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Abstract:The global localization methods deal with the estimation of the pose of a mobile robot assuming no prior state information about the pose and 
a complete a priori knowledge of the environment where the mobile robot is going to be localized. Most existing algorithms are based on the 
minimization of an L2-norm loss function. In spite of the extended use of the L2-norm, the use of the L1-norm offers some alternative advantages. 
The present work compares the L1-norm and the L2-norm with the same basic optimization mechanism to determine the advantages of each norm 
when applied to the global localization problem.

The algorithm has been tested subject to different noise levels to demonstrate the accuracy, effectiveness, robustness, and computational 
efficiency of both L1-norm and L2-norm approaches.

1. Introduction

The statistical methods are based on assumptions which for-
malize the information known or conjectured about the data of the
problem. The most popular model formalization is the assumption
that the observed data have a Gaussian distribution. This assump-
tion has been the framework for the classical least squares esti-

E-mail : moreno@ing.uc3m.es (L. Moreno), dblanco@ing.uc3m.es (D. Blanco), sgarrido@ing.uc3m.es (S. Garrido).

The use of the absolute error (L1-norm)may be amore satisfac-
tory measure of loss than the squared error in certain situations.
The minimum sum of absolute errors overcomes the aforemen-
tioned drawbacks of the least squares method and provides an al-
ternative to be explored. It is less sensitive than the least squares

*

mation method, which has been the dominating technique in the
engineering literature for a long time. There are two main reasons
for assuming a normal distribution: on the one hand, it gives a good
approximate representation to many real data observation sets,
and on the other hand, it is theoretically quite convenient because
the continuity of the loss function obtained from it allows us to de-
rive explicit formulas for optimal statistical methods such as the
maximum likelihood estimators, the least squares method, or the
Kalman-based estimators. Such methods rely on the assumption
that a normal distribution is exactly followed. In spite of thesewell-
known characteristics, the least squares methods are far from the
optimal in many non-Gaussian situations, particularly when the
error distributions have long tails. In these situations, any outlying
observation may affect the method seriously. A traditional way of
avoiding this problem in engineering is the use of the Chi-squared
test and the Mahalanobis distance to reject those measurements
with low probabilities. This alleviates the problem but requires 
the noise to be Gaussian and, in certain situations, it can reject 
useful information.

When the noise model is not exactly known or the model
is contaminated with another probability distribution, the least
squaresmethod is not completely satisfactory. In the presentwork,
we are interested in obtaining high accuracy in the estimation
of the robot’s pose. The quadratic loss function (L2-norm) tends
to give more importance to big errors than to small ones, which
originates a limited accuracy.
regression to the high errors originated in the outliers or in the
case of contamination. It may be noted that the absolute error
estimates are of maximum likelihood and hence asymptotically
efficient when the errors follow the Laplace distribution. The min-
imum sum of the absolute error regression has been studied in dif-
ferent contexts andhas received different names:minimumsumof
absolute errors (MSAE) [1], least sum of absolute errors (LSAE) [2],
minimum absolute deviation errors (MAD) [3], least absolute devi-
ation errors (LAD) [3], L1-norm, etc. It has been successfully used
in different fields. Based on Monte Carlo studies, the use of the L1-
normhas been recommendedwhenever the errors followa Laplace
or a Cauchy distribution [4], a mixture of normal and uniform dis-
tributions [5], and a contaminated normal distribution [6]. The L1-
norm estimates have been strongly penalized by its computational
burden. Since the L1-norm function is not derivable, the optimiza-
tion problem leads to linear programming methods to obtain a so-
lution. Dielman [7] showed, using a Monte Carlo simulation, that 
when outliers are present, the least absolute value forecasts are su-
perior to the least squares forecasts.

The use of L1-norms introduces problems related to the estima-
tion time. Unlike L2-norm estimators, no analytic expression can
be formulated for the estimator. The most classical method to ob-
tain the estimator is by applying a linear programming algorithm
to the data. This difficulty to obtain a closed expression for the es-
timator makes it difficult to determine its properties analytically
and it needs to be demonstrated by sampling.
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The global localization problem applied to mobile robots tries
to estimate the initial robot’s pose assuming that the robot has no
knowledge about its initial position. Therefore, it has to estimate
the robot’s pose globally. To solve the global localization problem
there exist different approaches: Bayesian-based estimation meth-
ods, optimization-based methods, and hybrid methods.

In Bayesian-based methods, all existing probabilistic information 
(sensor and motion information) is integrated into the posterior 
probability density at each motion–perception cycle and the 
point estimate is posteriorly obtained as the state with bigger 
posterior probability density. These approaches do not use any 
loss function and do not require any loss function derivation to 
obtain a solution, at least in the probability density integration 
process. However, to obtain the maximum a posteriori point 
they require a way of obtaining the maxima, which can require 
a derivative of the a posteriori probability density function. 
In practice, most of them are Monte Carlo variations, which 
alleviates the probability density integration problem and the 
search for the probability distribution maxima. These methods 
can manage multi-hypotheses or multi-minima problems easily, 
but are computationally intensive. Among the purely Bayesian 
methods, we can include grid-based probabilistic filters [8–10] and 
Monte Carlo localization methods [11–13].

Optimization-based methods also use all existing probabilistic 
information to obtain a loss function that is minimized at each 
motion–perception cycle and the estimate is the point with lower 
value of the loss function at a given moment. Among these 
methods, we can differentiate between two groups: those based 
on the derivation of the loss function to achieve a solution 
and those based on the stochastic search for the best solution 
of the loss function. Among the derivative-based optimization 
methods, we can include the Kalman filters. The drawback of 
these methods is their inability to deal with multi-hypotheses 
problems; their main advantage is their computational speed. 
They are widely used in tracking problems (re-localization), where 
the method only requires to manage one hypothesis. Among the 
optimization-based approaches that do not use derivatives we 
find: Moreno [14] presents an evolutive localization algorithm 
known as Evolutive Localization Filter (ELF), Martin [15] introduces 
the ELF-3D algorithm that uses the three dimensional sensorial 
information, differential evolution Monte Carlo [16] and particle 
swarm optimization filters [17].

Hybrid methods combine both classes of methods. Multi-
hypothesis Kalman filters are a combination of Bayesian methods 
and optimization-based methods. They maintain a set of multi-
hypotheses, each of them with an associated Gaussian probabil-
ity [18–22]. Each hypothesis is managed by a Kalman filter method 
and most of them use a decision tree search mechanism based on 
geometrical constraints together with probabilistic attributes to 
manage the global data association problem.

Except for the Monte Carlo methods, where no loss function 
is minimized, the rest of methods use the L2-norm as the loss 
function to minimize. This paper presents a comparison between 
the solution to the global localization problem obtained with 
an L1-norm and an L2-norm. In the present work the method 
used to solve the global localization problem is based on an 
improved version of the Evolutionary Localization Filter method 
called Adaptive Evolutionary Localization Filter (A-ELF) [14]. The A-
ELF solves the global localization problem in two phases. In the first 
phase, the algorithm searches globally to find the feasible areas 
and lets the whole set of possible solutions interact to extensively 
explore the state space in order to make that the set of tentative 
solutions converges to the set of most probable areas (given the 
loss function definition). 
In a second phase, the amplification factor is decreased 
considerably to focus the algorithm exploration around the 
selected areas. The algorithm operates with raw sensor data, 
avoiding the extraction of features from the sensor data, and uses 
the loss function adopted in the previous step to estimate the new 
set of poses. The use of a probabilistic fitness function instead of 
estimating the probability density function offers the possibility of 
iterating as many times as necessary over the data until certain 
pre-established statistic conditions are reached. This can be done 
because the fitness associated to a solution indicates the quality 
score of the solution, given the data and the robot’s motion.

2. Localization problem formulation

From a probabilistic point of view, the global localization
problem searches to estimate the pose which maximizes the a
posteriori probability density. This problem consists of two linked
problem. On the one hand, the integration of the probabilistic
information available into the a posteriori probability density
function of each state, given the set of motions, the set of
measurements, and the a priori environment map. On the other

hand, an optimization problem to determine the point x̂MAP
t

with maximum a posteriori probability density at a given time.
Depending on the method adopted, the solution is obtained by
focusing on the integration of the probabilistic information or on
the optimization of a loss function.

