+
∫
Z

(f(x)− fν(x))(fν(x)− y)dν(x, y)

=
∫
X

(f(x)− fν(x))2dν(x) +Rν(fν)

Notice that
∫
Z(f(x)− fν(x))(fν(x)− y)dν(x, y) = 0 since

∫
Y (y− fν(x))dν(y |x) = 0. The

term
∫
X(f(x) − fν(x))2dν(x) provides an average of the error when we use f instead

of fν . The term R(fν) is independent of f and therefore fν is the function with the
minimum error among the functions f : X → Y . Then the goal of learning reduces to
find a good approximation to fν what will be done from random samples on Z drawn from
the probability measure ν.

Let sn = {(x1, y1), . . . , (xn, yn)} ∈ Zn be a random sample independently obtained from
ν. Define the Empirical Error as

Rsn(f) =
1
n

n∑
i=1

(f(xi)− yi)2, (2.6)
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quantity that gives a measure of the error for a function f in the training sample sn. In
practice we will use Rsn(f) to approximate Rν(f). Next we study how this approxima-
tion makes sense.

For any function f : X → Y define fY : X × Y → Y as fY (x) = f(x)− y. Following the
previous notation we can write:

Eν(f2
Y ) =

∫
Z

(f(x)− y)2dν(x, y) = Rν(f),

Esn(f2
Y ) =

1
n

n∑
i=1

(f(xi)− yi)2 = Rsn(f),

where Eν denotes the expectation over the measure ν and Esn denotes the expectation
over the sample. In addition the variance of f2

Y is

Varν(f2
Y ) =

∫
Z

(
f2
Y − Eν(f2

Y )
)2
dν(x, y). (2.7)

Define Fsn(f) = Rν(f)−Rsn(f). The following theorem (Cucker and Smale, 2001) states
a bound for P{|Fsn(f)| ≤ ε}.

Theorem 2.1. Let M > 0 and f : X → Y be such that |f(x) − y| ≤ M almost everywhere.
Then for all ε > 0,

Prob {|Fsn(f)| ≥ ε} ≤ 1− 2e
nε2

2(σ2+1
3Mε) (2.8)

where σ2 = Varν(f2
Y ).

Theorem 2.1 ensures the convergence of the Empirical Risk to the Generalization Error
when n→∞. Notice that sinceX is a compact space the condition |f(x)−y| ≤M holds
for any x ∈ X . Therefore it makes sense to approximateRν(f) byRsn(f) in the learning
process. Remark as well that the right hand side in the inequality above approaches 1
exponentially fast with n what guarantees a fast convergence of the Empirical Error to
the Generalization error.

2.3 Hypothesis spaces

In any learning process some structure has to be assumed. This structure can be im-
posed by choosing some space of functions where the best approximation to the func-
tion fν should be sought. For instance, in Example 2.4 we constrain the regression
function to be polynomials of at most degree 2.
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We start by considering C(X) the Banach space of continuous functions in X endowed
with the norm

‖f‖∞ = sup
x∈X
|f(x)|.

Consider a compact set H of C(X), namely the hypothesis space: we will seek the best
approximation for fν inH.

Define the target function fH as a function minimizing Rν(f) over f ∈ H that is, an
optimizer of

min
f∈H

∫
Z

(f(x)− y)2dν(x, y). (2.9)

Since the measure ν is unknown, problem in eq. (2.9) cannot be solved directly. Given
a samplesn = {(x1, y1), . . . , (xn, yn)} ∈ Zn we define the empirical target function fsn,H as
the function f ∈ H that optimizes

min
f∈H

1
n

n∑
i=1

(f(xi)− yi)2, (2.10)

Imposing compactness on the hypothesis space H assures well-posedness of the prob-
lem in eq. (2.10). In Section 2.5 we will detail how a possible manner to ensure this is
by minimizing the variational

F (f) =
1
n

n∑
i=1

(f(xi)− yi)2 + γΩ(f) , (2.11)

where γ > 0 and Ω(f) is a convex positive functional. Our choice will be Ω(f) = ‖f‖2K ,
being ‖f‖K the norm of f in a Reproducing Kernel Hilbert Space.

2.3.1 Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Spaces (RKHSs) (Aroszajn, 1950; Cucker and Smale, 2001;
Wahba, 2003) represent a theoretical framework that can be used in a wide variety of
problems such as time series (Parzen, 1970), independence of random variables (Bach
and Jordan, 2002) smoothing surface estimation (Wahba, 1990), classification and re-
gression problems (Moguerza and Muñoz, 2006), etc. We start with a formal definition
of RKHS.

Definition 2.2. A Hilbert space of functions H defined on a compact domain X is a Reproduc-
ing Kernel Hilbert Space (RKHS) if every linear evaluation functional Fx : H → IR is bounded:
there exists a M > 0 such that
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|Fx(f)| = |f(x)| ≤M‖f‖ for all f in the RKHS and x ∈ X

where ‖ · ‖ is the norm in the Hilbert space.

Definition 2.3 (Mercer Kernel (Mercer, 1909)). Let X a metric space and K : X ×X → IR
a continuous and symmetric function. If we assume that K is positive definite, that is, for any
set x = {x1, · · · , xn} ⊂ X the matrix K

∣∣
x with components (K

∣∣
x)ij = K(xi, xj) is positive

definite, then K is a Mercer Kernel.

The Moore-Aronszajn theorem (Aroszajn, 1950) states that there exists a biunivocal cor-
respondence between kernels and RKHSs. For each Reproducing Kernel Hilbert space
of functions on X there exists a unique reproducing kernel K which is positive definite.
Conversely, any Reproducing Kernel Hilbert Space can be characterized by a Mercer
kernel. Next we explicitly state this point of the theorem since we will need in the se-
quel

Theorem 2.2 (Generation of RKHSs form kernels (Aroszajn, 1950)). Let X be a compact
domain or manifold and ν a Borel measure onX . LetK : X×X → IR a continuous, symmetric
and positive definite function. Define Kx : X → IR the function given by Kx(t) = K(x, t).
Then for every K there exists a unique Reproducing Kernel Hilbert Space (HK , 〈, 〉HK ) of func-
tions on X satisfying that:

(i) For all x ∈ X , Kx ∈ HK .

(ii) The span of {Kx : x ∈ X} is dense inHK .

(iii) For all f ∈ HK then 〈Kx, f〉HK = f(x).

In addition (Cucker and Smale, 2001) HK consists of continuous functions and the inclusion
IK : HK → C(X) is bounded with ‖IK‖ ≤ supx,t∈X

√
K(x, t).

A particular way to generate HK from K is next described. Let H′ be space set of
functions spanned by finite linear combinations of the form f =

∑n
i=1 αiK(xi, x) where

n ∈ IN, xi ∈ X and αi,∈ IR equipped with the inner product

〈f, g〉 =
n∑
i=1

n∑
j=1

αiβjK(xi, xj), (2.12)

for f =
∑n

i=1 αiK(xi, x), g =
∑n

j=1 βjK(xj , x). Then HK is the completion of H′ with
the associated inner product. That is we adjoint to H′ all limits of Cauchy sequences
(Wahba, 1990; Cucker and Smale, 2001).
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Regarding the other sense of the implication of the Moore-Aronszajn theorem, if H′ is
an RKHS, by the Riesz representation theorem there exists a unique a function Kx ∈ H′

such that 〈Kx, f〉H′ = f(x) for all x ∈ X . The function Kx is called the point-evaluation
functional at the point x. SinceH′ is an space of functions, Kx is a function as well and it
can be evaluated in any x ∈ X . Define K(x, t) = Kx(t) for all x, t ∈ X . It can be proven
that the function K is unique, symmetric and positive definite, that is, a Mercer kernel.

2.3.2 Hypothesis spaces associated to RKHSs

To ensure the existence and the unicity of the problem in eq. (2.10) we will define a
compact set H based on HK . Next two propositions (Cucker and Zhou, 2007) are the
key for this purpose.

Proposition 2.1. Let K be a Mercer Kernel on a compact space X , and HK its associated
RKHS. For all R > 0 the ball BR := {f ∈ HK : ‖f‖HK ≤ R} is a closed subset of C(X).

Proposition 2.2. Let K be a Mercer Kernel on a compact space X and HK be its RKHS. For
all R > 0, the set IK(BR) is compact.

Define H = IK(BR) for R > 0. By propositions 2.1 and 2.2, H is compact and therefore
it makes sense to use it in eq. (2.10) as hypothesis space where fsn,H must be sought.
Nevertheless, before affording this problem, we will study in next section a broad cast
of integral operators defined by kernel functions that will be helpful to give a new char-
acterization of RKHSs.

2.4 Operators defined by a kernel

Let L2
ν(X) the space of squared integrable functions in X where ν is a Borel measure.

Let K : X ×X → IR a continuous function. Then the (linear) map LK : L2
ν(X)→ C(X)

defined by the operator

(LKf)(x) =
∫
K(x, t)f(t)dν(t), (2.13)

is well defined and the function K is called the kernel of LK . Several properties of LK
can be obtained from the properties of K (Cucker and Smale, 2001). For instance, if K
is continuous then LK is compact and

‖LK‖ ≤
√
ν(X) sup

x,t∈X
|K(x, t)|, (2.14)
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where is ν(X) the measure of X . In the sequel we will exclusively concentrate on Mer-
cer’s kernels.

If K is a Mercer kernel then LK is self-adjoint, positive, compact and the Spectral
theorem applies (Hochstadt, 1973; Conway, 1990): There exists an orthogonal basis
{φ1, φ2, . . . } of L2

ν(X) consisting on eigenfunctions of LK where each φj is given by

φj(x) =
1
λj

∫
X
K(x, t)φj(t) dν(t), (2.15)

being λj its corresponding eigenvalue (See (Conway, 1990) for details). Thus, given
φj , φi any two eigenfunctions of LK , then ‖φj‖L2

ν(X) = 1, 〈φj , φi〉L2
ν(X) = 0 for i 6= j and

for any f ∈ L2
ν(X), f =

∑∞
j=1〈f, φj〉φj . In addition the set {λj} is either finite or λj → 0

when j →∞ .

If λj > 0 then the eigenfunction φj is continuous and also lies in the RKHS HK . Then
it belong to the span of {Kx | x ∈ X}. Additionally it can be proven (Cucker and Zhou,
2007) that ‖φj‖HK ≤ 1

λj

√
ν(X) supx,t∈X |K(x, t)| for ‖ · ‖HK the norm inHK .

Assuming that λj ≥ λj+1 next theorem characterizes an orthogonal system inHK using
the eigenfunctions {φj}.

Theorem 2.3. Let ν a Borel measure on X and K : X × X → IR a Mercer kernel. Let λj be
the j-th eigenvalue of LK and φj the corresponding eigenfunction. Then {

√
λjφj : λj > 0}

constitutes an orthogonal system inH.

Thus given φj , φi any two eigenfunctions of the integral operatorLK , then ‖
√
λjφj‖HK =

1 and
〈√

λjφj ,
√
λiφi

〉
HK

= 0 for i 6= j. In fact theorem 2.3 is easy to prove applying the
definition of φj and the reproducing property (Theorem 2.2). Let φj , φi be two eigen-
functions of LK . Then

〈φi, φj〉HK =
〈

1
λj

∫
X
K(x, t)φj(t)dν(t), φi

〉
HK

(2.16)

=
1
λj

∫
X
φj(t)〈K(x, t), φi(x)〉HKdν(t)

=
1
λj

∫
X
φj(t)φi(t)dν(t) =

1
λj
δij ,

where δij = 1 if i = j and 0 otherwise; therefore

〈√
λiφi,

√
λjφj

〉
HK

=

√
λiλj

λj
δij = δij . (2.17)
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When the measure ν is non degenerate 2, the eigenvalues of the integral operator in LK
are all different form zero and the orthogonal system above is a basis of HK . In Section
2.4.2 we will use this to define a new characterization of HK . Previously, we introduce
the Mercer theorem.

2.4.1 Mercer’s theorem

Every Mercer kernel K can be written as a convergent series in X ×X . Let f ∈ L2
ν(X)

and consider {φ1, φ2, ...} a basis of functions in L2
ν(X), then f can be written as f =∑∞

k=1 akφk being the partial sums convergent in L2
ν(X). If the convergence holds in

C(X) we say the the sum converges uniformly. In addition the series
∑
ak converges

absolutely if
∑
|ak| converges.

Theorem 2.4 (Mercer’s theorem (Mercer, 1909)). Let X a compact domain or manifold, ν a
nondegenerate Borel measure in X and K : X ×X −→ IR a Mercer kernel. Let {λj}j≥1 be the
eigenvalues of LK and {φj}j≥1 the corresponding eigenfunctions. Then, for all x, y ∈ X

K(x, y) =
∞∑
j=1

λjφj(x)φj(y)

where the series converges absolutely (for each x, y ∈ X×X) and uniformly (in x, y ∈ X×X).

By the previous theorem every we know that Mercer kernel K can be expressed as
K(x, t) =

∑∞
j=1 λjφj(x)φj(t). In other words, the map Φ : X → l2 given by x 7→(√

λjφj(x)
)
j∈IN

(where l2 is the linear space of all square summable sequences) satisfies

K(x, t) = 〈Φ(x),Φ(t)〉. (2.18)

ThusK acts as a dot product in the embedding (the image of the nonlinear mapping Φ).

Example 2.5. The following kernels (if defined on a compact domain X ∈ IRn) are
Mercer Kernels.

Linear kernel: K(x,y) = xTy.

Polynomial kernel: K(x,y) = (a+ xTy)b for a,∈ IR+ and b ∈ IN.

Gaussian kernel: given by K(x,y) = e−
1

2σ2 ‖x−y‖2 for σ ∈ IR+.
• • •

2A measure on X is non degenerate when for each non empty subset U ⊆ X then ν(U) > 0.
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Notice for any two points xi, xj ∈ X , Theorem 2.3 allows to estimate the inner prod-
uct of Φ(xi) and Φ(xj) without knowing Φ explicitly. This property of kernel functions
allows to kernelize any algorithm that could by written in terms of inner products of
data. This can be done in two steps: first, mapping the data into the feature space de-
fined by Φ implicitly through kernel function (replacing the original data inner products
xTi xj with K(xi, xj) = 〈Φ(xi),Φ(xj)〉). Second, using the original algorithm on the corre-
sponding feature space. Kernel Principal Components Analysis (Schölkopf et al., 1999),
Kernel Ridge Regression (Ua and Pozdnoukhov, 2002) or the Support Vector Machines
(detailed in Section 2.6) are some well known examples.

Mercer’s kernels also provide an interpretation of f ∈ HK as an hyperplane in the
feature space. Let be f(x) ∈ HK for x ∈ X . Then,

f(x) =
n∑
i=1

αiK(xi, x) =
n∑
i=1

αiΦ(xi)Φ(x) = wTΦ(x) (2.19)

where w =
∑n

i αiΦ(xi) and Φ is the map Φ : X → l2 given by x 7→
(√

λjφj(x)
)
j∈IN

.
That is, f(x) = 0 describes a hyperplane in the feature space determined by Φ.

Next we conclude this section with a new characterization of RKHSs based on the eigen-
functions and eigenvalues of self-adjoint, positive, compact integral operators.

2.4.2 RKHSs revisited

As we already mentioned in Section 2.4 if ν, the Borel measure in X , is not degenerate
then the set {

√
λjφj : λj > 0} constitutes a basis ofHK where φj is the j-th eigenfunction

of LK and λj its corresponding eigenvalue.

Since HK is independent of the measure ν, when dim(HK) =∞ then LK has infinitely
many positive eigenvalues λj and we can characterizeHK as:

HK =

f ∈ L2
ν(X) : f =

∞∑
j=1

aj
√
λjφj with aj ∈ l2

 . (2.20)

Let f =
∑∞

j=1 aj
√
λjφj and g =

∑∞
j=1 bj

√
λjφj be two functions in HK ; then the inner

product of f and g inHK is:
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〈f, g〉HK =

〈 ∞∑
j=1

aj
√
λjφj ,

∞∑
i=1

bi
√
λiφi

〉
HK

=
∞∑
j=1

∞∑
i=1

bjai

〈√
λiφi,

√
λjφj

〉
HK

=
∞∑
j=1

bjai.

If the dimension ofHK is finite (only m <∞ eigenvalues of LK are different form zero)
the previous results also applies. In this case we define

HK =

f ∈ L2
ν(X) : f =

m∑
j=1

aj
√
λjφj with (a1, a2, . . . , am)T ∈ IRm

 (2.21)

with inner product 〈f, g〉HK =
∑m

j=1 ajbj for any pair of functions f =
∑m

j=1 aj
√
λjφj

and g =
∑m

i=1 bi
√
λiφi.

Remark that although HK can be defined through the eigenfunctions and eigenvalues
of LK is independent of the measure ν (notice that the spaceHK was defined only using
X and K).

In the literature is also common to define HK as the space of all functions f ∈ L2
ν(X)

such that f =
∑∞

j=1 ajφj where aj ∈ IR and (aj/
√
λj) ∈ l2 equipped with the inner

product 〈f, g〉 =
∑∞

j=1 λ
−1
j ajbj for f =

∑
ajφj and g =

∑
bjφj . It is straightforward to

check that this definition ofHK is equivalent to eq. (2.20).

For simplicity in notation we will denote 〈·, ·〉HK by 〈·, ·〉K and ‖ · ‖HK by ‖ · ‖K in the
sequel.

2.5 Regularization in RKHSs

Next we turn back to the main objective of the learning process, the estimation of fsn,H
the minimizer of eq. (2.10). To this aim we describe two different strategies: Ivanov and
Tikhononv Regularization.

2.5.1 Ivanov Regularization

Let X a compact space or manifold and ν a Borel measure in X and Y . Let sn =
{(x1, y1), . . . , (xn, yn)} ∈ Zn a sample of n examples independently drawn from ν in
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X and K : X ×X −→ IR be a Mercer kernel. Let LK be the integral operator associated
to K and IK the compact inclusion defined in Theorem 2.2.

To ensure the existence and the unicity of the minimizer of eq. (2.10) we need define H
compact. To this aim we follow Propositions 2.1 and 2.2 and we defineH = IK(BR), for
BR := {f ∈ HK : ‖f‖K ≤ R}, the compact set where fsn,H must be sought. Then we
afford the learning problem by finding an empirical target function fsn,HK that optimizes

min
1
n

n∑
i=1

(f(xi)− yi)2 (2.22)

s.t f ∈ B(HK , R),

where B(HK , R) is the ball of radius R defined by the compact inclusion IK on HK .
Optimization problems in eqs. (2.22) are known as Ivanov Regularization (Ivanov, 1976)
problems.

Denote by HK,sn the finite subspace of HK spanned by {K(x1, x), . . . ,K(xn, x)} (where
the xi are now the points of the sample) and P the orthogonal projection P : HK −→
HK,sn . In practice it makes sense to choose the empirical function from HK,sn instead
of HK . If f is a minimizer of Rsn in B(HK , R), then P (f) is an minimizer of Rsn in
P (B(HK , R)) (the image of B under P ) and the problem (2.22) can restated as a con-
vex programming problem whose solution f∗ =

∑n
i=1 c

∗
iK(xi, x) can be algorithmically

obtained. See (Cucker and Zhou, 2007) for further details.

Ivanov Regularization represents a natural way to apply the Empirical Risk Minimiza-
tion (ERM) principles proposed by Vapnik (Vapnik, 1998). The idea of ERM is to find
fsn,H ensuring a balance between its precision (measured in this case by 1

n

∑n
i=1(f(xi)−

yi)2) and its complexity (measured by B(HK , R)). To this aim the ERM considers a se-
quence of nested hypothesis spacesH1 ⊂, . . . ,HM whereHi = {f ∈ H : Ω(f) ≤ Ai} for
Ω(f) a convex positive functional and A1, . . . , AM are a sequence of increasing scalars.
In our particular case Ω(f) = ‖f‖K and the Ai = Ri (the radii of the compact balls). For
each Ri the Ivanov problem must be solved selecting f∗sn,H that minimizes Rsn,Hi(f).

The Ivanov approach is consistent but computationally very expensive. Other alterna-
tives have been proposed in the literature (Philips, 1962; Tikhonov and Arsenin, 1977).
In next chapter we will focus in this last case since it is computationally treatable and it
automatically guarantees compactness of the hypothesis space.



2.5. REGULARIZATION IN RKHSS 25

2.5.2 Tikhonov Regularization in RKHSs

In this section we move away from the "compact hypothesis space approach" followed
until now by slightly changing the point of view. Next we focus on Tikhovov regular-
ization in RKHSs as alternative to the problem in eq. (2.22).

The central idea of Tikhovov regularization is to address well posedness in eq. (2.22)
adding a penalization term to Rν(f) (or to Rsn in the sampled version). In this section,
we will consider thatH = HK : The hypothesis space is now the whole RKHS.

Let X be a compact space or manifold in an Euclidean Space and Y = IR. Let ν be a
Borel probability measure defined on Z = X × Y . We define the γ-Regularized Error as

Rγ = min
f∈HK

∫
Z

(f(x)− y)2dν(x, y) + γ‖f‖2K , (2.23)

where γ > 0 and ‖f‖K represents the norm of f inHK . Since the measure ν is unknown,
in practice we work with sn ∈ for sn = {(x1, y1), . . . , (xn, yn)} ∈ Zn a random sample
of n examples independently drawn from ν. Then the previous γ-Regularized Error is
approximated by the Empirical γ-Regularized Error given by

Rγ,sn = min
f∈HK

1
n

n∑
i=1

(f(xi)− yi)2 + γ‖f‖2K . (2.24)

where the scalar γ controls the balance between the minimization of Rsn (eq. (2.6)) and
the approximation capacity of the hypothesis space (measured by ‖f‖2K).

The existence of functions fγ,HK and fγ,sn,HK minimizing respectively eqs. (2.23) and
(2.24) is not guarantee (H is no longer compact). However in (Cucker and Smale, 2001)
is proven that both optimizers exist and are unique. Regarding the problem in eq. (2.23)
its minimizer is given by:

fγ,HK = (LK + γId)−1LKfν , (2.25)

where LK is the integral operator associated to the kernel K and fν defined in eq. (2.3).
Moreover it can be shown (Mukherjee et al., 2002), (Bousquet and Elisseeff, 2002), that
the space where the solution is sought takes the form {f ∈ HK : ‖f‖2K ≤ supy∈Y y2/γ}
guaranteeing this way compactness of the hypothesis space.

Notice that when γ grows, the radius of the ball decreases and the space is smaller.
Therefore the scalar γ plays a similar role to the radius R of the ball of functions BR
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defined in the Ivanov approach. See Remark 8.26 of (Cucker and Zhou, 2007), for a
detailed relationship between problems in eqs. (2.22) and (2.24).

To conclude this section we enunciate the Representer theorem which characterizes the
solutions of (2.24). This theorem was introduced in (Kimeldorf and Wahba, 1970) within
the context of smoothing splines and it has been widely used to characterize the solution
of risks minimization functional in RKHSs. For details, proofs and generalizations, refer
to (Schölkopf et al., 2000) (Cox and O’Sullivan, 1990).

Theorem 2.5 (Representer Theorem). Let sn ∈ Zn be a random sample, K a kernel function
and γ > 0. Then the empirical target function that minimizes eq. (2.24) exists, is unique and
admits a representation of the form

fγ,sn,HK =
n∑
i=1

αiK(xi, x), ∀x ∈ X, (2.26)

being the coefficients αi ∈ IR the solutions to the linear system:

(γnIn +K
∣∣
x)α = y, (2.27)

whereK
∣∣
x is the n×n kernel matrix with components (K

∣∣
x)ij = K(xi, xj), y = (y1, . . . , yn)T ,

α = (α1, . . . , αn) and In is the identity matrix of dimension n.

With the Representer theorem we conclude the learning process giving a close expres-
sion for fγ,sn,HK , the minimizer of eq. (2.24). However the generality of the regulariza-
tion approach allows to afford a wide range of statistical problems by changing the loss
function in eq. (2.24) (Poggio and Gorosi, 1998). Next we will study a particular case
specially interesting in classification problems: the Support Vector Machines.

2.6 Classification problems and Support Vector Machines

While in previous sections we have studied the learning problem for the regression
perspective now we will focus in binary classification problems. In addition we will see
how Support Vector Machines can be studied to address the problem as a variation of
eq. (2.24).

Let X be a subset of IRp, Y = {−1, 1} (label space) ν and ν Borel measure on X =
X × Y . Consider sn = {(xi, yi)}ni=1 ∈ Zn a random sample drawn for ν. To solve the
classification problem means to learn from sn a function (called classifier) f : X → Y

that relate each data xi ∈ X with its label yi ∈ Y . The misclassification error of a
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classifier f : X ×X → Y is defined as the probability of a wrong prediction, that is, the
measure of the event {f(x) 6= y} for any (x, y) ∈ Z given by

Rc,ν(f) = Prob{f(x) 6= y} =
∫
X
Prob{f(x) 6= y | x}dν(x) (2.28)

In Section 2.2 we showed that the function that minimizes the Generalization Error
Rν(f) (see eq. (2.1)) is the regression function fν defined in eq. (2.3). The function that
minimizes eq. (2.28) is known as the Bayes rule and it is given by:

fc,ν(x) =


+1 if Prob(y = 1 | x) ≥ Prob(y = −1 | x) ,

−1 if Prob(y = 1 | x) < Prob(y = −1 | x) .

(2.29)

The function fc,ν(x) is non computable since ν is unknown. Then to approximate fc,ν(x)
from sn we will first derivate a computable discrimination function f : X → IR and we
will define the final classifier as

sign(f)(x) =


+1 if f(x) ≥ 0 ,

−1 if f(x) < 0 .

(2.30)

Next we deduce a particular choice for f , the Support Vector Machines, by using the
regularization theory approach.

2.6.1 Support Vector Machines as regularization method

Support Vector Machines (SVMs) appeared as optimal margin classifiers in the context
of Vapnik’s statistical learning theory (Vapnik, 1998). They have been applied to a large
amount of real-world data problems obtaining very competitive results and becom-
ing one of the most relevant techniques in classification (Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000; Moguerza and Muñoz, 2006; Hastie et al., 2009), regression (Smola
and Schölkopf, 2003) and density estimation (Muñoz and Moguerza, 2006) problems.

A fast search in Google with the terms “Support Vector Machines" shows more than 24
millions of results and the number of publisher papers related to SVMs are increasing
since they were introduced in (Boser et al., 1992).

The original idea of SVMs appears by first time for binary classification problems. In
(Boser et al., 1992) a linear decision function to maximize the separation between the
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classes in a classification problem is estimated after mapping the data onto a high di-
mensional space via the use of a kernel function. This approach combines successfully
the idea of transforming data onto a high dimensional space using a kernel (kernel-
trick) in the spirit of potential functions (Aizerman et al., 1964) with the mathematical
programming techniques for the calculation of and hyperplane in a non parametric con-
text (Vapnik and Chervonenkis, 1964).

The interpretation of the SVMs as regularization method is due to Wahba. As is de-
scribed in (Wahba, 2006), one of the comments to the paper (Moguerza and Muñoz,
2006), the connection between original approach and regularization was discovered at
an American Mathematical Society meeting at Mt. Holyoke in 1996: While the speaker
was describing the SVM an anonymous person remarked that the SVM with the kernel
trick was the solution to an optimization problem in a reproducing kernel Hilbert space.

Let X be a compact space or manifold, Y = {−1, 1}, ν a Borel measure defined over
Z = X × Y and sn = {(xi, yi)}ni=1 ∈ Zn a random sample independently drawn form ν.
Then SVMs seeks a function f that minimizes the Empirical Error

Rsn,svm(f) =
1
n

n∑
i=1

(1− yif(xi))+. (2.31)

The squared loss function function is here replaced by the so-called hinge loss function
given by x+ = max(x, 0) for any x ∈ IR. The hinge loss does not penalize large values
of f(xi) with the same sign as yi (understanding by large |f(xi)| ≥ 1). Therefore only
points such that (1 − yif(xi))+ > 0 will be taken into account in the characterization
of the decision function (see Figure 2.2). Remark that, since the hinge loss is convex,
Theorem 2.1 can be extended to this case and therefore convergence of the Empirical
Error in eq. (2.31) to Rν,svm(f) =

∫
Z(1− yif(xi))+dν(x, y) is guaranteed.

To reach well-posedness, SVMs make use of regularization theory. In particular, we will
use here the Tikhonov regularization approach. Then the SVM can be understood as a
variation of eq. (2.24) where the squared loss function is replaced by the hinge loss func-
tion. Hence the SVM solution obtains the discrimination function via the minimization
of the following risk functional:

min
f∈HK

1
n

n∑
i=1

(1− yif(xi))+ + γ‖f‖2K , (2.32)

where γ > 0,HK is the RKHS associated to the kernel K and ‖f‖K denotes the norm of
f in the RKHS.
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y=1 

1  f(x) 

Loss 

(a) Hinge loss function for points such that yi = 1.

y=‐1 

‐1  f(x) 

Loss 

(b) Hinge loss function for points such that yi =
−1.

Figure 2.2: Hinge loss function.

By convexity of the hinge loss function, the Representer theorem (Theorem 2.5) ensures
that the solution to problem (2.32) has the form f(x) =

∑n
i=1 αiK(xi, x) + b, where the

constant b can be included without loss of generality (Poggio et al., 2001).

It is immediate to show that ‖f‖2K = ‖w‖2, where w =
∑n

i αiΦ(xi) and Φ is the map
Φ : X → l2 given by x 7→

(√
λjφj(x)

)
j∈IN

(defined in Section 2.4) where φj and λj are
respectively the eigenfunctions and eigenvalues of LK , the integral operator associated
to K. Then problem (2.32) can be restated as

min
w,b

1
n

n∑
i=1

(
1− yi(wTΦ(xi) + b)

)
+

+ µ‖w‖2 . (2.33)

Eqs. (2.32) and (2.33) summarize some the key issues of SVMs: Through the use of ker-
nels, the a priori problem of estimating a nonlinear decision function that assigns each
data to its label is transformed into the a posteriori problem of estimating the weights
w of a hyperplane in the feature space induced by K (mapping Φ).

The hinge loss is a piecewise linear function and therefore is not differentiable. Then
eqs (2.32) and (2.33) are non-differentiable either which implies a difficulty for efficient
optimization techniques. See (Bazaraa et al., 1993) for details. However, problem (2.33)
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can be turned smooth by reformulating it as,

min
w,b

1
2‖w‖

2 + C
n∑
i=1

ξi

s.t. yi
(
wTΦ(xi) + b

)
≥ 1− ξi , i = 1, . . . , n ,

ξi ≥ 0 , i = 1, . . . , n ,

(2.34)

where ξi are slack variables introduced to avoid the non-differentiability of the hinge
loss function and C = 1/(2µn). See (Lin, 2002) for details. Efficient methods have been
proposed in the literature to solve (2.34) (Joachims, 2002; Osuna et al., 1997; Platt, 1999).