The robot’s pose at time t will be denoted by xt = (x, y, θ)T ,
and the data up to time t by Yt . The posterior probability
distribution can be written as p(xt |Yt), where the environment
model is assumed to be known. The sensor data come from two
different sources: motion sensors which provide data related to
pose changes u(t − 1) originated by the robot’s displacement
in the time interval [t − 1, t] (e.g., odometer readings), and
perception sensors which provide data related to environment zi
(e.g., camera images, laser range scans, ultrasoundmeasurements).
We will consider that both types of data arrive alternatively, Yt =

{z0, u0, . . . , zt−1, ut−1, zt}. These sensor data can be divided into
two groups of data Yt ≡ {Zt ,Ut−1}, where Zt = {z0, . . . , zt}
contains the perception sensor measurements and Ut−1 =

{u0, . . . , ut−1} contains the odometry information. To estimate the
posterior distribution p(xt |Yt), the probabilistic approaches resort
to the Markov assumption, which states that the future states only
depend on the knowledge of the current state and not on how the
robot got there, i.e., they are independent of past states.

x̂MAP
t = argmax

x
p(xt |Yt)

= argmax
x

t∏
i=1

pe(zi|xi)
t∏

i=1

pv(xi|xi−1, ut−1)p(x0). (1)

This expression requires to specify pv(xt |xt−1, ut−1), pe(zt |xt),
and p(x0), where pe(zt |xt) expresses the probability density
function for observation zt , given the state xt for the observation
noise e; and pv(xt |xt−1, ut−1) indicates the probability density
function for the motion noise v. The expression to be maximized
can be reformulated in an equivalent andmore convenient form by
2



taking logarithms and expressing the resulting objective function
f0(t) recursively:

f0(xt) =

t−
i=1

log pe(zi|xi) +

t−
i=1

log pv(xi|xi−1, ut) + log p(x0)

= log pe(zt |xt) + log pv(xt |xt−1, ut−1) + f0(t − 1). (2)

Ifwe are able to solve the optimization problemat time t−1 and
we have a set of sub-optimal solutions x∗

t−1 which are candidates to
satisfy the optimization problem up to time t−1, the optimization
problem can be reformulated as

x̂t−1 = max
x

(log pe(zt |xt) + log pv(xt |xt−1, ut−1)) (3)

where xˆt−1 is the x that solves the maximum a posteriori 
optimiza-tion problem at time t − 1. Then, solving Eq. (3) we will 
obtain a recursive version of the MAP estimate. Up to this point, no 
assump-tion about the noise distribution has been necessary. In 
the following sections, pe and pv will be written as p to alleviate the 

3. Loss function derivation

According to the optimization problem in Eq. (3), the natural 
choice for the loss function is

f0(xt) = log p(zt |xt) + log p(xt |xt−1, ut−1). (4)

This expression contains the perception error probability den-
sity distribution p(zt |xt) and the robot’s motion error probability
density distribution p(xt |xt−1, ut−1). A third probability model is
used to model the information we have at the initial stage about
the initial a priori robot’s pose p(x0). In case of global localization
problem, the initial pose information is null. Then, a uniform prob-
ability distribution along the state space is assumed.

3.1. L2-norm

If we assume that the observation error can be described by
a Gaussian probability distribution with zero mean and known
variance, then the probability of observing zt,i with sensor i can be
expressed as

p(zt,i|x̂t) =
1

(2πσ 2
e )1/2

e
−1/2

(zt,i−ẑt,i)
2

σ2
e . (5)

Integrating all the individual sensor beam probabilities into a
joint probability value and assuming conditional independence
between the individual measurements result in

p(zt |x̂t) =

Ns∏
i=0

p(zt,i|x̂t) =

Ns∏
i=0

1
(2πσ 2

e )1/2
e
−1/2

(zt,i−ẑt,i)
2

σ2
e (6)

where Ns is the number of sensor observations.
Assuming that the motion error is a Gaussian probability

distribution with zero mean and known variance, that is, v ≈

N(0, P), then the motion error probability p(xi|xi−1, ui−1) can be
expressed as

p(xi|xi−1, ui−1) =
1

√
|P|(2π)n

e−1/2(xi−x̂i)P−1(xi−x̂i)T . (7)

Introducing the expressions of p(xt |xt−1, ut−1) and p(zt |xt) in
Eq. (4), we have

f0(xt) =

Ns−
i=0

log(2πσ 2
e )−1/2

−

Ns−
i=0

(zt,i − ẑt,i)2

2σ 2
e

+ log[(|P|(2π)n)−1/2
] −

1
2
(xi − x̂i)P−1(xi − x̂i)T . (8)

 notation.
The constant terms can be eliminated and the problem is re-
duced to find the robot’s pose which minimizes

f ′

0(xt) =

Ns−
i=0

(zt,i − ẑt,i)2

2σ 2
e

+
1
2
(xi − x̂i)P−1(xi − x̂i)T . (9)

This classical derivation of the loss function leads to an L2-norm
loss function N(µ, σ 2).

3.2. L1-norm

In practice, the assumption of a Gaussian observation noise is
arguable. On the one hand, the presence of non-modeled obstacles,
both static and mobile, lets us notice that the Gaussian probability
distribution can be convenient, but in practice the distribution tail
is too optimistic. If we assume that the observation error can be
described by a Laplace error distribution, this distribution has the
following form

f (x|µ, λ) =
1
2λ

exp


−
|x − µ|

λ


(10)

with mean µ and variance 2λ2, usually referred to as location and
scale parameters, respectively, and typically denoted as L(µ, λ). If
we apply this probability distribution tomodel the observation and
motion noise, we obtain an L1-norm loss function to optimize

f ′′

0 (xt) =

Ns−
i=0

[
|zt,i − ẑt,i|

λz
+

|xi − x̂i|
λx

]
. (11)

In spite of the theoretical interest of a derivation from a Laplace
distribution, this distribution can be assumable for the observation
error distribution but not so evidently for the motion noise error.
However, the problem can be formulated in more general terms
and independently of the subjacent error distribution. A very
generic expression for a wide class of loss functions is

f ′′′

0 (xt) =

Ns−
i=0

(|zt,i − ẑt,i|p)
1
p

σz
+

(|xi − x̂i|p)
1
p

σx
. (12)

This expression includes the L1-norm and the L2-norm as
particular cases. The main problem of this loss function derives
from the discontinuity introduced by the absolute value function.
This eliminates the possibility of obtaining a closed solution even
if there is only oneminimum. Since the optimization method to be
used is not derivative-based, the L1-norm, L2-norm, or any other
Lp-norm loss functions can be solved in a completely similar way
and the computational cost is not substantially different. In the
following section, the nonlinear filter used to obtain the estimates
will be introduced.

Eq. (12) defined in this general way is independent of the noise 
present in the system, which means that one can use the L1-norm 
or the L2-norm when the noise in the system is Gaussian or when it 
follows a different distribution. In this work, we will compare both 
norms under two different perception error situations to observe 
the advantages and disadvantages of using both of them for global 
pose estimation.

4. Adaptive Evolutionary Localization Filter (A-ELF) algorithm
description

The algorithm proposed to implement the A-ELF is based on 
the Differential Evolution (DE) method proposed by Storn and 
Price [23–25] for global optimization problems over continuous 
spaces. The A-ELF uses, as a basic solution search method, the 
classical DE/rand/1/bin version with some modifications to improve 
its characteristics in presence of a noisy fitness function. The
3



DE/rand/1/bin method uses a parallel direct search method which
utilizes n-dimensional parameter vectors xki = (xki,1, . . . , x

k
i,n)

T

to point each candidate solution i to the optimization problem at
iteration k for a given time step t . Thismethod utilizesN parameter
vectors {xki ; i = 1, . . . ,N} as a sub-optimal feasible solutions set
(population) for each generation of the optimization process.

The initial population is chosen randomly to cover the entire 
parameter space uniformly. In absence of a priori information, the 
entire parameter space has the same probability of containing the 
optimum parameter vector, and a uniform probability distribution 
is assumed. This method uses a differential perturbation method 
to generate an offspring population. The DE algorithm generates 
new parameter vectors by adding the weighted difference vector 
between two population members to a third member. If the 
resulting vector yields a lower objective function value than a 
predetermined population member, the newly generated vector 
replaces the vector with which it was compared; otherwise, the 
old vector is retained. This basic idea is extended by perturbing 
an existing vector through the addition of one or more weighted 
difference vectors to it (see Fig. 1).

4.1. Differential perturbation operation

The perturbation scheme generates a variation vk
i according to

the following expression

vk
i = xkr1 + F(xkr2 − xkr3) (13)

where xkr1 , x
k
r2 , and xkr3 are parameter vectors chosen randomly

from the population, different from running index i, and mutually
different. The scaling factor F is a real constant factor which
controls the amplification of the differential variation (xkr2 − xkr3).

4.2. Crossover operation

In order to increase the diversity of the new generation of
parameter vectors, a crossover operation is introduced. Let us
denote by uk

i = (uk
i,1, u

k
i,2, . . . , u

k
i,n)

T the new parameter vector
generated through the crossover operation between vectors vk

i and
xki , with

uk
i,j =


vk
i,j if pki,j < Cr

xki,j otherwise
(14)

where each pki,j is a randomly chosen value, according to an
uniform distribution, from the interval (0, 1) for each parameter
j of the population member i at step k. The random values pki,j
are made anew for each trial vector i. The Cr factor constitutes
the crossover control variable and generates a random process
with two possible outcomes for each element of vector u. The

Fig. 1. New population member generation.
probability of incorporating k elements of the perturbed vector
vk
i after the crossover operation into vector uk

i follows a binomial
distribution:

P(I = k) =
n!

k!.(n − k)!
Crk(1 − Cr)n−k. (15)

4.3. Selection operation

To decide whether or not vector uk
i should become a member

of generation i + 1, the new vector is compared to xki . If vector u
k
i

yields a better or equal value for the objective fitness function than
xki , then it is replaced by uk

i for the new generation; otherwise, the
old value xki is retained for the new generation.

4.4. Shift operation

After the DE algorithm has completed its iterations, the points
included in the population set x∗

t are moved according to the
robot’s motion model xit+1 = f (xit , ut), the candidate pose, and the
observed odometric data.

4.5. Additional mechanisms

The solution adopted in this work uses three main mechanisms
to improve the robustness and efficiency of the basic DE algorithm.
These mechanisms are:
(1) A Threshold rejection factor to avoid the premature elimination

of solutions. This mechanism decreases the eagerness of the
algorithm, allowing the elimination of a candidate solution
from the set only when the offspring candidate is significantly
better from a statistical point of view.

(2) A Discarding operator to accelerate the convergence of the
algorithm by: (a) eliminating a very low percentage of the
worst population individuals at each iteration of the algorithm,
and (b) re-sampling the candidate individual in the vicinity of a
better candidate selected randomly between the best elements
of the population.

(3) An Adaptive adjustment of the perturbation amplification factor
F . This mechanism tries tomaintain a high amplification factor
while the population has not converged to the promising areas
(a wide scope search is required) and to limit the algorithm
search scopewhen the population set is distributed in themost
feasible areas.

4.6. Threshold determinations

4.6.1. L2-norm threshold
The fitness function value for a given candidate xjt (L2-norm, see

Eq. (9)) is given by

f j0(x
j
t) =

Ns−
i=0

(zt,i − ẑ jt,i)
2

2σ 2
e

+
1
2
(xjt − x̂t)P−1(xjt − x̂t)T (16)

where zt,i is the measurement given by the range scan sensor
at angle αi and cycle t, ẑ jt,i is the estimated observation for the
candidate robot’s pose xjt , and x̂t is the pose estimate (if it exists at
cycle t). The second term of the expression depends on the robot’s
pose estimate x̂t that is not known at the initial step, and it is
neglected until a unique pose estimate is obtained (that happens
when all the population has converged to a limited area around the
best pose estimate). The fitness function before the convergence
point information takes the following form

f j0(x
j
t) =

Ns−
i=0

(zt,i − ẑ jt,i)
2

2σ 2
e

=
1
2

Ns−
i=0

ν2
t,i

σ 2
e

(17)
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.

where νt,i = (zt,i − ẑ jt,i) represents the discrepancy between
the observed and the predicted value of the sensor data. To
estimate the expected noise band for the fitness function, we
need to calculate the expected value of E[f0] when the pose under
evaluation is the true one. The term

∑Ns
i=0 ν2

t,i/σ
2
e , where νt,i/σ

2
e

are the standard normal random variables N(0, 1), is a chi-square
distribution with Ns degrees of freedom. This distribution is well
known and has mean Ns and variance 2Ns. Then, the expected
minimum fitness value will be

E[f1] =

∫
+∞

−∞

f0(ν)p(ν)dν = Ns/2. (18)

That means that, even if the pose we are considering was the
true robot’s pose, the expected fitness function value would be
Ns/2 due to the observation errors produced at the perception
time. If two candidate poses x1 and x′

1 are compared at a given
iteration time, the question is: when canwe consider there exists a
reasonably evidence that candidate pose x1 is better than x′

1? In the
tests, different values for the threshold rejection level have been
simulated. To maintain the elitism in the method one exception
has been introduced (a pose candidate with a better fitness than
the best pose existing up to that moment will always pass to the
following iteration). That exception consists of selecting the best
pose obtained for the next iteration population, independently of
the rejection threshold.

4.6.2. L1-norm threshold
A similar approach can be done if the loss function selected

is the L1-norm. In that case, the fitness function before the
convergence point takes the following form

f j0(x
j
t) =

Ns−
i=0

|zt,i − ẑ jt,i|

σe
=

Ns−
i=0

|νt,i|

σe
(19)

where νt,i = (zt,i − ẑ jt,i) represents the discrepancy between the
observed and the predicted value of the sensor data. As in the
L2-norm case, it is required to calculate the expected value E[f0]
when the pose under evaluation is the true one and the noise is a
normal distribution of zero mean and standard error deviation σe.
The expected minimum fitness value can be easily calculated and
will be

E


Ns−
i=0

|νt,i|


=

∫
∞

−∞

Ns−
i=0

|νt,i|p(νt,i)dνi

=

Ns−
i=0

∫
∞

−∞

|νt,i|
1

2πσ 2
e

e
−

1
2

ν2t,i
σ2
e dνi

= 2
1

2πσ 2
e

Ns−
i=0

∫
∞

0
|νt,i|e

−
1
2

ν2t,i
σ2
e dνi

= 2
1

2πσ 2
e

Ns−
i=0

−σ 2
e e

−
1
2

ν2t,i
σ2
e

∞

0

=

Ns−
i=0

2σe
√
2π

(20)

therefore

E[f0] =

∫
+∞

−∞

f0(ν)p(ν)dν =
2Ns
√
2π

. (21)

4.7. Discarding operator

The inclusion of a threshold rejection mechanism in the selec-
tion operator of the DE algorithm increases the robustness of the
algorithm, since the offspring poses accepted at the selection time
have better statistical evidence of improving the parent pose. On
the negative side, we can remark the decreasing effect on the con-
vergence speed due to the high number of offspring poses rejected
at the selection time, which originates that only a few number of
offspring poses are included for the new population.

To accelerate the convergence speed a new operator has been
included in the algorithm. The idea of this operator is to discard a
low percentage δ of the worst elements of the population at each
iteration. The discarded elements are substituted by a new pose
chosen randomly between the β better elements of the population
plus a randomnoise. To avoid a premature convergence the factors
used in this work have been δ = 0.5% and β = 66%.

In the following sectionwewill show the computational impact
of the discarding operator and some guides to select the discarding
parameters.

4.8. Adaptive amplification factor

The previous mechanisms improve the robustness greatly but 
do not exploit the local convergence. This effect is clearly evident 
in office buildings where many offices have the same dimensions, 
which originates multiple convergence areas. In the strongly 
multimodal situation two problems can appear. On the one hand, 
if we keep in the same place, it is necessary to maintain all the 
feasible areas until more discriminative probabilistic information 
is observed. To achieve this objective we limit the exploration 
capability of the algorithm to the neighborhood of the feasible 
areas detected (Fig. 2). On the other hand, when the robot gets 
out of the office to a corridor, if factor F is maintained high, the 
population tend to spread along the corridor areas (Fig. 3), and the 
limitation of the exploration decreases the spreading problem. The 
spreading is not a problem in global localization but creates serious 
disturbances in dynamical estimation problems.