The desired decision function that will be used in eq. (2.30) will be an hyperplane given
by:

f∗(x) = (w∗)TΦ(x) + b∗ =
n∑
i=1

β∗i yiK(xi, x) + b∗. (2.35)

where the vector β∗ = (β∗1 , . . . , β
∗
n)T is the solution the dual problem of (2.34). See

(Moguerza and Muñoz, 2006) for details. Both λ∗i and b∗ only depend on the sample.
Moreover, those points satisfying that λ∗i > 0 are called the support vectors. Therefore
f∗(x) is completely determined by the subsample made up by the support vectors. Of-
ten happens that the support vectors are a small fraction of the data sample and the
solution is usually sparse. This property is due to the use of the hinge loss function.

The hyperplane estimated by the SVM is neither arbitrary nor unstable despite the
Cover’s theorem (Cover, 1965) which guarantees that any data set becomes arbitrar-
ily separable as the data dimension grows. This happen by two main facts: the SVM
solution it is the result of the regularization problem in eq. (2.32) and it is proven that
the empirical error for SVMs converges to the expected error as n → ∞. In addition,
notice that eq. (2.35) only depends on kernel evaluations of the formK(x,y). Therefore,
we do not need to know explicitly Φ to solve the SVM problem.

To conclude this section we illustrate in a simulated example how the choice of the
kernel function affects the discrimination function estimated by the SVM.

Example 2.6. In this example we illustrate the influence of the kernel choice in the dis-
crimination function estimated by a SVM in a classification problem. To this aim we
consider the task of separating two spirals of 50 data each. The two classes of the gen-
erated data are represented by white and black points in any of the four plots of Figure
2.3.
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Table 2.1: Results obtained for the two spirals problem. Classification errors and pro-
portion of support vectors are shown.

Classification Support
Kernel Error (%) Vectors (%)
Linear 36 76
Polynomial a = 1, b = 2 36 76
Polynomial a = 1, b = 3 18 26
Gaussian ρ = 0.1 0 96
Gaussian ρ = 1 4 34
Gaussian ρ = 2 14 48

We train 6 different SVMs with different kernels: a linear kernel, two polynomial ker-
nels of degrees 2, and 3 and three gaussian kernels of parameters 0.1, 1 and 2. The
penalization parameter C is fixed to 10 in all cases. Given that the data are non linearly
separable the linear kernel will exhibit a poor performance. However the use of other
kernels that transform the data to a higher dimensional space (like the polynomial or
the Gaussian) will work better that the linear one in this example.

In Table 2.1 we show the percentage of well classified points and support vectors for
the six kernels. In addition we include in Figure 2.3 a graphical solution that includes
(in black) the discrimination function f(x) = 0 in each case. The data that are support
vectors are remarked and the color of the plot represents the value of the estimated
function f(x) in each point of the plot.

As expected, the six discrimination function are different. Using the linear kernel and
the polynomial kernel of degree 2 we obtain in both cases a 36 % of misclassified data.
By far this is the worst result in this experiment. With the polynomial of degree 3 the
percentage of misclassified data decreases to 18%. However the best results are ob-
tained for the Gaussian kernels. The only decision functions that separates perfectly the
two spirals corresponds to that one estimated using a Gaussian kernel with parameter
ρ = 0.1. However this discrimination presents a serious drawback. First, the high pro-
portion of support vectors (96 % in this case) generally indicates a poor generalization
capability of the model (Cristianini and Shawe-Taylor, 2000). This is confirmed by the
colors of the Figure 2.3 d) that represents the value of f∗(x). Excepting for a tiny neigh-
borhood of the observations, the plot is monochromatic. This means that for different
points in the sample the discrimination function is useless since its discrimination ca-
pability is poor. On the other hand, the solution obtained with a Gaussian kernel with
ρ = 1, does not presents this problem and only four data points are wrongly classified.

• • •
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(a) Linear. (b) Polynomial kernel for a = 1
and b = 2.

(c) Polynomial kernel for a = 1
and b = 3.

(d) Gaussian kernel for ρ = 0.1. (e) Gaussian kernel for ρ = 1. (f) Gaussian kernel for ρ = 2.

Figure 2.3: Example of classification problem with two spirals. The support vectors are
remarked and the color of the plot represents the value of the estimated function f(x).
In black, the decision function f(x) = 0 is also shown.

As it is shown in eq. (2.35) and verified experimentally in Example 2.6 the final model
implemented in SVMs is strongly influenced by the choice of the kernel. To decide
which kernel is the most suitable for a particular problem is an important and open is-
sue. Several strategies have been proposed to choose K in the SVMs context (Keerthi
and Lin, 2003). Nevertheless, to use a single kernel may be not enough to solve accu-
rately the problem under consideration. This happens in analysis where results may
vary a lot depending on the data similarity chosen. Thus, the information provided by
a single similarity measure (kernel) may be not enough for classification purposes, and
the combination of kernels appears as an interesting alternative to the model selection
problem. Given the relationship between proximity measures (distances, dissimilarities
or similarities) and kernels, we will first review these concepts next as a previous step
to study in Section 2.8 some combinations schemes proposed in the literature.
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2.7 Proximity measures

In this section we will use the term proximity to refer similarity, dissimilarity and dis-
tance functions.

For any set X , a distance function is an application d : X × X → IR such that for all
x, y ∈ X :

(i) d(x, x) = 0.

(ii) d(x, y) ≥ 0 (non-negativity).

(iii) d(x, y) = d(y, x) (symmetry).

(iv) d(x, y) = 0 if x = y (definiteness).

(v) d(x, y) + d(y, z) ≤ d(x, z) (triangle inequality).

2.7.1 Dissimilarities and distance functions

A function δ : X ×X → IR which satisfies the two first conditions is called dissimilarity
function. The symmetry condition is not always satisfied in real applications it will be
studied in Chapter 4.

Let X be an space equipped with a distance d. Then we the say that (X, d) is a metric
space. In addition a matrix with components (D)ij = d(xi, xj) for i, j = 1, . . . , n (dis-
similarities between a set of points x1, . . . , xn) is called dissimilarity matrix or distance
matrix, independently of the specific properties of d.

2.7.2 Similarity functions

For any set X , a similarity function is an application s : X ×X → IR such that given any
x, y ∈ X :

(i) s(x, x) > 0.

(ii) s(x, y) = s(y, x) (symmetry).

(iii) s(x, y) ≥ 0 (non-negativity).

(iv)
∑n

i,j=1 cicjs(xi, xj) ≥ 0 for all n ∈ IN ci ∈ IR and xi, xj ∈ X (positive definiteness).

Similarity functions which are positive definite can be used to define kernel functions.
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2.7.3 Relationship between similarities, dissimilarities and kernel functions

Most classification and cluster algorithms are able to work with similarities or dissimi-
larities. However sometimes a transformation to convert similarities into dissimilarities
or vice versa it is necessary.

From similarities to dissimilarities

• Let s be a normalized similarity. That is 0 ≤ s(x, y) ≤ 1 and s(x, x) = 1 for all
x, y ∈ X . Then some typical ways to obtain dissimilarity functions from s are:

(i) d(x, y) = 1− s(x, y)

(ii) d(x, y) =
√

1− s(x, y)

(iii) d(x, y) =
√
s(x, x) + s(x, x)− 2s(x, y)

See (Gower, 2000) for additional methods.

• If the similarity function comes from a scalar product in a Euclidean space then
we can calculate the asociated metric via d(x, y)2 = 〈x, x〉+ 〈y, y〉− 2〈x, y〉. Notice
that this is particular case of kernel functions.

From dissimilarities to similarities

• Use the previous equations (i), (ii) and (iii) writing the similarity in terms of the
dissimilarity. Remark that (iii) is known in this case as Multidimensional Scaling
(Cox and Cox, 2001).

• Let d be a Euclidean distance. Then a positive definite similarity function can be
calculated by s(x, y) = 1

2

(
d(x, 0)2 + d(y, 0)2 − d(x, y)2

)
where 0 is the origin (or

some other point in X playing its role).

• Let d be a dissimilarity function. Then any non-negative decreasing function of d
is a similarity function. For instance, s(x, y) = exp(−d(x, y)2/σ) for σ ∈ IR+ is a
similarity function for any x, y ∈ X .

2.8 The combination of kernels within the support vector frame-
work

In this section we review the existing literature in kernel combinations for binary clas-
sification problems. Let X be a compact space or manifold Y = {−1, 1} and ν a Borel
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measure defined on Z = X × Y . Let K1, . . . ,Km be a set of Mercer’s kernels where
Ki : X × X → IR for i = 1, . . . ,m and sn = {(x1, y1), . . . , (xn, yn)} ∈ Zn a random
sample independently obtained from ν. The goal in kernel combination procedures is
to find a kernel functionK∗ : X×X → IR derived from the original collection of kernels
that capture the right idea of similarity between the data points. In our context the final
kernel K∗ will be used to train a Support Vector Machine.

In kernel combination we work with similarities instead of kernels. As we already de-
tailed in the previous section, this is not a problem since Euclidean distances can be
deduced from positive definite kernels. Hence similarities can be obtained as well form
kernels.

The underlying hypothesis in similarity combination is that, in the feature space, all the
point in an small enough neighborhood belong to the same class. Therefore, in classifi-
cation problems makes sense to define kernel combinations such that points that belong
to the same class are close in the feature space and far away otherwise. In (Martín de
Diego et al., 2009) this idea in implemented via the so-called Max-Min method. Given
the collections of kernels K1, . . . ,Km and the sample sn, K∗ is defined by:

K∗(xi, xj) =


max (K1(xi, xj), . . . ,Km(xi, xj)) if yi = yj ,

max (K1(xi, xj), . . . ,Km(xi, xj)) if yi 6= yj .

(2.36)

It can be proven that, for m = 2, eq. (2.36) can be reformulated as

K∗(xi, xj) =
1
2

(K1(xi, xj) +K2(xi, xj)) + yiyj
1
2
|K1(xi, xj)−K2(xi, xj)|. (2.37)

In (Martín de Diego et al., 2009), a generalization of the previous expression gives raise
a wide variety of kernel combinations. Let g be a (convex) function able to meassure the
difference of infomation between each two kernels. Then

K∗(xi, xj) =
1
m

m∑
t=1

Ki(xi, xj) + τyiyj
∑
t<l

g(Ki(xi, xj)−Kj(xi, xj)) , (2.38)

where τ > 0 generalizes eq. (2.37). Different values of g and τ in eq. (2.38) produce
different types of combination schemes. We summarize some cases in Table 2.2.

Another alternative kernel combination scheme proposed in (Martín de Diego et al.,
2009) is given by

K∗(xi, xj) =
m∑
t=1

wt(xi, xj)Kt(xi, xj), (2.39)
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Table 2.2: Types of kernels combinations for different values of τ and different functions
g eq. (2.38).

Method τ g(x) Number of kernels

AKM Average Kernel 0 - m
MAKM Modified Average Kernel > 0 g(x) = 1 m
AV Absolute Value > 0 g(x) = |x| m
PO Pick Out 1/2 g(x) = |x| 2
SM Square Method > 0 g(x) = x2 m

where the wt(xi, xj) are nonlinear functions and xi, xj are data points in the sample.
In this kernel combination procedure it is common to assume that Kt(xi, xj) ∈ [0, 1] ∀
i, j (otherwise they can be scaled). Notice that if wt(xi, xj) = µt for t = 1, . . . ,m (the
functions wt are constants) the method reduces to calculate the linear combination.

K∗(xi, xj) =
m∑
t=1

µtKt(xi, xj). (2.40)

When µt = 1/m in eq. (2.40) and τ = 0 in eq. (2.38) both schemes are equivalent.

Combination schemes based in eqs. (2.38) and (2.39) may lead to indefinite combination
matrices. Therefore, to make this methodology useful to train a SVM, the final matrix
K∗
∣∣
x whose elements are given by (K∗

∣∣
x)ij = K(xi, xi) has to be projected onto the cone

of positive definite matrices. Several techniques have been proposed for this purpose
in the literature (see (Muñoz and Martín de Diego, 2006)) but it seems that there is not
a universally best method.

An alternative combination based in the semidefinite programming (SDP) is proposed
in (Lanckriet et al., 2004). The idea is to optimize the weights of the linear combination
in eq. (2.40) maximizing the margin between the classes of the problem and subject to
thee conditions: the matrix K∗

∣∣
x must belong to the cone of positive definite matrices,

µt ≥ 0 and
∑n

i=1 µt = 1. The advantage of this method is that the final matrix of
the combination can be directly used to train a SVM (since it is semi positive definite).
However, as we will show in Example 2.7, this combination does not obtain as good
performance as those in eq. (2.37).

Other alternative in kernel combination (Muñoz et al., 2006) is to define kernels that acts
locally depending on the area of the space where the points are located. The idea is to
use the scheme in eq. (2.39) and to define the functions wt(xi, xj) = ht(xi)ht(xj) where
ht is some type of indicator function. For instance for a problem where the data points
are located in two specific areas a suitable kernel is given by
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K∗(xi, xj) = w1(xi, xj)K1(xi, xj) + w2(xi, xj)K2(xi, xj) , (2.41)

where for t = 1, 2,

ht(x) =


1 if ‖x− ct‖1/2 ≤ rt ,

e−γ(‖x−ct‖2−r2) if ‖x− ct‖1/2 > rt ,

(2.42)

being ‖ · ‖ the Euclidean distance, x a sample point, ct ∈ X is the center of each area
(circular in this case) and rt > 0 is the radius. Parameter γ > 0 is fixed in order to obtain
a fast transition from 0 to 1.

In this case, due to the particular structure of the defined kernel the solution is given
(Muñoz et al., 2006) by:

f(x) =
∑
xi∈A1

αiK1(x, xi) +
∑

xj∈A2

αjK2(x, xj) + b (2.43)

Notice that now K∗ behaves like K1 in the domain of indicator function h1 and like K2

in the domain of indicator function h2. When both K1 and K2 are linear kernels the
combination K∗ in eq. (2.41) is known as Railway Kernel.

To conclude this section we include a real example where the kernel combinations de-
scribed above are compared.

Example 2.7 (Single kernels and combinations in practice). In this example we deal
with a database from the UCI Machine Learning Repository 3: the Breast Cancer data
set (Mangasarian and Wolberg, 1990). The data set consists of 683 observations with 9
features each.

Consider three single kernels: linear, polynolyal of degree 2, and a Gaussian kernel of
parameter 1. We compare the classification performance of a SVM with this three ker-
nels and with some of the combination schemes described above. In particular we use
the AKM, MaxMin, AV, SDP and the Railway Kernel methods. When necesary we trans-
form the kernel matrices to positive definite via the Positive Eigenvalue Transformation
described in (Muñoz and Martín de Diego, 2006). In addition we train two more SVM
classifiers built using Gaussian kernels. For the first classifier (SVM1) the parameter is
choosen as the inverse of the dimension of the data. For the second (SVM2), ρ and and
C (the penalization term) are choosen following (Keerthi and Lin, 2003).

3http://archive.ics.uci.edu/ml/
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Table 2.3: Percentage of missclassified data, and percentage of support vectors for the
cancer data set. Standard deviations in brackets.

Train Test % Support
Method Error Error Vectors

Polinomial 0.1 (0.1) 7.8 (2.5) 8.3 (0.8)
Gaussian 0.0 (0.0) 10.8 (1.7) 65.6 (1.0)
Linear 2.6 (0.5) 3.7 (1.8) 7.1 (0.8)

AV 2.4 (0.3) 3.1 (1.3) 2.9 (0.4)
AKM 1.3 (0.2) 3.3 (1.4) 31.1 (0.8)
Max-Min 0.7 (0.1) 2.9 (1.4) 25.3 (0.6)
SDP 0.0 (0.0) 6.2 (1.6) 65.5 (1.9)
RK 2.5 (0.3) 2.9 (0.4) 18.6 (3.6)

SVM1 0.1 (0.1) 4.2 (1.4) 49.2 (1.0)
SVM2 0.0 (0.0) 2.9 (1.6) 49.2 (1.0)

Table 2.7 shows the performance of the three single kernels, the combinations and the
two optimized SVMs. The results are averaged over 10 runs and the 80% of the data
are used to train the SVMs and the remaining 20% to calculate the test errors. The
combination methods AV, AKM, Max-Min and RK improve any single kernel used to
build them. In particular, the Max-Min and RK methods obtain the best performance of
the experiment together with the SVM1 that uses and optimized Gaussian kernel. The
SDP is, however, the worse combination procedure. It improves the polynomial and
Gaussian kernels but does not outperform the classification errors of a linear kernel.

• • •



Chapter 3

Representing Functional Data in
Reproducing Kernel Hilbert Spaces

Abstract

Functional data are difficult to manage for many traditional statistical tech-
niques given their very high (or intrinsically infinite) dimensionality. The rea-
son is that functional data are essentially functions and most algorithms are
designed to work with (low) finite-dimensional vectors. Within this context
we propose techniques to obtain finite-dimensional representations of func-
tional data. The key idea is to consider each functional curve as a point in a
general function space and then project these points onto a Reproducing Ker-
nel Hilbert Space with the aid of Regularization theory. In this chapter we
describe the projection method, analyze its theoretical properties and develop
an strategy to select an appropriate RKHSs to represent the functional data.

Keywords: Functional Data, Reproducing Kernel Hilbert Spaces, Regularization The-
ory, Subspace Information Criterion.

3.1 Introduction

The field of Functional Data Analysis (FDA) (Ramsay and Silverman, 2006) (Ferraty and
Vieu, 2006) deals naturally with data of very high (or intrinsically infinite) dimensional-
ity. Typical examples are functions describing physical processes, genetic data, control
quality charts or spectra of data in Chemometrics.

39
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In practice each functional datum is given by a data set fn = {(xi, yi) ∈ X×Y }ni=1, where
X is the space of input variables and, in most cases, Y = IR. The first task in any FDA
methodology is to transform the data set fn into a function f : X → Y and then to apply
some generalized multivariate procedure able to cope with functions. Of course n, the
number of data points which can be recorded, is finite while an accurate description of
the underlying function would require an infinite number of observations. Therefore
the choice of a particular f will be done, in general, by selecting it from an infinite
collection of alternative models. This is the typical context in which ill-posed problems
arise (Tikhonov and Arsenin, 1977).

Most FDA approaches choose an orthogonal basis of functionsB = {φ1, . . . φd} (d ∈ IN),
where each φj belongs to a general function space (usually L2(X)) and then represent
each functional datum by means of a linear combination in Span(B) (Ramsay and Sil-
verman, 2006). Usual choices for functions in B are Fourier, Wavelets or B-splines func-
tions.

Our approach in this thesis will be to evaluate the goodness of fit of a particular func-
tion to a given functional datum by means of some “loss function" L(y, f(x)). The
seeked function will be the minimizer of the empirical error 1

n

∑n
i=1 L(yi, f(xi)) in a

hypothesis space H. It is well known that to achieve well-posedness of this problem
and uniform convergence of the empirical error to the generalization error defined by∫
X×Y

L(y, f(x))dν(x, y) (where ν is some probability measure onX×Y ), imposing com-

pactness in H is a sufficient condition (Cucker and Smale, 2001; Moguerza and Muñoz,
2006). A way to achieve this is to use regularization theory and the natural function
spaces to use are the Reproducing Kernel Hilbert Spaces (RKHSs). Following this ap-
proach we propose a finite-dimensional representation for functional data based on a
particular projection of the original functions onto a Reproducing Kernel Hilbert Space
(RKHS).

As we detailed in Chapter 2,RKHSs (Cucker and Smale, 2001; Wahba, 2003) are charac-
terized by a generalized covariance function called kernel and the approximating func-
tion will be a linear combination of its eigenfunctions. Under general rather conditions
we can build kernels from orthonormal basis of functions (Rakotomamonjy and Canu,
2005). In addition, we can directly choose the kernel (see Section 3.4 for details); in Sec-
tion 3.2 we propose a method to approximate the eigenfunctions of a given kernel as
a previous step to obtain the proposed functional data representation. To focus on the
kernel makes accessible a wider class of basis of functions to represent the functional
data. In this sense our approach constitutes a generalization of the usual FDA setting.
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The choice of the kernel in regularization methods is a relevant problem that has been
extensively studied in the literature. We refer to (Keerthi and Lin, 2003; Lanckriet et al.,
2004; Moguerza and Muñoz, 2006) for some references in the classification context and
to (Cherkassky and Ma, 2004) in regression problems. In this chapter we will make use
of the Subspace Information Criterion (SIC) (Sugiyama and Ogawa, 2001; Sugiyama
and Muller, 2002) to select the kernel that generates the RKHS. The SIC is designed
to approximate the Generalization Error in general regularization methods and it has
been proven to be very competitive as model selection criteria compared to other model
selection criteria choices (Sugiyama and Ogawa, 2002). In this chapter we will show
how to adapt it to our particular problem and we will propose an alternative to improve
it in practice.

This chapter is organized as follows. In next section we show how to project functional
data onto RKHSs. We propose in Section 3.4 a variation of the SIC designed to select
optimal space where project a set curves. In Section 3.5 we study the truncated error of
the proposed projection and we conclude is Section 3.6 with some final remarks.

3.2 Representing Functional Data in Reproducing Kernel Hilbert
Spaces

As we studied in Chapter 2, a Hilbert function space H is a RKHS where all the (linear)
evaluation functionals (Fx : H → IR such that Fx(f) = f(x), where x ∈ X) are bounded
(equivalently continuous). By the Riesz representation theorem, for each x ∈ X there
exists hx ∈ H such that for every f ∈ H it holds that f(x) = 〈hx, f〉, where 〈, 〉 denotes
the inner product in H . The RKHS H is characterized by a continuous symmetric pos-
itive definite function K : X × X → IR named Mercer Kernel or reproducing kernel
for H (Aroszajn, 1950). The elements of H , HK in the sequel, can be expressed as finite
linear combinations of the form h =

∑
s λsK(xs, ·) where λs ∈ IR and xs ∈ X .

Consider the linear integral operator LK (associated to the kernel function K) defined
by LK(f) =

∫
X K(·, s)f(s)ds. When X is compact and K continuous, then LK has a

countable sequence of eigenvalues {λj} and (orthonormal) eigenfunctions {φj} and K

can be expressed by K(x, y) =
∑

j λjφj(x)φj(y) where the convergence is absolute and
uniform (Mercer’s theorem (Mercer, 1909)).
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3.2.1 Projecting functional data onto RKHSs

Let X be a compact space or manifold in an Euclidean Space and Y = IR. Let ν be a
Borel probability measure defined on X × Y . In the sequel we will assume that ν is
non degenerate. Denote by fn a sample curve drawn form ν identified with a data set
{(xi, yi) ∈ X × Y }ni=1. Define fν : X → Y ,

fν =
∫
X
ydν(y |x), (3.1)

where dν(y |x) is the the conditional probability measure on Y . Thus fn is a sample ver-
sion of size n of fν . In practice we are usually given a set of curves {fn,1, . . . , fn,m}where
each sample curvefn,l is drawn, in the most general case, from a different measure νl
and it is identified with a data set {(xi, yil) ∈ X × Y }ni=1. For simplicity in notation we
will assume that the vector x = (x1, . . . , xn)T is common for all the curves, as it is the
habitual case in the literature (Ramsay and Silverman, 2006).

Next we develop a procedure to approximate fν using the associated fn.

Definition 3.1. Let X be a compact space or manifold in and Euclidean Space, Y = IR and ν
a Borel probability measure defined on X × Y . Let fn = {(xi, yi) ∈ X × Y }ni=1 be a sample
curve drawn form ν and consider fν defined in eq. (3.1). Let K : X × X → IR be a Mercer
kernel and HK its associated RKHS. Then we define the Regularized γ-Projection of fν onto
HK associated to the sample curve fn as

f∗K,γ,n = ΠK,γ,n(fν) = arg min
f∈HK

1
n

n∑
i=1

(f(xi)− yi)2 + γ‖f‖2K , (3.2)

where γ > 0 and ‖f‖K represents the norm of the function f inHK .

Below, we show that f∗K,γ,n ∈ span{K(x, xi)}, then for every x ∈ X we have that f(x) =∑n
j=1 αjK(xj , x), for appropriate xj ∈ X and αj ∈ IR. Thus, calling α = (α1, . . . , αn)T ,

x = (x1, . . . , xn)T , and K
∣∣
x the matrix whose components are (K

∣∣
x)ij = K(xi, xj), we

have ‖f∗K,γ,n‖2K =
∑n

i=1

∑n
i=1 αiαjK(xi, xj) = αTK

∣∣
xα. Eq. (3.2) quantifies the balance

between the fitness of the function to the data (measured by 1
n

∑n
i=1(f(xi)−yi)2) and the

complexity of the solution (measured by ‖f‖2K). Notice that that in eq. (3.2) we denote
by f∗K,γ,n and ΠK,γ,n(fν) the estimated curve. While we will use the first notation in
the sequel, we include the second to remark that the obtained curve is the result of
projecting fν onto theHK using fn.

Definition 3.1 can be generalized in several directions. The first term can be replaced by
a different loss function. For instance we could consider L(x, y) = |x− y|, or any linear
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convex combination of L(x, y) = |x − y|p loss functions. Other possible choice for the
loss function in (3.2) is the so-called ε-insensitive loss function, given by L(yi, f(xi)) =
(|f(xi) − yi| − ε)+, ε ≥ 0 (used by the Support Vector Machine for regression (Smola
and Schölkopf, 2003)). The conditions for a loss function L : IR× Y → IR+ to guarantee
uniform stability in the regularization approach are: 1) L is a Lipschitz function, 2)
There exists a constant C such that L(0, y) ≤ C ∀y ∈ Y . (see (Mukherjee et al., 2002)
and (Bousquet and Elisseeff, 2002) for further details and implications).

Regarding the second term in (3.2), we can replace ‖f‖2K with a general convex pos-
itive functional Ω(f). There are two frequent choices. In the first case, we consider
‖Lf‖2, where L is a linear differential operator (Ramsay and Silverman, 2006; Chen and
Haykin, 2002). In particular the Green’s function of the operator L∗L (L∗ the adjoint
operator to L) satisfies the condition of being a valid kernel and thus, this case may be
seen as a particular case in the frame of the RKHS formalism. In the second case we
consider ‖Pf‖2, where P is a projection operator onto a finite dimensional subspace
(Wahba, 1990). The underlying idea is to choose two orthogonal sets of basis functions
{φk} and {ψl} in such a way that the {φk} (small in number) can provide a first ap-
proximation to the function, and the {ψl} (usually much larger in number) are able to
provide a larger accuracy in approximation. P annihilates some of the {ψk}when using
‖Pf‖2. For further details, see (Ramsay and Silverman, 2006), chapter 5. Notice that we
need in every case to work with a bounded linear operator to guarantee that we can
apply the Riesz representation theorem and be able to define a kernel in each case (see
(Wahba, 2003) for additional possibilities).

Concerning the solution to eq. (3.2), by the Representer Theorem (Theorem 2.5), the
minimizer f∗K,γ,n of the functional optimization problem in eq. (3.2) exists, is unique
and admits a representation of the form

f∗K,γ,n(x) =
n∑
i=1

αiK(xi, x), ∀x ∈ X , (3.3)

where now the xi points are the sample data (components of the vector x) and the coef-
ficients αi ∈ IR are the solutions of the linear system:

(γnIn +K
∣∣
x)α = y, (3.4)

where In the identity matrix of dimension n×n, α = (α1, . . . , αn)T and y = (y1, . . . , yn)T .
By solving eq. (3.4) we get a closed expression for f∗K,γ,n, the minimizer of problem (3.2).
When γ = 0 we can interpret eq. (3.2) as the orthogonal projection of fν ontoHK via fn
as follows.
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Proposition 3.1. Let X be a compact space or manifold in an Euclidean Space, Y = IR and
ν a Borel probability measure defined on X × Y . Let fn = {(xi, yi) ∈ X × Y }ni=1 be a
sample curve drawn form ν and consider fν defined in eq. (3.1). Let K : X × X −→ IR
be a continuous symmetric positive definite kernel with associated integral operator LK with
eigenfunctions {φ1, φ2, . . . } and eigenvalues {λ1, λ2, . . . }. Then, when γ = 0, the projected
curve f∗K,0,n obtained by solving problem (3.2) can be written by

f∗K,0,n = ΠK,0,n(fν) =
∑
j=1

λj(αTφj,x)φj(x), (3.5)

where α is the solution to eq. (3.4) and φj,x = (φj(x1), . . . , φj(xn))T . In addition

f∗K,0,n =
∑
j

λj(αTφj,x)φj −→
n→∞

∑
j

λj〈fν , φj〉φj , (3.6)

where the convergence is uniform in X .

By the Spectral Theorem (Conway, 1990) LK(fν) =
∑

j λj〈fν , φj〉φj . Thus f∗K,0,n con-
verges uniformly to LK(fν) the orthogonal projection of fν onto HK . When γ > 0,
ΠK,γ,n can also be interpreted as a projection of fν ontoHK as it is shown in next propo-
sition.

Proposition 3.2. Under the same assumptions as in Proposition 3.1, when γ > 0, the projected
curve f∗K,γ,n, given by the minimization of eq. (3.2) can also be interpreted as a projection of fν
ontoHK and

f∗K,γ,n =
∑
j

λj(αTφj,x)φj −→
n→∞

∑
j

λj〈fν , φj〉′φj . (3.7)

where the convergence is uniform in X , α is the solution to eq. (3.4), {λj} are the eigenvalues
of LK , fx = (f(x1), . . . , f(xn))T , φj,x = (φj(x1), . . . , φj(xn))T and 〈f, φj〉′ = βj〈f, φj〉 for
appropriate βj ∈ IR.

Eq. (3.7) generalizes eq. (3.1) as the Ridge Regression generalizes the Least Squares
regression (see (Swindel, 1981) for further details concerning the geometry of ridge re-
gression).

In eq. (3.3) the projected curve f∗K,γ,n is expressed, via the vector α = (α1, . . . , αn)T ,
as a linear combination in Span{K(x, xi)}. In addition in eq. (3.7) the same curve can
be seen as a linear combination of the eigenfunctions of LK . Next theorem introduces
a practical manner to estimate this representation, that is the weights λj(αTφj,x) in eq.
(3.7).
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Theorem 3.1. Let X be a compact space or manifold in an Euclidean Space, Y = IR and ν
a Borel probability measure defined on X × Y . Let fn = {(xi, yi) ∈ X × Y }ni=1 be a sam-
ple curve drawn form ν and consider fν defined in eq. (3.1). Let K : X × X −→ IR be a
continuous symmetric positive definite kernel with associated integral operator LK with eigen-
functions {φ1, φ2, . . . } and eigenvalues {λ1, λ2, . . . }. Then, the projected curve f∗K,γ,n, given
by the minimization of (3.2), can be expressed as

f∗K,γ,n(x) =
∑
j

λ∗jφj(x), (3.8)

where λ∗j are the weights of the projection of f∗K,γ,n(x) onto the function space generated by the
eigenfunctions of LK . In practice, when a finite sample is available, the first d = rank(K

∣∣
x)

weigths λ∗j can be estimated by

λ̂∗j =
lj√
n

(αTvj) , (3.9)

for lj the j-th eigenvalue of the matrix K
∣∣
x, vj = (vj1, . . . , vjn)T , the j-th eigenvector and α the

solution to eq. (3.4).

Hence two possible finite representations are available for the projection of fν given fn.
The first one, in eq. (3.3) by the vector α = (α1, . . . , αn)T , will be named as "Kernel
Expansion". The second, given in eq. (3.8) by the vector λ̂

∗
= (λ̂∗1, . . . , λ̂

∗
d)
T will be de-

nominated as "RKHS representation". Next two remarks compare both representations
in terms of their stability in the input variables.