To avoid both problems, the amplification factor is initialized
at F = 0.99 in the first iteration of the observation cycle, and it
remains in this value until theworst fitness value of the population
reaches a pre-specified fitness function value. In our case we
start the adaptation when the worst hypothesis in the set reaches
four times the expected fitness value. After this level is reached,
F is decreased a 0.5% at each iteration. This tends to focus the
search area of the algorithm on the surroundings of the previous
areas, avoiding an unnecessary dispersion of the population. The
mechanism is started when the worst fitness of the population
goes below two times the stopping criteria used. This mechanism
improves the exploration of feasible detected areas at the final part
of the algorithm iterations and is activated in the initial stages only
when the algorithm has not converged to an only hypothesis.

4.9. Stopping condition

A classical problem in optimization methods is how to deter-
mine a stopping condition. This problem can be considered in

Fig. 2. Factor F curve as a function of the worst fitness value of the population set
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different ways: limiting the number of iterations, iterating until a
pre-specified accuracy is obtained, or iterating until no additional
improvement is obtained. But in case of noisy fitness problems,
these conditions are not appropriate.

Assuming that the fitness function is chi-square with Ns
degrees of freedom, it is possible to obtain the p-quantile function 
value with a pre-specified p value of probability, or in other words, 

the fitness function value f1−p that has a 1−p probability to be 
inferior to the fitness function value at any perception cycle. The 

quantile values for some pre-specified probability values and 
degrees of freedom can be found in the statistics literature [26].

5. Control parameter election

Three main parameters control the behavior of the classical
version of the DE algorithm: factor F (mutation control), factor CR 
(crossover control), and the population size. Different researchers 

exploring newareas. The premature convergence of the population
is a classical problem of the evolutionary algorithms, and it is
necessary to balance both effects to avoid this problem.

5.1. Election of factor F

The classical range of values for factor F is (0, 1), although 1.0 is 
considered in practice an upper limit because most of the known 
functions that have been successfully optimized have not required 
values greater than one. However, this is not strictly a limit because 
it is possible to obtain solutions to different problems with F > 1, 
usually in a more time consuming and less reliable way than if 
F < 1. A particular situation happens when F = 1, since distinct 
vector combinations become indistinguishable, which reduces the 
number of possible vectors by a half and consequently reduces 
the exploration capability of the algorithm. Eq. (22) shows this 
situation where two combinations of the population vector lead 
have studied the influence of the control parameters in the 
performance of the DE algorithm, see for example [25,27,28]. 
The population size depends in general on a certain number of 
factors, among them: the number of dimensions of the problem, 
the size of the state space to be explored, and the kind of fitness 
function landscape, which is perhaps the most important one. 
The state estimation problems in dynamic systems add particular 
difficulties: the true state changes with the time, the fitness 
function also changes, and there is noise in the system and in 
the observations. All these factors affect the population required 
to maintain all feasible hypothesis until new information lets the 
algorithm converge toward the true one. In the problem under 
consideration in this work, the number of possible hypotheses 
is related to the map dimensions, the kind of environment, and 
the perceived information provided by the sensors. The less 
discriminative the information, the higher the number of possible 
hypotheses and consequently the population size required in the 
algorithm.

The adaptive adjustment of population size is currently under 
research in our group to avoid the typical trial and error adjustment 
process; but for the test environment used in the simulations 
(Fig. 10) a population of 300 elements has been adopted because 
it is enough to deal with non-degenerated perceptual situations. A 
degenerated perceptual situation happens when a robot located in 
a corner can only perceive a very limited part of the environment, 
which extremely increases the population set required since most 
corners are perceptually similar.

The other two factors have opposite effects: the selection
mechanism tends to concentrate the population in the best
areas reducing the diversity of the population and, on the other
hand, the mutation increases the diversity of the population by
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Fig. 3. Example of a spreading situation: (a) before spreading; (b) after spreadin
to the same new trial solution; this effect can also be perceived 
in the curves of Fig. 4, where for F values close to the unity the 
average number of iterations up to convergence are very similar to 
the values obtained for F = 0.5.
vk
i = xkr1 + (xkr2 − xkr3)

vk
i = xkr2 + (xkr1 − xkr3). (22)

Fig. 4 shows the number of iterations up to convergence 
(obtained as the average best solution produced over 25 runs). The 
curves show the evolution of the number of iterations required 
for different F values under different observation noise to signal 
ratios (maintaining Cr constant and also the rest of factors). For 
increasing F values the number of iterations required to converge 
increases except in the vicinity of F due to the reason commented 
above. For values of F > 1 the increase in the number of 
iterations required to converge can be perceived. Though low F 
values provide low convergence times, they tend to be more easily 
trapped in local minima due to their small radius of exploration. 
Zaharie [28] has demonstrated the existence of a lower limit for F to 
operate efficiently, and has demonstrated that if F is too small, the 
population can converge even if the selection is turned off. For the 
dimension of the problem and the population we are considering 
here, this limit is very low, but undesirable effects start to appear 
for F < 0.05, where the convergence probability to the true pose 
decreases.

In our test, low F values are not convenient for the initial
execution of the algorithm when the it needs to localize the
feasible areas in the environment (the initial pose determination
is similar to a noisy global optimization problem). However, in
successive runs low F levels limit the mobility of the population,

250 300 350 400 450 500

250 300 350 400 450 500

250 300 350 400 450 500

g point maintaining F constant, and (c) after spreading point with F adaptation.
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Fig. 4. Effect of the F values on the iterations number up to convergence (CR =

0.5) for a 1%, 5%, and 10% of noise standard deviation values over the measured
signal values (magenta, red, and blue curves, respectively). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

which is convenient for the long term efficiency and accuracy of
the method (the tracking pose determination is basically a noisy
local optimization problem in a dynamic system). The dispersion is
inefficient in dynamic systems because they have history (except
at the initial stage), and even if a dispersion is logical from a fitness
point of view, it could not be logical from a dynamic point of view.
This situation happens when a robot is located in an office and
moves to the corridor, wheremany possible areas are perceptually
equivalent, originating a dispersion in population that can lead to
convergence problems.

According to that, an appropriate range for the F values can
be (0.5, 1.0) for the initial stages of the algorithm previous to
the convergence to only one area, and lower levels but over the
critical CR factor after the algorithm convergence. This results
approximately coincidewith those fromother authors that suggest
values in the range 0.4 < F < 0.95, and some of them recommend
F = 0.9 as a compromise between speed and probability of
convergence in global non-separable optimization problems. In
our simulation tests we have chosen F = 0.99. After the initial
stages, once the feasible areas are reduced to one, the problem
becomes a local optimization situation where the algorithm needs
to track the feasible area while the robot is moving. For that
situation a value F = 0.05 works efficiently, not exhibiting
dispersion problems.

5.2. Election of factor CR

The crossover control parameter balances the importance given
in the DE algorithm to the new trial solutions obtained from the
perturbation mechanism (mutation) and the old solution. If CR =

0, the old population is maintained, and if CR = 1, the new trial
solution is the mutated one. Values between both limits generate
a trial set of solutions which combines the old solution with the
mutated one, giving more probability to one or another depending
on the value.

Fig. 5 shows the effect on the number of iterations required to 
reach the stopping condition at the initial perception cycle for the 
pose (250, 100, 270)T and with F = 0.99 (obtained as the average 
best solution produced over 25 runs). The effect of low CR values 
increases substantially the number of iterations required up to the 
stopping point due to the algorithm becomes less exploratory as CR
Fig. 5. Effect of CR values on the iterations number up to convergence (F = 0.99)
for a 1%, 5%, and 10% of standard deviation values over the measured signal value
(green, red, and blue curves, respectively). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

decrease its value. The behavior of the algorithm is more evident
when the noise level increases (blue curve).

Different works suggest the convenience of using low CR values
when the objective function is separable, and high CR values for
non-separable and multimodal objectives functions. In our case,
values in the range (0.5, 0.99) work efficiently, whilst lower CR
values require higher number of iterations to reach the stopping
criteria. Cr = 0.5 has been adopted in this work.