Definition 3.2. Let X be a compact space or manifold in an Euclidean Space, Y = IR and ν a
Borel probability measure defined on X×Y . Let fn = {(xi, yi) ∈ X×Y }ni=1 be a sample curve
drawn form ν. We say that f εn = {(xi, yεi )}ni=1 is a ε-perturbed curve of fn if

|yi − yεi |
|yi|

≤ ε for all i = 1, . . . , n. (3.10)

Definition 3.3. Under the same assumptions as in Definition 3.2, consider a set of continuos
functions B = {ϕ, . . . , ϕq} on X where q ≤ n. Let fn be a sample curve, fν defined in eq.
(3.1) and f εn an ε-perturbed curve of fn. Let ΠB,n : L2

ν(X) −→ Span(B) be a general curves
projection method onto Span(B) using a sample curve of size n and let

ΠB,n(fν) =
∑
j

βjϕj and Πε
B,n(fν) =

∑
j

βεjϕj , (3.11)

be two projections of fν using fn and f εn respectively. Then we say that the representation of fn
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given by β = (β1, . . . , βq)T is ε-stable in the input variables if

|βj − βεj |
|βj |

≤ ε for all j = 1, . . . , q. (3.12)

Theorem 3.2. Under the conditions described in Theorem 3.1, the representation of f∗K,γ,n given
by λ̂

∗
= (λ̂∗1, . . . , λ̂

∗
d)
T , where λ̂j is estimated in eq. (3.9) and d = rank(K

∣∣
x) is ε-stable in the

input variables.

Theorem 3.3. Under the conditions described in Theorem 3.1 the representation of f∗K,γ,n in
terms of the vector α = (α1, . . . , αn)T , where α is the solution to eq. (3.4) is not ε-stable in the
input variables.

Next we include and illustrative example to show the implications of the two previous
theorems in a real example.

Example 3.1. We consider two similar functional data curves to illustrate the behavior
of the Kernel expansion (given in (3.3)) and the RKHS representation system (given in
(3.8)). The two curves are temperatures curves corresponding to daily series averaged
over the period from 1960 to 1994 in Canada ((Ramsay and Silverman, 2006), Chapter 1),
and correspond to the cities “St. Johns" and “Halifax". We consider the Gaussian kernel
K(x,y) = e−ρ‖x−y‖

2
with ρ = 10−4 and γ = 1) and obtain the kernel expansion and the

RKHS representation for both curves. In the experimental chapter we will detail how
to fix the pairs of parameters (σ, γ).

Figure 3.1, left (upper and lower), shows the original curves and their projections onto
the function space HK generated by the eigenfunctions of K. The two central plots
in Figure 3.1 show the kernel expansion representation for both curves and it is ap-
parent they are quite different, despite the fact the two curves are similar. Figure 3.1,
right, shows the RKHS representations for both curves and now they look similar, in
agreement with Theorem 3.2. In addition, we can see that the RKHS representations is
representing the curves in a no more than a 10-dimensional space (essentilly 4), which
agrees with the result obtained by the dimensionality test proposed in (Hall and Vial,
2006). We can therefore conclude that the RKHS representation is robust against the
presence of noise in the data in agreement with Theorem 3.2.

• • •
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Figure 3.1: Two Canadian curves and their Kernel expansion and RKHS representa-
tions.

3.3 Distance measures induced by the projections of functional
data onto RKHSs

In Functional Data Analysis we are generally given a set of curves {fn,1, . . . , fn,m}where
each sample curvefn,l is identified with a data set {(xi, yil) ∈ X × Y }ni=1. In practical
cluster and classification problems n is generally very large. This makes the functional
data to be not tractable for most algorithms that are commonly designed to work either
with (small) finite-dimensional vectors or with distances matrices. In this context, to
determine an appropriate distance matrix between the curves (with dimensions m×m
where m� n) makes the problem solvable in practice.

Several methods have been proposed in the literature to define distances between curves.
For instance the Dynamic Time Warping (Sakoe and Chiba, 1978) calculates the dissim-
ilarity between two series by warping them before calcuating its Euclidean distance.
Other approach followed in (Ferraty and Vieu, 2006) is to define some semi-metric
as measure of similarity for the curves. In any of the previous approaches similari-
ties/disimilarities can be transformed to distances. See (Gower, 1986) for details.

In this section we study the metric for curves induced by the projection defined in eq.
(3.1). The proposed metric will be determined by K and γ and we will be the input of
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classification and cluster procedures. Notice that many kernels can determine the same
metric (Burges, 1998) which in practice is not a problem for our purposes.

Definition 3.4. Let X be a compact space or manifold in and Euclidean Space, Y = IR and
ν, µ two Borel probability measures defined on X × Y . Let fn = {(xi, yi) ∈ X × Y }ni=1 and
gn = {(xi, y′i) ∈ X × Y }ni=1 two sample curves drawn form ν and µ respectively and let fν ,
gµ defined following eq. (3.1). Let K : X ×X → IR be a Mercer kernel and HK its associated
RKHS. Then we define the Empirical Regularized γ Inner Product between fν , gµ as

〈fν , gµ〉K,γ,n = 〈ΠK,γ,n(fν),ΠK,γ,n(gµ)〉K (3.13)

where given h1 and h2, 〈h1, h2〉K =
∑

j λ
−1
j ajbj for h1 ∈

∑
j ajφj ∈ HK and h2 =∑

j bjφj ∈ HK being {λj} the eigenvalues of LK .

Notice that, given a kernel K, we define the inner product of fν and gµ as the inner
product of their projections onto HK . In practice, using eq. (3.8) and the definition of
〈·, ·〉K it is straightforward to check that an estimator of 〈fν , gµ〉K,γ,n is given by

n∑
j=1

l−1
j (λ̂∗fj λ̂

∗
gj), (3.14)

where lj is the j-th eigenvalue of K
∣∣
x and λ̂∗fj , λ̂

∗
gj , the components of the "RKHS" repre-

sentation of fν and gµ, are given by eq. (3.9).

Definition 3.5. Given the elements of Definition 3.4 we define the Empirical Regularized γ
Distance for two curves fν , gµ as

dK,γ,n(fν , gµ) = 〈fν , gµ〉K,λ,n + 〈fν , gµ〉K,λ,n − 2〈fν , gµ〉K,λ,n (3.15)

This distance can be estimated by replacing eq. (3.14) in eq. (3.15). Hence given a set
of curves, the distance defined in eq. (3.15) can be estimated for each pair of curves
obtaining a distance matrix D that can be used as the input of cluster or classification
algorithms. We conclude this section with an illustrative example. In Chapter 6 we will
show more experiments and real applications.

Example 3.2. In Statistics it is usual to reduce the dimension of high dimensional data
before affording cluster or classification tasks. In FDA this is achieved by using the
Functional Principal Components (FPCA) (Ramsay and Silverman, 2006; Hall and Vial,
2006). As in the multivariate case, this technique makes use of the data covariance func-
tion to determine the subspace where the data are projected. This subspace is spanned
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Figure 3.2: Left: all curves together. Center: Class 1 curves. Right Class 2 curves.

by the data covariance eigenfunctions and it is always a RKHS (see (Rakotomamonjy
and Canu, 2005)). Within this setting, FPCA can be considered a particular case of our
methodology.

The choice of the data covariance S as kernel K in eq. (3.2) is justified in certain the-
oretical cases (see (James and Sugar, 2003)). In practice, more general kernels can be
considered. The next example illustrates this situation in a clustering problem.

Consider two families of 10 dimensional curves sampled at 500 points:

• Class 1: c(x) =
∑10

j=1 ajφj(x) = sin(jπx), where ai ∼ N10(µ1,Σ)

• Class 2: c(x) =
∑10

j=1 bjφj(x) = sin(jπx), where bj ∼ N10(µ2,Σ)

with x ∈ [0, 1] and for µ1 = (8, 8, 1, 2, 3, 4, 5, 6, 7, 8), µ2 = (−8,−8, 1, 2, 3, 4, 5, 6, 7, 8),
and Σ = diag(1, 150, 150, 10, 10, 10, 10, 10, 10, 10). For our experiment, we generated 50
curves of each family (see Figure 3.2).

We compare the RKHS representation system (λ∗) using the data covariance and a gen-
eralized covariance: a Gaussian kernel. To this aim we first separate (automatically)
the curves using row the data. We performe 10 runs of a k-means algorithm (with 2
centroids) and a hierarchical cluster by using the Ward method. The misclassification
errors are 25.2% and 24% respectively.

By using FPCA, the first two principal components explain over 80% of the variability.
This two components are plotted in Figure 3 (left). Applying the two previous clus-
ter procedures on this new projection we obtain misclassification errors of 15% (for the
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Figure 3.3: Two first FPCA projection (left) and RKHS projections (right).

k-means algorithm) and 18% (for the hierarchical cluster procedure). The dimension re-
duction improves the results but a large number of curves is still assigned to the wrong
class. On the other hand, if the two first projections are achieved by using regularization
with the kernel K(x, y) = e−ρ‖x−y‖

2
with ρ = 10 and regularization parameter γ = 1

(see Figure 3.3, 0% of errors are obtained with both cluster algorithms, what justify the
use of a generalized covariance function. The reason of this improvement is that the
kernel K is capturing non linear dependences between the data while the covariance
function only deals with linear ones.

• • •

3.4 Model selection in functional data regularization

A central problem in statistics is the selection of appropriate models for the data. In our
context, to select a model for a sample curve fn means to find appropriate K and γ in
eq. (3.2).

A typical manner to afford the model selection problem is to minimize some measure
of the predictive error, for instance, the averaged difference between the estimated and
the true values of some test points contained in the data: the traditional cross valida-
tion (CV), its generalized version (GCV) (Craven and Wahba, 1979) or the Cp measure
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(Mallows, 1973) constitute some examples. However the optimality of this approach is
not guaranteed since the real generalization capacity of the models is not estimated. In
contrast, model selection criteria that deals with the generalization error have also been
proposed: from the point of view of the information theory the Akaike Information Cri-
terion (AIC) (Akaike, 1974) and its corrected modification (cAIC) (Sugiura, 1978) are the
most representative cases. From the Bayesian perspective the Bayesian Information Cri-
terion (BIC) (Schwarz, 1978) is a well known example. Other approaches different form
the two previous points of view are the structural risk minimization (SRM) (Vapnik,
1995) or the Vapnik measure (VM) (Cherkassky et al., 1999).

In (Sugiyama and Ogawa, 2001) the Subspace information Criterion (SIC) is proposed
as a new alternative of model selection. It is very competitive (Sugiyama and Muller,
2002) compared to previous measures and it represents a natural framework for model
selection in regularization methods. In this section we will particularize it for the func-
tional data model selection problem and we will propose an alternative to improve it in
certain scenarios.

3.4.1 Model selection problem

LetX a compact space or manifold, Y = IR and ν a probability measure overX×Y . Let
fn be a sample curve drawn form ν identified with a data set {(xi, yi) ∈ X × Y }ni=1 and
define the target function fν : X → Y as fν =

∫
X ydν(y |x) for ν(y |x) the conditional

measure on Y . In the sequel we will assume that fν belongs to L2
ν(X) and that fν is a

bounded function.

Define ε = y − fν(x). Then

Eν(ε) =
∫
Y

(fν(x)− y)dν(y |x),

where Eν denote the expectation over the measure ν. It is straightforward to check that
Eν(ε) = 0 and hence the variance of ε is given by

Varν(ε) =
∫
Y

(fν(x)− y)2dν(y |x),

where Varν(ε) denotes the variance over ν. Using the definition of fν and because
Eν(ε) = 0, given the sample points {(xi, yi) ∈ X × Y }ni=1 we have that

yi = fν(xi) + εi, (3.16)
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where the εi are unknown additive independent noise components from a distribution
with zero mean and variance Varν(ε). Notice that both, fν and Varν(ε) are totally deter-
mined by ν.

Given fn consider a set of pairs {(K, γ)}, where each K : X × X −→ IR is a Mercer
kernel function and γ > 0. This set can be either finite or infinite. In this last case K is
commonly defined as a parameter dependent kernel, for instance, a Gaussian kernel.

Let f∗K,γ,n be the projected curve obtained via eq. (3.2) using the sample fn and some γ
and K. The model selection problem is stated as finding, for a fixed sample curve fn,
the pair (K∗, γ∗) that minimizes the generalization error defined as

Eε

(∫
X

(f∗K,γ,n − fν)2dx
)

= E‖f∗K,γ,n − fν‖2, (3.17)

where Eε denotes the expectation over the noise ε. For simplicity in notation in the se-
quel we will write E instead of Eε. Notice that f∗K,γ,n belongs toHK,n = Span({K(x, xi)})
while, in general, it is common to assume that the function fν belongs to L2

ν(X).

3.4.2 Subspace Information Criterion (SIC) for functional data regulariza-
tion

The Subspace Information Criteria (SIC) (Sugiyama and Ogawa, 2001) was proposed as
a procedure to give an unbiased estimator of the generalization error in eq. (3.17) in
general regularization methods. In this section we follow the general model selection
approach described above and we will adapt the SIC to our particular problem in eq.
(3.2), resulting a particular case of our general formalism.

Let K be a Mercer kernel function LK its associated integral operator andHK its corre-
sponding RKHS. We first decompose the target function fν as follows. Let fν,HK be the
orthogonal projection of fν onto HK (fν,HK = LK(fν), see Proposition 3.1 for details)
and define f⊥ν,HK as

f⊥ν,HK = fν − fν,HK , (3.18)

the orthogonal complement of fν,HK . In this context, the SIC proposed in (Sugiyama
and Muller, 2002) can be understood, as we describe below, as a model selection crite-
rion for functional data when f⊥ν,HK = 0 or equivalently when fν is assumed to belong
to HK . Although this hypothesis can be relaxed in some cases (see next section for de-
tails), we will assume this property for fν here and therefore we will refer fν by fν,HK .

To define the SIC in our context we first decompose eq. (3.17) in a sum. Let f∗K,γ =
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E(f∗K,γ,n) (see Proposition 3.2). Then the generalization error of f∗K,γ,n is given by:

G(f∗K,γ,n) = E‖f∗K,γ,n − fν,HK‖
2

= E‖f∗K,γ,n − f∗K,γ + f∗K,γ − fν,HK‖
2

= E‖f∗K,γ,n − f∗K,γ‖2 + E‖f∗K,γ − fν,HK‖
2

+ 2E〈f∗K,γ,n − f∗K,γ , f∗K,γ − fν,HK 〉,

where the last term equals zero since (f∗K,γ,n − f∗K,γ) and (f∗K,γ − fν,HK ) are orthogonal
functions. Therefore G(f∗K,γ,n) can be decomposed as

G(f∗K,γ,n) = Var(f∗K,γ,n) +Bias2(f∗K,γ,n, fν,HK ), (3.19)

where
Var(f∗K,γ,n) = E‖f∗K,γ,n − f∗K,γ‖2,

and
Bias2(f∗K,γ,n, fν,HK ) = E‖f∗K,γ − fν,HK‖

2.

Eq. (3.17) assesses the quality of f∗K,γ,n in terms of its bias and variance. In practice
the functions fν,HK and fK,γ are obviously unknown and therefore eq. (3.17) cannot be
directly estimated. The key idea of the SIC is to replace fν,HK by an unbiased estimator
fu (E(fu) = fν,HK ) to roughly approximate E‖f∗K,γ,n − fν,HK‖2 by E‖f∗K,γ,n − fu‖2. Next
we introduce a formal definition of the SIC adapted to our problem in eq. (3.1).

Definition 3.6. The Subspace Infomation Criterion of the projected curve f∗K,γ,n is defined as

SIC(f∗K,γ,n) = E‖f∗K,γ,n − fu‖2, (3.20)

where fu = f∗K,0,n.

The projection fu = f∗K,0,n is an unbiased estimator of fν,HK (see Proposition 3.1 where,
by hypothesis, fν = fν,HK = LK(fν)). Remark that while f∗K,0,n is estimated using
the sample fn and therefore it is a random variable, fu in eq. (3.36) is considered to
be a fixed function. In addition, both f∗K,γ,n and fu belong to HK,n and therefore the
properties of the RKHSs can be used to estimate eq. (3.60) by eq. (3.20).

Denote by K the matrix whose components are defined by (K)ij = K(xi, xj). Let
α = (α1, . . . , αn)T and α0 = (α0

1, . . . , α
0
n)T the kernel expansion representations (see eq.

(3.3)) of f∗K,γ,n and f∗K,0,n respectively. In practice, α = Hγy where Hγ = (γnIn + K)−1

and α0 = H0y (that is H0 = K−1). When K is not invertible then H0 = K+ is the
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Moore-Penrose pseudoinverse of K. Then, it holds that

f∗K,γ,n =
n∑
i=1

αiK(x, xi) and fu =
n∑
i=1

α0
iK(xi, x).

Operating from eq. (3.60) we can rewrite the SIC(f∗K,γ,n) as

SIC(f∗K,γ,n) = Eε‖α− E(α)‖2K + ‖Eεα−α0‖2K, (3.21)

where ‖a‖K = aTKa. See (Sugiyama and Ogawa, 2001; Sugiyama and Muller, 2002)
for further details. Notice that the first term estimates the variance of f∗K,γ,n while the
second estimates its squared bias. In particular the variance term can be calculated as
follows:

V̂ ar(fK,γ,n) = σ2tr(KHγHT
γ ), (3.22)

where following (Wahba, 1990) an estimator of σ2 is given by

σ̂2 =
‖Kα− y‖2

n− tr(KHγ)
. (3.23)

Regarding the bias term, it can be estimated by

B̂ias
2
(fK,γ,n) = ‖α−α0‖2K − σ̂2tr

(
K(Hγ −H0)(Hγ −H0)T

)
. (3.24)

See (Sugiyama and Ogawa, 2001) for details. Finally using eqs. (3.22) and (3.24) the SIC
can be finally estimated by

SIC(fK,γ,n) = ‖α−α0‖2K − σ̂2tr
(
K(Hγ −H0)(Hγ −H0)T

)
+ σ̂2tr(KHγHT

γ )

where an estimator of σ2 is given in eq. (3.23).

Remark 3.1. It can be proven that SIC(fK,γ,n) defined in eq. (3.20) is an unbiased
estimator of G(fK,γ,n), that is

E(SIC(fK,γ,n)) = G(fK,γ,n). (3.25)

In particular both, V̂ar(fK,γ,n) and B̂ias2(fK,γ,n) are unbiased estimators of Var(fK,γ,n)
and Bias2(fK,γ,n) respectively. That is,

E
(
V̂ar(fK,γ,n)

)
= Var(fK,γ,n), E

(
B̂ias2(fK,γ,n)

)
= Bias2(fK,γ,n). (3.26)
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Remark 3.2. In some examples it may happen that the the value of the SIC can be neg-
ative if the estimated squared bias in eq. (3.24) is negative. In this cases, since the
generalization error is non negative by definition, the following corrected SIC (cSIC) is
proposed:

cSIC(fK,γ,n) =
[
‖α−α0‖2K − σ̂2tr

(
K(Hγ −H0)(Hγ −H0)T

)]
+

+ σ̂2tr(KHγHT
γ ).

where [t]+ = max(t, 0).

3.4.3 Modified Subspace Information Criterion (MSIC) for Model Selection
in Regularization with Nested Spaces

Next we slightly change the point of view of the previous section by relaxing the hy-
pothesis that the target function fν must belongs to HK . In particular we will assume
that fν belongs to a more general Reproducing Kernel Hilbert space HK′ such that
HK ⊂ HK′ . This hypothesis it is specially suitable when the optimal model {(K∗, γ∗)}
that minimizes eq. (3.17) has to be selected from a set of nested spaces. For instance,
consider for any x ∈ X the sequence of nested spaces given by H1 = Span{x}, H2 =
Span{x, x2}, H3 = Span{x, x2, x3}, H4 = Span{x, x2, x3, x4}, etc., and suppose that fν
is a polynomial of degree 3. While it is true that fν belongs to H3, H4, etc., and there-
fore the SIC estimation of the generalization error will work well in these spaces, such
estimation will drastically fail for H1, H2 since the hypothesis that fν belongs to these
spaces clearly does not hold. Similar situations appear in many statistical problems,
for instance, when the basis of the eligibles RKHSs are sequences of Fourier, Splines or
Wavelets functions or in RKHSs defined by polynomial kernels.

LetX be a compact space or manifold and Y = IR. Let ν a non degenerate Borel measure
on X × Y and fn = {(xi, yi)}ni=1 a sample curve drawn form ν. Let K ′ : X ×X −→ IR
be a continuous symmetric positive definite function. Then by Mercer’s theorem

K ′(x, y) =
∞∑
j=1

λjφj(x)φj(y), (3.27)

for {φj} and {λj} the sets of eigenfunctions and eigenvectors of LK′ , the integral oper-
ator associated to K ′. For any d ∈ IN such as d < ∞ consider the "truncated" Mercer
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Kernel defined by

K(x, y) =
d∑
j=1

λjφj(x)φj(y), (3.28)

with associated integral operator LK . Denote by HK and HK′ the RKHSs associated to
K and K ′ respectively. Then is is straightforward that

HK ⊂ HK′ . (3.29)

Let fν be the target function defined in eq. (3.1). In the the sequel we will assume that
fν ∈ HK′ . Let fν,HK be the orthogonal projection of fν ontoHK being f⊥ν,H = fν − fν,HK
its orthogonal complement and let f∗K,γ,n be the projected curve obtained via eq. (3.2)
using the sample fn, some γ > 0 and K. Then our focus of interest in this chapter is the
generalization error of f∗K,γ,n given by

G̃(f∗K,γ,n) = E‖f∗K,γ,n − fν‖2. (3.30)

Notice that G̃ differs formG in the fact that now the target function fν does not belong to
HK . The consequence of this is, as we will study below, that the Subspace Infomation
Criteron defined in eq. (3.20) is not an unbiased estimator of the generalization error
G̃ and therefore it can fail if it is used for model selection. The main objective of this
section is to propose an alternative to the SIC to solve this drawback.

Theorem 3.4. Let SIC(f∗K,γ,n) be the Subspace Information Criterion for f∗K,γ,n defined in
eq. (3.20). Then under the same assumptions above, SIC(f∗K,γ,n) is a biased estimator of the
generalization error G̃(fK,γ,n). In particular

E(SIC(fK,γ,n)) = G̃(fK,γ,n)− ‖f⊥ν,H‖2. (3.31)

The bias in eq. (3.31) is originated by the choice of fu in eq. (3.20) since it is not an
unbiased estimator of fν anymore. Notice that

E(fu) = E(f∗K,0,n) = fν − f⊥ν,HK = fν,H (3.32)

being the term f⊥ν,H1
the one that causes the bias in eq. (3.31). Notice that the closer

f⊥ν,HK is to zero, the most unbiased is the SIC. In particular when f⊥ν,HK = 0 we are in
the case described in the previous section. In addition, when ‖f⊥ν,H‖2 > G̃(fK,γ,n) then
the SIC can be negative, which is not reasonable since we are estimating a generalization
error that is always positive. In this cases the SIC correction in eq. (3.27) represents a
naive solution to the problem that, however, does not guarantee a good estimation of
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G̃(fK,γ,n).

To address this problem we propose an alternative choice for fu helpful to define an
unbiased estimator of G̃(fK,γ,n). The idea is to define fu as the projection of fν (via the
sample curve fn) onto the RKHS (H or H′ in this case) where the trace of the associ-
ated integral operator is maximum. As we detail below, this choice ensures that fν is
projected onto the "biggest" available space minimizing this way the effect of the term
‖f⊥ν,H‖2 in eq. (3.31).

Definition 3.7. LetK a Mercer kernel defined on a compact spaceX . The trace of the associated
integral operator LK is defined as

trace(LK) =
∫
X
K(x, x)dx. (3.33)

The trace of an integral operator can be calculated as the sum of its eigenvalues: by
Mercer’ theorem if K is a Mercer kernel then K(x, x) =

∑
j=1 λjφj(x)2 where {λj} and

{φj} are sets of eigenvalues and eigenfunctions of LK . Integrating both sides of the
equation ∫

X
K(x, x)dx =

∑
j=1

λj

∫
X
φj(x)2dx, (3.34)

and since {φ1, φ2, . . . } is an orthonormal basis, that is
∫
X φj(x)2dx = 1 for all j ≥ 1, then

∑
j

λj =
∫
X
K(x, x)dx = trace(LK). (3.35)

In practice, the eigenvalues {λj} of the integral operator LK are generally unknown
but they can be easily estimated. Given a set x = {x1, . . . , xn} for xi ∈ X , consider
the matrix whose components are given by (K

∣∣
x)ij = K(xi, xj) and let lj be the j-th

eigenvalue ofK
∣∣
x/n. For any j = 1, . . . , n, then lj −→ λj when n −→∞ (see Proposition

4.1 in Chapter 4.1 for details). Then a direct way to estimate trace(LK) is given by
trace(K

∣∣
x/n) =

∑n
j=1 lj .

Notice that given the nested structure of HK and HK′ the space with the associated in-
tegral operator of maximum trace is always the biggest space. In this case it is straight-
forward that this space is HK′ since

∑d
j=1 λj <

∑∞
j=1 λj and therefore trace(LK) <

trace(LK′).

Definition 3.8. Let X be a compact space or manifold and Y = IR. Let ν a Borel measure on
X × Y and fn = {(xi, yi)}ni=1 a sample drawn form ν and x = (x1, . . . , xn)T . Let be HK
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and HK′ the two Reproducing kernel Hilbert spaces of associated kernels K and K ′ defined in
eqs. (3.27) and (3.28). Consider the kernel matrices K

∣∣
x and K ′

∣∣
x whose components are given

by (K
∣∣
x)ij = K(xi, xj) and (K ′

∣∣
x)ij = K ′(xi, xj). Then we define the Modified Subspace

Information Criterion (MSIC) of the projection f∗K,γ,n given in eq. (3.1) as

MSIC(f∗K,γ,n) = E‖f∗K,γ,n − fu‖2, (3.36)

where fu = fK̃,0,n for K̃ = arg max{trace(K
∣∣
x), trace(K ′

∣∣
x)}.

Theorem 3.5. TheMSIC(fK,γ,n) is an unbiased estimator of the generalization error G̃(fK,γ,n),
that is

E(MSIC(fK,γ,n)) = G̃(fK,γ,n). (3.37)

In practice, given the sample curve fn, the optimal model (K∗, γ∗) has to be generally
selected from a set of finite pairs {(Ki, γi)}mi=1, where each Ki : X ×X −→ IR is Mercer
kernel function and γi > 0. In this case we consider fu = fK̃,0,n for

K̃ = arg max
i
{trace(Ki

∣∣
x)}. (3.38)

The MSIC can be therefore used to select the model between any set of pairs {(Ki, γi)}mi=1.
See Table 3.1 for details. However, regarding Theorems 3.4 and 3.5 it is specially useful
when the kernels K1, . . . ,Km induce a set of nested spaces H1 ⊂ H2 ⊂ . . .Hm, case in
which the SIC can fail. We illustrate this in the following example.

Example 3.3. The idea of this experiment in to show how the SIC, in contrast to the
MSIC, may fail as model selection criterion when a set of nested spaces are the candi-
dates where project functional data. To this aim we define a set of spaces

HKt = Span

{√
2

jπ
sin(jπx)

}t
j=1

,

for t = 1 . . . , 10 where

Kt(xi, xj) =
t∑

j=1

2
j2π2

sin(jπxi)sin(jπxj).

In this experiment we generate 500 equally spaced data points (xi, f(xi)) in the interval
[0, 1] using:
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INPUT
fn = {(xi, y1}ni=1 Sample curve where y = (x1, . . . , xn)T and x = (y1, . . . , yn)T .
{(Ki, γi)}mi=1 Candidate models.

OUTPUT
(K∗, γ∗) Optimal model.
MSIC Estimated generalization error of the optimal model.

STEP 1 Unbiased estimator of fu
Calculate K̃ = arg maxi{trace(Ki

∣∣
x)}.

Estimate fK̃,0,n via eq. (3.2) and obtain H̃0 = (K̃
∣∣
x)+ and α̃0 = H̃0y.

STEP 2 For i = 1, . . . ,m, estimate the MSIC of fKi,γi,n
Use eq. (3.25) where H0 = H̃0 and α0 = α̃0.

STEP 3 Select the optimal model
(K∗, γ∗) = arg mini MSIC(fKi,γi,n).

Table 3.1: Algorithm to select the optimal model from a set of candidates using the
Modified Subspace Information Criterion.

f(x) =
√

2
π
sin(πx) + 1.5

√
2

2π
sin(2πx) + 2

√
2

3π
sin(3πx) (3.39)

+ 2.5
√

2
4π

sin(4πx) + 3
√

2
5π

sin(5πx),

and we assume that

yi = f(xi) + εi, (3.40)

for εi ∼ N(0, 0.075). Obviously the optimal space where project the data isHK5 .

The problem is stated as seeking the projection f∗Kt,γ,n with the minimum generaliza-
tion error among the pairs (K1, γ), . . . , (K10, γ) for γ = 10−4. To this aim we estimate
both, SIC and MSIC for the 10 pairs (Ki, γi) and we compare the obtained results. A
decomposition of the estimated squared bias and variance of the two criteria is shown
in Table 3.2. In addition we include in Figure 3.3 a plot of the SIC and MSIC results (in
logarithms) in the 10 spaces and a plot of the estimated projections inHK1 , . . . ,HK5 .

The first and most important conclusion of this experiment is that the MSIC selects the
right model (HK5), in contrast to the SIC that selects HK1 . The reason of this behavior
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Figure 3.4: Left: Simulated data, real model (blue) and estimated projection (black).
Right: sequence of projected curves onto HK1 , . . . HK5 . Thinner curves correspond to
lower dimensional spaces. f∗K5,γ,n

is pointed out in black.

Table 3.2: SIC and MSIC values for the 10 curves projections. Their bias-variance de-
composition is also included.

dim 1 2 3 4 5 6 7 8 9 10

bias 0.0000 0.0000 0.0001 0.0005 0.0030 0.0030 0.0030 0.0030 0.0030 0.0029
SIC var 0.0019 0.0051 0.0105 0.0140 0.0062 0.0101 0.0152 0.0218 0.0298 0.0395

SIC 0.0019 0.0051 0.0106 0.0145 0.0093 0.0131 0.0183 0.0248 0.0328 0.0424

bias 7.1277 6.9355 6.3137 4.3097 0.0129 0.0127 0.0124 0.0101 0.0061 0.0029
MSIC var 0.0019 0.0051 0.0105 0.0140 0.0062 0.0101 0.0152 0.0218 0.0298 0.0395

MSIC 7.1296 6.9405 6.3242 4.3237 0.0191 0.0228 0.0277 0.0319 0.0360 0.0424

2 4 6 8 10

−6
.0

−5
.5

−5
.0

−4
.5

−4
.0

−3
.5

log(SIC)

dimension

log
(S

IC
)

2 4 6 8 10

−4
−3

−2
−1

0
1

2

log(MSIC)

dimension

log
(M

SIC
)

Figure 3.5: Logarithmic transformation of SIC and MSIC values for the 10 projections.

can be clearly understood in terms of the estimated bias and variance of each criterion.
First of all, notice that the estimation of the variance, that is not affected by the defini-
tion of fu, is equal in both cases. However, strong differences are found regarding the
estimated squared bias. In the MSIC the bias decreases with the dimension specially
for values of t form 1 to 5. This behavior is reasonable by the definition of f . On the
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other hand, the bias estimated by the SIC is close to zero for values of t form 1 to 4. This
effect appears due to the choice of fu which, in the SIC, is not an unbiased estimator of
f inH1, . . . ,H5. The consequence of this is that the real generalization error is underes-
timated (see Theorem 3.4) and hence the SIC fails selectingH1 as optimal space.

• • •

3.5 Truncation Error analysis

Given a Mercer kernel K defined on a compact space or manifold X and for any x,y ∈
X , the kernel expansion K(x,y) =

∑
j=1 λjφj(x)φj(y) for contains d = rank(LK) ≤ ∞

non null terms. In practice, we always work with a finite sample of size n and the
approximation errors that appear when we calculate the projection f∗K,γ,n via eq. (3.2)
(using fn) must be taken into account.

Let K
∣∣
x the kernel matrix whose components are given by (K

∣∣
x)ij = K(xi, xj) and

consider n = rank(Kx) an estimator of rank(LK). Define

K [n] =
n∑
j=1

λjφj(x)φj(y) (3.41)

the truncated kernel of n elements. If rank(K
∣∣
x) = rank(LK) thenK [n] = K and there is

no loss in using K [n] (all the eigenfunctions of K can be approximated). If rank(K
∣∣
x) <

rank(LK) (what can only happen when rank(K
∣∣
x) = n), the number of eigenfunctions

ofK is larger than the number of data points andK [n] takes into account only the first n
eigenvalues of K. Next we analyze the truncation and approximation error in this case.

Let

f∗K,γ =
∞∑
j=1

λ∗jφj , and f
∗[n]
K,γ =

n∑
j=1

λ∗jφn, (3.42)

be the projections of fν (defined in eq. (3.1)) onto HK and HK[n] respectively. Then we
are interested in sample bounds for

Error(f∗[n]
K,γ ) = ‖f∗K,γ − f

∗[n]
K,γ ‖

2. (3.43)

First, we prove that the norm of ‖f∗K,γ − f
∗[n]
K,γ ‖2 cannot be larger than the ‖f∗K,γ‖2. By

Parseval’s identity (Conway, 1990) we have that

‖
∞∑
j=1

λ∗jφj(x)‖2 =
∞∑
j=1

(λ∗j )
2‖φj(x)‖2 =

∞∑
j=1

(λ∗j )
2, (3.44)
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and therefore

‖f∗K,γ − f
∗[n]
K,γ ‖

2 =
∑
j=n+1

(λ∗j )
2 ≤

∑
j=1

(λ∗j )
2 = ‖f∗K,γ‖2 = M2. (3.45)

for M = ‖f∗K,γ‖. Notice that M > 0. Next, by the following lemma we show that fK,γ
and also f∗K,γ − f

∗[n]
K,γ are uniformly bounded functions.

Lemma 3.1. Let K be a kernel function defined on a compact space X . Then

|f∗K,γ | ≤ CKM,

|f∗K,γ − f
∗[n]
K,γ | ≤ CKM,

for M > 0 and CK = supx,y |K(x, y)|.

Consider a random sample x1, . . . , xm drawn form νx the marginal probability measure
of ν on X . For simplicity in notation in the sequel we will denote as E and and Var
the expectation and variance over this measure. Define the vectors x = (x1, . . . , xm)T ,
f∗K,γ,x = (f∗K,γ(x1), . . . , f∗K,γ(xm))T and f∗[n]

K,γ,z = (f∗[n]
K,γ (x1), . . . , f∗[n]

K,γ (xm))T . Then by the
Strong Law of Large Numbers:

1
m
‖f∗K,γ,x − f∗[n]

K,γ,x‖
2 =

1
m

n∑
i=1

(f∗K,γ(xi)− f∗[n]
K,γ (xi))2 (3.46)

−→
m→∞

E
(

(f∗K,γ(x)− f∗[n]
K,γ (x))2

)
= ‖f∗K,γ − f

∗[n]
K,γ ‖

2,

almost surely. In order to obtain finite sample size bounds for Error(f∗[n]
K,γ ) we first

deduce some probabilistic properties of it. Regarding the averaged error expectation,
by eq. (3.46) we have that

E
(

1
m
‖f∗K,γ,z − f∗[n]

K,γ,z‖
2

)
= ‖f∗K,γ − f

∗[n]
K,γ ‖

2 (3.47)

=
∑
j=n+1

(λ∗j )
2.
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On the other hand, by the definition of the variance and applying the Hölder inequality:

Var
(

(f∗K,γ − f
∗[n]
K,γ )2

)
≤ E

(
(f∗K,γ − f

∗[n]
K,γ )4

)
− E

(
(f∗K,γ − f

∗[n]
K,γ )2

)2

≤ E
(

(f∗K,γ − f
∗[n]
K,γ )4

)
≤ ‖(f∗K,γ − f

∗[n]
K,γ )2‖∞‖(f∗K,γ − f

∗[n]
K,γ )2‖1.

By Lemma 3.1 we know that (f∗K,γ − f
∗[n]
K,γ )2 ≤ (f∗K,γ)2 ≤ C2

KM
2 and therefore ‖(f∗K,γ −

f
∗[n]
K,γ )2 ≤ ‖f∗K,γ‖∞ ≤ C2

KM
2. In addition ‖(f∗K,γ − f

∗[n]
K,γ )2‖1 = ‖f∗K,γ − f

∗[n]
K,γ ‖ ≤ M2 and

therefore

Var
(

(f∗K,γ − f
∗[n]
K,γ )2

)
≤ C2

KM
4. (3.48)

Finally we use the results in eqs. (3.47) and (3.48) to give finite sample size bounds for
Error(f∗[n]

K,γ ) in next theorem.

Theorem 3.6. Unnder the conditions above for any 0 < δ < 1, with probability larger that
1− δ

1
m
‖f∗K,γ,z − f∗[n]

K,γ,z‖
2 < ‖f∗K,γ − f

∗[n]
K,γ ‖

2 + CKM
2

√
1
mδ

, (3.49)

for any random sample x1, . . . , xm of size m drawn from ν and for CK = supx,y∈X |K(x, y)|
and M > 0.

3.6 Conclusions and final remarks

In this chapter we have proposed a methodology to represent functional data via their
projections onto Reproducing Kernel spaces with the aid of Regularization theory. In
addition we have proposed a model selection criterion to estimate the generalization
error of such representations.

Regarding the projection method, two representation systems for functional data nat-
urally appear: the RKHS and the Kernel expansion representation. In Theorems 3.2
and 3.3 we have studied their stability properties concluding that the RKHS Represen-
tation is ε-stable in the input variables, and therefore adequate to represent functional
data, in contrast to the Kernel Expansion. In addition the RKHS Representation (The-
orem 3.1) allows to evaluate the dimension of the curves (Example 3.1) and it enables
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to reinterpret the regularization process like a curve projection mechanism onto HK
(Propositions 3.1 and 3.2).

Finally, we have proposed the MSIC as alternative to the SIC for models selection. In
contrast to the SIC, this new criterion gives an unbiased estimator of the generalization
error of the projected curves (Theorems 3.4 and 3.5) and it is proven to work better that
the SIC when a set of nested spaces is available (Example 3.3).

The last contribution of this chapter is the generalization of the classical FDA represen-
tation techniques. Any orthogonal basis B = {ϕ1, . . . , ϕd} of continuos functions on X ,
for instance B-splines, fourier basis, P-splines, defines a kernel (and therefore an RKHS)
given by

K(x, y) =
d∑
j=1

ϕj(x)ϕj(y). (3.50)

See (Rakotomamonjy and Canu, 2005) for details. However, in this chapter we have
shown how to select generalized covariance functions appropriate for functional data
and to work directly with their eigenfunctions (basis of the RKHS). This makes accessi-
ble a larger class of basis of functions where represent the functional data that otherwise
are ingnored, constituting this methodology a generalization of the classical FDA for-
malism.
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3.7 APPENDIX: Proofs

Proof Proposition 3.1. First, operating from eq. (3.3), we have that

f∗K,0,n =
n∑
i=1

αiK(xi, x) =
n∑
i=1

αi

∑
j=1

λjφj(xi)φj(x)

 (3.51)

=
∑
j=1

λj

(
n∑
i=1

αiφj(xi)

)
φj(x)

=
∑
j=1

λj(αTφj,x)φj(x),

To check the uniform convergence of f∗K,0,n to LK(fν) we have to prove that for every
ε > 0 there exists a N ∈ IN such that for all x ∈ X and all n ≤ N , then |f∗K,0,n(x) −
LK(fν)(x)| < ε. To this aim, consider the sequence

an = sup |f∗K,0,n(x)− LK(fν)(x)|,

where the supremum is taken over all x ∈ X . Then f∗K,0,n converges to LK(fν) uni-
formly if and only if an goes to 0 when n −→∞.

Let fν,HK = LK(fν) be the orthogonal projection of fν ontoHK . By the spectral theorem

fν,HK = LK(fν) =
∑
j

λj〈fν , φj〉φj ,

When n −→∞ the problem in eq. (3.2) tends to

f∗K,γ = ΠK,γ,∞(f) = arg min
f∈HK

∫
X×Y

(y − f(x))2dν(x, y) + γ‖f‖2K , (3.52)

which unique minimizer (Cucker and Smale, 2001) is given by

f∗K,γ = (Id+ γLK)−1fν,HK . (3.53)

Since γ = 0, is direct to see (from eq. (3.53)) that f∗K,0 = fν,HK . Then when n −→ ∞,
f∗K,0 the unique solution to eq. (3.2) tends to fν,HK the unique solution of eq. (3.52) and
therefore an −→ 0. Then

ΠK,0,n(f) =
∑
j

λj(αTφj,x)φj −→
n→∞

LK(f) =
∑
j

λj〈f, φj〉φj
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uniformly in X , what concludes the proof.

Proof Proposition 3.2. By Proposition 3.1 we now that, for α the solution to eq. (3.4),
then f∗K,γ,n =

∑
j λj(α

Tφj,x)φj . In addition the unique solution for problem in eq. (3.2)
when n −→∞ is given by f∗K,γ = (Id+γLK)−1fν,HK for fν,HK = LK(fν) the orthogonal
projection of fν ontoHK .

Since f∗K,γ ∈ HK the we can write f∗K,γ =
∑

j β
′
jφj for appropriate β′ ∈ IR and for

φ1, φ2 . . . the eigenfunctions of K. Without loss of generally we can rewrite f∗K,γ as

f∗K,γ =
∑
j

λjβj〈fν , φj〉φj

since 〈·, ·〉 is well defined and λj , the eigenvalues of LK , are all real. Denote βj =
β′j(λj〈f, φj〉)−1 and define 〈f, φj〉′ such that 〈f, φj〉′ = βj〈f, φj〉. Then we have that
f∗K,γ =

∑
j λj〈f, φj〉′φj .

To end the proof, we only have to check the uniform convergence in X of f∗K,γ,n to f∗K,γ .
Following the same reasoning that in Proof 3.7 we define the sequence

bn = sup |f∗K,γ,n(x)− f∗K,γ(x)|,

where the supremum is taken over all x ∈ X . Then bn goes to 0 when n −→ ∞ by the
same reason that an goes to 0 in Proof 3.7 and therefore

f∗K,γ,n =
∑
j

λj(αTφj,x)φj −→
n→∞

f∗K,γ =
∑
j

λj〈f, φj〉′φj ,

uniformly in X what concludes the proof.

Proof Theorem 3.1. Operating from eq. (3.51)

f∗K,γ,n(x) =
∑
j=1

λj(αTφj,x)φj(x) =
∑
j=1

λ∗jφj(x),

for λ∗j = λj(αTφj,x).

Following (Smale and Zhou, 2007) the eigenvalues and eigenvectors of K
∣∣
x/n converge,

to the eigenvalues and eigenfunctions of LK . Following Theorem 4.1 in Chapter 4 each
φj(xi) and λj can be estimated by

√
nvji and λ̂j = lj/n respectively. Therefore replacing

in λ∗j = λj(αTφj,x) each λj and φj(xi) by its estimators
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λ̂∗j = λ̂j(αT φ̂j,x) =
lj
n

(αT√nvj) =
lj√
n

αTvj (3.54)

what concludes the proof.

Proof Theorem 3.2. Consider a sample curve fn and an ε-perturbed curve f εn ≡ {(xi, yεi ) ∈
X × Y }ni=1. Then f∗K,γ,n(x) ' f∗εK,γ,n(x) and given that the φj are a basis for HK , it must
happen that λ∗j ' λ∗εj and therefore λ̂∗j ' λ̂∗εj . Hence

|λ̂∗j − λ̂∗εj |
|λ̂j |

≤ ε, (3.55)

for j = 1, . . . , d and the representation system is ε-stable. Notice that the truth of this
statement relies in the fact that the eigenvalues and eigenvectors of K

∣∣
x converge, re-

spectively, to the eigenvalues and eigenfunctions of LK and therefore λ̂∗j −→ λ∗j . See
Theorem 3.7 for details.

Proof Theorem 3.3. By Theorem 3.7 we know that f∗K,γ,n(x) =
∑

j=1 λj(α
Tφj,x)φj(x). In

addition, since {φj} is a basis forHK , then αTφj,x −→ 〈fν , φj〉 (see Theorem 3.7). There-
fore, for any set α′ = (α1

′, . . . , αn
′)T such that (α′)Tφj,x −→ 〈fν , φj〉 we will have that∑n

i=1 α
∗
i
′K(xi, x) = f∗K,γ,n(x). Now, given the sample curve fn ≡ {(xi, yi) ∈ X × Y }ni=1,

consider an ε-perturbed curve f εn ≡ {(xi, yεi ) ∈ X × Y }ni=1, such that

|yi − yεi |
|yi|

≤ ε, (3.56)

Denote by (αε) the representation corresponding to f εn. Given that f∗εK,γ,n(x) ' f∗K,γ,n(x)
(because of the continuity of fν), it will happen that (αε)Tφj,x ' αT ,φj,xε and, never-
theless, by the previous reasoning, αε and α can be quite different. Therefore is not
guaranteed that

|αi − αεi |
|αi|

≤ ε. (3.57)

for all i = 1, . . . , n and therefore the representation is not ε-stable.
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Proof Theorem 3.4. The Bias-Variance decomposition of G̃(f∗K,γ,n) is

G̃(f∗K,γ,n) = E‖f∗K,γ,n − fν‖2

= E‖f∗K,γ,n − f∗K,γ + f∗K,γ − fν‖2

= E‖f∗K,γ,n − f∗K,γ‖2 + E‖f∗K,γ − fν,HK‖
2

+ 2E〈f∗K,γ,n − f∗K,γ , f∗K,γ − fν〉,

where the last term equals zero since (f∗K,γ,n − f∗K,γ) and (f∗K,γ − fν) are orthogonal
functions. Then

G̃(f∗K,γ,n) = Var(f∗K,γ,n) +Bias2(f∗K,γ,n, fν), (3.58)

where
Var(f∗K,γ,n) = E‖f∗K,γ,n − f∗K,γ‖2,

and
Bias2(f∗K,γ,n, fν) = E‖f∗K,γ − fν‖2 = E‖f∗K,γ − fν,H‖2 + ‖f⊥ν,H‖2.

since f∗K,γ − fν,H and f⊥ν,H are also orthogonal functions.

Following eq. (3.60) then G̃(f∗K,γ,n) = G(f∗K,γ,n) + ‖f⊥ν,H‖2 and since E(G(f∗K,γ,n)) =
G(f∗K,γ,n) then

E(SIC(fK,γ,n)) = G(fK,γ,n) = G̃(f∗K,γ,n)− ‖f⊥ν,H‖2,

what concludes the proof.

Proof. By definition ofK andK ′, thenK ′ = K+K⊥whereK⊥(x, y) =
∑∞

j=d+1 λjφj(x)φj(y)
for any x, y ∈ X . Then K ′

∣∣
x = K

∣∣
x +K⊥

∣∣
x.

By the properties of the trace we have that

trace(K ′
∣∣
x) = trace(K

∣∣
x) + trace(K⊥

∣∣
x) (3.59)

and therefore trace(K
∣∣
x) < trace(K ′

∣∣
x) and K̃ = K ′.

The MSIC(f∗K,γ,n) can be decomposed as

MSIC(f∗K,γ,n) = V̂ar(f∗K,γ,n) + ˆBias
2
(f∗K,γ,n, fu), (3.60)

where V̂ar(f∗K,γ,n) = E‖f∗K,γ,n − f∗K,γ‖2 and ˆBias
2
(f∗K,γ,n, fν) = E‖f∗K,γ − fu‖2 for fu =

f∗K′,0,n. To prove the theorem we check that the estimated squated bias an variance are



3.7. APPENDIX: PROOFS 69

unbiased estimators of Bias2(f∗K,γ,n, fν) and Var(f∗K,γ,n).

The estimated variance, it does not depends of fu and, V̂ar(f∗K,γ,n) = Var(f∗K,γ,n) by the
properties of the SIC. Regarding the bias term, we first decompose f∗K′,0,n as a sum.
Then

f∗K′,0,n = f∗K,0,n + f∗⊥K,0,n,

where f∗⊥K,0,n is the orthogonal complement to f∗K,0,n and being E(f∗⊥K,0,n) = f⊥ν,HK . Then,

E‖f∗K,γ − fu‖2 = E‖f∗K,γ − f∗K,0,n − f∗⊥K,0,n‖2 (3.61)

= E‖f∗K,γ − f∗K,0,n‖2 + E‖f∗⊥K,0,n‖2,

since f∗K,γ − f∗K,0,n and f∗⊥K,0,n are orthogonal functions. Therefore

E(B̂ias
2
(f∗K,γ,n, fν)) = E(E‖f∗K,γ − f∗K,0,n‖2) + E(E‖f∗⊥K,0,n‖2) (3.62)

= E(Bias2(f∗K,γ,n, fν,HK )) + ‖f∗⊥K,0,n‖2

= Bias2(f∗K,γ,n, fν),

what concludes the proof.

Proof Lemma 3.1. First of all, let

CK = supx,y∈X |K(x, y)|. (3.63)

Since K is continuous and X is compact, CK always exists and CK <∞. By fixing one
of the arguments of the kernel, we have that

|f∗K,γ | = |〈K(x, ·), f∗K,γ〉| ≤ ‖K(x, ·)‖‖f∗K,γ‖ ≤ CK‖f∗K,γ,n‖ = CKM, (3.64)

applying that ‖K(x, ·)‖ =
(∫
X K

2(x, y)dy
)1/2 ≤ CK and the Cauchy-Schwarz inequal-

ity. By the same reasoning and since ‖f∗K,γ,n − f∗K,γ‖ ≤ ‖f∗K,γ,n‖we have that,

|f∗K,γ − f
∗[n]
K,γ | ≤ CK‖f

∗
K,γ − f

∗[n]
K,γ ‖ ≤ CK‖f

∗
K,γ‖ = CKM, (3.65)

by using (3.45).

Proof Theorem 3. By the Tchebychev inequality is straightforward to prove that
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P

{
1
n
‖f∗K,γ,z − f∗[n]

K,γ,z‖
2 − ‖f∗K,γ − f

∗[n]
K,γ ‖

2 ≥ ε
}
≤

Var
(
f∗K,γ,n − f∗K,γ

)
nε2

≤
C2
KM

4

nε2

by applying (3.48) and since

δ = C2
KM

4

nε2
then, ε =

√
C2
KM

4

nδ .

then it hods that

P

{
1
n
‖f∗K,γ,X − f∗[n]

K,γ,x‖
2 < ‖f∗K,γ − f

∗[n]
K,γ ‖

2 +

√
C2
KM

4

nδ

}
≥ 1− δ

what proves the statement.



Chapter 4

Functional Data Analysis for
proximity data with applications

Abstract

In this chapter we propose a Functional Data Analysis (FDA) approach to deal
with proximity (similarity or distance) matrices in classification problems by
estimating a particular class of integral operators. We analyze the connection
between proximity measures and integral operators and we come up with a
methodology able to estimate an integral operator whose associated kernel
function, evaluated at the sample, will approach the sample proximity matrix
of the problem. In particular, we develop the previous approach in three ap-
plications: (1) when the available information for the data is an asymmetric
similarity matrix, (2) in partially labeled classification problems and (3) in sim-
ilarities combination procedures.

Keywords: Integral Operators, Kernel Matrix, Classication, Asymmetric Simi-
larities, Kernel Combinations.

4.1 Introduction

Consider a classification problem with two classes. Data can be given as a sample sn =
{(xi, yi)}ni=1 where xi ∈ X (some subset of IRp) and yi ∈ {−1, 1} are the labels. In other
cases, the available information is a proximity (distance or similarity) matrix S between
the data. Distances can be easily transformed into similarities (see, for instance, (Gower,

71
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1986)). Most classification algorithms will use either the sample sn or the similarity
matrix S to build a discriminant function.

In this work we use a Functional Data Analysis (FDA) approach to deal with proximity
(or distance) matrices in classification problems by estimating certain integral opera-
tors associated to such matrices. In FDA the concept of vector (finite dimensional set-
ting) is generalized to the concept of function (infinite dimensional case). Analogously,
matrices (linear transformations) will generalize to operators. Consider, for instance,
Functional Principal Components Analysis (FPCA) (Ramsay and Silverman, 2006), the
generalization of PCA to the infinite dimensional case (where the counterpart of the
data points xi ∈ X are now functions xi(t), t ∈ [0, T ]). While (assuming centered
data) in PCA we need to calculate the eigenvectors vj of the data covariance matrix
C = n−1XTX, in FPCA we have to obtain the eigenfunctions φj of the covariance op-
erator defined by (Lcf)(s) =

∫
c(s, t)f(t)dt where c(s, t) = n−1

∑n
i=1 xi(s)xi(t) is the

sample covariance function. Therefore the eigensystem Cvj = ljvj , for j = 1, . . . , n
generalizes to the eigensystem Lcφj = λjφj (for appropriate lj , λj ∈ IR) and the matrix
C generalizes to the integral operator Lc.

As will be made clear in next section, integral operators naturally arise when consider-
ing proximity matrices and therefore will play a crucial role in what follows. Therefore
in this chapter we are mainly interested in estimating integral operators from proximity
matrices. Section 4.2 is devoted to this task. In Section we 4.3 show three main ap-
plications of the previous theory: (1) when the available information for the data is an
asymmetric similarity matrix, (2) in partially labeled classification problems and (3) in
similarities combination procedures. In Section 4.4 we present some conclusion of this
work.

4.2 Estimating Integral operators from proximity matrices

Let C(X) be the Banach space of continuous functions in X (X a compact space) with
the norm ‖f‖∞ = supx∈X |f(x)|. Let L2

ν(X) the space of square integrable functions in
X where ν is a Borel measure. Let K : X ×X → IR be a continuous functions. Then the
(linear) map LK : L2

ν(X)→ C(X) defined by the operator

(LKf)(x) =
∫
K(x, t)f(t)dν(t), (4.1)

is well defined and the function K is called the kernel of LK . Several properties of
LK can be derived from the properties of K. For instance, if K is continuous then LK is
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compact and ‖LK‖ ≤
√
ν(X) supx,t∈X |K(x, t)|where is ν(X) the measure ofX (Cucker

and Smale, 2001). In the sequel we will exclusively concentrate on continuous, symmet-
ric and positive definite kernels which are known as Mercer’s kernels (Mercer, 1909).
Then LK is self-adjoint, positive, compact and the Spectral theorem applies (Hochstadt,
1973; Conway, 1990): There exists a countable sequence of eigenvalues λj ∈ IR and
corresponding eigenfunctions φj (j ≥ 1) of LK . By Mercer’s theorem (Mercer, 1909;
Hochstadt, 1973) function K can be expressed as K(x, t) =

∑∞
j=1 λjφj(x)φj(t), where

the convergence is absolute (for each x, t ∈ X ×X) and uniform (on X ×X).

Next we show the relationship between distance functions and integral operators via
the use of K to conclude that the natural operators corresponding to similarity (dis-
tances) matrices are integral operators.

Proposition 4.1. Let X be a compact space.

(i) Consider an integral operator LK : L2
ν(X) → C(X) with associated Mercer kernel

function K(x, t) =
∑∞

j=1 λjφj(x)φj(t). Let’s define the map Φ : X → l2 by x 7→(√
λjφj(x)

)
j∈IN

(where l2 is the linear space of all square summable sequences). Let’s
define a function dK : X ×X → IR+ by

dK(x, t) = d(Φ(x),Φ(t)) = ‖Φ(x)− Φ(t)‖ =

∑
j∈IN

λj(φj(x)− φj(t))2

1/2

, (4.2)

where d represents the Euclidean distance in l2.

Then if Φ is injective then the function dK induced by LK on X is a metric and Φ is an
isometric mapping between (X, dK) and (l2, d).

(ii) Consider a random sample sn = {x1, . . . , xn} ⊂ X and let M denote a symmetric and
positive definite n × n proximity matrix ((M)ij represents the proximity between xi and
xj). Then, there exists an integral operator LK∗ such that

K∗
∣∣
sn

= M. (4.3)

That is K∗(xi, xj) = (M)ij ∀ xi, xj ∈ sn, where K∗ is the Mercer kernel associated to
LK∗ .

Proposition 4.1 represents a manner to relate linear integral operators associated to Mer-
cer kernels with proximity (distance/similarity) matrices. Given a positive definite ma-
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trix M Proposition 4.1 ii) guarantees the existence of a kernel function

K∗(x,y) =
∑
j=1

ljϕj(x)ϕj(y), (4.4)

for lj > 0 and {ϕ1, ϕ2, . . . } an orthogonal set of continuous functions in X such that
K∗
∣∣
sn

= M. That is, its evaluations on the sample correspond to the elements of
M. Of course, the basis {ϕ1, ϕ2, . . . } in expansion shown in eq. (4.4) is not neces-
sary unique and the question of how to choose it appropriately arises. By Mercer’s
theorem the "true" K∗ associated to M (that is K∗

∣∣
sn

= M) will admit an expansion
K∗(x, t) =

∑
j=1 λjφj(x)φj(t) where φj are the eigenfunctions of K∗ and therefore they

represent a natural choice for the ϕj in eq. (4.28). Of course these eigenfunctions are
unknown since the true kernel K∗ is not available. Consider the spectral decomposi-
tion of M, given by M =

∑n
j=1 ljvjv

T
j where (lj ,vj) are the pairs of eigenvalues and

eigenvectors of M. Next we show that when the sample size increases the vectors vj for
j = 1, . . . , n converge to the true eigenfunctions φj of LK∗ .

Theorem 4.1. Let LK be the integral operator associated to a kernel functionK : X×X → IR.
Let ν(X) a Borel measure inX and νn the empirical measure defined by νn(X) = 1

n

∑n
j=1 IX(xi)

where IX is the indicator function in X . Let (LnKf)(x) =
∫
K(x, t)f(t)dνn(t) be the corre-

sponding empirical integral operator, that is:

(LnKf)(x) =
1
n

n∑
i=1

K(x, xi)f(xi) (4.5)

Let κ =
√

supx∈X K(x, x), sn = {x1, . . . , xn} a random sample independently drawn from
ν(X) and K(xi, xj) =

(
K
∣∣
sn

)
ij

the resulting data kernel matrix components. Let {φj , λj}
denote the pairs of eigenvalues and eigenfunctions of LK . Then the following statements hold:

(i) Convergence of LnK to LK : Let HK the RKHS associated to K and HS(HK) the Hilbert
space of Hilbert-Schmidt operators on HK . Then with a confidence of 1− δ:

‖LnK − LK‖HS ≤
4κ2 log(2/δ)√

n
, (4.6)

where ‖LK‖HS = ‖K‖L2
ν(X).

(ii) Convergence of the eigenvalues of LnK to the eigenvalues of LK with a confidence of 1− δ:

sup
j≥1

(λj − λ̂j) ≤
4κ2 log(2/δ)√

n
(4.7)

where the {λj} and {λ̂j} are the sets of eigenvalues of LK and LnK respectively.
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(iii) Convergence of the eigenfunctions ofLnK to the eigenfunctions ofLK : For r = min{λj−1−
λj , λj − λj+1} > 0, δ ∈ (0, 1) and ∀n ∈ IN then 4κ2 log(2/δ)√

n
≤ r

2 and with confidence
1− δ ∥∥∥∥∥ φj√

λj
− φ̂j

∥∥∥∥∥
K

≤ 16κ2 log(2/δ)
r
√
n

, (4.8)

where

φ̂j(x) =
1√
nλ̂j

n∑
j=1

K(x, xi)uij (4.9)

is the j-th normalized eigenfunction of LnK associated to the j-th eigenvalue λ̂j . Moreover,
the pairs {lj ,uj} are the eigenvalues and normalized eigenvectors of 1

nK
∣∣
sn

. That is
uj = 1√

lj
vj for vj the eigenvectors of 1

nK
∣∣
sn

.

Theorem 4.1 adapts to our problem several results form (Smale and Zhou, 2007). Points
i) and ii) can be deduced from Proposition 1 and Proposition 2 of the paper (Smale and
Zhou, 2007). Statement i) represents a particular case of the Theorem 2 in (Smale and
Zhou, 2007) (with non normalized kernels) that can also be deduced from the previous
propositions. Next we check that eq. (4.9) provides a particular manner of to find a
basis (to construct the kernel function) such that Proposition 4.1 ii) holds.

Proposition 4.2. Let LK be the integral operator associated to a kernel function K : X ×X →
IR. Let ν(X) a Borel measure in X , and sn = {x1, . . . , xn} a random sample independently
drawn from ν(X). Let LnK be its associated empirical operator defined as Theorem 4.1 and
(K
∣∣
sn

)jk = K(xi, xk) the elements of the kernel matrix associated to K and sn. Then

n∑
j=1

λ̂jφ̂j(xi)φ̂j(xk) =
(
K
∣∣
sn

)
ik
, (4.10)

for any xi, xk in sn where λ̂j are the eigenvalues of 1
nK
∣∣
sn

and φ̂j are the eigenfunctions of LnK
given in eq. (4.9).

Eq. (4.9) represents a particular case of basis such that Proposition 4.1 ii) holds. How-
ever eq. (4.9) is not always estimable and some alternative basis have to be proposed to
construct K∗. We illustrate this in next section with three real applications.

4.3 Applications

Next we show three scenarios where the knowledge of integral operators associated to
Mercer kernels helps to improve the performance of discrimination procedures: classifi-
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cation with partially labeled data, with asymmetric proximity similarities and problems
the data similarity matrix is a combination of some original similarities and the labels.

4.3.1 Classification with partially labeled data

Classification with partially labeled data (Chapelle et al., 2006) deals with discrimina-
tion problems where the data set consist of some labeled points and the remaining
unlabeled. The idea is to use the structure of the unlabeled data to help to improve
the classification procedure. This situation often arises in real situations (Abney, 2008),
where the proportion of unlabeled data is usually higher than the proportion of labeled
data. In this section we show how to address this problem in the framework of integral
operator estimation.