5.3. Election of the discarding factor

The discarding mechanism eliminates a fraction of the worst 
hypothesis in the population set and replaces it with a point in 
the neighborhood of one of the best solutions obtained up to that 
iteration in the current set. The new point is randomly chosen 
within the 66% of the best points in the population (according 
to its fitness) plus a small random noise. This mechanism tends 
to approach the worst solutions to the best areas and, as a 
consequence, it accelerates the convergence speed. This effect is 
shown in Fig. 6.

The results shown in Fig. 6 have been obtained using a 
population of 300 elements (also used along the rest of this work), 
F = 0.99, Cr = 0.5, and averaging the number of iterations 
required in 25 runs to reach the stopping condition of the algorithm 
for different rejection values. The number of rejected elements 
for a given population is obtained according to the expression 
Nδ = round(δ ∗ Np). The curves obtained represent two highly 
different situations: pose (x, y, θ)T 

= (250, 100, 270)T (blue 
curve) is a distinguishable office located in the upper part of the 
corridor where the rooms are of different width (1 cell between 
two consecutive offices), and pose (x, y, θ)T 

= (250, 30, 270)T 

(red curve) is a non-distinguishable office located in the lower 
side of the corridor where the rooms are of the same width. In 
the second case there exist 21 rooms, which at initial observation 
provides equally probable hypotheses. Thus, the first run of the 
algorithm needs to be able to find the 21 equally probable areas to 
work in a robust way, while in the other initial pose the algorithm 
needs to find only one true area.

Fig. 6 clearly shows how the convergence time decreases 
substantially as the rejection factor increases. However, this 
mechanism modifies progressively the way of operation of the 
DE algorithm toward a less exploratory behavior, which is not 
convenient; and high discarding values originate the loss of
7



Fig. 6. Effect of the discarding factor on the iterations number up to convergence
(F = 0.99, Cr = 0.5) for two different initial poses: (250, 100, 270)T and
(250, 30, 270)T (blue and red curves, respectively). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

feasible hypotheses in themultimodal case,which candecrease the
robustness of the method. If a low discarding factor is adopted, the
exploratory behavior of the DE method is not substantially altered
and a shorter convergence time is reached. The curves show a fast
decrease of the iterations up to convergence for discarding factors
up to 0.05 ∗ Np, and a slower decrease rate for higher discarding
factors. In the multimodal case the loss of feasible hypotheses is
perceived for discarding values over 0.1 ∗ Np.

This figure also shows that the average iterations required for
the algorithm up to the stopping point for the pose (x, y, θ)T =

(250, 100, 270)T is 295.32 when no discarding is used; for α =

0.005 the iteration number falls to 245.44; for α = 0.01 –
233.24, and for α = 0.05 – 172.92; that is, a 16.89%, 21.02%, and
41.44% of acceleration for α = (0.005, 0.01, 0.05), respectively.
For (x, y, θ)T = (250, 30, 270)T the iterations number is 271.06
when no discarding is used, and 178.40, 168.60, and 129.60 for
α = (0.005, 0.01, 0.04), respectively; thismeans a 34.18%, 37.79%,
and 52.18% of improvement with respect to the non-discarding
case. We have adopted a value of α = 0.05 for the discarding
parameter in order to achieve a reasonable acceleration without
a substantial alteration of the method.

5.4. Election of the threshold rejection factor

The use of a threshold rejection factor (defined as a factor of
the expected average value) tries to avoid a premature elimination
of equally probable hypotheses. To observe the effect of different
rejection factors, we have considered the robot located at pose
(250, 30, 270)T . Since there exist 21 similar offices and the
orientation is opposite to the corridor door, all the offices are
equally probable at the initial stage due to the fact that the
perceptual information is exactly the same. Since the rejection
and the stopping criteria affect the premature elimination of
hypotheses, both effects have been checked separately. To test
the effect of the rejection, the stopping condition used in the
algorithm is set to stopwhen, after 100 iterations, no improvement
has been achieved neither in the best estimate nor in the worst
point of the population. The discarding has not been activated. In
Fig. 7 the vertical axis shows the probability of losing one or more
hypotheses at the stopping point obtained after 100 runs of the
algorithm for different rejection factors (horizontal axis). It can
be noticed that, for the stopping criteria defined, if no rejection
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Fig. 7. Effect of the rejection factor on the hypothesis elimination up to
convergence (F = 0.99, Cr = 0.5) for the initial pose (250, 30, 270)T (21 equally
probable hypotheses).

is used, we have a probability of 0.38 of losing any of the feasible
hypotheses. As the factor increases, this probability decreases. An
interesting aspect is the strong effect obtained even for relatively
low rejection factors: a 0.01 ∗ fexpected decreases the probability to
the half and for 0.75 ∗ fexpected this probability goes to zero. The
use of a rejection factor leads the algorithm to explore the space of
possible solutions more exhaustively.

5.5. Election of the stopping criteria

The use of a statistical stopping criteria leads the algorithm to
stop in a precise point (from a statistical point of view), which is
considerably important in noisy dynamic systems where a lack of
statistical uniformity at the stopping point can lead to prematurely
eliminate feasible hypotheses or to a premature stopping. The
premature stopping problem is for our dynamic state estimation
problem of lower importance than the premature elimination of
feasible areas, because the iterative execution of the algorithm
at new observations let the method converge to the true pose
progressively. However, this problem is undesirable because it
increases the number of runs required to achieve the convergence
to one pose. On the other hand, the premature elimination of
feasible areas is a critical problem in our state estimation problem
because once a feasible area is eliminated from the population, the
probability of recovering it is very low and this can lead not to
converge to the true pose.

Fig. 8 shows the probability of obtaining a number of hypothe-
ses different from the feasible ones at the stopping point obtained 
after 100 runs of the algorithm. To obtain the curve the rejection 
and discarding are not activated, and different stopping factors 
have been checked (horizontal axis) for the pose (250, 30, 270)T 

previously commented. For relatively low factors the probability 
decreases very fast, reaching the zero probability for 4.0∗fexpected. If 
we increase the stopping factor, the number of iterations decreases 
and, after a point, the number of poses obtained increases since 
the algorithm does not have enough time to converge properly. 
Another effect is that both the number of iterations up to the stop-
ping point and the accuracy of the solution obtained decrease as 
the factor increases.

From the analysis of the effect of the stopping and the rejection 
factors, it is possible to choose appropriate values for each one, but 
since both factors affect the probability of premature elimination, 
it is very interesting to observe the combined effect of both 
mechanisms. Fig. 9 shows the zero probability curve when using 
both mechanisms simultaneously. It can be noticed that low values 
are required for both parameters when used jointly. In our work 
the adopted values are 0.1∗fexpected for the rejection factor and 1.0∗ 
fexpected for the stopping factor. This point is convenient because it 
maintains a good equilibrium between both mechanisms.
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Fig. 8. Effect of the stopping factor on the hypothesis elimination up to
convergence (F = 0.99, Cr = 0.5) for the initial pose (250, 30, 270)T (21 equally
probable hypotheses).

Fig. 9. Curve of zero probability of premature hypothesis elimination up to
convergence (F = 0.99, Cr = 0.5) for the initial pose (250, 30, 270)T (21 equally
probable hypotheses).

6. Experimental results

To test the algorithm characteristics, a simulated environment 
has been considered (Fig. 9). This environment is similar to 
many office indoor areas. All offices are located along the central 
corridor; the offices located in the upper part of the figure have 
the same length in y dimension and an x length progressively 
decreasing (in one cell unit) from offices located in the left side 
of the figure to those located in the right side. On the contrary, 
offices located on the lower part of the figure are of exactly the 
same dimensions and appearance. The offices located in the upper 
and lower corners of the environment have similar dimensions but 
doors are located in different sides.

This test environment will be used to check the accuracy and
robustness properties of the L2-norm and L1-norm algorithms
and the effect of the environment ambiguity on the algorithm
convergence and response for different noise levels and different
contamination levels of the noise error.