Consider a training sample sn = {(x1, y1), . . . , (xt, yt), xt+1, . . . , xn}made up of a subset
st of t labeled points and a subset sun−t of n− t unlabeled, where xi ∈ X (a compact set
of IRp) and yi ∈ {−1, 1}. Let S : IRp × IRp → IR+ be a proximity function (or a function
directly related to S). Most discrimination procedures use the matrix S

∣∣
st

(whose ele-
ments are given by (S

∣∣
st

)ij = S(xi, xj) for i, j = 1 . . . , n) and the labels as input for the
classification algorithm. For instance, in Fisher Discriminant Analysis (FDA) (assuming
centered data) the similarity matrix S

∣∣
st

is some transformation of the matrix t−1XXT

where X ∈ IRt×p is the matrix of labeled data. On the other hand when the available
information is a similarity matrix (instead of a set of data points), we can always obtain
the data coordinates transforming the similarities into distances by dij = 1 − sij (see
(Gower, 1986) for more alternatives) and then applying some multidimensional scaling
(MDS) procedure.

To build a discriminative procedure that integrates the unlabeled data points we will
proceed in three steps. In the first step we obtain a similarity function S∗ : IRp × IRp →
IR+ from S that takes into account both labeled and unlabeled data points, thus S∗ =
F (S, sn). The idea is to use the neighborhood information provided by the labeled
points to increase the similarity of unlabeled points that are close to points of the same
class and to decrease it otherwise. For instance we can define S∗ as:

S∗(xi, xj) =
1
2
(
S(xi, xj) + S(zxi , zxj )

)
= +τyxiyxj

∣∣S(xi, xj)− S(zxi , zxj )
∣∣ (4.11)

for xi, xj ∈ sn, σ ≥ 0 and where zxi and zxj are the closest labeled data points to xi and
xj with labels yxi , yxj . Therefore for two unlabeled points the similarity S is increased
by τ

∣∣S(xi, xj)− S(zxi , zxj )
∣∣when zxi and zxj belong to the same class and decreased in
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the same quantity otherwise. In addition it is straightforward to show that S∗(xi, xj) =
S(xi, xj) when both points are labeled.

The matrix S∗
∣∣
st

is not necessarily positive definite and therefore it cannot be directly
used as input for the algorithms. Thus, the second step will be to project the sample ma-
trix S∗

∣∣
st

onto the cone of positive definite matrices (See (Muñoz and Martín de Diego,
2006) for a battery of methods to do this). Denote by M this projection. Next, in the
third step of the process, we estimate an integral operator LK∗ such that K∗ is defined
such that (M)ij = K∗(xi, xj). To this aim we proceed by estimating its eigenvalues and
eigenfunctions. We first decompose M/n =

∑d
j=1 ljvjv

T
j where the pairs (lj ,vj) are the

eigenvalues and eigenvectors of M/n and d = rank(M/n). Following Theorem 4.1, we
can estimate each λj (the eigenvalues of LK∗) by λ̂j = lj . In addition following eq. (4.31)
we know that the eigenfunctions of K∗ verify that φj(xi) =

√
nvij . In Proposition 4.1,

our choice for such eigenfunctions was an orthogonal basis of polynomials (see proof
for details). In this case, we will use the neighborhood information of the data to de-
termine them. Here we propose to estimate φj(xk) for each test point xk as a weighted
sum of

√
nvj1, . . . ,

√
nvjn. We define

φ̂j(xk) =
√
n

n∑
i=1

θkivji (4.12)

where the weight θki = exp{−γ‖xk − xi‖2}
(∑n

h=1 exp{−γ‖xk − xh‖2}
)−1 are positive

and
∑n

i=1 θki = 1. The final estimated kernel is given, for any two points xl and xk by
K̂∗(xl, xk) =

∑d
j=1 λ̂jφ̂j(xl)φ̂j(xk). Then the final estimated kernel is :

K̂∗(xl, xk) =
d∑
j=1

lj(θTl vj)(θTk vj) (4.13)

where θk = (θki, . . . , θkn)T for any xk. This kernel allows to estimate the components of
M for test data that generally are non available when the solution to the classification
problem is estimated.

To conclude this section we summarize the previous methodology in Table 4.1 and we
illustrate its performance in a simulated example. In Chapter 6 a battery of real real
examples using the previous methodology are also included.

Example 4.1. Consider a two-class classification problem where the classes are realiza-
tions of bivariate normal distributions with equal covariance matrices. In particular we
generate a sample sn of n = 1000 data (500 for each class) made up from bivariate nor-
mal distributions N(µi, I), with µ1 = (0, 0) and µ2 = (0, 0) respectively. See Figure 4.2
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INPUT
sn: Partially labeled sample {(x1, y1), . . . , (xt, yt), xt+1, . . . , xn}
σ, γ: Parameters of the procedure.
S: Similarity function.

OUTPUT
Φ̂: Estimated embedding for sn.
K̂∗: Estimated kernel associated to the integral operator LK∗ .

STEP 1: Modify the original similarity fucntion S
1.1) Define S∗ as in eq. (4.11).
1.2) Calculate the matrix S∗

∣∣
st

.

STEP 1: Project S∗
∣∣
st

onto the cone of pos. def. matrices.
2.1) Obtain the projected matrix M.

STEP 2: Estimate the integral operator associated to M
3.1) Estimate each φj by eq. (4.12) for j = 1, . . . , d.
3.2) Estimate each λ̂j by lj for j = 1, . . . , d.
3.3) Estimate K̂∗ the kernel of the integral operator LK∗ following

eq. (4.13) where the φ̂j are given in Step 3.1 and λ̂j in Step 3.2.

Table 4.1: Integral operator estimation for partially labeled classification problems

a). In addition a population of 20000 test points (10000 of each class) is also generated
following the same distribution. In this problem the optimal linear discrimination func-
tion is given by x = 2 and the theoretical Bayes error of the solution equals to 2.227%.

The Fisher Discriminant Analysis (LDA) is optimal Bayes for this problem. Of course it
can not obtain an optimal perfomance when the sample size is small. In this example
we illustrate how the LDA can be improved in this situations by using the information
provided by non labeled data. To this aim we perform the following experient. We de-
termine several scenarios selecting (randomly) from sn and increasing number t of data
form 10 to 250. These data will be considered the labeled data and those not selected,
but in sn will be the unlabeled data. For each scenario, we compare the averaged errors
using LDA with the t labeled data and with the kernel matrix estimated via the pre-
viously proposed procedure (matrix K∗

∣∣
st

). In both cases the test errors are estimated
over the remaining 20000 test points as the average of 30 runs (for each scenario).

To estimateK∗, we need to define the similarity S∗ first. Let S(xi, xj) = 1−(xi, xj)/dmax
be the original similarity between the data where dmax is the maximum distance be-
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(a) Simulated data from a two classes clasifcation
problem with equal covariance matrices.
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Figure 4.1: Classification problem where the classes are realizations of bivariate normal
distributions and errors convergence of the Fisher Discriminant Analysis.

tween the training points. We modify S with the information of the labeled data via
eq. (4.11). To this aim we fix the parameters γ and σ by cross validation in a grid of 25
points in the range [0.5, 3]. The matrix S∗

∣∣
st

is then projected onto the cone of positive
definite matrices obtaining M =

∑d
j=1max(lj , 0)vTj vj where the pairs (lj ,vj) are the

eigenvalues and eigenvectors of S∗
∣∣
st

and d = rank(S∗
∣∣
st

). The final kernel function
K∗ is constructed, following eq. (4.13), considering the two first eigenfunction (those
based on the largest eigenvalues).

Results are shown in Figure 4.1 b). In this plot the averaged errors (using S and K∗) are
shown for different number of labeled data form starting in t = 10. The 95% confidence
intervals are included in each case for all the scenarios. It is clear that the proposed
methodology improves the errors obtained with the classical LDA specially when the
the amount of labeled data is small. The new proposed methodology achieves errors
significative equal the Bayes error for 20 data using a T-test with alternative hypothesis
H1 : µerror < 0.0227 obtaining a p-value of 0.0013. Notice that when t = 20 we have
a total of (1000 − 20)/20 = 49 unlabeled data for each labeled point, which in this case
is enough to improve the results. In the experimental section we will give more details
regarding the "cost" of the technique in terms of the unlabeled data required to improve
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(a) Discrimination function in one run of the exper-
iment for the LDA + S
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and LDA +K∗
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when
t = 10.
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(b) Discrimination function in one run of the exper-
iment for the LDA + S

˛̨
st

and LDA +K∗
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st

when
t = 50.

Figure 4.2: Illustration of the change in the discrimination function estimated by the
LDA when the information provided by the unlabeled data is considered.

the results. Regarding the simple LDA (using S), we need at least 95 labeled data to
statistically reach the convergence (p-value for the T test equals to 0.0023) as can be
seen in plot 4.1 b).

As final remark, we illustrate how the use of the unlabeled data modifies the original
discrimination function estimated by the LDA. In Figure 4.2 a) and b) we include the
estimated discrimination functions for LDA+S and LDA+K∗ in one run of the exper-
iment when the number of labeled points are 10 and 50. It is plain to see that the use of
unlabeled data makes the decision function to be close to the optimal solution (x = 2)
in both cases. In is remarkable that, usingK∗, such decision function is not linear. How-
ever, notice that when all the training samples are labeled S = K∗ and therefore both
discrimination functions are equal.

• • •

4.3.2 Classification with asymmetric proximity matrices

Consider a binary classification problem where the proximities between the points are
given by an asymmetric similarity matrix S. In this case there is no immediate way to
obtain Euclidean coordinates and thus apply standard classification procedures.
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In this section we use the approach shown in Section 4.2 to afford the task of embedding
data defined by an asymmetric proximity matrix into a Euclidean space as a previous
step to the use of any classification algorithm. To this aim we first obtain, with the
aid of the data labels, a symmetric matrix S∗ close to S. Next we project S∗ onto the
convex cone of positive definite matrices. The projection of S∗, Π+(S∗), will induce an
embedding of the data sample into a Euclidean space, in which the data points will be
classified.

Symmetrization of S

The immediate way to obtain a symmetric matrix close to S is to consider the triangular
decomposition of S: let S1 and S2 be the two symmetric matrices built from the upper
and lower triangular parts of S respectively. Then S = 1

2(S1 + S2) + 1
2(S1 − S2). Denote

by Y the diagonal matrix containing the labels. We will obtain S∗ as a function that
combines S1, S2 and Y:

S∗ = F (S1,S2,Y), (4.14)

where F is some function to implement the combination. We want S∗ to be as similar as
possible to S, positive definite and suitable to derive the discrimination function. When
S1 and S2 are positive-definite we can use semi-definite programming (Lanckriet et al.,
2004) to look for a linear combination that optimizes some objective function involving
S and the labels. Unfortunately we are not in this case because S1 and S2 are not nec-
essarily positive-definite. Let Sy = Y1n1TnY, where 1n is a column vector of n ones, the
optimal discrimination matrix. To obtain S∗ in eq. (4.14) we will express S∗ as a linear
combination of S1, S2 and Sy by:

S∗ =
1
2

(S1 + S2) + τSy (4.15)

where τ > 0 . The intuition here is that if we increase similarities for points in the same
class and decreased for points with different class labels then we expect the discrimina-
tion function to work better. The idea of using labels to transform a similarity matrix
has been previously used in (Amari and Wu, 1999).

An alternative to obtain S∗ in eq. (4.15) is to use the polar decomposition of S (Horn and
Johnson, 1991; Higham, 1986). Consider S = UΣVT the singular value decomposition of
S and define Q = UVT. Then S = M1Q = QM2, where M1 = UΣUT and M2 = VΣVT .
Then substitute S1 by M1 and S2 by M2 in eq. (4.15).
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Projecting S∗ onto the cone of positive definite matrices

Given that S∗ is not necessarily positive definite we will project it onto the convex cone
of positive definite matrices (SPD) of size n defined by:

Kn+ = {K = KT ∈ IRn×n : K ≥ 0} (4.16)

where K ≥ 0 means that K is semi-positive-definite. Next we propose two different
projection methods. The first is the orthogonal projection of S∗ onto Kn+, and can be
calculated (Higham, 2002) by:

Π1
+(S∗) =

n∑
j=1

max(0, lj)vjvTj (4.17)

where vj are the eigenvectors of S∗ and lj its corresponding eigenvalues (some of them
could be negative). Matrix Π1

+(S∗) is usually known as the positive part of S∗.

The second uses the method of Alternating Projections (AP)(Deutsch, 2001; Luenberger,
1969). Consider the set of matrices given by:

Qn = {Q ∈ IRn×n : qii = 1}. (4.18)

Let be In+ = Kn+
⋂

Qn. We will obtain Π2
+(S∗) as the projection of S∗ onto In+ using the AP

method. Notice that the elements of Qn can be interpreted as similarity matrices and
thus Π2

+(S∗) will be a positive-definite similarity matrix.

The AP method finds the closest matrix to S∗ (in terms of the Frobenius norm) in the
space In+. To proceed, we create a sequence of alternating projections onto Kn+ and Qn

until the algorithm converges. The projections onto Kn+ are calculated by eq. (4.17) and
the projections onto Qn by setting to one the elements of the diagonal of the matrices.
Since Kn+ and Qn are close and convex spaces the convergence is ensured. In (Higham,
2002) a similar problem is solved for correlation matrices in the finance industry field.

Estimating an integral operator from Π+(S∗)

In this section we afford the problem of estimating a kernel function K∗ such that
K∗
∣∣
sn

= Π+(S∗) where Π+ is any of the two matrix projections described above. Notice
that the existence of K∗ is ensured by Proposition 4.1 ii).
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By Mercer’s theorem the (unknown) kernel functionK∗ admits an expansionK∗(x, t) =∑
h=1 λhφh(x)φh(t). We will build the kernel estimator K̂∗ by replacing in the kernel

expansion of K∗, λh and φh by estimators λ̂h and φ̂h.

To proceed, denote by {lh,vh} the pairs of eigenvalues and eigenvectors of 1
nΠ+(S∗) and

let d = rank( 1
nΠ+(S∗)) be the rank of Π+(S∗). Following Propostion 4.2, an estimator

of each λh of K∗ is given by λ̂h = lh.

Regarding the eigenfunctions φj ofK∗, eq. (4.9) is the optimal manner to estimate them.
Nevertheless this expression is usefulness here since the evaluations ofK∗ in any xk out
of the training sample are unknown. The labels are not available and therefore S∗ (and
obviously Π+(S∗)) just can be estimated for the sample data. To solve this problem we
will make use of the matrices S1 and S2 (or M1 and M2 in the polar decomposition)
whose components are available for training and testing points.

Let Π+(S1) and Π+(S2) be two kernel matrices obtained as the projections of S1 and S2

onto the cone of positive definite matrices. Notice that, for the polar decomposition we
do not need to project M1 and M2 since they already are positive-definite. Let K1 and
K2 two kernel functions such as K1(xi, xj) = (Π+(S1))ij and K2(xi, xj) = (Π+(S2))ij for
all xi, xj ∈ sn. Again, such functions exist by Proposition 4.1 ii) and their evaluations on
test points are available (can be estimated for any test point xk via eq. (4.9)).

The key idea to estimate each φh is to use the spectral information of 1
nΠ+(S∗), 1

nΠ+(S1)
and 1

nΠ+(S2) to define φh as a linear combination of the eigenfunctions of K1 and K2.
Hence we will estimate each φh by

φ̂h(x) =
d1∑
j=1

ĉ1j,hφ̂1j(x) +
d2∑
j=1

ĉ2j,hφ̂2j(x) for h = 1, . . . , d. (4.19)

where d1 and d2 are the ranks of 1
nΠ+(S1) and 1

nΠ+(S2), {ĉ1j,h} and {ĉ2j,h} the weights
of the mentioned combination and φ̂1j , φ̂2j the approximations to the eigenfunctions of
K1 and K2 given by eq. (4.9).

Several ways to determine {ĉ1j} and {ĉ1j} can be considered. Here we define them as
follows. Let {w11, . . . ,w1d1} and {w21, . . . ,w2d2} be the sets of eigenvectors of 1

nΠ+(S1)
and 1

nΠ+(S2) and define the matrix

W = [w11, . . . ,w1d1 ,w21, . . . ,w2d2 ]. (4.20)
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Then we determine each vector ĉh = [ĉ11,h, . . . , ĉ1d1,h, ĉ21,h, . . . , ĉ2d2,h] as the minimizer
of

ĉh = arg min ‖vh −Wch‖2, (4.21)

for h = 1, . . . d. Notice that eq. (4.21) is a least squares problem whose solution can
be obtained by solving the linear system WTWch = WTvh. Remark that geometrically,
eq. (4.21) estimates the orthogonal projection of each vh onto the space generated by
Span〈w11, . . . ,w1d1 ,w21, . . . ,w2d2〉.

Finally, the estimator of K∗ given by

K̂∗(x, t) =
d∑

h=1

λ̂hφ̂h(x)φ̂h(t), (4.22)

for λ̂h = lh (h-th eigenvalue of 1
nΠ+(S∗)) and φ̂h given by eq. (4.19). Notice that K̂∗

is a kernel function since it is symmetric, continous (the eigenfunctions are linear com-
binations of linear functions) and positive definite (the eigenvalues λ̂ are are real and
positive since the matrix Π+(S) is positive definite).

To conclude this section we summarize in Table 4.2 the main steps to estimate an integral
operators from an available asymmetric similarity matrix S. In addition we include next
an example to illustrate the utility of the proposed procedure.

Example 4.2. Let X a n × p matrix representing a text database where xij = 1 if the
ith term appears in the document jth and 0 otherwise. Let |xi| denote the number of
documents indexed by term ith and |xi∧xj | the number of documents indexed by both
i and j terms. Consider the following asymmetric similarity measure:

sij =
|xi ∧ xj |
|xi|

=
∑

kmin(xik, xjk)∑
k xik

. (4.23)

Measure sij can be interpreted as the degree in which topic represented by term i is a
subset of topic represented by term j. This numeric measure of subsethood is originally
proposed in (Kosko, 1991) in the contest of fuzzy set theory. Consider, for instance,
a collection of documents containing the term “statistics". In this case a more specific
term like “bayesian" will occur just in a subset. The relation between “bayesian" and
“statistics" is strongly asymmetric, in the sense that the concept represented by the word
“bayesian" is a subset of the concept represented by the word “statistics" but not con-
versely.

We consider in this example the 20 Newsgroups data set which is a collection of ap-
proximately 20,000 newsgroup documents, partitioned across 20 different topics (Lang,
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INPUT
S: Asymmetric similarity matrix.
Y: Diagonal matrix of sample data labels.
F : Similarities combination procedure.
tol: Tolerance.

OUTPUT
Φ̂: Estimated Euclidean embedding for S.
K̂∗: Estimated kernel of the integral operator LK∗ associated to S.

STEP 1: Symmetrization of S. Do A) or B)
A) Triangular decomposition of S

1.1) Obtain S1 and S2 via the triangular decomposition of S.
1.2) Obtain S∗ = F (S1,S2,Y) via eq. (4.14) for the sample data.

B) Polar decomposition of S
1.1) Estimate the SVD decomposition of S, thus S = UΣVT .
1.2) Let M1 = UΣUT and Let M2 = VΣVT .
1.3) Obtain M∗ = F (M1,M2,Y) via eq. (4.14) for the sample data.

STEP 2: Projection of S∗ onto Kn
+ or In+

If A) in STEP 1:
2.1) Project the similarity matrices S, S1 and S2 onto Kn+

to obtain the matrices Π+(S), Π+(S2) and Π+(S2).
Assume K∗

∣∣
sn

= Π+(S), K1

∣∣
sn

= Π+(S2) and K2

∣∣
sn

= Π+(S2).

If B) in STEP 1:
2.1) Do not project.

Assume that K∗
∣∣
sn

= M∗, K1

∣∣
sn

= M1 and K2

∣∣
sn

= M2.

STEP 3: Estimation of the integral operator associated to K∗

3.1) Obtain {lh,vh}dh=1 the pairs of eigenvalues and eigenvectors
of 1

nΠ+(S∗).
3.2) Obtain {w1j}d1j=1 and {w2j}d2j=1 the sets of eigenvectors of

1
nΠ+(S1) and 1

nΠ+(S2).
3.3)∗ Build the matrix W = [Wtol

1 ,Wtol
2 ].

3.4) For h = 1, . . . , d solve the linear system WTWĉh = WTvh.
3.5) Estimate each φh by eq. (4.25) for h = 1, . . . , d for ĉh in 3.4).
3.6) Estimate K̂∗ using eqs. (4.22).

Table 4.2: Integral operator estimation procedure for asymmetric proximities. Wtol
1 and

Wtol
1 have as columns the eigenvectors whose eigenvalues are smaller than the threshold

tol.
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1995). These 20 newsgroups collection has become a popular data set for experiments
in text applications such as text classification and text clustering. For this experiment
we take into account the two topics “Religion-Christian" and “Politics-Guns" since they
are different matters with considerable overlapping. For instance words like “biblical",
“word" and “temple" appear mostly in the religious-christian topic and terms like “ar-
ticles", “charge" or “critique" in the politics-guns. However, there exists an overlap due
to some common words to the two topics like “punished", “society" or ‘freedom". The
final data set consists of a set of 1144 documents with a dictionary of 2564 words.

To run the experiments we select a sample of 1000 words and we use for the experiment
those with a norm larger that 10. As a consequence we have a classification problem
of 253 terms in dimension 1144 where the terms of the database are assigned to each
group by voting. The histogram of the norms of the words, shown in Figure 4.3 a),
verifies the Zipf law (Martín-Merino and Muñoz, 2005). There are a few terms with very
large norms (appear in a lot of documents), and in the opposite side of the distribution,
there are a lot of terms with very small norms. This indicates an asymmetric similarity
between the terms (Martín-Merino and Muñoz, 2005) what can be also noticed in Figure
4.3 b). To build this graph we applied a Multidimensional Scaling (MDS) based on the
Euclidean distance between the terms using its documents-frequency representation.
That is, each term i is represented by a vector whose component j is estimated by dfij =
(# times the term i appears in the document j) / (# times the term i appears in the data
base). In this plot the terms of both classes present a hierarchical structure when they
are represented in the plane what agrees with the information provided by Figure 4.3
a).

The objective of this experiment is to show that an appropriate use of the asymmetry
helps to define distances appropriate in classification. To this aim we use the informa-
tion provided by the matrix S estimated by eq. (4.23). Since S is asymmetric we perform
its triangular (obtaining S1 and S2) and polar decomposition (having M1 and M2). We
consider independently the two sources of asymmetry (obtained via the two matrices
decompositions) and we combine both of them (separately) via the MAKM method via
eq. (4.15) for τ = 10−3 and we project the combination matrices onto the cone of positive
definite matrices using eq. (4.17).

To show the behavior of our proposed approach we include Figures 4.4 a) and 4.4 b). In
these two plots we show the MDS of the terms (for both the triangular and polar decom-
position) with similarities obtained via eq. (4.15). Both mappings (similar up to sign of
the components) totally change the representations of the terms compared to Figure 4.3
b). Now, the two classes of terms are clearly separated and the hierarchical structure is
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Figure 4.3: Terms data frequency histogram an bidimensional representation via MDS.
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(a) MDS of the terms data using the distance in-
duced by combination of S1 and S2 (triangular de-
composition) and the matrix labels Y in eq. (4.15)
where τ = 10−3.
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Figure 4.4: Comparison of the terms considering asymmetric similarities.
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removed and then classification procedures will work better. In addition the two main
components are clearly interpretable. The first (horizontal) separates words in terms of
the semantic content. Thus in the extremes of this component we find words like “it"
or “but" (without semantic content) and “outlaw" or “announce" (whose semantic con-
tent is strong). The second component clearly separates words associated to each class.
In the extremes of this components we find the words “church" and “arms" which are
very specific of each group. In addition, in the area where the classes are overlapped
we find words like “announce" or “minute" which are not clearly identified with any of
the groups.

In the experimental chapter we will study the classification results of a battery of clas-
sification methods using the previous defined similarities. In such experiments we will
use the algorithm described in Table 4.2 to extend, to test points, the proposed similari-
ties.

• • •

4.3.3 Classification within the kernel combination framework

In the discrimination context, it is common to have several sources of information that
must be combined to design an optimized classifier (Kittler et al., 1998). A particular
case of this problem is the combination of the sources of asymmetry described in Section
4.3.2. Here we will generalize the previous approach when a collection of two or more
similarities/kernels are available to construct a classifier (Moguerza and Muñoz, 2006;
Lanckriet et al., 2004). As in the previous case, the way to proceed is to design a single
kernel function that collects all the relevant information of each available kernel and
use it to train a classifier.

The best available techniques use the classification labels to combine kernel matrices
and produce another kernel matrix (Moguerza and Muñoz, 2006; Muñoz and Martín de
Diego, 2006), but not a kernel function. As a consequence, as in Section 4.3.2, there is no
way to evaluate the combination kernel at points for which we do not know the label.
The concrete goal of this section is to extent the methodology proposed in Section 4.3.2
in order to propose a consistent method to produce a kernel function from a similarity
matrix calculated by any given similarity/kernel combination technique. Once the ker-
nel function is available, it will be possible to evaluate the kernel at any data point and
to use the information of the combination to train the classifier.

Consider a data set sn = {(xi, yi)}ni=1 where xi ∈ X (some subset of IRp) and yi ∈ {−1, 1}
are the labels of the data. Let K1, ...,Km a set of kernel functions defined on X and let
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K1

∣∣
sn
, . . . ,Km

∣∣
sn

the corresponding kernel matrices such that (Kl

∣∣
sn

)jk = Kl(xj , xk) for
l = 1, . . . ,m and j, k = 1, . . . ,m. For simplicity of notation, we will use through this
chapter Kl instead of Kl

∣∣
st

to denote the kernel matrices of the set.

Next we transform each kernel matrix Sl onto a similarity matrix Sl for l = 1, . . . ,m (see
Section 2.7 for details) and we combine the set of obtained matrices by

S∗ = F (S1, ...,Sm,Y), (4.24)

where Y is diagonal matrix whose non-null elements are the labels of the problem and
F is any technique to combine the matrices {Kl} and Y.

Notice that eq. (4.24) is generalization of eq. (4.14) for more that two similarities. Then
the methodology in Section 4.3.2 can be easily generalized to estimate a kernel function
K∗ such that K∗

∣∣
sn

= Π+(S∗) where S∗ is the similarity matrix obtained in eq. (4.24)
where Π+ is any of the two matrix projection methods described in Section 4.3.2.

Denote Π+(S1), . . . ,Π+(Sm) the projections onto the cone of positive definite matrices
of S1, . . . ,Sm. We obtain the set of eigenvectors 1

n{wlj} of each Π+(Sl) for l = 1, . . . ,m
and the eigenvectors 1

n{vh} of Π+(S∗). Then, following the same reasonsing that in the
previous section, we will build the kernel estimator K∗(x, t) =

∑
h=1 λhφh(x)φh(t) by

replacing in the kernel expansion of K∗, λh and φh by estimators λ̂h and φ̂h. In this case
we will estimate each φh by

φ̂h(x) =
m∑
l=1

dl∑
j=1

ĉjl,hφ̂jl(x) for h = 1, . . . , d. (4.25)

for dl the rank of 1
nΠ+(Sl). Notice that eq. (4.25) is a generalization of eq. (4.19) for more

that two kernels. Next we build the matrix

W = [w11, . . . ,w1d1 , . . . ,w21, . . . ,wmdm ], (4.26)

and we estimate ĉh = [ĉ11,h, . . . , ĉ1d1,h, . . . , ĉm1,h, . . . , ĉmdm,h] as the minimizer of eq.
(4.21) for h = 1, . . . , d where d = rank( 1

nΠ+(S∗)). Finally, the final estimator of K∗

is obtained, as in the previous section, by replacing in eq. (4.22) λh by the eigenvalues
of 1

nΠ+(S∗) and φh by the eigenfunctions estimated in 4.25. See Table 4.3 for a detailed
description of the final algorithm.

Example 4.3. The algorithm proposed in Table 4.3 is designed to estimate the evalu-
ations of kernel combinations in points out of the training sample. This is specially
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INPUT
K1, . . . ,Km: A set of kernel functions.
Y: Diagonal matrix of sample data labels.
F : Similarities combination procedure.
tol: Tolerance.

OUTPUT
K̂∗: Estimated kernel function .

STEP 1: Kernel combination
1.1) Calculate K1

∣∣
sn
, . . . ,Km

∣∣
sn

and Y.
1.2) Transform each kernel Kl into a similarity Sl
1.3) Combine the similarity matrices by S∗ = F (S1, ...,Sm,Y)

STEP 2: Projection of S∗ and the set of matrices {Sl} onto Kn
+ or In+

2.1) Use some matrices projection and obtain Π+(S∗) and Π+(Sl)
for l = 1, . . . ,m.
Assume K∗

∣∣
sn

= Π+(S∗), Kl

∣∣
sn

= Π+(Sl) for l = 1, . . . ,m

STEP 3: Estimation of the integral operator associated to K∗

3.1) Obtain {lh,vh}dh=1 the pairs of eigenvalues and eigenvectors
of 1

nΠ+(S∗).
3.2) Obtain {w1j}dlj=1 the sets of eigenvectors of

1
nΠ+(Sl) for l = 1, . . . ,m.

3.3)∗ Build the matrix W = [Wtol
1 , . . . ,Wtol

m ].
3.4) For h = 1, . . . , d solve the linear system WTWch = WTvh.
3.5) Estimate each φh by eq. (4.25) for h = 1, . . . , d.
3.6) Estimate K̂∗ using eq. (4.22).

Table 4.3: Integral operator estimation procedure for proximities combination methods.
Wtol

1 and Wtol
1 have as columns the eigenvectors whose eigenvalues are smaller than the

threshold tol.

challenging when the labels, unknown for test data, are involved in the combination. In
this experiment we will show the ability of the proposed procedure in this task.

We work with a data base consisting of radar data consisting of a phased array of 16
high-frequency antennas. The targets are the free electrons in the ionosphere (Sigillito
et al., 1989) and the two classes are labeled as "Good" – radar returns showing evidence
of some type of structure in the ionosphere – and "Bad" (returns without structure).
There are 351 data points. We randomly select 200 for training and we consider the rest
151 for testing.
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Figure 4.5: Scatterplot of the theoretical versus the estimated kernel matrices compo-
nents for the four combinations schemes.

To show the ability of the proposed procedure approximating kernel combination com-
ponents in test points, we consider a battery 10 Gaussian kernelsK(x, y) = exp{−ρ‖x−
y‖2}with parameters

ρ = {0.189, 0.171, 0.104, 0.081, 0.069, 0.062, 0.057, 0.053, 0.050, 0.047}.

We calculate the corresponding kernel matrices (over a training sample sn of size 200)
K1, . . . ,K10 and we combine them using four combination schemes: Max−Min,AVτ=0.01,
AKM and MAKMτ=0.01. See Section 2.8 for details.