In Fig. 10 a localization sequence is shown. The robot is initially 
located at pose (x, y, θ) = (100, 100, 0) and turns over itself. This 
figure clearly shows how the method is able to determine the most 
probable areas (24 areas are maintained at the end of the first
Fig. 10. Example of a localization sequence after perception cycles 1, 3, 5, 7 and 11,
respectively.

perception cycle) and how these multiple areas converge toward
only one solution as the information perceived by the robotwhile it
describes a turn is integrated. In this example, the population used
is of 300 elements, which is enough for successfully representing
most of the multi-hypothesis situations that can appear in this
environment.

6.1. Test 1

The first test tries to determine the capability of the algorithm 
to localize the robot when it is located in one of the distinguishable 
rooms of the upper side of the corridor and observes the distinctive 
characteristics of the room. The robot’s pose is (x, y, θ)T 

= 
(250, 100, 270)T and the noise/signal ratio level has different 
values. We have considered a Gaussian observation error of 
zero mean and a σ value for each measurement proportional 
to a specified percentage of the measured distance. This kind 
of situation is typical when ultrasound sensors are used and is 
perhaps the worst case. When using laser range scanners the 
variance is almost constant, which constitutes a more favorable 
situation. In the test, the robot is located at a given pose and the 
algorithm is executed repeatedly maintaining that robot’s pose but 
taking a new observation of the environment at each cycle. The 
results in Tables 1 and 2 show: the noise level (standard deviation 
expressed as a fraction of the signal measured); the average value 
of the absolute error in x, y, and θ , obtained for 50 runs of the 
algorithm (in cell units for x and y and degrees for θ (the cell size is
9



Table 1
L1-norm estimation error in cell units for different noise levels (cell size of 12 cm); true location: (250, 100, 270).

Noise ¯|e|x σx ¯|e|y σy ¯|e|θ σθ Av. cycle Suc

0.01 0.032 0.024 0.100 0.073 0.062 0.045 1 1.0
0.02 0.042 0.037 0.202 0.166 0.179 0.149 1.8 1.0
0.03 0.070 0.069 0.346 0.243 0.260 0.276 2.6 1.0
0.04 0.101 0.083 0.503 0.371 0.446 0.466 3.2 1.0
0.05 0.129 0.100 0.428 0.407 0.486 0.423 3.9 1.0
0.06 0.110 0.074 0.549 0.367 0.443 0.298 4.85 1.0
0.07 0.115 0.100 0.645 0.388 0.408 0.435 6.9 1.0
0.08 0.123 0.096 0.577 0.417 0.566 0.620 9.9 1.0
0.09 0.138 0.135 1.044 0.516 0.507 0.583 14.8 0.96
0.10 0.168 0.163 0.894 0.490 0.627 0.628 18 0.78
Table 2
L2-norm accuracy for different noise levels; true location: (250, 100, 270).

Noise ¯|e|x σx ¯|e|y σy ¯|e|θ σθ Av. cycle Suc

0.01 0.126 0.070 0.261 0.091 0.720 0.208 1 1.0
0.02 0.112 0.119 0.281 0.229 0.554 0.257 2 1.0
0.03 0.109 0.072 0.301 0.229 0.644 0.246 2.2 1.0
0.04 0.155 0.153 0.537 0.405 0.713 0.490 2.5 1.0
0.05 0.153 0.110 0.481 0.469 0.756 0.551 2.8 1.0
0.06 0.120 0.108 0.741 0.529 0.467 0.485 3.1 1.0
0.07 0.158 0.161 0.776 0.448 0.612 0.522 3.4 1.0
0.08 0.178 0.123 1.195 0.570 0.640 0.553 3.8 1.0
0.09 0.258 0.242 1.318 0.583 1.053 0.721 5.5 1.0
0.10 0.117 0.114 1.575 0.661 0.807 0.568 6.9 1.0
12 cm)); the standard deviation obtained for the absolute error in
x, y, and θ ; the average number of cycles required for the algorithm
to converge to the true pose, and the success probability over the
50 runs for L1- and L2-norms.

According to Table 1, corresponding to the L-1 norm, it can 
be noticed that for a 1% of signal error variance, the mean of the 
absolute error in x is below 0.025 cell units (3 mm), below 0.100 
cell units in y (12 mm), and below 0.07° in orientation. The variance 
is also very low. The accuracy keeps relatively constant between 
the 5% and the 8% of error signal variance. It does not decrease 
in that interval because the algorithm requires a growing number 
of perception cycles until it converges to one hypothesis, which 
lets the algorithm integrate more information and compensate the 
error increase. If the error is incremented, the accuracy starts to 
degrade slowly but the success ratio decreases. It is interesting 
to notice that, for an 8% of signal error variance, the L1-norm 
accuracy in x is around 1.5 cm, around 7 cm in y, and around 0.5°
in orientation.

For a 1% of signal error variance the convergence to one hypoth-
esis is achieved in one perception cycle, while for a 10% of signal
error variance the convergence requires 18 perception cycles in av-
erage. In our tests, the success ratio of the L1-norm convergence to
the true pose decreases very fast over the 10% of signal error vari-
ance.

Table 2 shows the same test for the L2-norm version of 
the algorithm. In this case, the algorithm maintains a relatively 
constant accuracy of 1.5 cm in x up to a 7% of variance level 
error. This does not happen in y dimension, where the average 
absolute error grows from around 3 cm up to 19 cm, while the 
attitude error shows a more constant accuracy between 0.5° and 
1°, approximately. In terms of accuracy, the L2-norm shows less 
accurate results than the L1-norm case. On the other hand, the L2-
norm requires less perception cycles to converge to the vicinity 
of the true solution and is able to provide a good estimate with 
higher level of noise than in the L1-norm case without degrading 
its success ratio. It is, from that point of view, more feasible than 
the L1-norm version of the algorithm.
6.2. Test 2

The second test tries to determine the capability of the algo-
rithm to localize the robotwhen there exists a contaminated Gaus-
sian noise. This situation happens when the robot tries to localize
its pose in presence of mobile objects or unexpected obstacles. To
test this situation the robot has been located in one of the distin-
guishable rooms of the upper side of the corridor and it observes
the distinctive characteristics of the room, but the normal Gaussian
noise has been contaminated with a uniform distribution located
between the 25% and the 75% of the sensor measurement (around
the middle of the real distance). This can be expressed by

p(x) = (1 − ϵ)N(xm, σ ) + ϵU(0.25xm, 0.75xm) (23)

where ϵ is the contamination level, N(xm, σ ) is the Gaussian 
observation noise probability distribution centered at the true 
measurement xm, and U(0.25xm, 0.75xm) is an uniform probabil-
ity distribution between [0.25xm, 0.75xm]. The levels of contami-
nation used for this test are 5% and 10%. The true robot’s pose is 
(x, y, θ)T 

= (250, 100, 270)T and the Gaussian noise/signal ratio 
level has different values. We have considered a Gaussian obser-
vation error of zero mean and a σ value for each measurement 
proportional to a specified percentage of the measured distance. 
As in the previous test, Tables 3–5 show the performance of the 
algorithm for the L1- and L2-norms and different levels of error 
contamination.

For a 5% of noise contamination the important impact on the 
success ratio for the L2-norm can be noticed (Tables 3 and 4). 
In none of the Gaussian noise levels used for simulation a 100%
of success ratio has been achieved, and for noise levels over 5%
the success ratio decreases below a 50%. From a practical point of 
view, the L2-norm should not be used because, even in the best 
situation, the success ratio is below 90%. In the L1-norm case, the 
contamination affects the success ratio less seriously. For Gaussian 
noise levels up to 5% the success ratio of the L1-norm maintains the 
100%, and for a 7% the success ratio is still over 70%.

Attending to the accuracy, for a 1% of variance in the Gaussian
noise in presence of a 5% of contamination, the L2-norm has an
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Table 3
L1-norm estimation error in cells for different noise levels and a 5% of contamination; true location (250, 100, 270).

Noise ¯|e|x σx ¯|e|y σy ¯|e|θ σtheta Av. cycle Suc

0.01 0.023 0.019 0.150 0.113 0.070 0.065 1.7 1.0
0.02 0.059 0.043 0.210 0.143 0.206 0.200 2.4 1.0
0.03 0.103 0.088 0.361 0.277 0.374 0.402 2.85 1.0
0.04 0.117 0.118 0.512 0.401 0.430 0.387 3.7 1.0
0.05 0.091 0.088 0.766 0.544 0.497 0.547 4.85 1.0
0.06 0.097 0.105 0.814 0.500 0.640 0.474 6.24 0.84
0.07 0.139 0.146 1.079 0.435 0.516 0.464 11.3 0.70
Table 4
L2-norm estimation error in cell units for different noise levels and a 5% of contamination; true location: (250, 100, 270).

Noise ¯|e|x σx ¯|e|y σy ¯|e|θ σtheta Av. cycle Suc

0.01 0.314 0.223 1.149 0.737 0.775 0.538 2 0.88
0.02 0.354 0.285 1.232 0.541 1.180 0.713 2.25 0.78
0.03 0.314 0.232 1.448 0.840 0.893 0.542 2.3 0.64
0.04 0.230 0.183 2.178 1.218 0.877 0.714 2.15 0.84
0.05 0.167 0.234 1.921 1.122 0.525 0.446 3 0.50
0.06 0.235 0.318 2.990 1.731 0.953 0.750 3.66 0.38
0.07 0.800 0.601 2.652 1.492 1.259 1.337 3.25 0.16
Table 5
L1-norm estimation error in cell units for different noise levels and for a 10% of contamination; true location: (250, 100, 270).

Noise ¯|e|x σx ¯|e|y σy ¯|e|θ σtheta Av. cycle Suc

0.01 0.048 0.043 0.202 0.124 0.142 0.215 2.5 1.0
0.02 0.069 0.058 0.347 0.272 0.220 0.259 3.05 1.0
0.03 0.086 0.069 0.460 0.412 0.357 0.362 4.3 1.0
0.04 0.119 0.073 0.825 0.417 0.529 0.430 5.7 1.0
0.05 0.105 0.103 0.778 0.408 0.445 0.523 7.93 0.80
0.06 0.088 0.102 1.251 0.650 0.714 0.519 10.38 0.52
absolute error average of 0.314 cell units in x (3.76 cm), 1.149
cell units in y (13.78 cm), and 0.775° in attitude. These results
deteriorate progressively with the increase of the noise variance.
For a 1% of variance in the Gaussian noise the L1-norm error is
of 0.023 cell units in x (0.27 cm), 0.150 cell units in y (1.8 cm),
and 0.070° in attitude. These errors deteriorate as the variance of
the Gaussian error noise increases, but for a 7% of variance the
errors in x, y, and θ are 0.139 cell units, 1.079 cell units, and 0.516°,
respectively. It is interesting to observe that, for this contamination
level, the L1-norm accuracy results are only a little worse than
the L1-norm results for the non-contaminated case. For the 7%
of variance noise error in the non-contaminated case, the errors
in x, y, and θ are 0.115 cell units, 0.645 cell units, and 0.408°,
respectively, which are obviously better but still little accurate. It
does not happen with the L2-norm results, where, even for the
1% of variance in the Gaussian error, the errors are substantially
worse in x and y, and a little worse in θ . Besides, the accuracy of
the L2-norm results deteriorates considerably as the variance in
the Gaussian signal increases.

If we increase the contamination level up to a 10%, the L2-norm
is not able to localize the robot (or in terms of success ratio, the
probability of finding the true pose decreases below the 30% even
for low variance levels in the Gaussian noise). In the L1-norm case
(Table 5), the success ratio maintains a 100% up to a 4% of variance
in the Gaussian noise and decreases over this value. The accuracy
of the L1-norm is also affected, but for low levels of variance it
is still highly accurate, e.g., for a 1% of variance the x, y, and θ
average errors are of 0.048 cell units (0.57 cm), 0.202 cell units
(2.42 cm), and 0.142°, respectively. The error levels increase with
the variance.

6.3. Test 3

In Test 2 we have assumed a Gaussian noise contaminated by
a uniform noise distributed around the middle range of the sensor
measure. Test 3 tries to determine the capability of the algorithm
to localize the robot in the presence of unexpected objects
that contaminate the Gaussian sensor noise with an exponential
distribution [13]. To test this situation the robot is located as in
Test 2, but the normal Gaussian noise has been contaminated with
an exponential distributionwith λ = 0.1. This can be expressed by

p(x) = (1 − ϵ)N(xm, σ ) + ϵExp(λ) (24)

where ϵ is the contamination level, N(xm, σ ) is the Gaussian
observation noise probability distribution centered at the true
measurement xm, and Exp(λ) is of the form

pExp(x) =


λe−λzkt if 0 ≤ zkt ≤ zkt ∗

0 otherwise.
(25)

This contamination distribution tends to be very aggressive
due to the fact that the higher probability values tend to be
concentrated near the robot, which originates big error values. The
level of contamination used for this test is progressively increased.
The true robot’s pose is (x, y, θ)T = (250, 100, 270)T . We have
considered a Gaussian observation error of zero mean and a σ
value for eachmeasurement proportional to a specified percentage
of the measured distance (the Gaussian noise/signal ratio level is
assumed to be a 1%), an exponential contamination of λ = 0.1 and
different contamination levels.

Similarly to the previous tests, Tables 6 and 7 show the results 
from the performance of the algorithm for the L1- and L2-norms 
and different levels of error contamination.

The exponential noise contamination has an important impact
on the success ratio for the L2-norm, as can be observed in Table 6.
In none of the exponential noise contamination levels used for
simulation a 100% of success ratio has been achieved, and for
contamination levels over a 5% the success ratio decreases below
a 50%. From a practical point of view, the L2-norm should not be
used because, even with a 1% of Gaussian noise in sensors, which
11



Table 6

L2-norm estimation error in cells for a Gaussian noise of 1% and different exponential contamination levels; true location (250, 100, 270).

Cont. level ¯|e|x σx ¯|e|y σy ¯|e|θ σtheta Av. cycle Suc

0.01 0.2906 0.5638 1.1105 0.2840 0.8145 0.7760 1.0 0.96
0.02 0.2651 0.5122 0.8246 0.2001 0.7300 0.4901 1.0 0.88
0.03 0.5767 2.0096 1.5689 0.4840 1.8695 1.1077 1.0 0.72
0.04 0.4861 1.2343 0.7499 0.3971 1.6111 0.8825 1.0 0.52
0.05 0.5968 3.0364 1.8090 0.5339 1.9041 1.5062 1.0 0.44
Table 7
L1-norm estimation error in cell units for a Gaussian noise of 1% and different exponential contamination levels; true location: (250, 100, 270).

Cont. level ¯|e|x σx ¯|e|y σy ¯|e|θ σtheta Av. cycle Suc

0.01 0.0385 0.1489 0.0660 0.0214 0.1027 0.0411 3.08 1.0
0.05 0.0350 0.1434 0.0695 0.0222 0.0984 0.0642 3.28 1.0
0.10 0.0546 0.1684 0.1698 0.0702 0.1079 0.2510 4.64 1.0
0.15 0.0339 0.2634 0.0788 0.0271 0.2150 0.0560 5.76 1.0
0.20 0.0486 0.1899 0.1029 0.0378 0.1661 0.1584 7.12 0.96
0.25 0.0529 0.3668 0.1850 0.0285 0.3193 0.1827 11.45 0.44
means a highly accurate sensor, a low exponential contamination
of a 1% leads to a success ratio of only a 96%. In the L1-norm
case, the contamination affects the success ratio less seriously. For
exponential noise contamination levels up to 15% the success ratio
of the L1-norm remains at a 100%, and for a 20% the success ratio
is still over a 95%.

Regarding he accuracy, for a 1% of variance in the Gaussian
noise and a presence of a 1% of exponential noise contamination
the L2-norm has an absolute error average of 0.2906 cell units
in x (3.487 cm), 0.5638 cell units in y (6.766 cm), and 1.1105° in
attitude. These results deteriorate progressively with the increase
of the contamination level. For the same conditions, the L1-
norm has an error of 0.039 cell units in x (0.47 cm), 0.149 cell
units in y (1.79 cm), and 0.07° in attitude. These errors do not
deteriorate significantly as the contamination level increases. It is
interesting to observe that, for these contamination levels, the L1-
norm accuracy results are only a little worse than those for the
non-contaminated case, but a higher number of perceptual cycles
is required to reach the convergence to the true pose.