To check the accuracy of the algorithm in Table 4.3 recovering the evaluations of the
estimated kernels in test points, we use it to estimate the kernel functions K̂∗Max−Min,
K̂∗AV , K̂∗AKM and K̂∗MAKM . Then we evaluate these kernel functions on the 151 test
points. Finally we draw, for the four combinations, an scatterplot of such estimated
values versus its theoretical counterparts. Results are shown in Figure 4.5 where we
also include the correlation between the theoretical and the estimated values. Notice
that for the AKM method, that does not use the labels, the reconstruction is perfect.
However for theAV andMAKM methods (that are essentially a variation of theAKM
using the labels) the approximation is good (correlations 0.98 and 0.985) but some error
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is achieved. Similar results are obtained for the Max-Min method.

It is apparent that the procedure proposed in Table 4.3 is estimating a kernel function
that approximates well the kernel combinations in test points. Hence, such kernel can
be used for classification purposed as we will do in the experimental chapter.

• • •

4.4 Conclusions and final remark

In this chapter we have shown how proximity matrices in classification problems can be
handle via a FDA approach by estimating certain class of integral operators. This point
of view offers some interesting advantages and can be applied to improve classification
algorithms in several scenarios.

First of all, the previous approach has been tested in the context of partially labeled clas-
sification problems. In this cases, the information provided by unlabeled data points can
be taken into account to improve the performance of classification procedures that only
consider labeled data. In Section 4.3.1 we have afforded this problem via the estimation
of an integral operator whose associated kernel function considers both, labeled and
unlabeled data points. In particular we have shown that our methodology improves
the Linear Discriminant Analysis in a simulated example.

Second, we have proposed a methodology to deal with asymmetric similarity matrices
in classification problems. We have proposed a parametrized procedure to estimate and
integral operator whose associated kernel mapping represents the data onto a Euclidean
space. This approach has been tested successfully to represent the terms of a collection
of documents and it will be tested in a battery of classification problems in Chapter 6.

Finally, we have used the previous approach to estimate a kernel function from any
proximity matrices combination. We have shown that the new kernel function is able
to extend, for out-of sample points, the components of the combination even when the
data labels are involved in the combination process.
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4.5 APPENDIX: Proofs

Proposition 4.1. We prove Proposition 4.1 as follows:

(i) By Mercer’s theorem for every x ∈ X ,
∑

j λjφ
2
j (x) converges to K(x, x) that is

φ(x) ∈ l2. Given that K(x, t) =
∑∞

j=1 λjφj(x)φj(t) for all x, t ∈ X the map Φ :
X → l2 given by x 7→

(√
λjφj(x)

)
j∈IN

satisfies K(x, t) = 〈Φ(x),Φ(t)〉. Thus K
acts as a dot product in the embedding (the image of the map Φ) induced by the
eigenfunctions of the operator LK . Given x, t ∈ X , by eq. (4.2) the Euclidean
distance between two points in the image of φ is given by:

d2(Φ(x),Φ(t)) = 〈Φ(x),Φ(x)〉+ 〈Φ(t),Φ(t)〉 − 2〈Φ(x),Φ(t)〉 (4.27)

= K(x, x) +K(t, t)− 2K(x, t).

By eq. (4.2) it is trivial to check that for all x, t, y ∈ X the function dK satisfies:
dK(x, t) ≥ 0, dK(x, t) = dK(t, x) and dK(x, t) ≤ dK(x,y) + dK(y, t). In addition
since Φ is injective dK(x, t) = 0 if only if x = t and dk : X ×X → IR+. Therefore,
every integral operator LK induces a dissimilarity function dK (on X) that will be
a distance if the mapping Φ is injective.

Now consider the metric spaces (X, dK) and (l2, d). Since for all x, t ∈ X , Φ is an
injective mapping from (X, dK) to (l2, d) and dK(x, t) = d(Φ(x),Φ(t)), we conclude
that Φ is an isometric mapping.

(ii) The second part of the proposition is proven as follows. Let (lj ,vj) for j = 1, . . . , d
denote the pairs of eigenvalues of eigenvectors of M. Then M =

∑d
j=1 ljvjv

T
j

where d = rank(M).

For each j = 1, . . . , d, consider the set of points {(x1, vj,1), . . . , (xn, vj,n)} ⊂ X ×
IR. Consider interpolating polynomials pj : X → IR for j = 1, . . . , d such that
pj(xi) = vji (see (Gasca and Sauer, 2000; Lorentz, 2000) for a review of polynomial
interpolation in several dimensions). Take ϕj = pj and define K∗ by:

K∗(x,y) =
d∑
j=1

ljϕj(x)ϕj(y). (4.28)

K∗ is obviously symmetric, continuous, and positive definite (the lj are the eigen-
values ofM , a positive definite matrix). ThusK is a Mercer Kernel since {ϕ1, . . . , ϕd}
is a finite set of continuous functions in X (See (Rakotomamonjy and Canu, 2005)
for conditions on ϕ’s to be K∗ a kernel).
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By construction of K∗, K∗
∣∣
sn

= M, that is K∗(xi, xj) = (M)ij for all xi, xj ∈ sn

what concludes the proof.

Proof. Let {λ̂j , φ̂j} for j = 1, . . . , n the pairs of eigenvalues and eigenfunctions of LnK .
Then (LnK φ̂j)(x) = λ̂jφ̂j(x) and thus

(LnK φ̂j)(x) =
1
n

n∑
i=1

K(x, xi)φ̂j(xi). (4.29)

Then if l1, . . . , ln is the spectrum of 1
nK
∣∣
sn

, a natural estimator of the eigenvalues of LnK
is given by

λ̂j = lj . (4.30)

In addition, the estimated eigenfunctions φ̂j given in eq. (4.9) (essentially the Nyström
formula (Baker, 1977)) give raise the sample embedding (up to the factor

√
n) when

evaluated in the sample: Let xk a sample point, then

φ̂j(xk) =
1√
nlj

n∑
i=1

K(xi, xk)uij (4.31)

=
1

lj
√
n

n∑
i=1

K(xi, xk)vij

=
1

lj
√
n
nljvjk =

√
nvjk

Consider now the expansion given by
∑n

j=1 λ̂jφ̂j(x)φ̂j(t) (kernel function associated to
LnK) where λ̂j and φ̂j are obtained in eqs. (4.30) and (4.9). Then applying the result in
eq. (4.31):

n∑
j=1

λ̂jφ̂j(xi)φ̂j(xk) = n

n∑
j=1

ljvjivjk =
(
K
∣∣
sn

)
ik
, (4.32)

for any xi, xk in sn.



Chapter 5

Analysis of redundancies in
proximities matrices combinations

Abstract

Information Fusion techniques are becoming increasingly important in fields
such as Image Processing, Web Mining or Information Retrieval where is com-
mon to have several sources of information that must be combined. In this
chapter we propose an spectral framework for information fusion when the
sources of information are given by a set of proximity matrices. Our approach
is based on the simultaneous diagonization of the original matrices of the prob-
lem and it represents a natural way to manage the redundant information in-
volved in the fusion process. In particular, we define a new metric for proxim-
ity matrices and we propose a method that automatically eliminate the redun-
dant information among a set of matrices when they are combined.

Keywords: Kernel Combinations, Redundant Information, Matrix Pencil, Si-
multaneous Diagonalization, Approximate Joint Diagonalization.

5.1 Introduction

Increasingly interest has focused in the last years in the development of statistical tech-
niques that combine several sources of information. For instance, in Image Fusion (Choi

95
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et al., 2005), a typical problem considers different satellite pictures, with different reso-
lutions and different color qualities, and the task is to produce a picture that has maxi-
mum resolution and the best color quality. In the field of Information Retrieval, the goal
can be to classify a set of web pages (Joachims, 2002), and the information that has to be
combined lies in the co-citation matrix and in the terms-by-documents matrix.

In the context of information fusion often happen that the sources of information are
given by a set of proximity matrices and therefore their combination is the natural step
to obtain a unified representation of the data. In this chapter we will focus on the prob-
lem of proximity (similarity/disimilarity) matrices combination in the context of Sup-
port Vector Machine (SVM) classification (Martín de Diego et al., 2009; Lanckriet et al.,
2004) described in Chapter 2.

Consider a data set sn = {(xi, yi)}ni=1 where xi ∈ X (some subset of IRp) and yi ∈ {−1, 1}
are the labels of the data. Let K1, ...,Km a set of kernel functions defined on X and let
K1

∣∣
sn
, . . . ,Km

∣∣
sn

the corresponding kernel matrices such that (Kt

∣∣
sn

)jk = Kt(xj , xk) for
t = 1, . . . ,m and j, k = 1, . . . ,m. For simplicity of notation, we will use through this
chapter Kt instead of Kt

∣∣
sn

to denote the kernel matrices of the set.

As we showed in Chapter 2, eq. (2.37) represents a kernel combination scheme that has
been proven to achieve good results in classification problems. Rewriting eq. (2.37) in
terms of the kernel matrices of K1, . . . ,Km, the final matrix of the combination K∗ is
given by

K∗ =
1
m

m∑
t=1

Kt + τY
∑
t<l

g(Ki,Kj)Y , (5.1)

where τ > 0, Y = diag(y1, . . . , yn) and is g a convex continuous function, for instance
g(Ki,Kj) = |Ki,−Kj |. Notice that we change slightly the point of view of Section 2.8
and we focus on the kernel matrices instead of the kernel functions.

The combination scheme in eq. (5.1) has two main ingredients: First, the average of the
kernel matrices. Second, a term that includes the labels of the problem and some mea-
sure g that aims to capture the differences between each pair of kernels. Therefore, eq.
(5.1) can be interpreted as manner to combine the "common" information between the
kernels (measured by m−1

∑m
t=1 Kt) with their "independent" information (measured

by g(Ki,Kj)).

In the second term of eq. (5.1), the function g acts element by element and the sim-
ilarities between the matrices (viewed as elements of certain matrix space) is not ex-
tracted. One of our purposes of this chapter is to define dissimilarity measures δ :
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IRn×n × IRn×n → IR+ able to quantify the independent information between each pair
of matrices Ki and Kj that can be used in scheme in eq. (5.1) to define new kernel
combinations.

Next we focus on the average of the kernels m−1
∑m

t=1 Kt. Each positive-definite kernel
function Kt induces a transformation of the data set into a (possibly) high dimensional
Euclidean space IRnt . Following Theorem 4.1, the set of eigenvectors Vt = {v1, . . . ,vnt}
of each kernel matrix Kt allows to approximate, for the sample points, the particular
representation of the data set (induced byKt) using some basis of IRnt (see eq. (4.31)). If
we want to combine the information provided by a set ofm kernels, we will have to find
some "common" basis {v∗1, . . . ,v∗n∗} from the individual basis V1, . . . , Vm, such that the
inmersion of the data set in the resulting IRn∗ contains all the relevant information from
the individual kernels. Any technique to produce the desired combination basis needs
to take into account the problem of information redundance. In this sense to perform the
direct sum (or the average) of K1, . . . ,Km in eq. (5.1) presents a serious drawback. To
illustrate it in a simple example, let us consider a data set, and two representations given
by two projections on two pairs of principal axes (x, y) and (x, z), where the x variable is
present in both representations. If we use the direct sum of the corresponding spaces as
solution for the combination problem, we will have the representation (x, y, x, z). Thus,
the weight of the x variable will be doubled when using the Euclidean distance and
the results of the classification and regression algorithms will be distorted. In a general
case, the correlation between the variables induces by the kernels K1, . . . ,Km will cause
similar problems when they are averaged.

To address the two previous issues we will follow an approach based on the simulta-
neous diagonalization of the matrices K1, . . . ,Km involved in the problem. The idea is
to find a matrix V whose columns constitute a basis of generalized eigenvectors such
that the matrices given by Dt = VTKtV for i = 1, . . . ,m are all diagonal (or quasi
diagonal). The diagonal elements of Dt (generalized eigenvalues) will be the key ingre-
dient to manage the redundant infomation of the problem and to define new metrics
for matrices.

This chapter is organized as follows. In Section 5.2 we define a general framework to
define metrics for matrix spaces using the generalized eigenvalues of matrix pencils. In
particular, in Section 5.2.1 we propose a new dissimilarity measure for matrices that is
tested to behave well in real applications. In Section 5.3 we propose a new methodology,
based on the Approximated Joint Diagonalization of matrices, to remove the redundant
information when several kernel are combined. Finally we conclude in Section 5.4 with
some comments and final remarks.
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5.2 Proximities measures for matrices

The use of standard metrics inherited from Euclidean geometry may not be appropiate
for many statistical problems where proximities matrices has to be compared. For in-
stance, consider a isometry in IRn, given by a matrix A ∈ IRn×n and let K ∈ IRn×n a
kernel matrix. Then K transforms under A as K∗ = AKA−1. In this case, the Frobe-
nious distance (FD), induced by the Frobenious norm between the original and the
transformed matrix, is given by dF (K,K∗) = ‖K − K∗‖F 6= 0 (Omladic and Semrl,
1990). However, since we have simply performed a change of basis it must happen that
d(K,K∗) = 0 if dF were an appropriate manner to measure the distance between the
matrices.

The use of eigenvalues tends to avoid these problems because the spectrum of a ma-
trix is invariant under many common transformations in statistics. An example is the
distance induced by the Spectral Norm (Golub and Loan, 1997).

Definition 5.1. Let K1 and K2 be two kernel matrices in IRn×n, then the distance dS(K1,K2)
induced by the Spectral norm is given by

d(K1,K2) =
√
λ1
max(K1,K2), (5.2)

where λ1
max(K1,K2) represents the largest eigenvalue of K1 − K2.

The most usual proximity kernel measure in statistics and pattern recognition is the
Kernel Alignment (KA) (Cristianini and Shawe-Taylor, 2002). It can be interpreted as a
measure of linear relationship between two given kernel matrices.

Definition 5.2. Let K1 and K2 be two kernel matrices in IRn×n, then the empirical Alignment
is defined as

A(K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F
. (5.3)

where 〈K1,K2〉F =
∑

i,j(K1)ij(K2)ij represents the Frobenius product.

This measure has several interesting properties and it has been used to optimize linear
kernels combinations (Joachims, 2002).

Kernel Procrustes (KP) (Martín de Diego and Muñoz, 2006), can also be applied to mea-
sure the distance between two kernel matrices. Given two kernel matrices K1 and K2,
the idea of kernel procrustes is to search for a matrix rotation Q matrix for K2 that makes
it comparable to K1. Then the Frobenious norm is calculated as follows.
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Definition 5.3. Let K1 and K2 be two kernel matrices in IRn×n, then the kernel procrustes (KP)
is given, in terms of the Frobenius norm by

KP (K1,K2) = minQ ‖K1 −QTK2Q‖2F
s.t. QTQ = In

where In ∈ IRn×n is the diagonal matrix of ones.

The problem has a close solution given by Q = VUT , being V and U the corresponding
matrices of eigenvectors of K1 and K2.

Next we detail a new disimilarity measure for kernel matrices based on the simultane-
ous diagonalization of K1 and K2.

5.2.1 Spectral framework for kernel matrices comparison

In this section we propose a new dissimilarity measure for kernel matrices. The key
ingredient will be the generalised eigenvalues and eigevectos of pairs of kernel matrices
(K1, K2). To define the new dissimilarity we start by introducing the concept of matrix
pencil for general matrices A,B ∈ IRn×n.

Definition 5.4. Given two matrices A and B, the matrix-valued function L(λ) = A − λB is
called matrix pencil. The Pencil is represented through the pair (A,B).

Definition 5.5. A pencil (A,B) is called definite pencil if the matrices A and B are symmetric
and positive definite.

Since we are interested in kernel matrices (that are always symmetric and semi-definite
positive) then the main concern of this section will be positive definite pencil kernels of
the form (K1,K2). Next we introduce the concept of generalized eigenvalues of pencils.

Definition 5.6. Let A and B be two matrices of dimensions n × n. Then, the generalized
eigenvalues of the pair (A,B) are the roots of the polynomial det(A− λB) = 0.

Notice that while the eigenvalues of a single matrix A are the roots of det(A− λIn) = 0
the generalized eigenvalues of the pair (A,B) are the roots of the polynomial det(A −
λB) = 0. Therefore, the generalized eigenvalues suffer from a lack of symmetry since
the roots of det(A− λB) = 0 are different from the roots of det(A− λB) = 0.

Next we afford the task of diagonalizing two kernels in the same base of vectors. The
following theorem ensures the existence of bases in which any pair of kernels K1 and
K2 diagonalize.
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Theorem 5.1. (Parlett, 1997) Let be (K1,K2) a definite pencil. Then, there is a nonsingular
matrix V such that the matrices K1 and K2 can be simultaneously diagonalized.

VTK1V = Λ

VTK2V = Σ

being Λ = diag(λ1, ..., λn), Σ = diag(σ1, ..., σn) and where the generalized eigenvalues λi/σi
are real and finite.

Then the diagonalized versions of K1 and K2 under V are Λ and Σ respectively. Notice
that while the generalized eigenvalues of the pencil (K1,K2) are λi/σi, the generalized
eigenvalues of (K2,K1) are σi/λi.

The base of vectors given by the columns of V is not necessarily orthonormal unless the
kernels commute, thus if only if

K1K2 = K2K1.

In this case, the columns of V can be obtained by solving equations K1vj = λjK2vj for
j = 1 . . . , n, that is, by calculating the eigenvectors of K−1

2 K1 if K2 is not singular.

If the kernels do not commute, the matrix V is no uniquely defined. However, the values
λi/σi are invariant under the choice of V. In many real applications it is interesting to
perform simultaneous diagonalization forcing Σ = In (Epifanio et al., 2003). Several
algorithms have been proposed for this case. See (Hua, 1991) for some examples. In
our particular problem we will see how only the generalized eigenvalues of the pencil
(K1,K2) are needed to build kernel dissimilarities. Therefore we only need algorithms
to compute Λ = diag(λ1, ..., λn) and Σ = diag(σ1, . . . , σn).

In most cases, K1 and K2 are not full rank, and algorithms based on the QR decompo-
sitions are not stable (Golub and Loan, 1997). Let r1 = rank(K1) and r2 = rank(K2).
In this work we use the Direct Matrix Pencil Algorithm (Hua, 1991) that uses the trun-
cated Singular Value Decomposition (SVD) of the matrices to estimate their generalized
eigenvalues. Let the SVD of K1 and K2 be

K1 = U1Σ1VT
1

K2 = U2Σ2VT
2 ,

where Σ1 is a diagonal r1 × r1 matrix and Σ2 is diagonal of dimensions r2 × r2. V1 and
V2 are the r1 and r2 left eigenvectors of K1 and K2, and U1 and U2 the corresponding
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right eigenvectors. Based on the above SVD decompostions, the pencil (K1,K2) can be
written as:

K1 − λK2 = U1Σ1VT
1 − λU2Σ1VT

2 . (5.4)

Since the rank of K2 is r2 then the pencil (K1,K2) has r2 generalizaed eigenvalues. If
we multiply eq. (5.4) by UT

2 form the left and and by VT
2 form the right, we are not

changing the eigenvalues and we obtain

UT
2 U1Σ1VT

1 V2 − λΣ2, (5.5)

what is a n × n matrix pencil. The generalized eigenvalues of this new pencil are easy
to compute without stability problems. In addition, it can be proven that the general-
ized eigenvalues of the pencil in eq. (5.5) are equal to the eigenvalues of the matrices
Σ−1

1 (UT
2 U1Σ1VT

1 V2) and (UT
2 U1Σ1VT

1 V2)Σ−1
2 that can be easily computed (Zolteoski,

1988) as well.

A Pencil Dissimilarity (PD) Measure for Matrices

Next we propose a new dissimilarity kernel measure that is based on the generalized
eigenvalues of the pencil (K1,K2). Since K1 and K2 are interchangeable, the measure
should be invariant to the order. In our case, we fix Σ = In, and therefore λi/σi = λi.
It is clear that, if the order of the kernels in the pencil changes, the corresponding new
eigenvalues become 1/λi. For this reason, any measure based on the numbers λ1, . . . , λr

should be invariant under reciprocication of the eigenvalues. Then, the transformed
eigenvalues to consider are

λ∗i =
1 + λi√
1 + λ2

i

, (5.6)

where we use the notation λ∗i = (1/λi)∗.

Once K1 and K2 are expressed in the same base, we can define a a kernel distance in
terms of the generalized eigenvalues:

PD(K1,K2) =
r∑
i=1

(
λ∗i − 2/

√
2
)2
, (5.7)

where r is the number of different from zero generalized eigenvalues. This Pencil Dis-
similarity is equivalent to ‖Λ− In‖F once the correction under reciprocication has been
applied to the components of diagonal matrices Λ and In. As we will show in the exper-
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imental section, this measure is consistent with the kernel alignment and also detects
similar cluster structures in two kernel matrices.

Proposition 5.1. Let K1 and K2 two kernel matrices in IRn×n. Then the PD(K1,K2) defined
in eq. (5.7) is a symmetric dissimilarity function.

5.2.2 Other spectral measures

The use of the spectral (individual) decomposition of the original kernel matrices K1,
K2 is also useful way to definite new similarity/disimilarity measures between the ma-
trices. In the following sections we define some of them and we relate their spectral
version with some well known existent measures.

Kernel Alignment

Consider the spectral decomposition of two kernel matrices K1, K2. Then

K1 = UD1UT = UD1/2
1 D1/2

1 UT = U∗(U∗)T

K2 = VD2VT = VD1/2
2 D1/2

2 VT = V∗(V∗)T .

where U and V are the matrix whose columns are the eigenvectors of K1 and K2, and
D1 and D2 the diagonal matrices with the eigenvalues in the diagonal. However we
define U∗ = UD1/2

1 and V∗ = VD1/2
2 .

Canonical Correlations (Hotelling, 1936) can be applied in order to estimate the degree
of similarity of U∗ and V∗. This procedure calculates the angles between the spaces
respectively generated by the columns of U∗ and V∗ by searching for maximal linear
correlations over combinations of the variables. Unfortunately, if both kernels are full
rank, the spanned spaces are the same and differences cannot be found. Nevertheless,
the technique can be generalized calculating the sum of the cross correlations among
the variables of the two basis. This can be done with the squared Frobenius norm of the
matrix (U∗)TV∗. Normalizing and rewriting in terms of the original decompositions we
can define the following spectral similarity:

S1(K1,K2) =
‖D1/2

1 UTVD1/2
2 ‖2F

‖D1‖F ‖D2‖F
(5.8)

Proposition 5.2. The kernel alignment is equivalent to the S1 measure.
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Kernel Procrustes

Let two kernels K1 and K2. Their diferences can also be obtained working direcly with
the eigenvalues of the matrices. Let D1, D2 the diagonal matrices containing the eigen-
values of K1 and K2. Such eigenvalues represent the weight of the corresponding eigen-
vector in the spectral decompositions. Without taking the basis of eigenvectors into
account, a disimilarity kernel measure can be defined as

S2(K1,K2) = ‖D1 −D2‖2F . (5.9)

This measure is always positive and unbounded. It takes value zero when both kernels
are equal.

Proposition 5.3. The kernel similarity meassure S2 is equivanlent to the kernel procrustes when
Q = VUT .

To end this section we include an example where the previously defined spectral mea-
sures are compared in a simulated example.

Example 5.1. In this example we compare, the behavior of three measured defined in
this section: S1 (or the Kernel Procrustes), S2 (or the Kernel Alignment) and the new
Pencil Dissimilarity (PD) that we will denote by S3 in this example. The idea is to
check the sensitivity of these measures when a they are used to evaluate the proximity
between a kernel matrix K∗ and some controlled perturbations of it.

We generate a sample sn of n = 100 data made up from bivariate normal distribution
N(µ, I2) for µ = (0, 0) and I2 the identity matrix. We fix K∗ to be the kernel matrix of
a Gaussian kernel K(x,y) = exp(−ρ‖x − y‖2) with σ = 1 evaluated on sn. We modify
K∗ increasing and decreasing the parameters of the Gaussian kernel used to calculate
the kernel matrix. In particular we consider 75 different values for ρ selected in a grid
in the interval [0.5, 3] obtaining K1, . . . ,K75. Finally we calculate the three proximities
measures between K∗ and each Kt for t = 1, . . . , 75. To make results comparable we
normalize the proximity measures as follows:

• S̃1(K∗,Kt) = 1− S1(K∗,Kt)/maxi{S1(K∗,Ki)},

• S̃2(K∗,Kt) = S2(K∗,Kt)/maxi{S2(K∗,Ki)},

• S̃3(K∗,Kt) = S3(K∗,Kt)/maxi{S3(K∗,Ki)},

for t = 1, . . . , 75. Notice that the measure S1, that is a similarity, is transformed to
dissimilarity.
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Figure 5.1: Comparison of the Kernel Alignment (S1, green �), the Pencil Dissimilarity
(S2, blue ◦) and the Kernel Procrustes (S3, black x).

In Figure 5.1 we illustrate, for the three measures, the dissimilarity values between K∗

and the set of matrices. The behavior is similar in the three cases. The dissimilarity
decreases fast for values of ρ lower that 1 and grows slowly otherwise. It is remarkable
that S1 and S2 describe a flat curve around 1 while for S3 the the behavior of described
curve is sharp. I addition, this measure is more irregular that S1 and S2.

• • •

5.3 Proximities combinations based on Joint Diagonalization
Algorithms

In this Section we propose a new methodology to remove redundant information when
several kernel matrices K1, . . . ,Km are combined. The key idea is to diagonalize a set
of kernels simultaneously obtaining a basis{v∗1, . . . ,v∗n∗} of a general space of higher di-
mension that only includes the non redundant information among the original kernels.

As we studied in Section 5.2, the exact simultaneous diagonalization of two matrices
is always possible (Parlett, 1997). The base of vectors given by the columns of V in
Theorem 5.1 is not necessarily orthonormal unless the matrices A and B conmute, that
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is when AB = BA. In this case V is also unique. If B is non-singular, the problem can
be solved as and ordinary eigenvalue problem where the target matrix is B−1A. See
(Hua, 1991; Epifanio et al., 2003) and references therein for further details. However,
when more than two matrices are involved in the diagonalization process, if they do
not commute, the diagonalization have to be approximated (Cardoso and Souloumiac,
1996).

In this Section we review the Approximate Joint Diagonalization algorithm of a set of
matrices and we introduce a new procedure for kernel fusion based on it.

5.3.1 Approximate Joint Diagonalization of Matrices

Given a set of matrices {A1, ...,Am} for At ∈ IRn×n it is not possible in general to achieve
perfect joint diagonalization in a single step, unless AiAj = AjAi. Unfortunately these
restrictions do not hold for most theoretical or practical problems. Therefore in prac-
tice we will have to find an orthonormal change of basis which makes the matrices "as
diagonal as possible" in a sense that will be detailed right away. Some fields of ap-
plication for these idea are, for instance, Blind Source Separation (Yeredor, 2002) and
Independent Component Analysis (Bach and Jordan, 2002).

In this section we make use of the the Approximate Joint Diagonalization (AJD) of sym-
metric matrices (Wax and Sheinvald, 1997; Cardoso and Souloumiac, 1996; Yeredor,
2002). Given a square matrix A the notion of closeness to be diagonal can be defined in
several ways. Here measure the deviation of A from diagonality by defining

off(A) = ‖A− diag(A)‖2F =
∑
i 6=j

a2
ij ,

where ‖A‖F =
∑

i

∑
j a

2
ij is the Frobenius norm. If A is a diagonal matrix then off(A) =

0, while off(A) will take small positive values when the off-diagonal values of A are
close to zero.

Given the set of matrices {A1, . . . ,Am}, the target is to find an orthonormal matrix V
such that the departure from diagonality of the transformed matrices D̃t = VTAtV are
as diagonal as possible ∀i ∈ {1, ...,m}. Therefore the goal will be to minimize

J(V) =
∑m

t=1 off(VTAtV)
s.t.

‖VTV− In‖F = 0
‖diag(V− In)‖F = 0,

(5.10)
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where the restrictions have to be included to achieve orthonormality and to avoid the
trivial solution V = 0. After solving eq. (5.10) we will obtain a set quasi diagonal
matrices D̃1, . . . , D̃m, where D̃t = VTAtV for i = 1, ...,m.

There is no closed solution for the problem in eq. (5.10) and some type of numeri-
cal approach has to be adopted. We will apply the algorithm described in (Cardoso
and Souloumiac, 1996; Yeredor, 2002). The idea is to generate a sequence of similarity
transformations of the initial matrices that drive to zero the off-diagonal entries. The
convergence of the algorithm is proven to be quadratic and the obtained eigenvalues
and eigenvectors are robust against small perturbations of the data.

5.3.2 Fusion Joint Diagonalization Algorithm (FJDA)

As already mentioned, Approximate Joint Diagonalization involves the computation
of a base of orthogonal vectors in which the set of kernels approximately diagonalize.
We will obtain relevant information about the data structure by analyzing the resulting
eigenvalues, or equivalently, the diagonal matrices obtained from the joint diagonaliza-
tion procedure. The ideas are similar to that used in Principal Components Analysis,
where the covariance matrix is diagonalized and the resulting eigenvalues can be inter-
preted as the weights of the new variables.

Let {v1, ...,vn} be the column vectors of the matrix V obtained from the JD algorithm
(the {v∗i } vectors in the introduction of this chapter). These vectors constitute the basis
where the set of kernels diagonalize and can be interpreted as the average eigenspace
of the kernels. A detailed analysis of the kernels redundancy can be done in terms of
the values of the obtained quasi-diagonal matrices D̃1, D̃2, . . . , D̃m obtained. Given the
kernel matrix Kt, the components of the associated D̃t can be interpreted as follows:

• D̃t(i, i) = 0: the vector vi is irrelevant for the kernel Kt. That is, the i-th variable
vi is in the null space of Kt.

• D̃t(i, i) 6= 0: in this case vi is a relevant component for Kt.

• D̃t(i, j): These values can be interpreted as the interactions among the new vari-
ables. Due to the JD operation, D̃t(i, j) ≈ 0.

Given V and D̃1, D̃2, . . . , D̃m, the straightforward sum of the kernel matrices can be
reexpressed as:

m∑
t=1

Kt = VT

(
m∑
t=1

D̃t

)
V (5.11)
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Table 5.1: Scheme of the Fusion Joint Diagonalization Algorithm.

INPUT: Kernel matrices K1, . . . ,Km

OUTPUT: Kernel combination K∗

STEP 1 (V, D̃1, D̃2, . . . , D̃m) = AJD(K1, . . . ,Km)
STEP 2 D∗ = F (D̃1, D̃2, . . . , D̃m)
STEP 3 K∗ = VTD∗V

Given that the off-diagonal values of D̃1, D̃2, . . . , D̃m are quite close to zero, D̃t(i, i) can
be interpreted as the weight that kernel Kt assigns to the i-th variable in the new basis.
Since the new base is orthogonal, independent information is given by each component.
The straightforward sum of kernels implies to include redundances in the operation and
to overweight variables that appear in more than one kernel at the same time. In order
to avoid these redundances, the sum of the quasi-diagonal matrices of expression eq.
(5.11) can be replaced by the function F (D̃1, D̃2, . . . , D̃m) defined as follows:

F (D̃1, D̃2, . . . , D̃m) =

{
max

{
D̃1(i, j), ..., D̃m(i, j)

}
if i = j

0 if i 6= j
(5.12)

The justification of this choice is as follows. The relevance of the i − th variable in the
basis induced by kernel Kt is given by D̃t(i, i). The use of the max function guarantees
that the i-th variable will be relevant in the resulting combined basis if this is the case
for any of the individual representations. Thus, the weight of ith variable in the fusion
kernel will be max{D̃1(i, i), . . . , D̃m(i, i)}.

The final algorithm for kernel fusion is shown in Table 5.1 and it provides a global
framework for kernel fusion. Notice that, since the matrix V is orthogonal and the
diagonal matrices of F (D̃1, D̃2, . . . , D̃m) are positive, K∗ is always demidefinte postive
and therefore is a Mercer kernel matrix.

To conclude this section we include two examples where the behavior of Fusion Joint
Diagonalization Algorithm is illustrated.

Example 5.2. In order to validate the utility of the approximate joint diagonalization
algorithm to detect possible redundancies among kernels, we perform the following
experiment. Consider the following data matrix X with 5 random observations and
three orthogonal variables x1, x2 and x3:
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X = [x1, x2, x3] =


−0.2398 −0.4738 0.2370

0.4249 0.3203 0.1753
−0.3535 0.4904 −0.0183
−0.3284 −0.1104 −0.2079

0.4969 −0.2266 −0.1860

 (5.13)

Let K1, K2 and K3 be three linear kernels calculated using the variable sets {x1}, {x1, x2}
and {x2, x3} respectively. Notice that, in this example, K1 and K3 are based on indepen-
dent variable sets while K2 and K3 share the variable x2. In addition let the linear kernel
K = XXT calculated with {x1, x2, x3} be:

K =


0.3381 −0.2121 −0.1519 0.0818 −0.0559
−0.2121 0.3138 0.0037 −0.2113 0.1059
−0.1519 0.0037 0.3658 0.0658 −0.2834

0.0818 −0.2113 0.0658 0.1633 −0.0995
−0.0559 0.1059 −0.2834 −0.0995 0.3328

.


The goal of this experiment is to show the utility of the joint diagonalization algorithm
to detect the redundances in the battery of kernels {K1,K2,K3}. To this aim, we apply
the joint diagonalization to K1, K2 and K3. We obtain three (in this case exact) diagonal
matrices D̃1, D̃2 and D̃2 given by

D̃1 = diag(0.7178, 0.0000, 0.0000, 0.0000, 0.0000)

D̃2 = diag(0.7178, 0.6310, 0.0000, 0.0000, 0.0000)

D̃3 = diag(0.0000, 0.6310, 0.1651, 0.0000, 0.0000)

and a orthogonal matrix V whose columns are the common base of generalized eigen-
vectors V = {v1,v2,v3,v4,v5} given by:

V =


−0.6173 0.5964 −0.4032 0.1389 0.2852
−0.0451 0.5832 0.4315 −0.5118 −0.4579

0.4173 0.2830 −0.5015 0.3877 −0.5865
−0.2938 0.0203 0.5800 0.7289 −0.2133

0.5970 0.4729 0.2516 0.1927 0.5652


Notice that the number of non null eigenvalues of the matrices D̃1, D̃2 and D̃2 equals
the number of variables used to define the corresponding kernel matrices. For instance
D̃1 only weights with 0.7178 the variable v1 while D̃1 also weights v2 with 0.6310.
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Let K∗ be the kernel sum defined by K∗ = K1 + K2 + K3 or equivalently,

K∗ = VT (D̃1 + D̃2 + D̃2)V =


0.6201 −0.4657 −0.2995 0.2128 −0.0677
−0.4657 0.5969 0.0105 −0.3862 0.2445
−0.2995 0.0105 0.7313 0.1278 −0.5701

0.2128 −0.3862 0.1278 0.2833 −0.2377
−0.0677 0.2445 −0.5701 −0.2377 0.6311


A desirable property of this sum would be that K∗ matches the kernel K that has been
calculated using the independent information of x1, x2 and x3. However K∗ and K are
different. This happen because variables v1 and v2 are twice its weight (the sum doubles
the eigenvalue) in the direct sum of K1, K2 and K2. Consider now K+ the sum of K1,
K2, and K3 calculated with the Fusion Joint Diagonalization Algorithm in Table 5.1. In
this particular case we obtain that

F (D̃1, D̃2, D̃3) = diag(0.7178, 0.6310, 0.1651, 0.0000, 0.0000)

and therefore

K+ = VT (F (D̃1, D̃2, D̃3))V =


0.3381 −0.2121 −0.1519 0.0818 −0.0559
−0.2121 0.3138 0.0037 −0.2113 0.1059
−0.1519 0.0037 0.3658 0.0658 −0.2834

0.0818 −0.2113 0.0658 0.1633 −0.0995
−0.0559 0.1059 −0.2834 −0.0995 0.3328

 .

Notice that K+ = K what shows that the proposed methodology is able to remove
the redundant information (of variables x1 and x2) that however was included in the
computation of K∗ .

• • •

Example 5.3. In this example we illustrate the performance of the new FJDA in a data
structure recovery task. We consider two different one-dimensional random projec-
tions π1 and π2 of the spiral data in Figure 5.2 a) and calculate the kernel matrices K1

and K2 by applying the linear kernel K(x,y) = xTy to the projected data points, that
is, Ki(x,y) = πi(x)Tπi(y). We add a corrupted (random) representation of the data and
calculate K3 from this representation in the same way. K3 plays the role of a non infor-
mative (non-related) piece of information in the system. This situation happens when
the distance function is not appropiate for the data set under consideration or when we
try to use irrelevant information to solve a problem. The task is to recovery the original
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(a) Spiral data.
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(b) Direct sum of kernels for the
Spiral data.
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(c) FJDA applied to the kernels
for the Spiral data.

Figure 5.2: Original data and representations for the recovered data after the direct com-
bination of three kernels and after the Fusion Joint Diagonalization Algorithm (FJDA)

data set from the three projections.

Two fusion schemes were compared in the experiment: The straightforward sum of
kernels Ksum = K1 + K2 + K3 and the combination K∗ calculated with the Fusion Joint
Diagonalization Algorithm. In Figure 5.2 b) and) the results are shown. It is clear that
our procedure is able to recover the original data set structure while the straightforward
sum of kernels fails on the task of recovering the data set structure.

• • •

5.4 Conclusions and final remarks

In this Chapter we have proposed an spectral framework for the analysis of redundan-
cies in proximity matrices combinations. Two main issues have been studied: the prob-
lem of defining metrics for matrix spaces and the problem of redundant information in
kernel combinations

In Section 5.2.1 we have proposed an spectral framework for the definition of metrics for
matrix spaces. In particular we have proposed a new Pencil Dissimilarity (PD) based on
the simultaneous diagonalization of kernel matrices. The new measure is easy to calcu-
late and is proven to be consistent with the Kernel Alignment and the Kernel procrustes
in a simulated experiment.

In addition, the proposed spectral framework can be used in information fusion when
the sources of information are given by a set of kernel matrices. We have proposed
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in Section 6.7 and algorithm that, based on the Approximate Joint Diagonalization of
matrices, produces a new representation of the data set in a Euclidean space where
the basis is created from the representations induced by the individual kernels. The
behavior of the fusion scheme is illustrated in two simulated examples and it will be
tested in the experimental section of this thesis.
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5.5 APPENDIX: Proofs

Proposition 5.1. A symmetric dissimilarity function for matrices is a application d : IRn×n×
IRn×n → IR such that given any K1,K2 ∈ IRn×n then:

(i) d(K1,K1) = 0.

(ii) d(K1,K2) ≥ 0 (non-negativity).

(iii) d(K1,K2) = d(K1,K2) (symmetry).

It is straightforward that the function PD defined in eq. (5.7) satisfies i) and ii). In
addition, if the generalized eigenvalues of the pencil (K1,K2) are λ1, . . . , λr, those of
the pencil (K2,K1) are 1/λ1, . . . , 1/λr. Since λ∗i = (1/λi)∗ then

r∑
i=1

(
λ∗i − 2/

√
2
)2

=
r∑
i=1

(
2/
√

2− (1/λi)∗
)2

(5.7)

Therefore PD(K1,K2) = PD(K2,K1) and iii) is also satisfies, what concludes the proof.

Proposition 5.2. Let K1 = UD1UT and K2 = VD2VT be the diagonalization of the two
kernel matrices K1 and K2 such that K1 =

∑
i λiuiu

T
i and K2 =

∑
j µjviv

T
j . Then:

S1(K1,K2) =
‖D1/2

1 UTVD1/2
2 ‖2F

‖D1‖F ‖D2‖F
=

∑
ij λiµj 〈ui,vj〉

2√∑
i λ

2
i

√∑
j µ

2
j

=

∑
ij λiµj〈ui,vj〉2√∑

i λiλj〈ui,uj〉
√∑

j µiµj〈vi,vj〉

=
〈
∑

i λiuiu
T
i ,
∑

j µjvjv
T
j 〉√∑

i λiλj〈uiuTi ,ujuTj 〉
√∑

j µiµj〈vivTi ,vjvTj 〉

=
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F

= A(K1,K2).

(5.8)
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Proposition 5.3. Let K1 = UD1UT and K2 = VD2VT be the diagonalization of the two
kernel matrices K1 and K2. Then:

S2(K1,K2) = ‖D1 −D2‖2F
= ‖U(D1 −D2)UT ‖
= ‖UD1UT −UD2UT ‖2F
= ‖K1 −UD2UT ‖2F
= ‖K1 −UVTVD2VTVUT ‖2F
= ‖K1 −UVTK2VUT ‖2F
= ‖K1 −QTK2Q‖2F
= KP (K1,K2),

(5.9)

for Q = UVT .
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Chapter 6

Experiments

Abstract

This chapter in devoted to experimentation. We empirically test the proce-
dures developed in Chapters 3, 4 and 5 and we compare them with the state of
the art in data representation, cluster and classification techniques.

6.1 Introduction and methodology

In this chapter we present a wide range of experimental results devoted to evaluate the
performance of the different methodologies developed in Chapters 3, 4 and 5. We will
work with several simulated and real data sets where an adequate representation of the
raw data is essential to obtain accurate and competitive results.

Whereas some cluster examples are analyzed, most of the experiments of this chapter
are oriented to compare the performance of data representations systems in classifi-
cation problems. To this aim, we will use four classification algorithms to study the
effective accuracy each proposed data representation independently of the particular
classification method employed. Thus, even when our techniques improve upon exist-
ing results, we are more interested in the comparative analysis between the data rep-
resentations procedures than in giving an optimal results for each data set. Next we
introduce the four classification algorithms we will consider:

• SVM, the Support Vector Machines described in the Section 2.6 of this thesis. In
all the experiments we use a linear kernel and we fix the regularization parameter
C = 100.

115
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• FDA, the Flexible Discriminant Analysis proposed in (Hastie et al., 1994). We
use two variants: FDA/BRUTO which is based on Additive Models and spline
smoothing parameters and FDA/MARS which make use of the Multivariate Adap-
tative Regression Splines (Friedman, 1991).

• PLS/LDA, classification method described in (Boulesteix, 2004) which consists
in Partial Least Squares dimension reduction and Linear Discriminant Analysis
applied on the PLS components.

In all the simulations we divide the data in a set for training and a set for testing. In
addition, the final errors of each procedure are always obtained as the averaged errors
of a set of Monte Carlo simulations.

This chapter is organized as follows. In Section 6.2 we analyze several classification and
cluster examples in the field of Functional Data Analysis. We also include an example
to combine some of the ideas developed in chapters 3 and 4. In Section 6.3 we deal
with two cluster examples of functional data. In section 6.4 we analyze a set of partially
labeled classification problems. In 6.5 we show the examples of classification problems
where the similarity between the data is asymmetric. In Section 6.6 some simulation re-
sults regarding the accuracy of the methodology proposed in Section 4.3.3 are included.
In Section 6.7 we test the Pencil dissimilarity developed in Chapter 5 in a cluster ex-
ample. We conclude this chapter in Section 6.8 where the Fusion Joint Diagonalization
algorithm is tested in a real example

6.2 Classification experiements in FDA

In this section we show the perfomance of the methodology developed in in Chapter 3
in several classification and cluster problems where the nature of the data is functional.
We start with a simulated example.

6.2.1 Waveform data

In this experiment we analyze a modified version of the three class waveform data
(Breiman et al., 1984). We consider 400 predictors for each curve, instead the 21 of the
original case. The three classes of the problem are defined by:

x(t) = uh1(t) + (1− u)h2(t) + ε(t) for class 1;

x(t) = uh1(t) + (1− u)h3(t) + ε(t) for class 2;
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Figure 6.1: Three classes of the waveform data set.

x(t) = uh2(t) + (1− u)h3(t) + ε(t) for class 3;

for u a uniform random variable on (0, 1), ε(t) standard normal variables, and the hk
function the shifted waveforms for t ∈ [1, 21]:

h1(t) = max(6− |t− 11|, 0), h2(t) = h1(t− 4) and h3(t) = h1(t+ 4).

We generate 1200 observations of the model (400 of each class), and we consider 450 for
training the models and 750 as test sample. A plot of the three classes of the problem
is shown in Figure 6.1. The objective of this example is to illustrate that an effective
foregoing reduction of the dimension of the curves (projecting them onto certain RKHSs
via eq. (3.2)) improves the classification errors of a variety of classification algorithms
(those described in Section 6.1) compared to the same algorithms trained over the raw
data.

We consider five different RHKSs where project the data. First, we use two basis of
functions, both of dimension 10, to construct two kernel functions via eq. (3.50). The
fist one is made up of a P-splines basis while for the second one a basis of B-splines is
used. We also consider the data covariance function and two generalized covariance
functions: a Gaussian kernel given by K(x,y) = exp{−ρ‖x− y‖2} and a Laplace kernel



118 CHAPTER 6. EXPERIMENTS

Table 6.1: Errors of the four classifications algorithms and 5 curves representations (+
the raw data) in the Waveform data after 100 runs. In italic letters the best technique
of each row is remarked. In bold letters the best result is shown. In parenthesis the
standard errors of the averaged errors are also shown.

Method B-Splines P- Splines Cov. RBF Laplace Raw data

SVM 0.0491 0.0485 0.0519 0.0470 0.0467 0.0628
(0.0011) (0.0013) (0.0012) (0.0012) (0.0012) (0.0014)

FDAbruto 0.0293 0.0353 0.0313 0.0289 0.0288 0.0839
(0.0010) (0.0010) (0.0009) (0.0010) (0.0010) (0.0017)

FDAmars 0.0399 0.0362 0.0413 0.0449 0.0395 0.1091
(0.0014) (0.0013) (0.0014) (0.0014) (0.0013) (0.0020)

LDA/PLS 0.0610 0.0665 0.0606 0.0612 0.0613 0.1675
(0.0017) (0.0018) (0.0019) (0.0018) (0.0018) (0.0026)

K(x,y) = exp{−ρ‖x − y‖} where, in both cases, ρ = 1. We project the data onto the
RKHSs induced by the previous kernels using eq. (3.2) for γ = 10−3.

We train the SVM , FDAbruto, FDAmars and LDA/PLS using the five estimated pro-
jections and also using the raw data. In Table 6.1 we show the final averaged errors
after 100 runs of the experiment. Regarding the projections, we decide the number of
components to retain by cross validations over the errors. This means that the errors in
Table 6.1 are selected as the best classification result when the only first d eigenfunctions
of the proposed kernels for d = 1, . . . , 10 are taken into account to represent the curves.

Results are shown in Table 6.1. It is clear that reducing the dimension of the curves by
projecting them onto the proposed RKHSs always reduces significantly the classifica-
tion errors of the four techniques compared to the same algorithms trained over the raw
data. To illustrate better these differences we include Figure 6.2 where the confidence
intervals of the errors for each representation are shown. The best algorithm-projection
combination is a Laplace kernel with the FDAbruto algorithm. It is also remarkable the
good performance of the SVM trained over the raw data compared with the rest of the
techniques.

6.2.2 Real classification examples

In this section we analyze the following three real functional data sets:

• Growth data: This data set consists on 93 growth curves for a sample of 54 boys
and 39 girls (Ramsay and Silverman, 2006) (see Figure 6.3). The observations were
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Figure 6.2: Confidence Intervals (95%) for the errors of the 5 representation (+ the raw
data) in four classification techniques. The representation systems are: (1) Raw data, (2)
B-splines, (3) P-splines, (4) Data covariance, (5) Gaussian Kernel and (6) Laplace Kernel.

measured at a set of twenty nine ages (from one to eighteen years old). The data
were originally smoothed by using a spline basis and are available in the following
web page: http://ego.psych.mcgill.ca/misc/fda/.

• Phoneme data: The third data set correspond to 800 discretized log-periodograms
of the phonemes "aa" and "ao". Each phoneme is associated to a class of the ex-
periment. A plot of 25 series of each class is shown in Figure 6.4. This data set is
available in http://www.math.univ-toulouse.fr/staph/npfda/.

• Spectrometric data. This data set is made of 215 observation is the near infrared
absorbance spectrum of a meat sample. Each observation consists in a 100 channel
spectrum of absorbance in the wavelength range from 850 to 1050 nm recorded
on a Tecator Infratec Food and Feed Analyzer. The two classes are determined by
those samples with more (class 1) or less (class 2) than a 20% of fat content. In
Figure 6.5 we show the original curves. This data set can also be download from
http://www.math.univ-toulouse.fr/staph/npfda/.
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Figure 6.3: Growth data.
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Figure 6.4: Phoneme data.

To test our methodology we follow the the same comparative scheme used in the pre-
vious section. However, in this case we optimize the parameters of the Gaussian and
Laplace kernels by means of the SIC described in Section 3.4.2. We fix the penalization
parameter γ = 10−3 and we search the ρ parameter value (in both kernels) in a grid
of 100 values in the interval [10−4, 10−1]. The optimal ρ∗ is fixed as the value that mini-
mizes the avaraged SIC for each set of sample curves {fn,1, . . . , fn,m}. Denote by f∗lKρi ,γ,n
the projection of fν (see eq. 3.1) onto the RKHS associated to the parameter dependent
kernel Kρi (Gausian or Laplace in this example) using fn,l. Then the optimal ρ∗ is given
by

ρ∗ = argmin
ρi

1
m

m∑
l=1

SIC(f∗lKρi ,γ,n) for i = 1, . . . , 100, (6.1)

See eq. (3.25) for details regarding the estimation of the SIC.
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Figure 6.5: Spectrometric data.

Results are shown in Table 6.2. In agreement with the previous experiment, to project
the curves onto the proposed RKHSs improves the results achieved by the classification
procedures using the raw data. Just one exception appears, the Phoneme data using the
LDA/PLS procure where non effective improvement is obtained. In this case, the best
projection has an error of 19.35% misclassified curves (using S) while the error for the
raw data is 19.13%.

Regarding the Growth data, the best result corresponds to the LDA/PLS technique com-
bined with a P-splines kernel. It is remarkable that for this data set the projection using
the P-Splines kernels achieve the minimum error in the four classification procedures.

The Support Vector Machine combined with Laplace kernel obtains the lower errors
in the Spectrometric data (1.54%). Regarding the Phoneme data set, the best result is
also obtained for the SVM (18.14%) but in this case combined with the Gaussian kernel.
This is a clear example of how the use of generalized covariance functions is useful to
improve the classical FDA approach (that focuses on specific basis of functions instead
of generalized covariances).

To conclude the analysis we check the accuracy of the previous results by comparing
the errors in Table 6.2 with those achieved by two techniques specificaly designed to
deal with functional data:

• The P-spline Signal Regression (PSR) (Marx and Eilers, 1999).

• The Non Parametric Curves Discrimination (NPCD) (Ferraty and Vieu, 2003). This
procedure uses a semi-metric to obtain the distance between the curves. We con-
sider in the experiments the Partial Least Squares (for a number of components



122 CHAPTER 6. EXPERIMENTS

fixed by cross validation for p = 1, . . . , 10) and the derivative semi-metrics (d2).
Only the result obtained with the best semi-metric is consider in each analysis for
comparative purposes.

In Table 6.3 we compare the best results from Table 6.2 (for each data base) with the
results obtained by previous techniques. It is clear that we are able to outperform their
classification errors in the three cases and specially for the Growth data set. The PSR
misclassifies a 5.21% of the curves, the MPLSR with a derivative semi-metric the 4.49%
while we obtain an error of 1.16% using the LDA/PLS procedure using the P-splines
kernel projection.

6.2.3 Combining Projections

The purpose of this experiment is to merge the ideas described in Chapter 3 and Sec-
tion 4.3.3. Given a set of curves the main tasks are: (1) to project the curves onto a
set of different RKHSs and (2) combine the set of projections in order to improve the
classification results of a variety of classifications techniques. We will use the discrim-
ination procedures described a the beginning of this chapter and we will analyze the
Spectrometric data mentioned above.

We consider a set of five Gaussian kernels K(x, y) = exp{−ρ‖x− y‖2}with parameters
in a wide range of values. We fix ρi ∈ {2.5, 1, 0.5, 0.1, 0.01} and γ = 10−2 in eq. (3.2) to
estimate a set of five projections of the curves. We calculate the five Empirical Regular-
ized inner product matrices whose components are defined in eq. (3.14). We denote by
K1, . . . ,K1 the final five estimated matrices.

We consider the AKM, MAKM, Max-Min and AV methods (see Section 2.8 for details)
to combine the previous inner product matrices (previously converted to similarities).
The parameter τ in the MAKM and AV methods is fixed by cross validation. We trans-
form each combination matrix to positive definite by Π1

+ (see eq. 4.17) and we calculate
the associated kernel functions K∗AKM , K∗MAKM , K∗Max−Min and K∗AV as described in
Section 4.3.3.

We compare the errors of SVM , FDAmars, FDAbruto and LDA/PLS by using the five
original kernel matrices Kt for t = 1, . . . , 5 and the four combinations. We also clas-
sify the curves using the raw data to study how the new representations improve the
performance of the original techniques. We use 80% of the data for training and 20%
for testing. In Table 6.4 we show the results of the experiments for 100 runs. Regard-
ing the representations induced by the oringinal Gaussian kernels we only include the
performance of the best and the worst Gaussian kernel.
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Table 6.2: Errors of the four classifications algorithms and 5 curves representations (+
the raw data) in three real data sets after 100 runs. In italic letters the best technique
of each row is remarked while in bold letters we point out the best global result. In
parenthesis the standard errors of the averaged errors are shown.

Growth data
Method/RKHS B-Splines P- Splines Cov. RBF Laplace Raw data

SVM 0.0600 0.0158 0.0326 0.0568 0.0400 0.0811
(0.0075) (0.0042) (0.0052) (0.0071) (0.0059) (0.0076)

FDAbruto 0.0368 0.0316 0.0347 0.0368 0.0516 0.3695
(0.0055) (0.0048) (0.0050) (0.0056) (0.0054) (0.0163)

FDAmars 0.0463 0.0442 0.0579 0.0484 0.0684 0.0832
(0.0058) (0.0049) (0.0062) (0.0058) (0.0066) (0.0084)

LDA/PLS 0.0200 0.0116 0.0211 0.0200 0.0305 0.0379
(0.0048) (0.0042) (0.0040) (0.0048) (0.0047) (0.0056)

Spect. data
Method/RKHS B-Splines P- Splines Cov. RBF Laplace Raw data

SVM 0.0179 0.0833 0.0162 0.0183 0.0154 0.0231
(0.0025) (0.0051) (0.0027) (0.0025) (0.0024) (0.0024)

FDAbruto 0.0675 0.0600 0.0621 0.0571 0.0617 0.3367
(0.0079) (0.0043) (0.0090) (0.0079) (0.0096) (0.0117)

FDAmars 0.0371 0.0554 0.0296 0.0358 0.0325 0.0733
(0.0038) (0.0043) (0.0030) (0.0031) (0.0031) (0.0052)

LDA/PLS 0.0896 0.0925 0.0871 0.1075 0.0879 0.0929
(0.0053) (0.0061) (0.0049) (0.0055) (0.0060) (0.0059)

Phoneme data
Method/RKHS B-Splines P- Splines Cov. RBF Laplace Raw data

SVM 0.1835 0.1842 0.1924 0.1814 0.1830 0.2328
(0.0036) (0.0033) (0.0035) (0.0036) (0.0036) (0.0053)

FDAbruto 0.1867 0.1849 0.1958 0.1831 0.1872 0.2187
(0.0036) (0.0037) (0.0034) (0.0035) (0.0034) (0.0037)

FDAmars 0.1926 0.2019 0.2041 0.1918 0.1964 0.2695
(0.0036) (0.0038) (0.0039) (0.0033) (0.0034) (0.0050)

LDA/PLS 0.1990 0.2263 0.1935 0.1966 0.2006 0.1913
(0.0039) (0.0036) (0.0035) (0.0037) (0.0037) (0.0039)

The best result is achieved by the Support Vector Machine and the MAKM combination
with a misclassification error of 1.69%. However the most interesting conclusions of this
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Table 6.3: Results for the best projection method and two techniques specially designed
to work with functional data in the three data sets.

Growth data PSR NPCDd2 Best projection

Test Error 0.0521 0.0494 0.0116
(0.0045) (0.0400) (0.0042)

Tecator data PSR NPCDd2 Best projection

Test Error 0.0736 0.0218 0.0154
(0.0039) (0.0021) (0.0027)

Spect. data PSR NPCDp=5 Best projection

Test Error 0.1866 0.1928 0.1814
(0.0085) (0.0031) (0.0036)

Table 6.4: Results for the Spectrometric data using different projections and combina-
tions.

Raw data Best G. Worst G. K∗
AKM K∗

MAKM K∗
Max−Min K∗

AV

SVM 0.0231 0.0554 0.0892 0.0175 0.0169 0.0644 0.0402
(0.0024) (0.0066) (0.0066) (0.0034) (0.0033) (0.0067) (0.0055)

FDAbruto 0.3367 0.0835 0.3552 0.0488 0.0508 0.0600 0.0583
(0.0117) (0.0121) (0.0146) (0.0058) (0.0063) (0.0064) (0.0068)

FDAmars 0.0733 0.0600 0.3427 0.0669 0.0588 0.1354 0.0688
(0.0052) (0.0200) (0.0197) (0.0194) (0.0143) (0.0258) (0.0129)

LDA/PLS 0.0929 0.0829 0.0838 0.0831 0.0829 0.0727 0.0719
(0.0058) (0.0089) (0.0089) (0.0089) (0.0089) (0.0072) (0.0078)

experiment are obtained comparing the influence of the representation system (single
kernels projections or combinations) in the classification results of the four discrimina-
tion techniques. The curves projection obtained via the Best Gaussian kernel improves,
in three of the four cases, the raw data. The only exception is the the Support Vector
Machine whose error using the raw data is 2.31% while the best Gaussian achieves an
error of 5.54%. Nevertheless, always happen that some of the combinations improve
both, the raw data and the best Gaussian. For instance the SVM using the MAKM com-
bination achieves an error of 1.69% improving the error obtained by the best Gaussian,
5.54%. In addition, to combine the projection makes the representation methodology
robust against wrong choices of the original projections. For the AKM, MAKM and
AV methods, the inclusion of kernels with poor performance does not affect the final
performance of the final combinations as is shown in Table 6.4.
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(a) Series of averaged daily temperature in 35
cities of Canada
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(b) Value of the SIC for the 35 projected series
using a Gaussian kernel for different values of
ρ.

Figure 6.6: Set of temperature series and values of the SIC for different values of ρ.

6.3 Cluster experiments in FDA

Next we include a couple of examples where the cluster structure of two different sets
of funcional data is revealed by using the projection method described in Chapter 3.

6.3.1 Cluster of temperature series and model selection criteria

In this example we analyze the whole set of temperature curves described in Exam-
ple 3.1. See Figure 6.6 a). The objective is to find the hidden cluster structure of the
curves and to study it in terms of climate regions in Canada. To this aim we proceed in
two steps: (1) we project the time series onto certain RKHS and (2) we apply a cluster
procedure over the projections.

To select the RKHS where project the curves we use the SIC criteria described in Section
3.4.2. We optimize the parameter ρ of the Gaussian kernel from a set of 50 equally
spaced values in the interval [10−7, 10−1] and we fix γ = 1.

In this case the optimal value of ρ using the SIC (that one that minimized the averaged
SIC for the set of series) is 0.0791. See Figure 6.6 b). We project the series using this
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Figure 6.7: Clusters of the Canadian temperature data set using a Ward method over
the projections obtained for a Gaussian kernel with ρ = 0.0791 and γ = 1.

parameter and we apply a hierarchical cluster method over the projections (Ward me-
thod). Using a priori information about the climate in Canada (www.nrcan.gc.ca), we
know that in this country there exist four climate zones (see Figure 6.8 b). Therefore we
decide to retain 4 clusters. The series corresponding to each one of the obtained clusters
are drawn in Figure 6.7. In addition, in Figure 6.8 a) we show the location of each series
and we point out the clusters they belong to. The cities assigned to each cluster are
detailed as follows:

• Zone A (Cirles with horizontal line): Scheffervll, Churchill, Uranium, Cty. Daw-
son, Yellowknife, Iqaluit, Inuvik, Resolute.

• Zone B (Squares): Arvida, Bagottville, Thunderbay, Winnipeg, The Pas, Regina,
Pr. Albert, Edmonton, Whitehorse.

• Zone C (Triangles): Vancouver, Victoria, Pr. Rupert.

• Zone D (Circles): St. Johns, Halifax, Sydney, Yarmouth, Charlottvl, Fredericton,
Quebec, Sherbrooke, Montreal, Ottawa, Toronto, London, Calgary, Kamloops, Pr.
George.



6.3. CLUSTER EXPERIMENTS IN FDA 127

(a) Stations and clusters (b) Climate models

Figure 6.8: Map of the stations locations and map of the four climate zones in Canada.
Image Source: Office of Energy Efficiency Canada

As can be seen in Figure 6.7, there is a perfect mach between the four discovered clusters
and the four existing climate regions.

To check the effectiveness of the selected projection we repeat the previous analysis with
a different value of ρ within the interval [10−7, 10−1]. In particular we fix ρ = 10−5 and
we show in Figure 6.9 the new clusters obtained this way. It is clear that the obtained
clusters change and the four climate regions are not properly revealed in this case.

6.3.2 Cluster and classification of gene profiles

In this example we work with a data set previously analyzed in (Spellman et al., 1998)
1 and made up of a set of measurements of gene expressions. The original experiment
deals with a set of yeast cells whose cycles were synchronized by a chemical process.
The final data are therefore time series of cDNA micro-arrays gathered over 18 equally
spaced time points for the full 6,178 genes in the yeast genome.

Following (Spellman et al., 1998), in this example we will focus on the n = 612 genes
without missing values that present a clear pattern related to the cell cycle. In the origi-
nal experiment, these genes were labeled (according to the phase of the yeast cell cycle)
in five different categories: M, G1, G2, S, and M/G1. See Figure 6.10. In these plots the
horizontal axis represents the time and the vertical axis the relative level of gene expres-
sion. The five genes groups are shown separately and the averaged profile for the each
group is also included at the bottom (right) of the figure.

1Data available from the web site: http://www.stanford.edu/cellcycle/
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Figure 6.9: Clusters of the Canadian temperature data set using a Ward method over
the projections obtained for ρ = 10−5 and γ = 1.