6.4. Computational cost

When analyzing the effect of the L1-norm and the L2-norm on
the computational cost of the algorithm, three different situations
have to be considered:

First perception cycle. In this situation, the algorithm explores
the full state space until the stopping condition is reached. The time
used to reach the stopping condition depends on the worst pose
value considered as threshold in the stopping criteria. This time
is around 8 s for the test example (in a T8300 duo core processor
at 2.4 GHz with one core at execution). This time depends on the
population set, the stopping criteria, and the sensed area (since
the sensor perception estimation is done by ray tracing on the
environment map, the estimation cost tends to grow with the size
of the observed area). For the same population (300 points) and
stopping criteria, this initial localization cycle can vary from 3 to
10 s. At the endof this first perception cycle the feasible localization
areas are determined.

Perception cycles before convergence. This situation is faster
than the initial localization cycle because the population set is
distributed around the most favorable areas at the beginning of
the perception cycle iterations and the stopping condition for the
algorithm is reached considerably faster than in the initial case. For
this test example the time required is around 200–400 ms.

Perception cycles after convergence. Once the algorithm detects
that the whole initial population has converged to one hypothesis,
the population set is decreased to 30 elements. For this population
set the stopping condition is reached very fast and the computa-
tional cost decreases to 30–45 ms per iteration.

These times let the algorithm be used on-line except at the ini-
tial cycle. Due to the fact that the stopping condition definition
has been done in statistical terms, there are no substantial com-
putational differences at each perception cycle. The differences,
however, are substantial, but they mainly affect to the number of
perception cycles required for the population to reach the conver-
gence point. In the favorable case thatwe are using to test and com-
pare both norms, different situations can be noticed:

Gaussian noise. For low variance noise levels up to 3%, the
number of perception cycles required to obtain the convergence is
approximately similar, but after that point, the L1-norm requires
more perception cycles. For a 10% of noise variance, the L1-norm
requires 18 perception cycles and the L2-norm requires only 6.9
perception cycles in average. Both perception cycles requirements
seem to grow exponentially, but the L1-norm grows faster. This
fact makes the L1-norm be slower than the L2-norm when the
noise variance increases.

Contaminated Gaussian noise. The contamination introduced in
the perception noise slightly increases the number of perception
cycles required to converge, but the general form of the compu-
tational cost growth is almost similar. It can be noticed that the
L1-norm seems to be less affected than the L2-norm at low noise
variance levels.

7. Conclusions

The Adaptive Evolutionary Localization Filter (A-ELF) presented
in this paper is able to solve the global localization problem in
an efficient way. The use of L1-norm or L2-norm loss functions
in the algorithm affects the algorithm properties in the aspects
commented next.

7.1. L2-norm properties

The use of the L2-norm has the following advantages:
The L2-norm is highly robust to increasing levels of variance in

the non-contaminated Gaussian perception noise. The algorithm is
able to localize the robot evenwith variance levels over a 10% of the
measured distance.

The speed of convergence is excellent and faster than the L1-
norm. That means that the algorithm requires less perception
cycles to achieve the convergence to the true solution.

The accuracy of the algorithm is good. For a 1% of signal error
variance in noise, the algorithm achieves an accuracy of 1.5 cm in
x and 3 cm in y, while the attitude error accuracy is close to 0.5°,
approximately.
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The L2-norm is derivable and, for linear problemswithGaussian
noise, leads us to closed estimator expressions (Kalman filter)
with strongmathematical background referred to convergence and
optimality proofs. In re-localization or tracking problems where
the robot pose is known with some degree of uncertainty, these
methods are fast and efficient because the localization problem is
basically unimodal. However, this advantage is lost in the global
initialization problem where the fitness function is multimodal.
Up to day, it is still a very difficult task to model a multimodal
probability distribution accurately, and consequently much more
difficult if the multimodal probability distribution evolves and
changes with the time. In these problems the mean and the
variance are not good indicators.

Among the disadvantages of the L2-norm we have the follow-
ing.

The L2-norm penalizes big errors strongly. This originates sub-
stantial problems when the perception noise has outliers or the
perception is contaminated with some other probability distribu-
tion. In the tests, a 5% of contamination in the Gaussian noise is
able to lead the algorithm to fail even with low variance levels in
the Gaussian noise. The loss of properties in the L2-norm is very
fast. In the tests, the success ratio for a 5% of contamination never
reaches a 100% and decreases very fast as the Gaussian variance
increases. For a 10% of contamination, the L2-norm success ratio
is below 30% in all the tests. In case of exponential contamination
the L2-norm degradation is faster because the unexpected mea-
sures are located close to the robot and the errors are bigger than
in the uniform contamination.

The L2-norm accuracy decreases significantly in presence of
contamination.

7.2. L1-norm properties

The use of the L1-norm has the following advantages:
The L1-norm is highly robust to increasing levels of variance in

the non-contaminated Gaussian perception noise. The algorithm
is able to localize the robot with variance levels up to 10% of the
measured distance. It is less robust than the L2-norm to variance
increases but still very robust.

The speed of convergence is good but not as fast as the L2-norm.
That means that the algorithm requires more perception cycles to
achieve the convergence to the true solution than the algorithm
based on the L2-norm.

The accuracy of the L1-norm is considerably better than the L2
case. For a 1% of signal error variance, the mean of the absolute
error is of 3 mm in x, 12 mm in y, and below 0.07° in orientation.

The L1-norm is robust to outliers or contaminated noise. The
algorithm is able to cope with up to a 10% of contamination in
the Gaussian noise without deteriorating the accuracy. For a 1% of
signal error variance, themean of the absolute error is of 0.57 cm in
x, 2.4 cm in y, and 0.142° in orientation. The contamination tends
to slightly decrease the accuracy and the range of variance where
the algorithm is able to converge.

Among the disadvantages of the L1-norm we have the follow-
ing.

The L1-norm requires more perception cycles to converge than
the L2-norm.

The L1-norm tolerates lower levels of variance in the Gaussian
noise than the L2-norm.

Apart from the differences obtained when using a loss norm or
another, the algorithm presents some general characteristics:
(1) The algorithm can use different loss norms without problems,

since the method is based on a multi-point stochastic search.
The use of a stochastic search method lets the algorithm op-
erate with non-derivable loss functions that cannot be solved
analytically. Besides, it can work with arbitrary nonlinear sys-
tem dynamics, sensor characteristics, and non-Gaussian noise.
(2) Since the algorithm searches for the set of solutions accord-
ing to the current loss function and it does not try to approx-
imate posterior density distributions, it does not require any
assumptions on the shape of the posterior density as paramet-
ric approaches do. This avoid the slow convergence to feasible
areas obtained with Monte Carlo methods.

(3) The size of the minimum solution set required to guarantee
the convergence to the true solution is very small. For the
test shown previously, a population of 300 elements has been
adopted because it is the one required to localize an arbi-
trary informative pose, but for the pose tested 30 elements are
enough. The minimum set of points required to achieve a suc-
cessful global localization for an arbitrary point depends on
the environment information observed. If this information is
scarce (e.g., when the robot is cornered and can only observed
the corner), the number of elements grows. This is because the
algorithm requires a minimum number of points (10–15, ap-
proximately) to efficiently manage each feasible hypothesis,
and the number of feasible hypotheses is proportionally in-
verse to the environment information perceived. The number
of points can be decreasedwhen the number of hypotheses de-
creases.

(4) The algorithm is easy to implement and the computational cost
makes it able to operate on-line even in relatively big areas. In
spite of its computational efficiency, it is not a closed analyti-
cal solution to an optimization problem and, consequently, it is
slower than closed solutions. But closed solutions cannot deal
with multi-hypotheses (multi-solutions) problems, and those
methods require additional algorithms to cope with this situa-
tion. This fact leads them to loose their initial speed and theo-
retical advantages.

(5) In themethod somemechanismhavebeen introduced. Thedis-
carding is applicable to accelerate most of optimization meth-
ods while the thresholding is mainly oriented to be used in
state estimation in dynamical problems subject to noise. The
last mechanism, the F decreasing and the posterior use of low
F values together with a local search is also oriented avoid los-
ing hypotheses in multimodal situations and to decrease the
spreading problem in state estimation in dynamical problems
subject to noise.
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