Although the original grouping of the gene profiles was done considering the phase
of the yeast cell cycle, the defined classes do not capture the different types of cycles
exhibited in the genes profiles. For instance, in Figure 6.10 it is apparent that group S
is formed by genes that presents at least two different patterns. As we will study next,
this mixture of genes cause problems in the performance of discrimination procedures.
Hence two are the tasks that we aim to afford in this example: First, to solve the genes
profiles classification problem using the original labels and second to propose a new
grouping that explain the cell cycle patters.

We project the profiles using eq. (3.2) for K a of Gaussian kernel with parameter
ρ = 0.07 and for γ = 0.00027. These values are selected by cross validation over the
classification errors. In Figure 6.11 (left) we show one gene profile and its projection
onto the RKHS induced byK. In Figure 6.11 (rigth) we show the estimated weights (λ∗j )
for this gene.

We divide the sample in 80% of the data for training and 20 % for testing and classify
the genes using a linear in two cases: first using the previous estimated projection and
second using the raw data of the problem.

Classification results are shown in Table 6.5 (first two rows). The error after 100 runs is
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Figure 6.10: Raw time series view of the 612 gene profiles. Profiles for the groups M,
G1, G2, S, and M/G1 are shown. A plot of the averaged profiles of each group is also
shown.

Table 6.5: Comparative results for the Cell cycle data after 100 runs.

Method Test Error Std .Dev.

SVM, raw data 0.3174 0.0028
SVM, RKHS 0.3115 0.0026

SVM , raw data (new classes) 0.2362 0.0023
SVM, RKHS (new classes) 0.1631 0.0021

around 31% in both cases. Notice that, in contrast to the previous experiments where
project the data always improved the classification errors, now the errors does not sig-
nificantly change. This is due to the original genes labeling that does not reflect the
natural cluster structure of the genes and that cause that we cannot improve the classi-
fication results.

To determine a more realistic genes labeling we proceed by applying a hierarchical clus-
ter procedure over the projections of the genes. In particular we apply the Ward method
and, based on the infomation provided by the cluster dendrogram (see Figure 6.12), we
fix to 7 the number of clusters to retain. See Figure 6.12. Clusters 1, 2 and 7 present very
flat, but different cycle patterns. The genes of these three classes seems to be on the
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Figure 6.11: On the left, profile of one of the genes of the data base and its projection
onto a RKHS of Gaussian kernel of parameter σ = 0.07. On the right, the RKHS repre-
sentation of the gene is shown.

Table 6.6: Migration table beween the original and the new clusters.

Labels 1 2 3 4 5 6 7
M/G1 21 26 15 0 0 26 4
G1 48 83 64 0 2 8 18
S 26 6 0 0 9 2 4
G2 75 2 0 3 3 1 8
M 87 10 0 37 0 10 15

limit of being considered real cell cycle genes. However, clusters 3, 4, 5 and 6 present a
more significance cycle trend of different frequency and and period. These clusters are
homogeneous and their patterns very different.

To check the effect of the new grouping, we classify again the genes by using the new
labels. Results are shown in the two last rows of Table 6.5. In this case, the projection
clearly improve the classification results, being 16.13% the test errors using the projec-
tion and 23.62% for the raw data. Notice that projecting the gene profiles onto the RKHS
induced by K, is useful in two senses: to identify new cluster structure in the data and
improve the classification results. To conclude we include Table 6.6 where we illustrate
how the new clusters have been created. Remark that the genes that originally belong
to the group S migrate to clusters 1, 2 and 5 solving the initial problem of having genes
of very different profiles within the same group.
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Figure 6.12: Seven clusters obtained after projecting the data onto the proposed RKHS.
The obtained dendrogram (using the Ward method) and the averaged profile of the new
classes are also inlcuded.

6.4 Partially labeled classification problems

In this section we check the performance of the methodology described in Section 4.3.1
in four real data sets. The idea is to show that the Linear Discriminant analysis can be
improved in real examples using the information provided by unlabeled points. The
four data sets used in this experiment are available in the the UCI repository 2 and
they are named as: Iris, Connectionist Bench (Sonar, Mines vs. Rocks), Breast Cancer
Wisconsin and Blood Transfusion. In the Iris data set we only considered the classes
versicolor and virginica.

In the original data sets all the points are labeled. Hence, to test our procedure, we con-

2http://archive.ics.uci.edu/ml/datasets.html
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struct artificially the partially labeled classification problem as follows. First, we divide
each data set in two subsets, one of size n (training sample sn in Section 4.3.1) to esti-
mate the discrimination function and the other to calculate the classification errors (test
sample). Within the training sample, we assume that only a randomly selected amount
t of data are labeled (sample st) and we use the rest n − t non labeled points to im-
prove the classifier. We study the performance of the proposed methodology selecting
different values of t for each data set (see Table 6.7 for details).

We estimate the LDA discrimination function in two cases. First, using only the labeled
data, that is the matrix S

∣∣
st

= XTX, and second using the kernel matrix proposed in
Section 4.3.1 (that is the matrixK∗

∣∣
st

). In the estimation ofK∗we fix γ = σ and we select
these parameters by cross validation in a range of 15 equidistant values in intervals
specified in Table 6.7. In addition we fix by cross validation over the errors the number
eigenfunctions used to reconstructK∗. In the estimation ofK∗we use the neighborhood
information of the data. Hence we also include in the experiment a k-nearest neighbor
algorithm for k = 1 for comparative purposes.

In the four data sets some improvement is obtained using the proposed methodology.
Regarding the Iris data set, the LDA using K∗

∣∣
st

as the input matrix always outperform
both, theLDAwith S

∣∣
st

and theK-nn. This behavior is also observed in the Transfusion
data set where our proposal is the best technique in the three analyzed cases (for t =
10, 50, 100). In the Sonar and Cancer data set, there is not an clear best technique. In the
first case the K − nn wins in two of the three analyzed scenarios while for the Cancer
data our proposal is the best technique for t = 10, 50. In this particular example, when
t = 100, the LDA with S

∣∣
st

obtains the best results.

That the use of the non-labeled points helps us to improve the classification results
of both, LDA and K-nn in 8 of the 11 proposed scenarios what clearly indicated the
usefulness of our methodology.

6.5 Classification problems with asymmetry

In this section we present the analysis of three real examples where the asymmetric
similarity between the data plays an important role. The objective of the experiments is
twofold: First, to show the importance of considering asymmetric proximities between
the data in classification problems. Second, to illustrate how the use of labels helps to
significantly improve the classification results when the matrices in which S (the asym-
metric data symmilarity) decomposes are combined. To this aim, the four statistical
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Table 6.7: Comparison table of the performance of the FDA procedure using two differ-
ent inputs matrices: S

∣∣
st

= XTX and K∗
∣∣
st

. Four real examples are shown for different
values of the amount of labeled points. Results are obtained after 30 runs. Standard
deviations are shown in parenthesis.

Data Params. Partition Partition Test Error Test Error Test Error
Set γ, σ Train/Test Train (t, n-t) LDA+ S

∣∣
st

LDA+K∗
∣∣
st

1− nn

Iris [3.5, 6.5] (60,40) (10,50) 0.0958 0.0833 0.1008
(0.0190) (0.0130) (0.0430)

(50,10) 0.0500 0.0250 0.0766
(0.0001) (0.0080) (0.0063)

Sonar [0.05, 0.1] (170,38) (75,95) 0.3491 0.2964 0.2596
(0.0140) (0.0152) (0.047)

(100,70) 0.3043 0.1605 0.2368
(0.0121) (0.0090) (0.0512)

(150,20) 0.2429 0.2438 0.2228
0.0063 (0.0061) (0.0256)

Cancer [1.5, 2.1] (400,283) (10,390) 0.1253 0.0628 0.0667
(0.0114) (0.0086) (0.0260)

(50,350) 0.0502 0.0398 0.0591
(0.0031) (0.0018) (0.0193)

(100,300) 0.0369 0.0380 0.0501
(0.0011) (0.0005) (0.0149)

Transf. [0.1, 1] (400,384) (10,390) 0.2529 0.2274 0.2917
(0.0168) (0.0250 (0.0758)

(50,350) 0.1845 0.1798 0.2717
(0.0037) (0.0007) (0.0430)

(100,300) 0.1800 0.1788 0.2720
(0.0034) (0.0008) (0.0251)

classification techniques described at the beginning of this chapter are compared in two
cases: when the asymmetric proximities between the data are considered and when the
raw data (Euclidean distance) are used as input of the techniques.

In order to use asymmetric proximities to classify the data, we consider the two matrix
decomposition (polar and traingular) described in Section 4.3.2. We classify the points
by using separately S1 and S2 (or M1 and M2 in the polar case) and by their combi-
nation via 1

2(S1 + S2), the Semi-definite programming (S. D. P.) described in (Lanckriet
et al., 2004) and the combination proposed in eq. (4.15). In this latest case we estimate
the integral operator associated to the obtained similarity as described in Section 4.3.2
(Table 4.2) in order to estimate the value of the similarity it in test points. The choice of
the parameter τ in eq. (4.15) is done by cross validation over the test error in a range
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of 25 equidistant values in the interval [10−5, 10−2] for the first two experiments. In the
third one the interval is fixed to [10−5, 10−3]. For the triangular decomposition we use
both projections Π1

+ and Π2
+ (described in Section 4.3.2) to transform the matrices to

positive definite.

The classification errors are obtained after 50 runs where 80% of the data are used for
training and the remaining 20% for testing.

6.5.1 Term classification in text data bases

The goal of this first experiment is to classify the terms of the database described in
Example 4.2 using the information provided by the matrix S whose components are
given by eq. (4.23). Since S is asymmetric we consider its triangular (S1 and S2) and
polar decomposition (M1 and M2). To classify the terms we consider independently the
two sources of asymmetry (obtained via the two matrices decompositions) as well as
their combinations.

Results are shown in Table 6.8. Several conclusions can be obtained. Fist of all it, is clear
that the combination of the sources asymmetry generally improves the classification
compared to the individual matrices (S1, S2 or M1, M2). In particular, the combination
proposed in eq. (4.15) clearly shows the best performance in this experiment when it
is used to fuse M1 and M2. Regarding the matrix projection method, we conclude that
there is not a universal better method.

In Table 6.9 we compare the best test errors obtained for each classification procedure
(results in bold in Table 6.8) with the errors obtained when the raw data are used to train
the classifiers, that is using as input the df. representation of the terms. In addition we
include the relative improvement obtained in each case. The four methods are clearly
outperformed when the asymmetry is considered. The technique that is improved the
most is the FDAbruto (68%) while the best global method is the SVM with a 13.49% of
misclassification data.

6.5.2 Classification of microarrays data

A genetic expression data base is usually a collection of DNA microarray experiments
where each column represents an experiment and each row a different gene. Generally
there are thousand rows and a few experiments. Each component of the data matrix
measures the expression level of each gene in the target relative to each reference sample
(experiment).
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Table 6.9: Comparative results for the textual data after 50 runs of the experiment. Four
classification techniques using the original data (df. representation) as input and the
results considering the asymmetric dissimilarities are compared. Best results for each
classification methods are shown in bold letters.

Method SVM FDAbruto FDAmars LDA/PLS

Original data, df. 0.1957 (0.0012) 0.4520 (0.0007) 0.3416 (0.0013) 0.1522 (0.0009)
Best assym. result. 0.1349 (0.0052) 0.1424 (0.0064) 0.1623 (0.0054) 0.1404 (0.0056)
Relative improv. 31.06% 68.49% 52.48% 7.75%

In this experiment we work with a Human Microarray Cancer data set (Hastie et al.,
2009). The data correspond to 64 samples where the level of expression of 6830 genes
were measured. The range of the original data was from say -6 to 6 measuring the ex-
pression level of each gene. These values are recoded to 1 for expressed genes (positive
values) and 0 for non expressed genes (negative values). Then there exits a correspon-
dence with the previous example: the gene plays the role of the terms and the sample
plays the role of the document. Hence it makes sense to use the asymmetric similarity
sij defined in eq. (4.23) to analyze this type of data.

In this experiment we select randomly a total of 500 genes for the experiment and we
label them by voting (based on the frequency) to the class of "renal" or "colon" cancer.
We estimate their similarity matrix via eq. (4.23) and we follow the same comparative
scheme of the previous example.

Classification results are presented in Table 6.10. Results are coherent with those ob-
tained in the previous example with some exceptions. While it is true that to combine
the sources of asymmetry improves the classification results of the four classification
techniques, in this case the lowest errors are obtained combining S1 and S2 via eq. (4.15)
with the Π2

+ projection method. This results confirms that this combination method, that
includes a term with the information of the data labels, obtains the best results when the
sources of asymmetry has to be combined. In particular it always improves the average
of the matrices and the S.D.P procedure.

In Table 6.11 we show the relative improvements of the asymmetric schedule compared
with the symmetric case (raw data). We obtaing significant improvements for the SVM
(10.19%), the FDAmars (2.55%) and the LDA/PLS (16.87%) method. For the FDAbruto
there is not significant improvement being the only case where the df. representation
outperform the asymmetric schemes.
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Table 6.11: Comparative results for the genetic data after 50 runs of the experiment.
Four classification techniques using the original data (df. representation) as input and
the results considering the asymmetric dissimilarities are compared. Best results for
each classification methods are shown in bold letters.

Method SVM FDAbruto FDAmars LDA/PLS

Original data 0.0804 (0.0032) 0.1016 (0.0040) 0.0784 (0.0048) 0.1014 (0.0041)
Best asymmetric sim. 0.0722 (0.0035) 0.0990 (0.0046) 0.1258 (0.0043) 0.0898 (0.0033)
Relative improv. 10.19% 2.55% -37.6% 11.43%
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(a) Dynamic Time warping alignment with series
1 (black) as reference.

Alignment

0 20 40 60 80 100

-1
.5

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

(b) Dynamic Time warping alignment with series
1 (red) as reference.

Figure 6.13: Alignment of two time series using the Dynamic Time Warping algorithm.

6.5.3 Time series classification and Dynamic Time Warping

The Dynamic Time Warping (Sakoe and Chiba, 1978) is an algorithm designed to mea-
sure the dissimilarity between two sequences of data including financial time series,
spectrometric data or video patterns. The DTW algorithm works by solving an opti-
mization problem with restrictions. Given two sequences i and j, they are "warped" in
the time dimension and a measure dij of their dissimilarity is estimated.

To estimate the dissimilarity measure the DTW fix a reference sequence and finds the
optimal match to the other sequence. This procedure results in an asymmetric dissim-
ilarity: Consider for instance the two series in Figure 6.13. The alignment of the series
is estimated taking as reference the series 1 (black) in Figure 6.13 a) and series 2 (red)
in Figure 6.13 b). The shadow area represents in each case the dissimilarity measure
between the series. In this case d12 = 23.1043 and d21 = 26.273.

In this example we work with the Phoneme data described in Section 6.2.2. For the set
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of curves we obtain the asymmetric matrix distance D between the series by the DTW
algorithm. A transformation to similarity matrix is done by sij = 1−dij/max{dij}. With
S estimated this way, we perform the same experiment as in the previous examples.
Result are shown in Tables 6.12 and 6.13.

The best results are always obtained when the combination in eq. (4.15) is applied.
The triangular decompositions seems to be the best in this example. However the best
projection technique is not the same for the four classification algorithms. For the SVM ,
FDAmars and LDA/PLS the best projection method is given by Π1

+ in contrast to the
FDAbruto that works better with Π2

+.

Regarding the errors when original series are used as input to train the SVM , FDAbruto
and FDAmars methods, they are significantly improved by considering asymmetric
similarities. However the errors of the PLS/FDA procedure does not significantly
change.

6.6 Proximity matrices combination and integral operators

In this example we show the performance of the kernel combination method proposed
in Section 4.3.3 in a controlled two-class classification example. We generate 200 train
point and 50 test points in IR2 following:

• Class 1: (x, y) = (u+ 1, u2 + e),

• Class 2: (x, y) = (u+ 7/5,−u2 + 1 + e),

where u ∼ U(−1, 1) is a uniform random variable and e ∼ N(0, 0.1) a Gaussian one.
The sample is shown in Figure 6.14.

We consider two kernels based on the projections of the data onto the two coordinate
axis: K1(x,y) = πx(x)πx(y) = x1y1 and K2(x,y) = πy(x)πy(y) = x2y2. In order to
estimate the accuracy of the procedure, we consider the battery of kernels of increasing
complexity K∗(d) = (K1 +K2)d for d = 1, . . . , 15.

Let K∗(d) denote the matrices obtained by applying the real combination kernels K∗(d)
to the points in the sample of 250 points. Let KF (d) denote the kernel function obtained
(see Section 4.3.3) and KL(d) =

∑2
i=1 λi(d)Ki a linear combination of kernels defined as

the best approximation (using the Frobenius norm) to K∗(d) by using a linear combi-
nation of the Ki kernels (Muñoz and Martín de Diego, 2006). We want to compare the
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Table 6.13: Comparative results for the Phoneme data after 50 runs of the experiment.
Four classification techniques using the original data as input and the results consider-
ing the asymmetric dissimilarity obtained with the DTW algorithm are compared. Best
results for each classification methods are shown in bold letters.

Method SVM FDAbruto FDAmars LDA/PLS

Original data 0.2328 (0.0053) 0.2191 (0.0005) 0.2619 (0.0007) 0.1928 (0.0006)
Best asymmetric sim. 0.1931 (0.0043) 0.2000 (0.0043) 0.2035 (0.0007) 0.1927 (0.0035)
Relative improv. 17.53% 9.5% 22.29% 0.001%
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Figure 6.14: Plot of the generated data

reference matrices K∗(d) with the matrices KF (d) and KL(d) obtained applying KF (d)
and KL(d) to the sample.

To this aim we use two goodness of fit measures. First we classify the test data using
KF (d) and KL(d) and compare them with the results obtained using the reference ma-
trix K∗(d). Second we measure the difference between matrices using the Frobenius
norm. The results are shown in Figure 6.15. Fig. 6.15 left shows that, for every d, the
kernel KF (d) obtains a quite similar performance to that obtained by the kernel it tries
to reproduce (that is, K∗(d)). This is not the case for KL(d), a linear combination of
kernels (instead a linear combination of eigenfunctions, as the KF (d) is). Thus, in a real
case where we do not know in advance the results for the test data, we can expect a
good behavior for KF (d). Fig. 6.15 right shows the adjustment of KF and KL to the
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Figure 6.15: Comparison of the proposed method (line with circles) and the linear com-
bination (dotted line) in an example of increasing complexity. Classification errors (left)
and differences in terms of the frobenius norm (right) are shown.

true combination kernel as d increases. Again, KF (d) remains similar to K∗(d).

6.7 Redundancies in kernel combinations

In this section we show the utility of the matrix similarities described in Chapter 5.2.
The Body Mass Index (BMI) is a corporal index based on the weight and height of per-
sons. It is a fast and inexpensive method for the assesment of overweight given by
weight/height2 (using kilograms and meters). The BMI induces the following taxon-
omy in human beings:

• Below 20: Underweight.

• 20-25: Normal.

• Above-30: Overweight.

In this experiment we consider a sample of 150 data with three apparent clusters. The
BMI averages for each cluster are, respectively, 18, 22.5 and 28.5 (see Figure 6.16).

For the present case, six representations of the data are used. They are summarized
in Table 6.14. The goal of this experiment is to compare the Pencil Dissimilarity mea-
sure (PD) and the Kernel Alignment (KA) in a case in which six linear kernels matrices
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Figure 6.16: Body Mass Index example data.

Table 6.14: Six different representations of the data.

Representation Variables Units
1 (weigth, heigth) kilos(normalized), meters(normalized)
2 (weigth, heigth) kilos, meters
3 (weigth, heigth) grams, meters
4 (weigth, heigth) grams, centimeters
5 (weigth, heigth) Mahalanobis transformation
6 MBI = kg/m2 None

K1, ...,K6 are calculated according the representations of Table 6.14 (Figure 6.16 corre-
sponds to K2). The example is favorable for the use of KA, because only linear trans-
formations are involved and KA, being a correlation measure, invariant under linear
transformations.

In this example, the reference kernel is assumed to be the one calculated with the BMI
because it perfectly evidences the cluster structure of the data. In other words, some
representations on Table 6.14 may be affected by the choice of the units, but the BMI is
independent of the unit scaling. In order to estimate the similarity between the kernels
K1, ...,K5 with K6, a k-means algorithm (k = 3) was applied to the six data represen-
tations. After clustering, the number of points that were missclassified with respect to
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Table 6.15: Missclassified points for the six kernel representations with respect to the
three true clusters calculated using the BMI.

Kernel K1 K2 K3 K4 K5 K6

Errors 60 29 98 29 0 0

Table 6.16: Results for the three measures over the battery of 6 kernels with respect to
K6. Two normalization were applied to the kernels

Norm. Measure K1 K2 K3 K4 K5 K6

A KA 0.961 0.973 0.940 0.973 0.993 1.000
Procrustes 0.001 0.066 0.001 0.066 0.071 0.000
PD 0.049 0.011 0.159 0.011 0.000 0.000

B KA 0.395 0.259 0.007 0.256 0.741 1.000
Procrustes 0.006 0.137 0.004 0.000 0.000 0.000
PD 0.030 0.038 0.119 0.038 0.001 0.000

taxonomy induced by K6 is summarized in Table 6.15.

Based on Table 6.15, the ranking of kernels (regarding their similarity to K6), should be
(begining with the most similar) K5 → (K4 = K2) → K1 → K3 in decreasing order.
Given that the measures involved in the kernels calculations are not bounded, it is con-
venient to perform some previous normalization. Thus we produce two standarized
versions for each kernel Ki, i = 1, ..., 6 given by:

(KA
i )lk =

(Ki)lk −min((Ki))lk
max((Ki))lk −min((Ki))lk

(6.2)

(KB
i )lk =

(Ki)lk√
(Ki)ll

√
(Ki)kk

(6.3)

Results of the experiment are shown in Table 6.16. It is clear that, kernel alignment and
PD are equivalent. Since KA is a similarity and PD a dissimilarity, the corresponding
values of the table should be interpreted in a diferent way: Kernels close to K6 should
show large values for the alignment and small values for the PD. In contrast, the kernel
procrustes measures fails in this example. It is not able to detect the relationships be-
tween the matrices being the proposed order are (K4 = K2) → K5 → K3 → K1 (for the
A normalization) and K4 → K2 → K3 → K1 → K5 (for B) what disagrees with the real
order of the matrices.

In order to show graphically the concordance of the results for alignment and PD, Figure
6.17 shows a scatterplot of the values for each kernel. The relationship is non linear
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Figure 6.17: Scatterplot of the alignment and the new measure for the six kernels. This
representation corresponds to first normalization method (A).

but it is always decreasing, just as one should expect for this example. Thus, we can
concluded that DP performs as well as KA, the best available measure for this particular
example.

6.8 The FJDA in a real example

In this example we perform a study of classification of sonar signals 3. The goal is to
discriminate between two types of signals: those bounced off a metal cylinder and those
bounced off a roughly cylindrical rock. The data set has 208 observations measured on
60 variables that take values in the interval [0, 1]. Each value represents the energy
within a particular frequency band, integrated over a certain period of time. The goal is
classify the objects as rocks or mines.

We consider two Gaussian kernels Ki(x, y) = e−ρi‖x−y‖2 , i ∈ {1, 2}, where ρ1 = 1 and
ρ2 = 0.1. We want to combine K1 and K2 using the straightforward sum and the FJDA
fusion method described in Section 5.3.2. In order to evaluate the performance of both

3http://www.ics.uci.edu/ mlearn/MLRepository.html
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Table 6.17: Percentage of misclassified data, and percentage of support vectors for the
Sonar data set after 10 runs. Standard deviations in brackets.

Kernel Train Error Test Error %SV

K1 (ρ = 1) 0.0114 (0.0046) 0.1595 (0.0037) 0.4000 (0.0001)
K2 (ρ = 0.1) 0.0165 (0.0007) 0.2576 (0.0017) 0.4870 (0.0001)

KSum 0.0132 (0.0050) 0.1666 (0.0038) 0.7660 (0.0180)
KAJD 0.0078 (0.0040) 0.1523 (0.0040) 0.8290 (0.0220)

fusion approaches we will feed one SVM classifier with the resulting fusion kernels.
The penalty value C is set to one in all the experiments.

Table 6.17 shows the classification results for the SVM classifier using four different ker-
nels: the individual kernels K1 and K2, and the two fusion kernels: the straightforward
sum and FJDA applied to the single kernels.

It is apparent from the results that K1 performs better than K2. When the straightfor-
ward sum is considered, the performance of the SVM is worse than in the case of using
the Gaussian kernel with ρ = 1. It seems that the bad performance of K2 damages the
performance of the straightforward sum approach. On the other hand, the kernel ob-
tained by the FJDA algorithm shows a better classification performance than the other
fusion method and also than the individual kernels.



Chapter 7

Future lines of research

Next we conclude this work with the sketch of some lines of research we would like to
afford in the near future.

7.1 Potential applications of functional data analysis

In fields like Chemometrics, Signal Extraction or Image Analysis, data are generally
given by some measured spectra (considered as a function of the wavelength). A com-
mon problem in these areas is that the data are usually analyzed within the multivariate
data analysis framework even when they violate standard assumptions.

In this thesis we have shown that the use of Regularization in Reproducing Kernel
Hilbert Spaces is proven to provide appealing basis to find accurate representations
of functional data. We strongly believe that problems like Regression with functional
data (which is common in Chemometrics), Image Segmentation or Functional Analysis
of Variance can be afforded under the approach described in Chapter 3.

7.2 Manifold Learning

Manifold Leaning has emerged as a new important topic of research with a wide range
of applications. The underlying idea of manifold learning is that, while complex data
often lie in very high dimensions, the number of degrees freedom is usually much less.
Examples of this are human speech, data in Chemometrics or image data.

Traditional techniques such as Principal Components Analysis and Multidimensional
Scaling have been extensively used for linear dimensionality reduction. However, these
methods are inadequate when the data lie onto nonlinear manifolds. In recent years

147
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some new methods like Isomap (Tenenbaum et al., 2000), Locally Linear Embedding
(Roweis and Saul, 2000) or and Laplacian Eigenmaps (Belkin and Niyogi, 2004) have
been proposed for nonlinear dimensionality reduction tasks.

One of the key issues in manifold learning is to determine procedures able to obtain
the natural distance between the objects of the sample (understanding by natural the
geodesic distance calculated over the underlying manifold of the data). In this thesis
we have done the first step in this sense using the theory from Reproducing Kernel
Hilbert Spaces (RKHSs) to study the relationship between integral operators (associated
to Mercer’s kernels) and proximity matrices. We strongly believe that this is a promising
line of research we would like to investigate.

7.3 Kernel combinations and differential geometry

The performance of a kernel in classification problems depends directly on some prop-
erties that can be calculated via its associated metric (Burges, 1998). For instance, in
classification problems, when data form different classes are mapped onto a manifold
with high curvature, the performance of classification techniques is usually poor.

For kernels like the polynomial or Gaussian, there exist some expressions that allows
works directly with the metric induced by the kernels. This property can be used to
calculate the metric of kernel combinations and to optimize their parameters. We be-
lieve that an exhaustive study of kernel combinations in terms of the induced metrics is
a promising line of research we would like to afford in the near future.

7.4 Spatio-temporal processes

Exploration of complex geosciences data demands the development of new and cre-
ative methods of data analysis. In the last years, strong efforts have been done in this
sense specially in climate modeling. A climate model can be understood as a dynamical
system in which a target variable is studied and some additional variables are consid-
ered as external forces. The state of the target variable (for instance CO2) at a time t is
represented by xt for t = 1, . . . , T . A climate model is a mapping F that relates the state
of the variable from time t to t+1. It uses both, the current state of the climate system xt,
and the values of some external forces (location, radiation, precipitation, etc.) usually
given by a vector zt, to produce a dynamical result for the next time step. Therefore
the model states that xt+1 = F (xt, zt) + εt where εt is a random error (at time t). The
choice of an appropriate mapping F it is crucial in climate modeling. A good model has
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Figure 7.1: Two graphical results of the spacial estimated temperature by July 15, 1999,
at 20:00 GTM. Two sources of information are available: (left) temperatures from simu-
lation based on certain grid points (methoreologial stations); (right) temperatures from
satellite assimilation data. Both results have complementary information. The left hand
prediction is based on a small number of data (obtained form the stations) but gener-
ally very accurate. However databases obtained form satellites are always very large
but they can be contaminated, for instance, for the presence of clouds. Source: Devel-
opment of Techniques for Assimilating GOES Satellite Data into Regional-Scale Photochemical
Models. 2002, Progress Report.

to be accurate in the description of the dynamic of the system, interpretable and fast to
calculate.

7.4.1 Semi-parametric models of covariance functions

Geostatistical methods usually make the assumption that data are observations of sto-
chastic variables. A spatial (and also temporal) variable can be considered as a realiza-
tion of a random function represented by a stochastic model (estimated by F ). One of
the key steps in spatio-temporal modeling is to describe the statistical dependence of
spatial variables and it iterations with the temporal components. Some prediction and
interpolation methods, (i. e. kriging) manage these dependences assuming that the data
are realizations of a Gaussian process with certain covariance function.

Although a lot work has been done, it is extremely difficult to specify realistic covari-
ance models for complicated spatio-temporal processes. To simplify this problem, some
assumptions like symmetry and separability are done. This allows to define parametric
families of covariance models (Cressie and Huang, 1999) but they are inappropriate in
some real examples. In this context it is of a great interest for us to investigate new
tools for spatio-temporal modeling (González et al., 2009) able to deal with these and
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other related problems. In particular we strongly believe that this can be done under
the theoretical framework the RKHS provide.

One of the main reasons why RKHSs represent a promising manner to deal with geo-
statistical problems is because, as we have studied in Chapters 3 and 4 of this thesis,
they provide and excellent framework for information fusion. The relevance of this is-
sue is twofold: First because it is common to find problems where several sources of
information has to be combined. For instance when several collections of climate model
outputs need to be ensemble to obtain a single representation that reflects the whole
relevant information of the system (Sain and Furrer, 2009). See Figure 7.1 for a real ex-
ample. Second, because RKHSs represent a natural way to define new semi-parametric
families of combinations of covariance functions (Martín de Diego et al., 2009) that can
be used in to study the dynamic complexity of atmospheric systems.

7.4.2 Extremes detection

Another important application of RKHS in climate modeling is extremes detection.
While much of the work dealing with climate models concerns on interpolation or pre-
diction (which means essentially to be focused on the means of the variables) some
work has attempted to characterize extremes values (Cooley et al., 2007; Gilleland et al.,
2005). In geostatistics, extremes are rare but potentially catastrophic events and their
detection has several applications: identification of pollutant areas in cities, predictions
of floods, heat waves, windstorms, etc.

The best-developed and most important mathematical models for rare events are based
on probabilistic models usually fitted to the data using statistical techniques. However
extremes are hard to measure and some open questions regarding their predictions in
geostatistics remains open. For instance how does one estimates extremes where no
observations are made of how it is possible to determine a possible "100 year event"
from 50 years data measurements.

We stronlgy belive that RKHS can be used in conjunction with Extreme Value Theory
to estimate distributional quantiles and small probabilities of appearance of extremely
rare geophysical events as well as other problems in geostatistics.
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